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Abstract

The structural vibration in a hydraulic or gas pipeline system can be strongly affected due to
multi-source excitation of high fluid pressure fluctuation inside the pipes. Understanding the vibration
behavior is the first step to controlling the vibrations in the pipeline with common vibration control
technologies to ensure the safety of the pipe system and machinery. The common vibration control
technologies have been demonstrated to be effective in typical structures as aerospace structures
and gas pipeline structures. Both acoustic induced vibration and flow induced vibration can be a
cause of failure and both types of vibration use different methods to perform the vibration analysis.
The structural vibration analysis of three-dimensional pipelines conveying fluid is modeled by the
finite element method (FEM) based on Euler-Bernoulli and Timoshenko beam theories and the
transfer matrix method (TMM) used for the one-dimensional acoustic pressure waves solution and to
represent the acoustic-structure interaction in a pipeline as a weak or one-way coupled system. This
fluid-structure interaction in compliant piping systems is modeled by extended water hammer theory
for the fluid and beam theory for the pipe structure. A source code was developed in MATLAB to
predict the dynamic behavior of three-dimensional complex and simple pipe systems subjected to
harmonic and acoustic external loads or resonant frequencies of complex pipe networks conveying
steady fluid flow. From the displacement and pressure fields optimal layout technique of pipeline using
clamps can be archived to reduce vibration amplitudes.

Keywords: Finite element method, Transfer matrix method, Fluid-structure interaction, Acoustics,
Euler-Bernoulli beam theory, Timoshenko beam theory

1. Introduction

Pipelines are essential structural systems to trans-
port all types of liquid fluids and gases, and can
range from the very simple ones to a more complex
ones. They can be simple as a single pipe convey-
ing fluid from one reservoir to another and more
elaborate as a complex transport of natural oil or
gas in a major metropolitan area, containing sev-
eral kinds of pumps, valves, branches and support-
ing parts. Pipelines can also be made with small
diameters pipes like in the hydraulic pipelines in
airplanes and cars, and larger diameters for long
distance gas transport, for example. One of the
major causes of failures or downtime is associated
with vibration of these structures and controlling
these vibrations is the challenging work to ensure a
normal operation of the pipeline or the flight safety
of an aircraft. Excessive vibration, that usually in-
volves the lateral vibration of the pipeline and the
shell wall radial vibrations. At low frequencies, pipe
vibration occurs laterally, like a beam, and at higher
frequencies, the pipe shell wall starts to vibrate ra-
dially across its cross-section.

Piping configuration, number and type of sup-
ports, span length, or material affect vibration lev-
els and can be modified to make the system accept-
able. To understand what can be changed its im-
portant to know all the principle mechanisms and
excitation sources that vibrates the structure.

The pipelines are subjected to various types of
vibration in their lifetime. Pipelines can transport
gas for supplying energy by combustion process and
for other processes that involve high pressure gas
transportation through the pipes and other related
components. Another practical use of pipelines is
in aircraft hydraulic systems. This is a typical high-
pressure and high-speed system that includes sup-
porting parts, such as brackets or clamps, where,
due to multi-source excitation of high fluid pres-
sure fluctuations can cause unwanted vibrations [1].
In aeronautical applications, space constraint is rig-
orous and given the large number of pipelines colli-
sion between adjacent pipes also leads to the poten-
tial damage. These movement vibrations may re-
sult in fatigue damage to the pipeline structure and
damage to pipeline supports. These vibrations can



be lateral pipeline vibration due to low frequency
or high frequency piping shell wall vibrations that
can be caused by excitation of circumferential ra-
dial frequency modes. Failure modes of hydraulic
pipeline system includes excessive vibration and fa-
tigue. This occurs due to pipeline resonance. That
is, when the fluid pulsation frequency or external
excitation are similar to the pipeline natural fre-
quencies. During this resonance, damage may oc-
cur due to high vibration stress, and then a crack
may open and propagate.

OpenPulse is used to verify the developed
MATLAB code in the acoustic section. OpenPulse
[2] is a open source software for pulsation analysis
of pipeline systems written in Python for numeri-
cal modelling of low-frequency acoustically induced
vibration in gas pipeline systems.

2. Background

2.1. Euler-Bernoulli and Timosheko beam theory
To model a pipeline, a three-dimensional beam el-
ement is used, and each element contain two nodes
and every node has six degrees of freedom: three
translational displacements and three rotational de-
grees of freedom (Figure 1).
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Figure 1: Element with 12 degrees of freedom

The displacements of a point in a cross section
are described by the translation components, w,,
Wy, W, of the neutral line and the rotations, 0, 0,,
0, of the cross section. It is considered that w; are
small compared by beam length and the rotation
components are all small so that sinf ~ tan6 ~ 6.

Euler-Bernoulli beam kinematics [3, 4] assumes
that a cross-section remains orthogonal to the de-
formed beam axis. If the rotation is equal to the
slope of the beam, then
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Timoshenko beam theory differs from Euler-
Bernoulli theory because it accounts for shear de-
formation. The rotation of plane section orthogonal

to beam axis is given by
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(2)
where dw/dx is the slope of the beam axis and ~
is the rotation due to the distortion of the cross-
section.

With the shape functions defined, for each of the
model, the stiffness and mass matrices can be de-
termined. The determination of the damping ma-
trix follows the Rayleigh damping matrix, where
this matrix is proportional to the system’s mass and
stiffness matrices, given by

C =aM + K (3)
where « is the mass-proportional coefficient and 3
is the stiffness-proportional coefficient. Now, the
damped dynamic equation of motion can be ritten

(4)

With this dynamic equation it is now possible to
perform modal and harmonic analysis. The modal
analysis is used to calculate natural frequencies and
modes of vibration given both stiffness and mass
matrices,

()

and the harmonic analysis is used to predict the
steady state dynamic response of a structure sub-
jected to an harmonic loading,

Mii(t) + Cu(t) + Ku(t) = £(¢)

K- w’MJU =0
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2.2. Internal Fluid Flow

Considering a pipe with fluid flowing through it at
pressure p and at a constant velocity v through the
internal cross-section of area A;. Due to the lat-
eral vibration of the pipeline, the deflected pipe,
the fluid is accelerated because of the changing cur-
vature. Forces and moments acting on the fluid and
pipe element are shown in figure 2.

Figure 2: Fluid and pipe forces

Given the forces and moments the derivation of
the equation of motion for a free vibration of a fluid



convening pipe is given by equation (2.2). Deriva-
tion of this equation is presented in [5] and it is done
by a balance of forces in both fluid and pipe element
considering small deflections and if gravity, internal
damping, externally imposed tension and pressur-
ization effects are either absent or neglected.
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where v is the flow velocity of the fluid and (pA +
prA;) is the total mass per unit length of the pipe.
In equation (2.2) the first term is the force compo-
nent acting on the pipe as a result of bending of
the pipe. The second term is the force component
acting on the pipe as a result of flow around de-
flected pipe curvature. The third therm is the force
required to rotate the fluid element, also known as
Coriolis force. The last term represents the force
component acting on the pipe as a result of the in-
ertia of the pipe and the fluid flowing through it.
With this equation the stiffness, mass and damping
fluid matrices can be constructed and used in both
modal and harmonic analysis. The overall stiffness
matrix is calculated subtracting the fluid matrix to
the structural matrix. This results in a loss of stiff-
ness as the velocity inside the pipeline increases.
Global mass and damping matrices are calculated
by the sum of fluid matrices to the structural ma-
trices.

2.3. Acoustics

Assuming that the flow is frictionless, no external
forces are applied and limit the analysis to acoustic
perturbations (p/, p’, v') at a stagnant uniform fluid
(po, Po) as

p(x,t) = po +p'(x,t) (8)
ps(x,t) = pro+ py(x,1) (9)
v(x, t) = v'(x,t) (10)

and using the non-dissipative wave equation, the
pressure and volume velocity can be calculated in-
side a tube element.

Considering a straight uniform pipe element with
constant fluid properties inside the tube. Pressure
and volume velocity or flow rate in the inlet and
outlet are denoted as p1, q1 and p2, g2. The acous-
tic impedance if the element is represented by Z;.
The first objective is to find a matrix equation that
expresses the volume velocity and pressure at any
point inside the tube element at the wave number,
k =w/cy, in terms of their values at the inlet. The
tube element can be represented as a linear system

with to inputs and two outputs as

-k
q2 q1
where T is the transfer matrix for the uniform tube
element and it is given by

(11)
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where Z; = pycy/A; is the acoustic impedance.
The stiffness matrix relates, in contrast with the
transfer matrix, the same type of variables in each
nodal vector which is more suitable with the finite
element method. This stiffness matrix, S relates
the nodal volume velocities and the nodal pressures
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with
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2.4. Fluid-Structure Interaction
Fluid-structure interaction is a dynamic phe-
nomenon that causes a compliant system to move
when pressure waves exert forces on the structure.
This interaction is always caused by dynamic forces
which act on fluid and pipe and can be divided into
two main groups [6, 7]: distributed forces and lo-
cal forces. Forces that act along the pipe are called
distributed forces and it is caused by the fluid pres-
sure what causes the pipe to develop axial stresses
in the walls. This is refereed as Poisson coupling
in connection with the Poisson coefficient, v, that
transform radial and hoop stresses into axial stress
by the generalized Hook’s law. Forces caused by
fluid friction in the pipe walls are also distributed
forces and are called friction coupling. Local forces
act at specific points in a pipe system such as un-
restrained valves, bends and tees and is generally
more dominant compared with the other coupling
mechanisms.

First, considering only internal pressure in the
pipe system the radial and circumferential stresses
can be expresses as

2p(w) D}

Dz D2 (15)

Orp + 099 =
Given the stress-strain relations, the axial strain,
€xz, generated by the internal pressure on a open
tube element is

1

€xx = E[Jzz - V(Jrr + 099)] (16)



with 0., = 0 for an open ended pipe element.

The most important interaction mechanism is
junction coupling. In most of the times, a pipe net-
work consists of straight sections of pipe connected
by elbows, tees and diameter changes. The local
forces on this sections of pipe can be calculated with
help from the Reynolds transport theory applied
for momentum conservation. For the equilibrium
to be archived pipe internal forces need to compen-
sate the vector sum of the pressure forces. Figure
3 illustrates an elbow with pressure and change in
momentum forces that are compensated by internal
pipe stresses.

Figure 3: Elbow control volume

3. Implementation

3.1. Mesh

The program developed uses a text document, cre-
ated by the user, to import the mesh. This docu-
ment contains all the relevant information about
node locations, element connectivity, element re-
finement, corner locations and corner radius. How-
ever, it is only necessary to provide an initial scheme
of the final mesh (Figure 4), containing only straight
lines.

Mesh refinement is introduced to define more
points along a single straight segment or to define a
corner with line segments. This refinement is done
element by element and corner by corner given the
number of intermediate points each of the initial el-
ements has. The final mesh (Figure 5) is obtained
by the program after performing all the operations
of node numbering, node connectivity between the
nodes and then calculating their coordinates. Next
it will be explained all this process, starting from
establishing element, given the initial user input el-
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Figure 4: Initial mesh design with user input control
points
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Figure 5: Final mesh with refinement and node
numbering

ement connectivity and refinement parameters, and
then calculating node coordinates.

Calculating node coordinates for straight line ele-
ments is straight forward . Given the line start and
end points, A and B respectively, and the number
of segments the element is going to be divided into,
Ny, the new points coordinates are easily calculat-
ing dividing the segment between the two nodes.

A more difficult and time-consuming process is to
determine nodal coordinates for the nodes that form
corners. Given the corner node, C, both adjacent
nodes, A and B, and corner radius, r, it is possible
to calculate the arc start, S, end, E, and centre
point, O (Figure 6).

Figure 6: Important points and corner geometry



The new points are calculated rotating the vec-
tor that connects O to S multiple times until the
desired refinement is obtained.

3.2. Transformation matrix
To transform the element matrices into the global
coordinate system it is required a transformation
of each element to account for the differences in
orientation of all local coordinate systems in three-
dimensional space. Different authors use different
methods to develop element transformation ma-
trix in spatial coordinates. It was implemented a
method based on [8, 9].

The transformation matrix T to transform local
vector into global vector is given by

R (3x3) 0 0 0
0 R 0 0
T — (3><3) 17
0 0 R3x3) 0 (17)
0 0 0  Rexa

where T is a 12 x 12 symmetric matrix given the
twelve degrees of freedom per element. The sub-
matrix R is given as
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and D = (12 + m?)'/2.

3.3. Fluid-Structure Interaction

Identification of the forces involved in the fluid-
structure interaction was performed. From that,
the only forces at it will be taken into account are
the Poisson coupling force and the junction coupling
force. Since, from the acoustic harmonic analysis
the nodal pressures are calculated some approxi-
mations have to be perform to calculate the forces
originated from those pressures. Poisson coupling
force assumes a constant pressure along a pipe ele-
ment, the average pressure at an element needs to
be calculated to calculate the nodal forces that arise
from the coupling mechanism. This average pres-
sure is also used to calculate the forces acting on
the nodes. The force acting on the nodes for given
element is,

F =[-F,,0,0,0,0,0, F,,0,0,0,0,0] (22)

where F, is given sum of local pressure forces and
the distributed Poisson coupling force, that is

Fac = angAi + A(*V(O—rr + 0—09)) (23)

This approach is possible because it accurately
represents the forces acting on pipelines when
changes in velocity (speed or direction) occurs. For
example, figure 7 from [10] shows different com-
mon pipeline sections and the forces acting on them
given fluid the pressures.
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Figure 7: Piping sections excited by pressure pul-
sation [10]

4. Results

4.1. Structural Results

The differences between Euler-Bernoulli and Timo-
shenko beam models are now analysed. The com-
parison between these models and analytical result
is also presented. For the three first modes of vi-
brations of a pinned-pinned pipe, the natural fre-
quencies for each mode is calculated for an increas-
ing number of elements in the FEM model. For
the first mode, figure 8, the theoretical value based
in Euler-Bernoulli model is represented with a grey
margin representing a plus and minus percentage of
that value.

The Timoshenko model gives smaller natural fre-
quency than the Euler-Bernoulli as predicted given
the reduced stiffness of the model. With 6 elements
the Euler-Bernoulli model is inside that analyti-
cal margin. For the second and third modes, re-
spectively given in figures 9 and 10, the differences
between FEM models is more significant, seen by
the grey margins. Also, it takes more elements to
archive the same error margins, 12 elements for the
second mode and 16 for the third.

Now, the default length of the pipe is reduced
without modifying the cross-section geometry to
study the influence of the pipe thickness-to-length
ratio in both Euler-Bernoulli and Timoshenko beam
theories. Instead of thickness it has used the gyra-
tion radius to better describe the section geometry.
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Figure 8: Mode 1 natural frequencies for pinned-
pinned pipe
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Figure 9: Mode 1 natural frequencies for pinned-
pinned pipe

Figure 11 shows the ratio of frequencies between
FEM models for the first three vibration frequen-
cies for an decreasing pipe length.

These results show that the Timoshenko theory
results are very similar to the Euler-Bernoulli re-
sults when r, /L is small, however, the results show
that the difference between theories tends to grow
larger for a thicker beam.

Another method to compare the two models de-
veloped with OpenPulse an harmonic analysis was
performed. For this, a unit force was applied to the
free end of L shape pipe with clamped-free bound-
ary conditions. This force acts parallel to the pipe
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Figure 10: Mode 1 natural frequencies for pinned-
pinned pipe
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Figure 11: Length influence in FEM structural

models with 20 elements

plane and acts orthogonal to free end pipe. Fig-
ure 12 shows structural response for a frequency
from 0 to 100 Hz. From this graph is possible to
identify the resonant frequencies, corresponding to
in-plane natural frequencies of modes 2 and 4. A
anti-resonant frequency is located at around 62 H z.
It is possible to see the larger stiffness from the
Euler-Bernoulli theory and how close the developed
Timoshenko model is to the OpenPulse model.

4.2. Steady Internal Flow Results

Now, the results of the vibration of a pipe with
fluid flow are presented. First, it is shown the re-
sults comparing it to the experiment performed by
[11]. In that experiment, the objective was to study
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the effect of high-velocity fluid flow on the bending
vibrations and stability of a simple supported pipe.
To investigate free vibrations, the pipe transport-
ing different fluid velocities, a small disturbance to
the pipe was necessary. In figure 13, where it can
be seen that the model follows the experimental re-
sults with some precision. As predicted, the system
becomes unstable which results in permanent defor-
mation of the pipe [11]. The velocity for which the
system becomes unstable, or w = 0, is called critical
flow velocity.
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Figure 13: Lowest natural frequency of the simply
supported straight pipe

Now, this fluid flow model is compared with a
model proposed by [12]. This proposed method
considers a slender fluid-structure system, consist-

ing of an elastic pipe with a compressible, viscous
fluid. A finite element computer program was de-
veloped that makes possible to represent a pipe as
a frequency dependent elasto-acoustic element. For
this comparison, a cantilever pipe conveying fluid is
used. This system is excited by a unit transverse
force at the free. The response of the pipe free end
in the direction of the force is presented in figure 14
for flow velocities of V.=0m/s and V = 50m/s.
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Figure 14: Transverse displacement of the free end
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Figure 15: Transverse displacement of the free end
[12]

When V = 0m/s, and not considering material
damping, the system presents sharp resonances cor-
responding to the theoretical natural frequencies.
When the fluid is flowing, the response is smoother
because of the damping forces originated by the
fluid flow. This response is close to the response
obtain by [12] model, only differing on the response
for low frequencies when V = 50m/s. This dif-
ference might be caused by the authors model since
the static displacement (f = 0H z) only involves the
stiffness matrix and force vector for the displace-
ment calculation, and, since with the increase in



flow velocity through the pipe, the overall stiffness
decreases and the static deflection is increases. So
the higher the flow velocity, the higher the first data
point in figures 14 and 15 should be.

4.3. Acoustic Results

In order to verify the acoustic model, and with the
lack of literature results, OpenPulse [2] software was
used to, first validate the code developed and second
to check the differences in implementation. Given
the L pipe with a prescribed pressure at one end
and a volume velocity at the other end the pressure
response and structural response can be compared.
For this the node containing the prescribed volume
velocity is used. The pressure response is presented
in figure 16 and the structural response is in figure
17.
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Figure 16: Acoustic pressure response in the free
end with pressure boundary conditions and volume
velocity at each end

there is no significant pressure field difference be-
tween models so one of the explanations possibles
has to do with the formation of the force vector or
the formulation of fluid mass matrix. Since the lines
in figure 17 are shifted only in the vertical direction
the most probable cause is the formulation of the
force vector, because in the model developed, for
each frequency, free node displacement is less than
the OpenPulse model.

4.4. OpenPulse Industrial Example
Figure 18 shows a pipe system, a structural frame
and a beam supporting the large chamber on the
left side of the image. The ends of the frame and
supporting beam are clamped to ground, and the
pipe is connected to the frame beams through elas-
tic links.

Figure 19 only shows the pipe system. A com-
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Figure 17: Structural response of the free end given
the pressure field

Figure 18: Industrial example with pipe system and
structural frame

pressor excitation is placed in pipe at the node at
the bottom of the figure (node with lowest z coordi-
nate) and all the other pipe endings are connected
to other pipe network sections.
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Figure 19: Industrial example with pipe system



With every element represented with 3 elements
and each corner with 5 elements, the final mesh is
displayed as figure 20. This mesh is imported by
the user that gives the relevant node coordinates,
connectivity and refinement parameters.
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Figure 20: Pipe network in MATLAB with refine-
ment

Performing an harmonic acoustic analysis the ab-
solute pressure response at node 6 is given by figure
21. This result is very similar to the one computed
with OpenPulse and with a mesh composed with
251 nodes compared with more than 6000 nodes
used in OpenPulse.
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Figure 21: Compressor node absolute pressure re-
sponse

5. Conclusions

Considering Euler-Bernoulli and Timoshenko devel-
oped models compared to the analytical solution for
simple beams with common boundary conditions it

can be seen that the number of element necessary of
archive a precise result increases with the increase
of frequency mode number, for both models. The
distinction between models stiffness is very clear
an it can be seen that with the increase of mode
number the difference between models lets bigger.
As the pipe thickness-to-length ratio reduces differ-
ences between models are not significant, however
that ratio gets larger the differences in models and
their application are evident. In more complex pipe
designs, model validation was perform with the use
of OpenPulse where it was concluded that the devel-
oped models results, both natural frequencies and
modes of vibration, are very close to the ones in
OpenPulse.

Different models to characterize a pipe system
with steady internal flow exist. Many of those mod-
els approach to the same problem differ but all the
models analysed in this thesis are very close to the
one developed, for straight pipes and curved pipes.
A comparison between the model and a laboratory
experiment [11] proved that the model follows the
experimental data with high precision.

For the acoustic results a comparison between
the developed model and OpenPulse was performed.
The pressure field was calculated for different pres-
sure and volume velocity boundary conditions. The
results show an high precision in pressure at dif-
ferent nodes. Given the calculated pressure field
the coupled force vector has calculated and the
structural response presents an error compared with
OpenPulse. This error is only associated with the
absolute response for a given frequency. This means
a difference in the calculation of force vector be-
tween the models exist, but the model developed
is capable of being used to calculate pressure fields
and structural response of a pipeline excited by a
COMPressor.

The pressure field calculated for an complex in-
dustrial example is a good evidence of the model
precision given an compressor flow rate source. This
example also provided a good opportunity to check
that the mesh processing algorithm developed is ca-
pable of model very complex pipe network.

When performing an structural analysis with
steady internal flow some problems arise from the
model developed. Since the user can only enter one
value for the fluid velocity, in more complex pipe
networks, internal velocity will change based on the
amount of branches or connections, also assuming
no change in cross-section area along the network.
One method to solve this issue is to define the ve-
locity for a given length section. In a branched T
element the user must be able to define three differ-
ent velocities with mass conservation in mind. This
is not recommended to do automatically because
depending on the T angle between tubes and pres-



sures at each of the segments, the calculation of the
exit velocity for two of the pipes is very complicated
only with an input velocity.

Pressure effects can also be implemented and
with this an transient analysis should be performed
to, because since we are dealing in steady flow,
the fluid-structure interaction forces are constant.
Those interactive forces can now contain the change
in fluid momentum, not implemented in the acous-
tic coupled analysis, because of the already known
velocities across system. Given this information,
friction coupling mechanism can also be modeled
with ease, first because the direction of that force
is coincident with velocity vector and because this
force can be easily computed with fluid and pipe
surface properties.

In acoustics developed code, some improvements
can be performed. First different pipe elements can
be implemented, such as side branches, a large vol-
ume pipe and a resistance that decreases pressure
across it. This can be performed by changing the
global mobility matrix based on the different ele-
ments local mobility matrices. The same improve-
ment given for the fluid-structure interaction de-
tailed above can be implemented for this analysis.
The major problem is the need to solve the vol-
ume velocity field for the entire system to be able
to modify the coupled force vector to account for
change in fluid momentum.
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