
FE Simulation Applied to the Vibration of Hydraulic Pipes

Eduardo Machado da Conceição Rodrigues Pereira

Thesis to obtain the Master of Science Degree in

Mechanical Engineering

Supervisors: Prof. Miguel António Lopes de Matos Neves
Dr. Olavo Mecias da Silva Junior

Examination Committee

Chairperson: Prof. Paulo Rui Alves Fernandes
Supervisor: Prof. Miguel António Lopes de Matos Neves

Member of the Committee: Prof. Hugo Filipe Diniz Policarpo

December 2021



ii



To my family for their unconditional support,

iii



iv



Acknowledgments

First and foremost, I would like to thank Professor Miguel Matos Neves from Instituto Supeior Técnico

for having accepted me to carry out this thesis and for all unconditional assistance provided since the

beginning

I would also like to thank Dr. Olavo M. Silva, researcher from Federal University of Santa Catarina, for

the help in crucial stages of this thesis with the knowledge and experience in the acoustics and vibration

areas. I also thank Dr. Olavo for the industrial example you kindly provided to test and to verify the work

preformed.

It is also important to recognize the contribution of the different professors and colleagues from whom

I have learned in the past few years and thus helped me reach my goals.

Finally, I would like to thank my family and friends for all the love and encouragement throughout this

process.

v



vi



Resumo

A vibração estrutural em um sistema de tubagens hidráulico ou de transporte de gás pode ser forte-

mente afetada devido à excitação de alta pressão do fluido dentro da tubagem. Compreender o com-

portamento da vibração é o primeiro passo para controlar as vibrações nas tubagens com tecnologias

comuns de controle de vibração para garantir a segurança do sistema de tubagens e maquinaria asso-

ciada. As tecnologias comuns de controle de vibração demonstraram ser eficazes em estruturas tı́picas

como estruturas aeroespaciais e estruturas de transporte de gás. Tanto a vibração acústica quanto a

vibração induzida por fluxo de fluido podem ser uma causa de falha e os dois tipos de vibração usam

métodos diferentes para realizar a análise de vibração.

A análise de vibração estrutural de dutos tridimensionais transportando fluido é modelada pelo

método dos elementos finitos com base nas teorias de viga de Euler-Bernoulli e Timoshenko. O método

da matriz de transferência usando ondas de pressão acústica unidimensional é utilizado para represen-

tar a interação acústica-estrutura numa tubagem como um sistema acoplado. Esta interação fluido-

estrutura em sistemas de tubagem é modelada pela teoria do golpe de ariete estendida para o fluido e

teoria de vigas para a estrutura da tubagem.

Um código-fonte foi desenvolvido em MATLAB para prever o comportamento dinâmico de sistemas

de tubos simples e complexos tridimensionais, sujeitos a cargas externas harmônicas e acústicas. A

partir dos campos de deslocamento e pressão dentro da tubagem, a localização dos apoios pode ser

otimizada para reduzir as amplitudes de vibração.

Palavras-chave: Método dos elementos finitos, Método da matrix de transferência, Interação

fluido-estrutura, Acústica, Teoria de vigas de Euler-Bernoulli, Teoria de vigas de Timoshenko

vii



viii



Abstract

The structural vibration in a hydraulic or gas pipeline system can be strongly affected due to multi-

source excitation of high fluid pressure fluctuation inside the pipes. Understanding the vibration behavior

is the first step to controlling the vibrations in the pipeline with common vibration control technologies

to ensure the safety of the pipe system and machinery. The common vibration control technologies

have been demonstrated to be effective in typical structures as aerospace structures and gas pipeline

structures. Both acoustic induced vibration and flow induced vibration can be a cause of failure and both

types of vibration use different methods to perform the vibration analysis.

The structural vibration analysis of three-dimensional pipelines conveying fluid is modeled by the

finite element method (FEM) based on Euler-Bernoulli and Timoshenko beam theories and the transfer

matrix method (TMM) used for the one-dimensional acoustic pressure waves solution and to represent

the acoustic-structure interaction in a pipeline as a weak or one-way coupled system. This fluid-structure

interaction in compliant piping systems is modeled by extended water hammer theory for the fluid and

beam theory for the pipe structure.

A source code was developed in MATLAB to predict the dynamic behavior of three-dimensional com-

plex and simple pipe systems subjected to harmonic and acoustic external loads or resonant frequencies

of complex pipe networks conveying steady fluid flow. From the displacement and pressure fields optimal

layout technique of pipeline using clamps can be archived to reduce vibration amplitudes.

Keywords: Finite element method, Transfer matrix method, Fluid-structure interaction, Acous-

tics, Euler-Bernoulli beam theory, Timoshenko beam theory

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Topic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Objectives and Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7

2.1 Structural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Beam Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Euler-Bernoulli Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Timoshenko Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Free Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Forced Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Internal Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Transfer Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Stiffness Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Fluid-Structure Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Implementation 27

3.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Mesh Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Element Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Node Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xi



3.2 Structural Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Element Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Stiffness and Mass matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Adding Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.5 Free Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.6 Forced Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.7 Internal Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.8 Plot Mode Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Acoustic Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Fluid-Structure Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results 47

4.1 Structural Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Steady Internal Flow Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Acoustic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 OpenPulse Industrial Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions 69

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 71

A MATLAB Code 75

A.1 Mesh Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Structural Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Structural Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.4 Structural Free Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.5 Structural Forced Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.6 Acoustic Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.7 Acoustic Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.8 Coupled Force Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.9 Coupled Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



List of Tables

4.1 Pipe material and geometry for structural solution . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Natural frequencies (rad/s) for different models and elements for the pinned-pinned beam 48

4.3 Non-dimensional natural frequency (λ2 = ωL2
√
ρA/EI) for a Timoshenko pinned-pinned

beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Pipe material and geometry for structural solution for the clamped-free L pipe . . . . . . . 52

4.5 Natural frequencies in Hz for the first six modes of vibration for the clamped-free L pipe . 52

4.6 Pipe material, geometry and fluid properties used in laboratory experiment . . . . . . . . 56

4.7 Natural frequencies for different models and elements for pinned-pinned pipe conveying

fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Pipe material, geometry and fluid for the clamped-clamped semi-circle pipe . . . . . . . . 59

4.9 Dimensionless natural frequencies for different models and elements for V ∗ = 0 in the

semi-circle pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Pipe material, geometry and fluid properties for acoustic analysis . . . . . . . . . . . . . . 61

4.11 Acoustic boundary conditions for the L pipe . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Acoustic boundary conditions for the L pipe . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Example pipe network special nodes coordinates . . . . . . . . . . . . . . . . . . . . . . . 65

4.14 Example pipe network corner radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.15 Example pipe network element connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.16 Pipe material, geometry and fluid properties for industrial example . . . . . . . . . . . . . 67

4.17 Example problem structural boundary conditions degrees of freedom without connection

between pipe and structural frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xiii



xiv



List of Figures

1.1 Distribution of aircraft hydraulic pipeline system . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Axial and circumferential nodal patterns for simply supported cylinder without axial constraint 2

2.1 Three-dimensional element with two nodes and six degrees-of-freedom at each node . . 9

2.2 Deformation in Euler-Bernoulli beam theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Deformation in Timoshenko beam theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Assumed and exact distribution of tangential stresses . . . . . . . . . . . . . . . . . . . . 14

2.5 Distribution of normal stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Fluid and pipe forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Uniform tube element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Elbow control volume with internal and external forces . . . . . . . . . . . . . . . . . . . . 25

3.1 Example pipeline system with user input control points to replicate original pipeline . . . . 27

3.2 Example pipeline mesh with refinement and node numbering . . . . . . . . . . . . . . . . 28

3.3 Refinement of straight elements in mesh process . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Mesh corner points and geometry of a corner defined with two segments and radius . . . 30

3.5 Vector rotation around axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Global and local coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Special cases of transformation between local and global coordinates . . . . . . . . . . . 35

3.8 Piping sections excited by pressure pulsation [36] . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Pressure forces acting on the control surface of an elbow . . . . . . . . . . . . . . . . . . 45

3.10 Resultant pressure forces acting on elbow defined by multiple elements . . . . . . . . . . 45

3.11 Second mode of an L structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 Forces due to pressure in piping system on elbows [37] . . . . . . . . . . . . . . . . . . . 46

4.1 Fixed degrees of freedom for pinned-pinned pipe . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Mode 1 natural frequencies for pinned-pinned pipe for an increasing number of elements 48

4.3 Mode 2 natural frequencies for pinned-pinned pipe for an increasing number of elements 49

4.4 Mode 3 natural frequencies for pinned-pinned pipe for an increasing number of elements 49

4.5 Length influence in FEM structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 First 3 modes of vibration for pinned-pinned pipe . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Fixed degrees of freedom for clamped-pinned pipe . . . . . . . . . . . . . . . . . . . . . . 51

xv



4.8 First 3 modes of vibration for clamped-pinned pipe . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Fixed degrees of freedom for clamped-free pipe . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 First 3 modes of vibration for clamped-free pipe . . . . . . . . . . . . . . . . . . . . . . . . 51

4.11 Clamped-free L pipe geometry and cross-section . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Structural response (in-plane) of free end with a transverse unit applied force . . . . . . . 53

4.13 Out-of-plane modes of L shape clamped-free pipe system . . . . . . . . . . . . . . . . . . 54

4.14 In-plane modes of L shape clamped-free pipe system . . . . . . . . . . . . . . . . . . . . 55

4.15 Lowest natural frequency of the simply supported straight pipe conveying fluid . . . . . . 57

4.16 Transverse displacement of the free end for two different velocities . . . . . . . . . . . . . 57

4.17 Transverse displacement response of the free end given by [41] . . . . . . . . . . . . . . . 58

4.18 Semi-circle clamped-clamped pipe conveying fluid . . . . . . . . . . . . . . . . . . . . . . 58

4.19 Dimensionless natural frequencies versus dimensionless fluid velocity for a semi-circle

fluid conveying pipe under clamped-clamped boundary conditions . . . . . . . . . . . . . 60

4.20 Dimensionless natural frequencies versus dimensionless fluid velocity for a semi-circle

fluid conveying pipe under clamped-clamped boundary conditions from [44] . . . . . . . . 60

4.21 Acoustic pressure response in the center of the elbow with pressure boundary conditions

at each end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.22 Acoustic pressure response in the center of the elbow with pressure boundary conditions

and volume velocity at each end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.23 Acoustic pressure response in the free end with pressure boundary conditions and volume

velocity at each end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.24 Structural response of the free end given the pressure field . . . . . . . . . . . . . . . . . 63

4.25 Industrial example with pipe system and structural frame . . . . . . . . . . . . . . . . . . . 64

4.26 Industrial example with pipe system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.27 Compressor volume velocity source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.28 Example pipe network in MATLAB with important nodes . . . . . . . . . . . . . . . . . . . 67

4.29 Example pipe network in MATLAB with refinement . . . . . . . . . . . . . . . . . . . . . . 68

4.30 Compressor node absolute pressure response . . . . . . . . . . . . . . . . . . . . . . . . 68

xvi



Nomenclature

ν Poisson coefficient

ρ Material density

ρf Fluid density

A Pipe area

Ai Internal pipe area

c0 Fluid speed of sound corrected

cf Fluid speed of sound

De Pipe external diameter

Di Pipe internal diameter

E Young’s modulus

Ix Torsional constant

Iy Second moment of area around y axis

Iz Second moment of area around z axis

Kf Fluid bulk modulus

p Fluid pressure

q Fluid volume velocity

C Global damping matrix

Ce Element damping matrix

K Global stiffness matrix

Ke Element stiffness matrix

M Global mass matrix

Me Element mass matrix

T Transformation matrix

xvii



xviii



Chapter 1

Introduction

1.1 Motivation

Pipelines are essential structural systems to transport all types of fluids, liquids and gases, and

can range from the very simple ones to a more complex ones. They can be simple as a single pipe

conveying fluid from one reservoir to another and more elaborate as a complex transport of natural oil or

gas in a major metropolitan area, containing several kinds of pumps, valves, branches and supporting

parts. Pipelines can also be made with small diameters pipes (6 mm) like in the hydraulic pipelines in

airplanes and cars, and larger diameters (0.5 m) for long distance gas transport, for example. One of

the major causes of failures or downtime is associated with vibration of these structures and controlling

these vibrations is the challenging work to ensure a normal operation of the pipeline or the flight safety

of an aircraft. Excessive vibration, that usually involves the lateral vibration of the pipeline and the shell

wall radial vibrations. At low frequencies, pipe vibration occurs laterally, like a beam, and at higher

frequencies, the pipe shell wall starts to vibrate radially across its cross-section.

Piping configuration, number and type of supports, span length, or material affect vibration levels and

can be modified to make the system acceptable. To understand what can be changed it is important to

know all the principle mechanisms and excitation sources that excites the structure.

1.2 Topic Overview

The pipelines are subjected to various types of vibration in their lifetime. Pipelines can transport

gas for supplying energy by combustion process and for other processes that involve high pressure

gas transportation through the pipes and other related components. Another practical use of pipelines

is in aircraft hydraulic systems. This is a typical high-pressure and high-speed system that includes

supporting parts, such as brackets or clamps, where, due to multi-source excitation of high fluid pressure

fluctuations can cause unwanted vibrations [1]. In aeronautical applications, space constraint is rigorous

and given the large number of pipelines (Figure 1.1) collision between adjacent pipes also leads to the

potential damage. The displacements due to vibrations may result in material fatigue damage to the

1



pipeline structure and damage to pipeline supports. These vibrations can be lateral pipeline vibration

due to low frequency or high frequency piping shell wall vibrations that can be caused by excitation

of circumferential radial frequency modes [2] (Figure 1.2). Failure modes of hydraulic pipeline system

includes excessive vibration and fatigue. This occurs due to pipeline resonance. That is, when the fluid

pulsation frequency or external excitation are similar to the pipeline natural frequencies. During this

resonance, damage may occur due to high vibration amplitudes, and consequently stress, and then a

crack may open and propagate.

Figure 1.1: Distribution of aircraft hydraulic pipeline system [1]

Figure 1.2: Axial and circumferential nodal patterns for simply supported cylinder without axial constraint
[2]

The main sources of vibration in a pipeline system is the acoustic-induced vibration (AIV) and flow-

2



induced vibration (FIV). Both phenomenon cause identical damage but their generation mechanism and

mitigation strategies are different [3]. Flow-induced vibration is the result of turbulence in the fluid, which

occurs due to flow discontinuities, that is, in changes in direction or velocity, such as bends, tees, partially

closed valve and fittings that causes the pipe to displace longitudinally and transversely. Thus, this is

phenomenon is more prominent for liquids that gases because the momentum flux on the pipe is higher

in liquids than gases because of the higher density. FIV risk of fatigue is increased as seen before,

at high velocities, high density fluid conditions and due to long spans or inadequate pipe supports or

constrains.

Acoustic-induced vibration happens when vibrations are induced by compressor gas pulsation or

pump pressure ripples in hydraulic systems. This is a vibration mechanism where unsteady fluid flow is

more present in gases since their compressibility ratio is much higher than liquids. This pressure pul-

sations and velocity oscillations are generated by compressors or positive displacement pumps, which

contains many harmonic components of the rotational speed. The phenomenon related to this unsteady

fluid motion is known as Fluid-structure interaction (FSI), and this interaction is manifested in the vibra-

tion of the pipeline and perturbations in fluid pressure. A sudden opening or closing of valve, the change

in flow direction and mechanical excitation can induce the coupling vibration of pipeline and moving fluid.

The three more common coupling mechanisms include Poisson coupling, friction coupling and junction

coupling [4, 5]. Poisson coupling is caused by the internal fluid pressure that is translated into axial

stress by the Poisson coefficient. The stress waves generated by the transient pressure can travel faster

than the fluid wave in the pipeline. The friction between fluid and pipeline is known as friction coupling

and junction coupling refers to changes in momentum at some location due to increase in flow velocity,

in valves and tees, or change in flow direction, as in bends and tees.

This problem is modeled by a combination of the finite element method for structural field and transfer

matrix method [6] for the acoustic field considering a plane wave assumption. Both use the same mesh

and can be used for complex geometries.

1.3 Objectives and Deliverables

The main objective of this thesis is to develop an efficient program in MATLAB capable of solving

simple pipeline vibration analysis using finite element analysis. It needs to be capable of solving the

structural free vibration analysis, where only the structure or the structure plus internal steady flow are

used. This analysis calculated and displays the natural frequencies of vibration and the mode shapes for

each natural frequency. An forced vibration analysis is also needed to calculate the structure response to

an harmonic excitation to locate points of resonance and anti-resonance. Then, the program should be

able to analyse an acoustic gas pulsation problem, enabling the module to do a time harmonic analysis

of the acoustic fluid. With this analysis is now possible to couple the acoustic results with the structural

harmonic analysis to determine how the structure responds to a given acoustic situation.

The first task is to import or help the program user to define the pipeline. The pipeline is displayed

as a series of nodes and elements that form the network, so there is no three-dimensional display of

3



the cross-section, just the pipeline axis. Line style network display approach was used because of the

time-consuming process that is to create and display 3D solids in MATLAB and also because it is not

the main objective of this work.

Both modal and harmonic structural analysis are going to be developed using two different beam

theories to describe the structural part of the system: Euler-Bernoulli and Timoshenko beam theory,

considering only linear behavior from the structure and material. This will be perform so that the differ-

ences between the models are visible and to provide additional information for the analysis.

The acoustic time harmonic analysis enables to determine the pressure field inside the pipeline for a

given frequency and for different flow velocity sources. This pressure and velocity frequency dependency

is useful to model excitation sources as compressors, pumps and different piping elements. With the

pressure field solved, the forces acting on the pipe walls by the acoustic pressure waves are calculated

and now a structural forced vibration analysis can be performed with these harmonic forces to predict

the dynamic response of structural systems subjected to harmonic acoustic loads.

After the development of the program, this will be tested in a variety of ways to ensure that the

results are in accordance with analytical results, laboratory experiments, other authors models and

commercial finite element software. In this work the main comparison of results are performed with

results in the literature and with an open source code OpenPulse. OpenPulse [7] is a open source

software for pulsation analysis of pipeline systems written in Python for numerical modelling of low-

frequency acoustically induced vibration in gas pipeline systems. The use of OpenPulse is due to the

fact that there is no other open source software capable of performing this type of analysis.

1.4 Thesis Outline

This document is formed by five chapters. In this first introductory chapter, the theme of this work is

presented as well as the objectives and motivation. Also treats some simplifying hypotheses and ends

up with a brief description of the results obtained.

In chapter 2 some fundamental theory that supports the work developed is presented. Starts with

the fundamental structural vibration analysis. Next, the finite element method (FEM) is introduced to

compute the element matrices and to make free vibration and forced vibration analyses. Modeling of

internal fluid flow forces and equations are shown next and for the last topic, the analysis of acoustic

pressure waves is done with the help of the relation between pressure and velocity in a compressible

fluid flow, the fluid-structure interaction formulates the forces in that interaction and the consequences

of that interaction in the acoustic model that describes the planar pulsating waves.

Chapter 3 includes all the aspects related to the development of the computational code. It starts

with the description and development of the algorithm to create the mesh used to define the pipeline that

is used in both structural and acoustic analyses. The geometry transformations relating to the elements

in that mesh, the global matrices assembly and plot of the results is also present in this chapter. Then it

is described the effects of constant internal steady fluid flow in a pipeline. It concludes with the acoustic

analysis, with the different possible boundary conditions in this systems and the creation of the force

4



vector derived from the weak interaction between the fluid and the structure. The relevant computational

code functions are present in appendix A.

Chapter 4 is dedicated to the presentation of results obtained with the developed MATLAB code, with,

first, verifying it with simple analytical and experimental results and then with more complex examples,

comparing it with commercially developed computer software. This validation is done step-by-step, that

is, the structural component is analysed first and then the effects of constant fluid flow and pulsating

pressure waves is analysed after. After this, the comparisons between results and models used are

performed. OpenPulse is used to verify the developed MATLAB code in the acoustic section.

Chapter 5 presents all the major conclusions obtained from the work developed, discusses assump-

tions made during the process and presents some suggestions for future work based on the code de-

veloped and what was archived.

5



6



Chapter 2

Background

2.1 Structural

2.1.1 Beam Theory

In this section, the formulation of stiffness and mass matrices are described for three-dimensional

frame elements. This can be archived by the principle of minimum potential energy or the principle of

virtual displacements and using either Lagrange equations or Hamilton’s principle to derive the dynamic

equations of the structure [8]. To do this, the distribution of strains and velocities within the element is

written in terms of nodal coordinates.

A component of a time-dependent three dimensional displacement di(x1, x2, x3, t), (i = 1, ..., 3) in

a solid continuum can be expressed in terms of the displacements of a set of nodal displacements,

un(t), (n = 1, ..., N ) and a corresponding set of shape functions ϕin, each relating coordinate nodal

displacement un(t) to internal displacement di(x, t).

di(x1, x2, x3, t) =

N∑
n=1

ϕin(x1, x2, x3)un(t) (2.1)

d(x, t) = Φ(x)u(t) (2.2)

Equation (2.2) can be rewritten to account for virtual displacements which can make use of the same

set of shape functions

δd(x, t) = Φ(x) δu(t) (2.3)

Axial strain ϵii and shear strain γij are derived from partial derivatives of the displacement field so

the strain vector can be expressed in terms of the nodal displacement vector. This is a linear relation

through a matrix B which contains derivatives of the shape functions [8].

ϵ(x, t) = B(x)u(t) (2.4)

δϵ(x, t) = B(x) δu(t) (2.5)

7



The principle of virtual displacements, or virtual work, states that the equilibrium of a body requires

that for any small virtual displacement imposed on the body in its state of equilibrium, the total internal

virtual work is equal to the total external virtual work. The work of a set of external forces f acting on the

body with nodal virtual displacements δu is

δWext = fT δu (2.6)

The inertial force on an accelerating volume element with mass ρ dV is (ρ dV ) d̈(x, t), with d̈(x, t)

as the second time derivative of d in expression (2.2). The internal virtual work,δWint , of these forces

moving through collocated virtual displacements throughout an elastic solid is

δWint =

∫
V

d̈T ρ δd dV (2.7)

and substituting the shape function relations (2.2) and (2.3) into equation (2.7) gives

δWint =

∫
V

üT ΦT ρΦ δu dV (2.8)

The distribution of internal elastic stresses σ(x, t) collocated with distributed internal virtual strains

δϵ(x, t) is

δWela =

∫
V

σT δϵ dV (2.9)

where substituting the stress-strain relation from Hooke’s law, σ = Dϵ, in equation (2.9), and substituting

the strain-displacement relations (2.4) and (2.5) gives

δWela =

∫
V

uT BT DB δu dV (2.10)

where D is the material stiffness matrix that is equal to the inverse of the compliance matrix.

Using equations (2.6), (2.8), (2.10) and using the to principal of virtual work to equate internal virtual

word to external virtual work

δWint + δWela = δWext (2.11)

üT

∫
V

ΦT ρΦ dV δu+ uT

∫
V

BT DB dV δu = fT δu (2.12)

and eliminating the δu term from each term and transposing both sides, equation (2.12) becomes

[∫
V

ΦT ρΦ dV

]
ü+

[∫
V

BT DB dV

]
u = f (2.13)

in which the first term matrix is the element mass matrix and the second term matrix is the element

stiffness matrix given respectively by equations (2.14) and (2.15).

Ke =

∫
V

BT DB dV (2.14)

8



Me =

∫
V

ΦT ρΦ dV (2.15)

Given equation (2.13), and using the global mass and stiffness matrices, the undamped dynamic

equation of motion of the structure is given by

Mü(t) +Ku(t) = f(t) (2.16)

Damping in vibrating structures can arise from multiple phenomena. For example, within structural

systems from internal friction forces present in the material. The damping matrix C can be derived with

the internal virtual work of real viscous stresses moving through virtual strains. Given a material viscous

damping matrix, a structural element damping matrix can be determined through an equation similar to

equation (2.14) but substituting D with the material viscous damping matrix. A simpler approach is to

use the Rayleigh damping matrix [8] that is proportional to system’s mass and stiffness matrices, and it

is given by

C = αM+ βK (2.17)

where α is the mass-proportional coefficient and β is the stiffness-proportional coefficient. Now, the

damped dynamic equation of motion can be rewritten was

Mü(t) +Cu̇(t) +Ku(t) = f(t) (2.18)

In this work, to model a pipeline, a three-dimensional beam element is used, and each element

contain two nodes and every node has six degrees of freedom (Figure 2.1): three translational displace-

ments and three rotational degrees of freedom.

Figure 2.1: Three-dimensional element with two nodes and six degrees-of-freedom at each node

The displacements of a point in a cross section are described by the translation components, wx, wy,

wz, of the neutral line and the rotations, θx, θy, θz of the cross section. This nodal displacements and

rotations are given in figure 2.1 by the numbers 1 through 6 for the first node and 7 to 12 for the second

node. It is considered that wi are small compared by beam length and the rotation components are all

9



small so that sin θ ≈ tan θ ≈ θ. The displacement of any point, di is determined by [9]

dx(x, y, z, t) = wx(x, t) + zθy(x, t) + yθz(x, t) (2.19)

dy(x, y, z, t) = wy(x, t)− zθx(x, t) (2.20)

dz(x, y, z, t) = wz(x, t) + yθx(x, t) (2.21)

2.1.2 Euler-Bernoulli Beam

Euler-Bernoulli beam kinematics [9, 10] assumes that a cross-section remains orthogonal to the

deformed beam axis, as in figure (2.2) If the rotation is equal to the slope of the beam, then

θy = −dwz

dx
, θz =

dwy

dx
(2.22)

where θy is the cross-section rotation angle around the y axis and θz is the angle of rotation around the

z axis.

Figure 2.2: Deformation in Euler-Bernoulli beam theory

The internal displacements dx(x, t), dy(x, t) and dz(x, t) are expressed in terms of a set of shape

functions, ψxn, ψyn, ψzn, the end displacements (u1(t), u2(t), u3(t), u7(t), u8(t), u9(t)) and the end

rotations (u6(t), u7(t), u6(t), u10(t), u11(t), u12(t)). The shape functions satisfy the differential equation

describing static bending of a Euler-Bernoulli beam with a specified unit displacement at each nodal co-

ordinate, produced by forces and moments applied at each degree-of-freedom. With this kind of loading,

internal bending moments M(x) vary linearly along the neutral axis and the transverse displacements

of the neutral axis are cubic polynomials. For bending degrees of freedom, this element introduces C1

continuous Hermite shape functions [11].

10



ϕx1 = 1− x

L
(2.23a)

ϕx7 =
x

L
(2.23b)

ϕy2 = 1− 3
( x
L

)2

+ 2
( x
L

)3

(2.23c)

ϕy6 =

[( x
L

)
− 2

( x
L

)2

+
( x
L

)3
]
L (2.23d)

ϕy8 = 3
( x
L

)2

− 2
( x
L

)3

(2.23e)

ϕy12 =

[
−
( x
L

)2

+
( x
L

)3
]
L (2.23f)

ϕz3 = 1− 3
( x
L

)2

+ 2
( x
L

)3

(2.23g)

ϕz5 = −
[( x
L

)
− 2

( x
L

)2

+
( x
L

)3
]
L (2.23h)

ϕz9 = 3
( x
L

)2

− 2
( x
L

)3

(2.23i)

ϕz11 =

[( x
L

)2

−
( x
L

)3
]
L (2.23j)

ϕy4 = −
(
1− x

L

)
z (2.23k)

ϕz4 =
(
1− x

L

)
y (2.23l)

ϕy10 = −
( x
L

)
z (2.23m)

ϕz10 =
( x
L

)
y (2.23n)

The shape functions (2.23a) to (2.23n) can be separated into four groups, each of which can be

considered to be independent from the others. Axial displacements, bending in the xy plane, bending in

the xz plane and torsional displacements. Torsional displacements can also be treated considering an

rotation angle about the x axis with the same displacement model as axial displacements (2.23a) and

(2.23b).

The shape function matrix, Φ is

Φ(x, y, z) =


ϕx1 0 0 0 0 0 ϕx7 0 0 0 0 0

0 ϕy2 0 ϕy4 0 ϕy6 0 ϕy8 0 ϕy10 0 ϕy12

0 0 ϕz3 ϕz4 ϕz5 0 0 0 ϕz9 ϕz10 ϕz11 0

 (2.24)

Now the stiffness matrix and mass matrix can be computed using equations (2.14) and (2.15).

In expression (2.25) the sub-matrices Ke
22 and Me

22 are equal to Ke
11 and Me

11, respectively, except

for the sign of the off-diagonal entries.

Ke =

Ke
11 Ke

12

Ke
21 Ke

22

 , Me =

Me
11 Me

12

Me
21 Me

22

 (2.25)

11



Ke
11 =



EA

L
0 0 0 0 0

12EIz
L3

0 0 0
6EIz
L2

12EIy
L3

0 −6EIy
L2

0

GIx
L

0 0

Sym
4EIy
L

0

4EIz
L


(2.26)

Ke
12 = Ke

21
T =



−EA
L

0 0 0 0 0

0 −12EIz
L3

0 0 0
6EIz
L2

0 0 −12EIy
L3

0 −6EIy
L2

0

0 0 0 −GIx
L

0 0

0 0
6EIy
L2

0
2EIy
L

0

0 −6EIz
L2

0 0 0
2EIz
L


(2.27)

Me
11 =

ρAL

420



140 0 0 0 0 0

156 0 0 0 22L

156 0 −22L 0

140r2x 0 0

Sym 4L2 0

4L2


(2.28)

Me
12 = Me

21
T =

ρAL

420



70 0 0 0 0 0

0 54 0 0 0 −13L

0 0 54 0 13L 0

0 0 0 70rx 0 0

0 0 −13L 0 −3L2 0

0 13L 0 0 0 −3L2


(2.29)

where rx is the radius of gyration of the cross section around the x axis, rx = (Ix/A)
1/2. A is the area

of the cross section and Ix is the torsional constant.

2.1.3 Timoshenko Beam

Timoshenko beam theory differs from Euler-Bernoulli theory because it accounts for shear defor-

mation [10]. Timoshenko beam elements are more adequate for beams where L/h < 10, since shear

deformation has an influence in the solution. Timoshenko beam elements require C0 continuity for the

deflection and rotation fields in contrast with C1 continuity of the Euler-Bernoulli beam elements which

means that shape functions are simpler. However, they suffer from a defect called shear locking [12].

Shear locking is a phenomenon in finite element analysis of beams when elements used to analyse

12



thick beams are used to analyse slender beams. This is characterized as the inability of the element

to yield zero shear strains as it becomes progressively slender or thinner, thus the solution obtained

was an error associated with that term. Two possible solutions to avoid shear locking are: 1) using

approximation functions for wi with a higher degree than the approximation functions for θi; 2) using

function with the same degree for wi and θi but adopting reduced integration rule.

The rotation of plane section orthogonal to beam axis is presented in figure (2.3) and it is given by

[9]

θy = −dwz

dx
+ γxz, θz =

dwy

dx
− γxy (2.30)

where dw/dx is the slope of the beam axis and γ is the rotation due to the distortion of the cross-section.

Figure 2.3: Deformation in Timoshenko beam theory

Two methods to determine both stiffness and mass matrices are presented. The first method is

similar to the method presented in section 2.1.2 with some modifications on the shape functions to

account for shear deformation. The second method uses Gauss integration to evaluate the integrals in

the problems weak formulation.

In the first method the transverse deformation of a beam with shear and bending strains may be

separated into a portion related to bending deformation and a portion related to shear deformation.

Since shear deformation only has an effect on bending degrees of freedom, the shape functions for

axial and torsional deformations remain the same as (2.23a), (2.23b) and (2.23k) to (2.23n). The new

shape functions are given in [13, 14] and the stiffness matrix is given by

Ke
11 =



EA

L
0 0 0 0 0

12EIz
(1 + αy)L3

0 0 0
6EIz

(1 + αy)L2

12EIy
(1 + αz)L3

0 − 6EIy
(1 + αz)L2

0

GIx
L

0 0

Sym
EIy(4 + αz)

(1 + αz)L
0

EIz(4 + αy)

(1 + αy)L


(2.31)

13



Ke
12 = Ke

21
T =



−EA
L

0 0 0 0 0

0 − 12EIz
(1 + αy)L3

0 0 0
6EIz

(1 + αy)L2

0 0 − 12EIy
(1 + αz)L3

0 − 6EIy
(1 + αz)L2

0

0 0 0 −GIx
L

0 0

0 0
6EIy

(1 + αz)L2
0

EIy(2− αz)

(1 + αz)L
0

0 − 6EIz
(1 + αy)L2

0 0 0
EIz(2− αy)

(1 + αy)L


(2.32)

where

αy =
12EIz
kyGAL2

, αz =
12EIy
kzGAL2

(2.33)

is the ratio of bending stiffness to shear stiffness. If shear stiffness is very large, shear deformations are

negligible. Note that setting αy = αz = 0 leads to an Euler-Bernoulli model, (2.26) and (2.27), as the

influence of shear stiffness is neglected.

The shear coefficient k is a dimensionless quantity, that is introduced to account for the fact that

the shear stress and strain are not uniformly over the cross section (Figure 2.4). Note that the normal

stresses generated by an applied moment are linear across the section (Figure 2.5). For symmetric

cross-sections, ky = kz = k, and for circular tube cross-sections the shear coefficient is given by Cowper

[15] and it is given by

k =
6(1 + ν)(1 + (Di/De)

2)2

(7 + 6ν)(1 + (Di/De)2)2 + (20 + 12ν)(Di/De)2
(2.34)

Figure 2.4: Assumed and exact distribution of tangential stresses

Figure 2.5: Distribution of normal stresses

For the derivation of the mass matrix there is three possibilities to consider: 1) using the same

shape functions as above to account for shear deformation effects; 2) including rotatory inertia but not

14



shear deformation effects; 3) combining both effects for a more complicated derivation, presented in

Przemieniecki [12].

When including rotatory inertia to account for axial displacements outside the neutral axis, new shape

functions in the x direction are derived based on a linearly variable axial beam displacements. New eight

shape functions are introduced in the shape function matrix (2.24), ϕx2, ϕx3, ϕx5, ϕx6, ϕx8, ϕx9, ϕx11,

ϕx12. This shape functions are given in Gavin [13] and the final mass matrix is

Me
11 =

ρAL

420



140 0 0 0 0 0

156 +
504Iz
AL2

0 0 0 22L+
42Iz
AL

156 +
504Iy
AL2

0 −22L− 42Iy
AL

0

140r2x 0 0

Sym 4L2 +
56Iy
A

0

4L2 +
56Iz
A


(2.35)

Me
12 = Me

21
T =

ρAL

420



70 0 0 0 0 0

0 54− 42Iz
AL

0 0 0 −13L− 42Iz
AL

0 0 54− 42Iy
AL

0 13L+
42Iy
AL

0

0 0 0 70rx 0 0

0 0 −13L− 42Iy
AL

0 −3L2 − 28Iy
A

0

0 13L+
42Iz
AL

0 0 0 −3L2 − 28Iy
A


(2.36)

The second method to determine stiffness and mass matrices using the Timoshenko beam theory is

presented in Hughes [16]. In opposition to the other methods, here the interpolation of displacements is

independent for both displacements, w, and rotations, θ,

w = Nwe, θ = Nθe (2.37)

where the shape function are defined, for both types of displacements, as

N =
[
1
2 (1− ξ) 1

2 (1 + ξ)
]

(2.38)

in natural coordinates ξ ∈ [−1, 1]. Now, the integrals presented in the stiffness and mass matrices in

Hughes [16] can be computed by Gauss quadrature.

15



2.1.4 Free Vibration Analysis

The oscillatory motion when there are no external forces applied is important to find the dynamic

response of the elastic structure. This motion is a characteristic property of the structure, and it depends

on how mass and stiffness is distributed in the structure. Assuming that there is no damping in the

structure, the oscillatory motion will continue indefinitely with the same amplitudes.

By assuming the external force vector f to be zero and the displacements to be harmonic, and with

U being the amplitude of displacements and F the amplitude of forces,

u(t) = Ueiωt (2.39)

f(t) = Feiωt (2.40)

the equation (2.18) gives

Mü+Ku = 0 (2.41)

[K− ω2M]U = 0 (2.42)

since ü = −ω2Ueiωt. ω denotes the natural frequency of vibration and U the eigenmodes of displace-

ments. For this equation to have a non-zero solution, the matrix [K− ω2M] has to be singular so that

|K− ω2M| = 0 (2.43)

The solutions of this equation are its natural frequencies. In equation (2.42), ω2 is the eigenvalue and

U the eigenvector for this eigenvalue problem. By solving this eigenvalue problem, we find the natural

frequencies and the correspondent mode shapes.

One method of calculating natural frequencies with the damping term is presented and derived by

Meirovitch [17]. It states that the eigenvalue solution shall be executed using the characteristics matrix,

equal to,

Ω =

−M−1K −M−1C

I 0

 (2.44)

where the imaginary part of the solution represents natural frequencies of vibration and the real part

represents the rate of decay of the free vibration.

2.1.5 Forced Vibration Analysis

Harmonic analysis is used to predict the steady state dynamic response of a structure subjected

to an harmonic loading. Given an damped system equation (2.18) and using (2.39) and (2.40), the

equation is presented as

[−ω2M+ iωC+K]Ueiωt = Feiωt (2.45)

[−ω2M+ iωC+K]U = F (2.46)

16



Since the amplitude force vector F is given, the displacements amplitude U can be calculated for

each given known excitation frequency ω by

U = [−ω2M+ iωC+K]−1F (2.47)

If the calculation is done for multiple frequencies a frequency response graph can be created with

the magnitude of the displacements for each frequency.

17



2.2 Internal Fluid Flow

Considering a pipe with fluid flowing through it at pressure p and at a constant velocity v through the

internal cross-section of area Ai. Due to the lateral vibration of the pipeline, the deflected pipe, the fluid

is accelerated because of the changing curvature. Forces and moments acting on the fluid and pipe

element are shown in figure 2.6.

Figure 2.6: Fluid and pipe forces

Given the forces and moments the derivation of the equation of motion for a free vibration of a fluid

convening pipe is given by equation (2.48). Derivation of this equation is presented in Blevins [18] and it

is done by a balance of forces in both fluid and pipe element considering small deflections and if gravity,

internal damping, externally imposed tension and pressurization effects are either absent or neglected.

EI
∂4y

∂x4
+ 2ρfAiv

∂2y

∂x∂t
+ ρfAiv

2 ∂
2y

∂x2
+ (ρA+ ρfAi)

∂2y

∂t2
= 0 (2.48)

where v is the flow velocity of the fluid and (ρA + ρfAi) is the total mass per unit length of the pipe.

In equation (2.48) the first term is the force component acting on the pipe as a result of bending of the

pipe. The second term is the force component acting on the pipe as a result of flow around deflected

pipe curvature. The third therm is the force required to rotate the fluid element, also known as Coriolis

force. The last term represents the force component acting on the pipe as a result of the inertia of the

pipe and the fluid flowing through it.

With this equation four different matrices can be derived. This derivation is done in [19–21] in different

method but only considering two degrees of freedom per node or in two-dimensional beam element.

The two degrees of freedom are deflection in the y-direction and the rotation in x-y plane. The first term

of equation (2.48) produces the element stiffness matrix for pipe as beam element. The second is the

stiffness matrix for the force that conforms fluid to the pipe, the third is the damping matrix for the Coriolis

force and the last is the mass matrix for the pipe with fluid. This planar matrices can be converted into a

three-dimensional system by rewriting them in the form of the x-z plane. The difference between planes

is that a positive rotation in the x-y plane makes the pipe deform in the positive y-direction and a positive

rotation in the x-z plane makes the pipe deform in the negative z-direction.

18



Given the transformation between planar and spacial dimensions the stiffness matrix for the fluid that

conforms fluid to the pipe is

Ke
f11 =

ρfAiv
2

30L



0 0 0 0 0 0

0 36 0 0 0 3L

0 0 36 0 −3L 0

0 0 0 0 0 0

0 0 −3L 0 4L2 0

0 3L 0 0 0 4L2


(2.49)

Ke
f12 = Ke

f21
T =

ρfAiv
2

30L



0 0 0 0 0 0

0 −36 0 0 0 3L

0 0 −36 0 −3L 0

0 0 0 0 0 0

0 0 3L 0 −L2 0

0 −3L 0 0 0 −L2


(2.50)

The stiffness matrix Kf tends to weaken the overall stiffness of the pipe system so the global stiffness

matrix used is calculated by

Ke = Ke
p −Ke

f (2.51)

where Kp is the pipe structural stiffness matrix presented in section 2.1.

Mass and damping matrices matrix given by the following matrices. Note that both matrices need to

be summed to the structural mass matrix and to the structural damping if material damping is considered.

This analysis was modeled with Euler-Bernoulli beam theory. Chu and Lin [22] developed the stiff-

ness, mass and damping matrices using the Timoshenko beam model with both effects of shearing

deformation and rotary inertia considered with the effect of moving fluid treated as external distributed

forces on the pipe.

19



Me
f11 =

ρfAiL

420



0 0 0 0 0 0

0 156 0 0 0 22L

0 0 156 0 −22L 0

0 0 0 0 0 0

0 0 −22L 0 4L2 0

0 22L 0 0 0 4L2


(2.52)

Me
f12 = Me

f21
T =

ρfAiL

420



0 0 0 0 0 0

0 54 0 0 0 −13L

0 0 54 0 13L 0

0 0 0 0 0 0

0 0 −13L 0 −3L2 0

0 13L 0 0 0 −3L2


(2.53)

Ce
f11 =

ρfAiv

30



0 0 0 0 0 0

0 −30 0 0 0 −6L

0 0 −30 0 6L 0

0 0 0 0 0 0

0 0 −6L 0 0 0

0 6L 0 0 0 0


(2.54)

Ce
f12 = Ce

f21
T =

ρfAiv

30



0 0 0 0 0 0

0 −30 0 0 0 6L

0 0 −30 0 −6L 0

0 0 0 0 0 0

0 0 6L 0 L2 0

0 −6L 0 0 0 L2


(2.55)

20



2.3 Acoustics

2.3.1 Introduction

Acoustics is a branch of physics that study the propagation of waves in fluids (gases or liquids). In

fluids, sound propagates primarily as a pressure wave and as part of fluid dynamics, the fluid motion

can be described by using the laws of mass conservation, momentum and energy conservation applied

a fluid element. These equations can be written in integral or differential form. Both forms are derived

e.g. in White [23].

Mass conservation equation is differential form is given by

∂ρf
∂t

+∇ · (ρfv) = 0 (2.56)

where ρf is the fluid density and v is the flow velocity in a given position. The momentum conservation

law is:

ρf

(
∂v

∂t
+ v ·∇v

)
= −∇p+ f +∇ · τ (2.57)

where τ is the viscous stress tensor, p is the pressure and f is an external force density, like the gravi-

tational force.

Assuming that the flow is frictionless (∇ · τ = 0), no external forces are applied and limit the analysis

to acoustic perturbations (ρ′f , p′, v′) at a stagnant uniform fluid (ρf0, p0) as

p(x, t) = p0 + p′(x, t) (2.58)

ρf (x, t) = ρf0 + ρ′f (x, t) (2.59)

v(x, t) = v′(x, t) (2.60)

equations (2.56) and (2.57) can be written as

∂ρ′

∂t
+ ρ0∇ · v′ = 0 (2.61)

ρ0
∂v′

∂t
+∇p′ = 0 (2.62)

By subtracting the time derivative of the mass conservation law (2.61) from the divergence of the

momentum conservation law (2.62) it gives

∂2ρ′

∂t2
−∇2p′ = 0 (2.63)

and using the relation of the fluid speed of sound, p′ = c2fρ
′, to eliminate ρ′, and obtain the non-dissipative

wave equation [24, 25],
∂2p′

∂t2
− c2f∇

2p′ = 0 (2.64)

With this relation between pressure and velocity, the main goal of this acoustic analysis is to obtain

21



the acoustic pressure, at all the points in the pipe system, for a certain frequency range.

2.3.2 Transfer Matrix Method

When modeling acoustics of pipe systems, two methods can be applied: the transfer matrix method

and the stiffness matrix method [26]. The transfer matrix is a adequate technique for dealing with

long sections of pipes with changes in cross-sectional area, as the system matrix is found simply by

multiplying individual transfer matrices of the components. The stiffness matrix method is applied most of

the time to structural analysis because it can easily deal with branched and pipeline networks. However,

the larger the number of components, the larger the size of the stiffness matrix.

Considering a straight uniform pipe element shown in figure 2.7. The fluid properties remain uniform

inside the tube. Pressure and volume velocity or flow rate in the inlet and outlet are denoted as p1, q1

and p2, q2. The acoustic impedance if the element is represented by Zf . The first objective is to find a

matrix equation that expresses the volume velocity and pressure at any point inside the tube element at

the wave number, k = ω/cf , in terms of their values at the inlet. The tube element can be represented

as a linear system with to inputs and two outputs as

p2
q2

 = T

p1
q1

 (2.65)

where T is the transfer matrix for the uniform tube element.

Figure 2.7: Uniform tube element

Considering the assumption of planar waves which means that the fluid properties are only defined

by the x coordinate, which needs to be much larger than the radial dimension for this assumption to be

valid. The one-dimensional form of equation (2.64) is

∂2p′

∂t2
− c2f

∂2p′

∂x2
= 0 (2.66)

and the one-dimensional solution can be written is terms of travelling waves for the pressure as

p(x, t) = (Ae−ikx +Beikx)eiωt (2.67)

22



With the aid of the one-dimensional momentum conservation equation from equation (2.62),

∂u

dt
= −1

ρ

∂p

∂x
(2.68)

we can write the volume velocity, q, with q = uAi

q(x, t) =
Ai

ρcf
(Ae−ikx −Beikx)eiωt (2.69)

In equations (2.67) and (2.69) the constants A and B that appear in the general solutions are deter-

mined from the boundary conditions of the problem. But evaluating those equation at both ends of the

tube element the constants are eliminated and the transfer matrix is obtained .p2
q2

 =

 cos(kx) −i Zf sin(kx)

−i/Zf sin(kx) cos(kx)

p1
q1

 (2.70)

where Zf = ρf cf/Ai is the acoustic impedance. Fluid speed of sound should be replaced with c0 that

denotes the corrected fluid speed of sound because cf is affected by the mechanical compliance of the

pipe wall. The equation for c0 is given by [27],

c0 = cf

(
1 +

(
DiKf

Et

))−1/2

(2.71)

where Di is the internal diameter, t is the pipe wall thickness and Kf the fluid bulk modulus calculated

as Kf = c2fρf .

2.3.3 Stiffness Matrix Method

The stiffness matrix relates, in contrast with the transfer matrix, the same type of variables in each

nodal vector which is more suitable with the finite element method. This stiffness matrix, S relates the

nodal volume velocities and the nodal pressures asq1
q2

 = S

p1
p2

 (2.72)

A simple algebraic manipulation will reveal that the stiffness matrix can be expressed in terms of the

transfer matrix elements. That manipulation is given as follows [6].

S =

 −T−1
12 T12 T−1

12

T21 − T22T
−1
12 T11 T22T

−1
12

 (2.73)

Now, with the definition of transfer matrix in equation (2.72) and the manipulation in expression (2.73)

the stiffness matrix is q1
q2

 =

−i cot(kx)/Zf i/Zf sin(kx)

i/Zf sin(kx) −i cot(kx)/Zf

p1
p2

 (2.74)

23



The matrix S is also known as the element mobility matrix. It relates amplitudes of pressure, p, and

amplitudes of flow rate, q. This matrix is the structural analog for the force-displacement stiffness matrix

hence, to find the pressure field across a pipe network, the same solver can be used. Note that S

depends on the fluid wave-number, k, so this matrix is frequency dependent. This means that for each

frequency analysed a different S needs to be calculated.

2.3.4 Fluid-Structure Interaction

Fluid-structure interaction is a dynamic phenomenon that causes a compliant system to move when

pressure waves exert forces on the structure. This interaction is always caused by dynamic forces

which act on fluid and pipe and can be divided into two main groups [4, 5]: distributed forces and local

forces. Forces that act along the pipe are called distributed forces and it is caused by the fluid pressure

what causes the pipe to develop axial stresses in the walls. This is refereed as Poisson coupling in

connection with the Poisson coefficient, ν, that transform radial and hoop stresses into axial stress by

the generalized Hook’s law. Forces caused by fluid friction in the pipe walls are also distributed forces

and are called friction coupling. Local forces act at specific points in a pipe system such as unrestrained

valves, bends and tees and is generally more dominant compared with the other coupling mechanisms.

First, considering only internal pressure in the pipe system the radial and circumferential stresses

are derived by Ugural and Fenster [28], Boresi et al. [29] and can be expresses as

σrr(r, ω) =
p(ω)D2

i

D2
e −D2

i

− D2
iD

2
ep(ω)

4r2(D2
e −D2

i )
(2.75)

σθθ(r, ω) =
p(ω)D2

i

D2
e −D2

i

+
D2

iD
2
ep(ω)

4r2(D2
e −D2

i )
(2.76)

where Di is the internal diameter, De the external diameter and p(ω) in internal pressure, frequency de-

pendent. Their sum eliminates the second term in both equations and eliminates the radial dependency

so this sum is constant through the thickness of the pipe wall.

σrr + σθθ =
2p(ω)D2

i

D2
e −D2

i

(2.77)

Given the stress-strain relations, the axial strain, ϵxx, generated by the internal pressure on a open

tube element is

ϵxx =
1

E
[σzz − ν(σrr + σθθ)] (2.78)

with σzz = 0 for an open ended pipe element.

The most important interaction mechanism is junction coupling. In most of the times, a pipe network

consists of straight sections of pipe connected by elbows, tees and diameter changes. The local forces

on this sections of pipe can be calculated with help from the Reynolds transport theory applied for

momentum conservation. From fluid mechanics, e.g. White [23], this conservation takes the form

∑
F =

∫
V

(
∂

∂t
ρfv

)
dV +

∫
A

ρfV(V · n)dA (2.79)

24



where the term
∑

F is the vector sum of all forces acting on the system. It includes surface forces as

pressure and body forces like external forces and gravity. The first term in the right-hand side is the time

change of the linear momentum of the contents inside the control volume. The second term is the net

flow rate of linear momentum out of the control surface by mass flow.

As indicated before the force vector can be divided into pressure forces and external forces. If an

external pressure force is acting on the control surface and since the normal unit vector n is defined as

outward, the pressure force is

Fp = −
∫
A

pndA (2.80)

Now, the external forces are given by

∑
F =

∫
A

pndA−
∫
V

(
∂

∂t
ρfv

)
dV +

∫
A

ρf |V|VndA (2.81)

Given the theory presented some simplifications and assumptions were performed. Firstly, the vis-

cosity of the fluid is assumed negligible and thus eliminating the friction coupling between the fluid and

the pipe wall. In equation (2.81) the last term of the right-hand side is zero because the forces due to

change in momentum are neglected. This is a good approximation if the fluid density or the fluid ve-

locity is small compared to the fluid pressure. The second term is also neglected because no changes

within the control volume are considered. Therefore only fluid pressure forces at each end of the control

surface are considered, and they are considered uniform across the inlet and outlet areas. For the equi-

librium to be archived pipe internal forces need to compensate the vector sum of the pressure forces

(Figure 2.8).

Figure 2.8: Elbow control volume

This forces due to pressure at each end of the pipe and along the inside of the pipeline will be

analysed in the implementation section of this document.

25



26



Chapter 3

Implementation

3.1 Mesh

3.1.1 Mesh Import

The program developed uses a text file, created by the user, to import the mesh. This file contains all

the relevant information about node locations, element connectivity, element refinement, corner locations

and corner radius. However, it is only necessary to provide an initial scheme of the final mesh, containing

only straight lines. For example, to replicate the two-dimensional pipeline in figure 3.1a, the user needs

to provide the coordinates for the six nodes in figure 3.1b and their connectivity. These are the minimum

number of points possible since the user can add nodes between segments but those points are not

necessary. The nodes that define a corner (nodes 2 and 5 in the example), pipe endings (nodes 1, 4

and 6) and branches (node 3) are the only necessary nodes needed to fully define a mesh, along with

radius of bends defined by nodes 2 and 5.

(a) Pipeline (b) Initial mesh design with user input control points

Figure 3.1: Pipeline and user input control points

Mesh refinement is introduced to define more points along a single straight segment or to define a

corner with line segments. This refinement is done element by element and corner by corner given the

number of intermediate points each of the initial elements has. For example, if the user decides that

each straight initial element has three segments and each corner is made out of four segments, the final

mesh will look like the mesh represented in figure 3.2 after the refinement process is completed.

The final mesh is obtained by the program after performing all the operations of node numbering,

27



Figure 3.2: Final mesh with refinement and node numbering

node connectivity between the nodes and then calculating their coordinates. Next it will be explained

all this process, starting from establishing element, given the initial user input element connectivity and

refinement parameters, and then calculating node coordinates.

3.1.2 Element Connectivity

Since it is necessary to create nodes depending on mesh refinement, numbering them accordingly

and then join them together to create elements, a method for this process was created. The main idea

behind this process is to preserve numbering from the initial mesh, however in corners the initial node

number will appear on either side of the corner arc. Refinement of corners is done first because the

start and end of the corner arc needs to be connected with respective line elements. Depending on

their respective refinement, nodes will be created and information regarding initial and final arc nodes

will be saved for refining line elements and calculating node coordinates. The same strategy is used for

line elements, however, first is necessary to determine the start and end nodes for every single element

because numbering changed after modifying corners, information that it is also saved for future use in

mesh process.

Following the mesh example given in section 3.1.1 a possible element connectivity array given by the

user for the mesh in figure (3.1b) is 1 2 3 3 5

2 3 4 5 6


After all corners in the mesh have been processed the array is transformed into1 3 3 2 7 8 9 10 5 11 12 13 14

2 4 5 7 8 9 10 3 11 12 13 14 6


and taking into account the start and end points in each arc, the process of dividing straight elements

into smaller ones is accomplished and the final connectivity array is given by2 7 8 9 5 11 12 13 1 15 16 10 17 18 3 19 20 3 21 22 14 23 24

7 8 9 10 11 12 13 14 15 16 2 17 18 3 19 20 4 21 22 5 23 24 6


28



There are many options to define the initial connectivity matrix for the same pipeline, and with some

different matrix the final connectivity matrix is also going to be different.

3.1.3 Node Coordinates

Calculating node coordinates for straight line elements is straight forward (Figure 3.3). Given the

line start and end points, A and B respectively, and the number of segments the element is going to be

divided into, Ns, the new node coordinates, Ci, are given by

Ci = A+ a

(
i

Ns

)
, i = 1, ..., Ns − 1 (3.1)

with

a = B −A

Figure 3.3: Refinement of straight elements

For every straight element this process is done as presented in listing 3.1 where the coordinates of

the intermediate points are calculated.

Listing 3.1: Straight element refinement MATLAB code

for p_num_el = 1 : pre_number_elements

segments = element_segments(p_num_el);

if (segments > 1)

% Element nodes

node_a = line_segments (1, p_num_el);

node_b = line_segments (2, p_num_el);

% Vector that connects element node 1 to node 2

v_a = node_coordinates (:, node_b) - node_coordinates (:, node_a);

% Given the refinement number

for li_seg = 1 : segments -1

node_new = node_coordinates (:, node_a) + v_a * (li_seg / segments);

node_coordinates (:, current_node) = node_new;

current_node = current_node + 1;

end
end

end

A more difficult and time-consuming process is to determine nodal coordinates for the nodes that

form corners. Given the corner node, C, both adjacent nodes, A and B, and corner radius, r, it is

possible to calculate the arc start, S, end, E, and centre point, O, by first defining unit vectors (3.2)

29



represented in figure 3.4.

a =
C −A

∥C −A∥
(3.2a)

b =
C −B

∥C −B∥
(3.2b)

c =
a+ b

∥a+ b∥
(3.2c)

and then, using basic trigonometric relations, the three defining arc points can be calculated by equa-

tions (3.3), with θab = arccos (a · b).

Figure 3.4: Important points and corner geometry

O = C + c

(
r

sin θab

)
(3.3a)

S = C + a

(
r

tan θab

)
(3.3b)

E = C + b

(
r

tan θab

)
(3.3c)

With those three arc defining points, the vectors s and e can defined as indicated in figure 3.5. To

calculate all the inside arc points, to form multiple elements, vector s must be rotated Ns − 1 times by

an angle of θi = θse/Ns where Ns is the number of elements that form the corner and θse = 2π − θab.

This three-dimensional vector rotation around an axis normal to the arc plane is performed using Olinde

Rodrigues formula [30].

If v is a vector and k is a unit vector describing an axis of rotation about which v rotates by an angle

θ, according to the right-hand rule (Figure 3.5), the Olinde Rodrigues formula [31] for the rotated vector

vrot is

vrot = v cos θ + (k× v) sin θ + k(k · v)(1− cos θ) (3.4)

with k defined as normal to the corner plane and with the right direction because of the arc start and

30



Figure 3.5: Vector rotation around axis

end points.

k =
s× e

∥s× e∥
(3.5)

Since the vector v we wish to rotate is in the plane formed by vectors a and b the term k(k · v) in

equation (3.4) is zero because vectors v and k are orthogonal.

In matrix form, the transformation matrix, R, between two vectors, vrot = Rv, is given by

R = I+ (sin θ)K+ (1− cos θ)K2 (3.6)

with

I =


1 0 0

0 1 0

0 0 1

 , K =


0 −kz ky

kz 0 −kx
−ky kx 0

 (3.7)

This process code is presented in listing 3.2 where with the three points, radius and number of

elements, the arc intermediate points are calculated.

Listing 3.2: Corner element refinement MATLAB code
for num_co = 1 : number_corners˜

% Corner properties

node = corner_nodes(num_co);

radius = corner_radius(num_co);

segments = corner_segments(num_co);

% Corner lines nodes

node_a = corner_s_e (1, num_co);

node_b = corner_s_e (2, num_co);

% Unit vectors that connects center point to the start and end points

v_a = current_n_c (:, node_a) - current_n_c (:, node);

v_b = current_n_c (:, node_b) - current_n_c (:, node);

v_a = v_a / norm(v_a);
v_b = v_b / norm(v_b);

% Angle between vectors and determination of distances to points S and E

theta_ab = acos(dot(v_a , v_b));

d_e = radius / tan(theta_ab / 2);

d_i = radius / sin(theta_ab / 2);

v_c = v_a + v_b;

v_c = v_c / norm(v_c);

% Arc center , start and end points

31



center_p = current_n_c (:, node) + v_c * d_i;

start_p = current_n_c (:, node) + v_a * d_e;

end_p = current_n_c (:, node) + v_b * d_e;

% Unit vector from center to start and end points

v_ca = start_p - center_p;

v_cb = end_p - center_p;

v_ca = v_ca / norm(v_ca);
v_cb = v_cb / norm(v_cb);

% Normal vector to corner plane

v_n = cross(v_ca , v_cb);

v_n = v_n / norm(v_n);

theta_cacb = pi - theta_ab;

dtheta_cacb = theta_cacb / segments;

t = 0;

node_first = center_p + radius * v_ca;

node_coordinates (:, node) = node_first;

for s = 1 : segments

t = t + dtheta_cacb;

% Matrix notation Rodrigues formula

I = [1, 0, 0; 0, 1, 0; 0, 0, 1];

K = [0, -v_n(3), v_n(2); v_n(3), 0, -v_n(1); -v_n(2), v_n(1), 0];

R = I + sin(t) * K + (1 - cos(t)) * Kˆ2;

v_ca_rot = R * v_ca;

node_new = center_p + radius * v_ca_rot;

node_coordinates (:, current_node) = node_new;

current_node = current_node + 1;

end
current_n_c = node_coordinates (:, 1: current_node -1);

end

32



3.2 Structural Procedure

3.2.1 Element Transformation Matrix

The element stiffness and mass matrices presented in sections 2.1.2 and 2.1.3 are obtained in a local

coordinate system. To transform the element matrices into the global coordinate system it is required

a transformation of each element to account for the differences in orientation of all local coordinate

systems in three-dimensional space.

Different authors use different methods to develop element transformation matrix in spatial coordi-

nates. Liu and Quek [32], Rao [8], Meek [33] and Logan [34] use different approaches but the one that

was implemented was based on Logan [34] with the implementation of Ferreira [35] and that derivation

is now presented.

First it was established the sign convection used in figure 2.1. The local axis (x′,y′,z′) is defined with

x′ being positive from node 1 to node 2, then y′ and z′ being the principal axis for which the second

moment of area is minimum and maximum, respectively. Their direction is established by the right-hand

rule. But since all the structural elements are pipes, the second moment of area with respect to any axis

is equal to the other one. The definition of the y′ local axis relative of the global coordinate system is

that y′ is perpendicular to z and x′ (y′ = z × x′).

Figure 3.6: Global and local coordinate system

The transformation matrix T to transform local vector into global vector is given by

T =


R(3×3) 0 0 0

0 R(3×3) 0 0

0 0 R(3×3) 0

0 0 0 R(3×3)

 (3.8)

where T is a 12×12 symmetric matrix given the twelve degrees of freedom per element. The sub-matrix

R is given as

R =


Cxx′ Cyx′ Czx′

Cxy′ Cyy′ Czy′

Cxz′ Cyz′ Czz′

 (3.9)

33



All elements in matrix R denote the direction cosines. For example, Cxx′ , Cyx′ and Czx′ , represent

the direction cosines of the x′ axis with respect to the global x, y, z axes. This is,

x′ = (cos θxx′)i+ (cos θyx′)j+ (cos θzx′)k (3.10)

It can be seen that finding the direction cosines of the x′ axis is easy since

cos θxx′ =
x2 − x1
L

= l (3.11a)

cos θyx′ =
y2 − y1
L

= m (3.11b)

cos θzx′ =
z2 − z1
L

= n (3.11c)

where (x1, y1, z1) and (x2, y2, z3) are the node coordinates of an element. The element’s length, L, is

given by L = [(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2]1/2.

Was opted to define the y′ axis to be perpendicular to the x′ and z axes. Therefore,

y′ = z × x′ =

∣∣∣∣∣∣∣∣∣
i j k

0 0 1

l m n

∣∣∣∣∣∣∣∣∣ (3.12)

Since the x′ and z axes can make an arbitrary angle, the cross product between them needs to be

normalized, as follows:

y′ = −
(m
D

)
i+

(
l

D

)
j (3.13)

D = (l2 +m2)1/2 (3.14)

The remaining z′ axis is simply determined by the orthogonality condition z′ = x′ × y′, so

z′ = x′ × y′ =

∣∣∣∣∣∣∣∣∣∣
i j k

l m n

−m
D

l

D
0

∣∣∣∣∣∣∣∣∣∣
(3.15)

z′ = −
(
ln

D

)
i+

(mn
D

)
j+Dk (3.16)

Combining equations (3.10), (3.13) and (3.16) the transformation matrix becomes

R =


l m n

−m
D

l

D
0

− ln
D

mn

D
D

 (3.17)

A problem arises when the local x′ axis coincides with the global z axis. In this situation the local y′

34



axis becomes uncertain. With a small angle between x′ and z it can be seen that the direction of the y′

axis is going to close to the global y axis. So, in this particular case the local y′ axis is selected as the

global y axis. Depending on the direction of the x′ axis there will be two different transformations. If the

positive x′ is in the same direction as z, R becomes

R =


0 0 1

0 1 0

−1 0 0

 (3.18)

For the opposite direction it becomes

R =


0 0 −1

0 1 0

1 0 0

 (3.19)

Both these matrices, (3.18) and (3.19) can be easily demonstrated with the help of figure 3.7. This

the calculation of this transformation matrix needs to be perform to all element in the system and the

code is presented in listing 3.3.

(a) x′ in same direction as z (b) x′ in opposite direction as z

Figure 3.7: Special cases of transformation between local and global coordinate systems

Listing 3.3: Transformation matrix MATLAB code
% Element length projection

dx = xx(node2) - xx(node1);

dy = yy(node2) - yy(node1);

dz = zz(node2) - zz(node1);

L = (dxˆ2 + dyˆ2 + dzˆ2) ˆ0.5;

if (dx == 0 && dy == 0)

if (dz > 0)

R = [0, 0, 1; 0, 1, 0; -1, 0, 0];

else
R = [0, 0, -1; 0, 1, 0; 1, 0, 0];

end
else

CXx = dx / L;

CYx = dy / L;

CZx = dz / L;

D = sqrt(CXxˆ2 + CYxˆ2);

35



CXy = -CYx / D;

CYy = CXx / D;

CZy = 0;

CXz = -CXx * CZx / D;

CYz = -CYx * CZx / D;

CZz = D;

R = [CXx , CYx , CZx; CXy , CYy , CZy; CXz , CYz , CZz];

end
% Transformation matrix

T = [...

R, zeros(3, 9); zeros(3, 3), R, zeros(3, 6); ...

zeros(3, 6), R, zeros(3, 3); zeros(3, 9), R];

3.2.2 Stiffness and Mass matrices

Both Euler-Bernoulli and Timoshenko element stiffness and mass matrices implemented in MATLAB

are presented in listing 3.4 and listing 3.5, respectively.

Listing 3.4: Euler-Bernoulli element stiffness and mass matrices MATLAB code
% Local stiffness matrix

k1 = E * A / L; k2 = 12 * E * Iz / Lˆ3; k3 = 6 * E * Iz / Lˆ2;

k4 = 4 * E * Iz / L; k5 = 2 * E * Iz / L; k6 = 12 * E * Iy / Lˆ3;

k7 = 6 * E * Iy / Lˆ2; k8 = 4 * E * Iy / L; k9 = 2 * E * Iy / L; k10 = G * J / L;

a1 = [k1 , 0, 0; 0, k2, 0; 0, 0, k6]; b1 = [0, 0, 0; 0, 0, k3; 0, -k7, 0];

c1 = [k10 , 0, 0; 0, k8, 0; 0, 0, k4]; d1 = [-k10 , 0, 0; 0, k9, 0; 0, 0, k5];

Kl = [...

a1 , b1 , -a1, b1; ...

b1 ’, c1 , (-b1)’, d1; ...

(-a1)’, -b1, a1, -b1; ...

b1 ’, d1 ’, (-b1)’, c1];

% Local mass matrix

a2 = [140, 0, 0; 0, 156, 0; 0, 0, 156]; b2 = [0, 0, 0; 0, 0, 22*L; 0, -22*L, 0];

c2 = [70, 0, 0; 0, 54, 0; 0, 0, 54]; d2 = [0, 0, 0; 0, 0, -13*L; 0, 13*L, 0];

e2 = [140*J/A, 0, 0; 0, 4*Lˆ2, 0; 0, 0, 4*Lˆ2];

f2 = [70*J/A, 0, 0; 0, -3*Lˆ2, 0; 0, 0, -3*Lˆ2];

Ml = Rho * A * L / 420 * [...

a2 , b2 , c2, d2; ...

b2 ’, e2 , d2, f2; ...

c2 ’, d2 ’, a2, -b2; ...

d2 ’, f2 ’, (-b2)’, e2];

% Local to global transformation

K0 = T’ * Kl * T;

M0 = T’ * Ml * T;

Listing 3.5: Timoshenko element stiffness and mass matrices MATLAB code
% Local stiffness matrix

Psi_y = 12 * E * Iy / (G * k * A * Lˆ2); Psi_z = 12 * E * Iz / (G * k * A * Lˆ2);

k1 = E * A / L; k10 = G * J / L;

k2 = 12 * E * Iz / ((1 + Psi_y) * Lˆ3); k3 = 6 * E * Iz / ((1 + Psi_y) * Lˆ2);

k4 = (4 + Psi_y) * E * Iz / ((1 + Psi_y) * L); k5 = (2 - Psi_y) * E * Iz / ((1 + Psi_y) * L);

k6 = 12 * E * Iy / ((1 + Psi_z) * Lˆ3); k7 = 6 * E * Iy / ((1 + Psi_z) * Lˆ2);

k8 = (4 + Psi_z) * E * Iy / ((1 + Psi_z) * L); k9 = (2 - Psi_z) * E * Iy / ((1 + Psi_z) * L);

a1 = [k1 , 0, 0; 0, k2, 0; 0, 0, k6]; b1 = [0, 0, 0; 0, 0, k3; 0, -k7, 0];

c1 = [k10 , 0, 0; 0, k8, 0; 0, 0, k4]; d1 = [-k10 , 0, 0; 0, k9, 0; 0, 0, k5];

Kl = [...

a1 , b1 , -a1, b1; ...

b1 ’, c1 , (-b1)’, d1; ...

(-a1)’, -b1, a1, -b1; ...

b1 ’, d1 ’, (-b1)’, c1];

36



% Local mass matrix

a2 = [140, 0, 0; 0, 156+504* Iz/A/Lˆ2, 0; 0, 0, 156+504* Iy/A/Lˆ2];

b2 = [0, 0, 0; 0, 0, 22*L+42*Iz/A/L; 0, -22*L-42*Iy/A/L, 0];

c2 = [70, 0, 0; 0, 54 -504*Iz/A/Lˆ2, 0; 0, 0, 54 -504*Iy/A/Lˆ2];

d2 = [0, 0, 0; 0, 0, -13*L-42*Iz/A/L; 0, 13*L+42*Iy/A/L, 0];

e2 = [140*J/A, 0, 0; 0, 4*Lˆ2+56* Iy/A, 0; 0, 0, 4*Lˆ2+56* Iz/A];

f2 = [70*J/A, 0, 0; 0, -3*Lˆ2-28*Iy/A, 0; 0, 0, -3*Lˆ2-28*Iz/A];

Ml = Rho * A * L / 420 * [...

a2 , b2 , c2, d2; ...

b2 ’, e2 , d2, f2; ...

c2 ’, d2 ’, a2, -b2; ...

d2 ’, f2 ’, (-b2)’, e2];

% Local to global transformation

K0 = T’ * Kl * T;

M0 = T’ * Ml * T;

3.2.3 Matrix Assembly

The assembly is a procedure in which the elementary matrices and the element connectivity matrix

are used to obtain the global matrices. This process depend on mesh properties such as number of

nodes, number of elements and number of degrees of freedom per node. In the structural part, the

three dimensional beam element has two nodes and each node has six degrees of freedom. There-

fore, elementary matrices have 12 × 12 dimension. So, the dimensions of the global matrices are

6× number nodes.

Since global matrix dimensions are exclusive dependent on mesh data, it can be initialized with the

exact dimensions before the calculation of local elementary matrices. In MATLAB, this is done with the

function zeros(n) that return a n-by-n matrix of zeros.

The assembly process is done by modifying the global matrix entries that correspond to the local

element degrees of freedom. First, given the two node numbers that form an element, the degrees of

freedom of node j must to be calculated from

DOFi = 6(j − 1) + i, i = 1, ..., 6 (3.20)

Listing 3.6: Element degrees-of-freedom by node numbers MATLAB code
% Element nodes

node1 = element_nodes (1, num_el);

node2 = element_nodes (2, num_el);

% Element degrees of freedom

element_dof = [...

6*node1 -5, 6*node1 -4, 6*node1 -3, 6*node1 -2, 6*node1 -1, 6*node1 , ...

6*node2 -5, 6*node2 -4, 6*node2 -3, 6*node2 -2, 6*node2 -1, 6*node2];

Now, an array, element dof (listing 3.6), can be constructed with the twelve degrees of freedom of

the current element and the assembly process is given by listing 3.7 and it is done for every element in

the mesh.

Listing 3.7: Assembly process MATLAB code
KK(element_dof , element_dof) = KK(element_dof , element_dof) + K0;

37



MM(element_dof , element_dof) = MM(element_dof , element_dof) + M0;

For the acoustic stiffness matrix this process is easier because each node has only one degree of

freedom, so, this degree of freedom has the same number as the node.

3.2.4 Adding Spring

The program allows the user to add a linear spring in any node and at any off the three global

directions. This is done after the structural stiffness matrix is completed and it is perform adding the

spring stiffness in N/m to the global stiffness matrix in the correct location. Given the node transnational

degrees of freedom, given by equation (3.20) for only the first three terms, that calculation is performed

by

K(DOF1, DOF2, DOF3) = K(DOF1, DOF2, DOF3) +


kx 0 0

0 ky 0

0 0 kz

 (3.21)

where kx, ky and kz are the spring stiffness in the three global directions (same directions as DOF1,

DOF2 and DOF3) as presented in listing 3.8.

Listing 3.8: Adding spring MATLAB code
for num_sn = 1 : number_spring_nodes

% Input dialog for the user

ans2 = inputdlg ({’Node:’, ’kx␣[N/m]’, ’ky␣[N/m]’, ’kz␣[N/m]’}, ’Add␣Spring ’);

spring_nodes(num_sn) = str2double(ans2 {1});

node = spring_nodes(num_sn);

node_dof = [6*node -5, 6*node -4, 6*node -3];

kkx = str2double(ans {2});
kky = str2double(ans {3});
kkz = str2double(ans {4});
KK(node_dof , node_dof) = KK(node_dof , node_dof) + diag([kkx , kky , kkz]);

end

3.2.5 Free Vibration Analysis

When performing the modal analysis, the eigenvalue problem (2.42) is solved by a MATLAB in-built

function, then the vibration frequencies and vector of mode shapes are sorted from the lowest frequency

to the highest as presented in listing 3.9. This type of analysis processes the non-zero displacements

boundary conditions as fixed boundary conditions, so the matrices used only take into account free

degrees of freedom.

Listing 3.9: Structural modal analysis MATLAB code
% Using only free degrees of freedom from both stiffness and mass matrices

K = KK(free_dofs , free_dofs);

M = MM(free_dofs , free_dofs);

[vec , val] = eig(K, M);

[natural_freq , ind] = sort(real(sqrt(diag(val))));

freq_modes = zeros(number_dofs , number_free);

freq_modes(free_dofs , :) = vec(:, ind);

38



3.2.6 Forced Vibration Analysis

In this analysis equation (2.46) is solved for the harmonic displacements for a given array of frequen-

cies. For each of the frequencies, the dynamic matrix is calculated and with the known vector of forces,

the displacements are calculated.

Listing 3.10: Structural harmonic analysis MATLAB code
j = sqrt(-1);

for num_fq = 1 : number_freq

freq_hz = harm_freq(num_fq);

freq_rad = freq_hz * 2 * pi;
dynamic_matrix = KK - freq_rad ˆ2 * MM + j * freq_rad * CC;

d = dynamic_matrix(free_dofs , free_dofs) \ FF(free_dofs);

harm_displ(free_dofs , num_fq) = (real(d).ˆ2 + imag(d).ˆ2) .ˆ0.5;
end

3.2.7 Internal Fluid Flow

The program developed offers the possibility to analyse a pipeline with the effects of with velocity

fluid flow. This analysis only changes the stiffness and mass matrices of the structural pipe element,

already calculated. Since the size of this matrices is number dofs × number dofs where number dofs

is the global number of degrees of freedom of the system, the process of defining the new stiffness and

mass matrices of the system is simply an arithmetic calculation expressed in equation (2.51). In a more

complex pipe network this particular implementation explained in section 2.2 has its drawbacks. First

the effects of gravity and pressure are not developed in this implementation. Second the program still

only allows one value for the fluid flow velocity. This is a very rough approximation given the fact that

for pipelines with side branches, tees, at some given angles, the velocities change from pipe to pipe

because of mass conservation inside the whole system.

The calculation of the stiffness, mass and damping element matrices and their respective transfor-

mation and assembly process is described in listing 3.11 and the modification of the global structural

plus fluid matrices is presented in listing 3.12.

Listing 3.11: Local stiffness, mass and damping internal fluid matrices MATLAB code
% Local stiffness matrix

a1 = [0, 0, 0; 0, 36, 0; 0, 0, 36]; b1 = [0, 0, 0; 0, 0, 3*L; 0, -3*L, 0];

c1 = [0, 0, 0; 0, 4*Lˆ2, 0; 0, 0, 4*Lˆ2]; d1 = [0, 0, 0; 0, -Lˆ2, 0; 0, 0, -Lˆ2];

Kl = Rhof * Ai * vˆ2 / (30 * L) * [...

a1 , b1 , -a1, b1; ...

b1 ’, c1 , b1, d1; ...

(-a1)’, b1’, a1, -b1; ...

b1 ’, d1 ’, (-b1)’, c1];

% Local mass matrix

a2 = [0, 0, 0; 0, 156, 0; 0, 0, 156]; b2 = [0, 0, 0; 0, 0, 22*L; 0, -22*L, 0];

c2 = [0, 0, 0; 0, 54, 0; 0, 0, 54]; d2 = [0, 0, 0; 0, 0, -13*L; 0, 13*L, 0];

e2 = [0, 0, 0; 0, 4*Lˆ2, 0; 0, 0, 4*Lˆ2]; f2 = [0, 0, 0; 0, -3*Lˆ2, 0; 0, 0, -3*Lˆ2];

Ml = Rhof * Ai * L / 420 * [...

a2 , b2 , c2, d2; ...

b2 ’, e2 , d2, f2; ...

c2 ’, d2 ’, a2, -b2; ...

d2 ’, f2 ’, (-b2)’, e2];

39



% Local damping matrix

a1 = [0, 0, 0; 0, -30, 0; 0, 0, -30]; b1 = [0, 0, 0; 0, 0, -6*L; 0, 6*L, 0];

c1 = [0, 0, 0; 0, 0, 0; 0, 0, 0]; d1 = [0, 0, 0; 0, Lˆ2, 0; 0, 0, Lˆ2];

Cl = Rhof * Ai * v / 30 * [...

a1 , b1 , a1, -b1; ...

b1 , c1 , -b1, d1; ...

-a1 , -b1, -a1, b1; ...

-b1 , -d1, b1, c1];

% Local to global transformation

K0 = T’ * Kl * T;

M0 = T’ * Ml * T;

C0 = T’ * Cl * T;

% Assembly

KKf(element_dof , element_dof) = KKf(element_dof , element_dof) + K0;

MMf(element_dof , element_dof) = MMf(element_dof , element_dof) + M0;

CCf(element_dof , element_dof) = CCf(element_dof , element_dof) + C0;

Listing 3.12: New global stiffness, mass and damping matrices MATLAB code
Structural.stiffness_matrix = KK - KKf;

Structural.mass_matrix = MM + MMf;

Structural.damping_matrix = CC + CCf;

3.2.8 Plot Mode Shapes

The eigenvectors extracted from the structural modal analysis can be used to plot the mode shapes

of the pipeline structure. The nodal displacements and rotations are given in global coordinates, so the

first step is to, element by element, transform global coordinates to local coordinates. In section 3.2.1 it

was defined how the local coordinates are presented: x′ is given as the unit vector passing through both

nodes; y′ is defined as the cross product between x′ and z; and z′ is defined normally as x′ × y′. If the

x′ axis is parallel to z, the definition of y′ is not possible, so in this special case the local axis are defined

automatically as in figure (3.7). Using the transfer matrix, T, the local coordinates nodal displacements,

ulocal, are given by ulocal = Tuglobal, where uglobal contains the twelve nodal displacements and rotation

of an element.

Now, using shape functions defined in equations (2.23a) to (2.23j), an element can be represented

by multiple points along the element, and since this representation is done in MATLAB using lines its not

possible to represent graphically the torsional deformation of the structure.

Listing 3.13: Calculation of internal displacements for ploting mode shapes MATLAB code
for num_pt = 1 : number_points

current_point = node_coordinates (:, node1) + ux * L * unit_length(num_pt);

% Axial

phi1 = 1 - unit_length(num_pt);

phi4 = unit_length(num_pt);

% Transverse

phi2 = 1 - 3 * unit_length(num_pt)ˆ2 + 2 * unit_length(num_pt)ˆ3;

phi5 = 3 * unit_length(num_pt)ˆ2 - 2 * unit_length(num_pt)ˆ3;

% Rotation

phi3 = (unit_length(num_pt) - 2 * unit_length(num_pt)ˆ2 + unit_length(num_pt)ˆ3) * L;

phi6 = (-unit_length(num_pt)ˆ2 + unit_length(num_pt)ˆ3) * L;

rx = phi1 * f1 + phi4 * f7;

ry = phi2 * f2 + phi3 * f6 + phi5 * f8 + phi6 * f12;

40



rz = phi2 * f3 - phi3 * f5 + phi5 * f9 - phi6 * f11;

x(:, num_pt , num_el) = current_point + rx * ux + ry * uy + rz * uz;

end

41



3.3 Acoustic Procedure

3.3.1 Stiffness Matrix

To construct the frequency dependent stiffness matrix the fluid properties, pipe cross-section and

element length are necessary. Since the stiffness matrix is dependent on the analysis frequency, the

variable charged of storing that information is a three-dimensional array with a depth corresponding to

the number of frequencies analysed.

Listing 3.14: Acoustic stiffness matrix MATLAB code

j = sqrt(-1);

Zf = rho_f * c_o / A_i;

kL = frequencies * 2 * pi / c_o * L;

for num_fq = 1 : number_freq

c1 = -j * cos(kL(num_fq)) / (sin(kL(num_fq)) * Zf);

c2 = j / (Zf * sin(kL(num_fq)));
% Local stiffness matrix

K0 = [c1, c2; c2, c1];

% Assembly

KKa(element_dof , element_dof , num_fq) = KKa(element_dof , element_dof , num_fq) + K0;

end

3.3.2 Pressure Field

The acoustic system of equation defined in section 2.3.3 is given by

q = Sp (3.22)

Each of one-dimensional acoustic element has two nodes and each node has 1 degree-of-freedom. In

this global system, the global pressure vector p is presented as the unknown variable but first boundary

conditions must be applied. They can be classified as nodal volume velocity, nodal pressure or a nodal

acoustic impedance [6]. Several method exist to solve this system with prescribed, non zero value, nodal

pressures. The method used in this program is described in Rao [8]. To understand this method the

global system is divided into S11 S12

S21 S22

p1

p2

 =

q1

q2

 (3.23)

where p2 is assumed to be the vector of specified nodal pressure degree-of-freedom and p1 the vector

of free pressure nodes. Then q1 is be the vector of known volume velocities and q2 will be the vector of

unknown volume velocities. Equation (3.23) can be written as

S11 p1 + S12 p2 = q1 (3.24)

42



Hence equation (3.24) can be solved to obtain (Listing 3.15)

p1 = S−1
11 (q1 − S12 p2) (3.25)

and the unknown vector q1 can now be found.

Listing 3.15: Acoustic harmonic analysis MATLAB code
free_dofs = Acoustic.free_dofs;

prescribed_values = Acoustic.prescribed_values;

volume_velocity_vector = Acoustic.volume_velocity_vector;

KKa = Acoustic.mobility_matrix;

harm_freq = Acoustic.frequencies;

number_freq = length(harm_freq);
harm_press = zeros(number_dofs , number_freq);

for num_fq = 1 : number_freq

harm_press(free_dofs , num_fq) = KKa(free_dofs , free_dofs , num_fq) \ ...

(volume_velocity_vector(free_dofs , num_fq) - ...

KKa(free_dofs , prescribed_dofs , num_fq) * prescribed_values(num_fq);

end

3.3.3 Fluid-Structure Interaction

In section 2.3.4 the identification of the forces involved in the fluid-structure interaction was per-

formed. From that, the only forces at it will be taken into account are the Poisson coupling force and the

junction coupling force. Since, from the acoustic harmonic analysis the nodal pressures are calculated

some approximations have to be perform to calculate the forces originated from those pressures. Given

that in expression (2.77), the Poisson coupling force assumes a constant pressure along a pipe element,

the average pressure at an element needs to be calculated to calculate the nodal forces that arise from

the coupling mechanism. This average pressure is also used to calculate the forces acting on the nodes.

The force acting on the nodes for given element is,

F = [−Fx, 0, 0, 0, 0, 0, Fx, 0, 0, 0, 0, 0]
′ (3.26)

where Fx is given sum of local pressure forces and the distributed Poisson coupling force, that is

Fx = pavgAi +A(−ν(σrr + σθθ)) (3.27)

Listing 3.16 presents the forces acting on both nodes of a given element that will be inserted into a

new global force vector that is summed into an already existing external force vector (Listing 3.17).

Listing 3.16: Poisson and junction coupling forces MATLAB code
% Nodal pressures and average pressure

press_1 = harm_press(node1 , num_fq);

press_2 = harm_press(node2 , num_fq);

press_avg = (press_1 + press_2) / 2;

% Poisson and junction

43



stress_axial = (press_avg * Diˆ2) / (Deˆ2 - Diˆ2);

f_p = - 2 * Nu * A * stress_axial;

f_j = press_avg * A_i;

F = f_j + f_p;

Listing 3.17: Coupling forces MATLAB code
ux = (node_coordinates (:, node2) - node_coordinates (:, node1)) / L;

F_global_node1 = -F * [ux(1); ux(2); ux(3)];

F_global_node2 = F * [ux(1); ux(2); ux(3)];

F_fluid(node1_dof) = F_fluid(node1_dof) + F_global_node1;

F_fluid(node2_dof) = F_fluid(node2_dof) + F_global_node2;

This approach is possible because it accurately represents the forces acting on pipelines when

changes in velocity (speed or direction) occurs. For example, figure 3.8 from [36] shows different com-

mon pipeline sections and the forces acting on them given fluid the pressures. The elbow pipe section is

analysed in more depth because it is the only section that doesn’t use a straight pipe element. In figure

3.9 an 90◦ elbow is represented with the pressure forces acting on the control surface. The sum of the

forces acting on that control volume has the outward bend direction, and if p1 and p2 are equal, the net

force makes an 45◦ angle with the positive x axis.

Figure 3.8: Piping sections excited by pressure pulsation [36]

If a sharp 90◦ bend, without any curvature (Figure 3.10), is modeled, the output force calculated has

the same direction as described before. If that same bend is modeled with a non-zero bend radius and

three elements defining that bend (Figure 3.11), the forces at each of the four nodes at compose the

bend are calculated, and it is possible to verify that, the sum of the forces in the same control volume is

the same, that is,

F1 + F2 + F3 + F4 = F (3.28)

This ensures that the pressure forces originated at bends and branches are accurately represented

in the program developed. [37] also uses an one-dimensional fluid analysis to obtain the forces on the

piping system and apply these forces, originated from elbows, tees and tapers, to the structural model.

As seen in figure 3.12 the direction of the forces originated by the change in momentum are directed to

44



Figure 3.9: Pressure forces acting on the control surface of an elbow

Figure 3.10: Resultant pressure forces acting on elbow defined by multiple elements

Figure 3.11: Second mode of an L structure

the outside of the elbow.

Since the pressure perturbation is harmonic (Equation (2.67)), this force vector is also harmonic and

is used to perform the structural-acoustic coupled harmonic analysis that needs to be summed up to the

existing external applied global force vector. This coupled analysis is very similar to the one presented

in listing 3.10, one differs in the fact that the updated force vector is frequency dependent, so for each

of the acoustic pressure fields frequencies a force vector is calculated and then used in this coupled

45



analysis for the same frequency range (Listing 3.18).

Figure 3.12: Forces due to pressure in piping system on elbows [37]

Listing 3.18: Coupled harmonic analysis MATLAB code
j = sqrt(-1);

for num_fq = 1 : number_freq

freq_hz = harm_freq(num_fq);

freq_rad = freq_hz * 2 * pi;
dynamic_matrix = KK - freq_rad ˆ2 * MM + j * freq_rad * CC;

d = dynamic_matrix(free_dofs , free_dofs) \ FF(free_dofs , num_fq);

harm_displ(free_dofs , num_fq) = (real(d).ˆ2 + imag(d).ˆ2) .ˆ0.5;
end

46



Chapter 4

Results

4.1 Structural Results

The initial steps to verify the computed code is to compare pipe structural element with analytical

result and to compare the different beam theories used and the benefits of each other depending on the

application.

Analytical calculations, present in the literature, only account for simple two dimensional beams

considering the Euler-Bernoulli theory. These results predict both natural vibrations frequencies and

vibration modes for beams with different boundary conditions and for different modes of vibration. Given

that these results are two-dimensional and the implementation is done in three dimensions, only the x-y

plane (in-plane) deformations will be considered. Analytical natural frequencies and vibration modes for

the first four modes of the transverse vibration of a beam are presented in figure 8.15 from Rao [38] for

common boundary conditions.

The first case study is done considering a pinned-pinned beam. In this scenario the pinned nodes,

apart from the three zero displacement degrees of freedom, the axial rotation also needs to be fixed

to zero (Figure 4.1) because it can create an axial rotation rigid body motion that results in natural

frequencies of zero value.

Figure 4.1: Fixed degrees of freedom for pinned-pinned pipe

In all this results the pipe material and geometry parameters are indicated in table 4.1

The differences between Euler-Bernoulli and Timoshenko beam models described in sections 2.1.2

and 2.1.3 are now analysed. The comparison between these models and analytical result based on

Euler-Bernoulli is also presented. For the three first modes of vibrations of a pinned-pinned pipe, the

47



Table 4.1: Pipe material and geometry
Parameters Values

Length 3.048 m
Modulus of elasticity 68.9 GPa
Poisson coefficient 0.3
External diameter 0.0254 m
Internal diameter 0.0221 m
Density 2699 kg/m3

natural frequencies for each mode is calculated for an increasing number of elements in the FEM model.

For the first mode, figure 4.2, the theoretical value based in Euler-Bernoulli model is represented with a

grey margin representing a plus and minus percentage of that value.

Euler-BernoulliEuler-Bernoulli

TimoshenkoTimoshenko

Theory (+/- 0.01%)Theory (+/- 0.01%)

M
o
d
e 

1
 F

re
q
u
en

cy
 (

ra
d
/s

)
M

o
d
e 

1
 F

re
q
u
en

cy
 (

ra
d
/s

)

45.1645.16

45.1745.17

45.1845.18

45.1945.19

45.245.2

45.2145.21

45.2245.22

ElementsElements

22 44 66 88 1010 1212 1414

Figure 4.2: Mode 1 natural frequencies for pinned-pinned pipe

The Timoshenko model gives smaller natural frequency than the Euler-Bernoulli as predicted given

the reduced stiffness of the model. With 6 elements the Euler-Bernoulli model is inside that analytical

margin for the first mode. For the second and third modes, respectively given in figures 4.3 and 4.4,

the differences between FEM models is more significant, seen by the grey margins. Also, it takes more

elements to archive the same error margins, 12 elements for the second mode and 16 for the third.

An overview of these graphs is present in table 4.2 for up to 20 elements.

Table 4.2: Natural frequencies for different models and elements
Mode Theory Euler-Bernoulli Timoshenko

8 12 20 8 12 20

1 45.180 45.180 45.180 45.180 45.169 45.168 45.168
2 180.718 180.765 180.728 180.720 180.592 180.551 180.541
3 406.616 407.139 406.722 406.630 406.293 405.844 405.735

Now, the default length of the pipe is reduced without modifying the cross-section geometry to study

48



Euler-BernoulliEuler-Bernoulli

TimoshenkoTimoshenko

Theory (+/- 0.01%)Theory (+/- 0.01%)

M
o
d
e 

2
 F

re
q
u
en

cy
 (

ra
d
/s

)
M

o
d
e 

2
 F

re
q
u
en

cy
 (

ra
d
/s

)

180.5180.5

180.6180.6

180.7180.7

180.8180.8

180.9180.9

181181

ElementsElements

44 66 88 1010 1212 1414 1616 1818 2020 2222 2424

Figure 4.3: Mode 2 natural frequencies for pinned-pinned pipe

Euler-BernoulliEuler-Bernoulli

TimoshenkoTimoshenko

Theory (+/- 0.01%)Theory (+/- 0.01%)

M
o
d
e 

3 
F
re

q
u
en

cy
 (

ra
d
/s

)
M

o
d
e 

3 
F
re

q
u
en

cy
 (

ra
d
/s

)

405.5405.5

406406

406.5406.5

407407

407.5407.5

408408

ElementsElements

44 66 88 1010 1212 1414 1616 1818 2020 2222 2424 2626 2828 3030

Figure 4.4: Mode 3 natural frequencies for pinned-pinned pipe

the influence of the pipe thickness-to-length ratio in both Euler-Bernoulli and Timoshenko beam theories.

Instead of thickness it has used the gyration radius to better describe the section geometry. Figure

4.5 shows the ratio of frequencies between FEM models for the first three vibration frequencies for an

decreasing pipe length.

These results show that the Timoshenko theory results are very similar to the Euler-Bernoulli results

when rx/L is small, however, the results show that the difference between theories tends to grow larger

for a thicker beam. Remember that rx is the radius on gyration of the cross-section around the x acxis.

This difference can also be seen in table 4.3, where the non-dimensionalized frequency was used with

a 20 number of elements.

49



Mode 1Mode 1

Mode 2Mode 2

Mode 3Mode 3

ωω
T

im
o
sh

en
k
o

T
im

o
sh

en
k
o
/ω/ω

E
u
le

r-
B

er
n
o
u
ll
i

E
u
le

r-
B

er
n
o
u
ll
i

0.930.93

0.940.94

0.950.95

0.960.96

0.970.97

0.980.98

0.990.99

11

rrxx/L/L

55×1010
−33

0.010.01 0.0150.015 0.020.02 0.0250.025

Figure 4.5: Length influence in FEM structural models with 20 elements

Table 4.3: Non-dimensional natural frequency (λ2 = ωL2
√
ρA/EI) for a Timoshenko pinned-pinned

beam
Mode Theory Length (m)

3.048 2.548 2.048 1.548 1.048 0.548

1 3.1416 3.1412 3.1410 3.1407 3.1401 3.1383 3.1296
2 6.2832 6.2801 6.2788 6.2763 6.2712 6.2572 6.1901
3 9.4248 9.4146 9.4101 9.4020 9.3849 9.3385 9.1233

As the length decreases the computed natural frequencies tend to show some quantitative differ-

ences from the Euler-Bernoulli results. Similar results are provided by [35, 39] where the author used a

different approach to develop Timoshenko model.

To verify mode shapes, three simple beam configurations will be used. Pinned-pinned, clamped-

pinned and clamped-free. For this verification, Euler-Bernoulli theory has used and with 5 elements

and each plotted with 10 intermediate points. For the pinned-pinned condition the first three modes of

vibration are represented in figure 4.1

Mode 1Mode 1

Mode 2Mode 2

Mode 3Mode 3

x/Lx/L

00 0.20.2 0.40.4 0.60.6 0.80.8 11

Figure 4.6: First 3 modes of vibration for pinned-pinned pipe

50



For the clamped-pinned and clamped-free configurations the fixed degrees of freedom and vibration

modes are represented in figures 4.7, 4.8, 4.9, 4.9.

Figure 4.7: Fixed degrees of freedom for clamped-pinned pipe

Mode 1Mode 1

Mode 2Mode 2

Mode 3Mode 3

x/Lx/L

00 0.20.2 0.40.4 0.60.6 0.80.8 11

Figure 4.8: First 3 modes of vibration for clamped-pinned pipe

Figure 4.9: Fixed degrees of freedom for clamped-free pipe

Mode 1Mode 1

Mode 2Mode 2

Mode 3Mode 3

x/Lx/L

00 0.20.2 0.40.4 0.60.6 0.80.8 11

Figure 4.10: First 3 modes of vibration for clamped-free pipe

Given a more complex pipe system, like the one displayed in figure 4.11 with properties in table 4.4,

51



OpenPulse program will be used to analyse the differences between models. A pipe with a small length

to diameter ratio was used to showcase the differences between the two beam theories developed in this

thesis and the timoshenko beam theory present in OpenPulse based on [16]. The planar pipe system is

clamped on one side and free on the other.

Figure 4.11: Clamped-free L pipe geometry and cross-section

Table 4.4: Pipe material and geometry for the clamped-free pipe
Parameters Values

Pipes length 0.9 m
Elbow radius 0.127 m
Modulus of elasticity 210 GPa
Poisson coefficient 0.3
External diameter 0.1 m
Internal diameter 0.09 m
Density of pipe 7800 kg/m3

The first six natural frequencies are displayed in table 4.5. Each of the straight pipe segments was

divided into 20 elements and the 90◦ elbow divided into 10 elements, which equal to a total of 50

elements. In OpenPulse [7] a mesh with node spacing of 0.01 m was used which translated to around

200 nodes.

Table 4.5: Natural frequencies in Hz for the first six modes of vibration for the clamped-free L pipe

Mode Model
Euler-Bernoulli

Model
Timoshenko OpenPulse

1 (out-of-plane) 29.604 29.441 29.437
2 (in-plane) 31.412 31.269 31.271
3 (out-of-plane) 84.920 83.799 83.880
4 (in-plane) 89.049 86.872 86.788
5 (out-of-plane) 400.465 376.364 377.495
6 (in-plane) 410.176 385.869 387.464

52



It is clear that the use of the Timoshenko model is preferable over Euler-Bernoulli theory given the

pipe geometry and with the use of 25% the elements used in OpenPulse the Timoshenko model only

presents an deviation of 0.41% against OpenPulse in the 6th mode of vibration. Figures 4.13 and 4.14

contain the correspondent mode shapes for the out-of-plane and in-plane frequency modes, drawn with

10 elements in each segment and 5 in the elbow.

Another method to compare the two models developed with OpenPulse an forced vibration analysis

was performed. For this, a unit force was applied to the free end of L shape pipe. This force acts parallel

to the pipe plane and acts orthogonal to free end pipe. Figure 4.12 shows structural response for a fre-

quency from 0 to 100Hz. From this graph is possible to identify the resonant frequencies, corresponding

to in-plane natural frequencies of modes 2 and 4 from table 4.5. A anti-resonant frequency is located at

around 62 Hz. Differences between models from table 4.5 translate to this graph where it is possible to

see the larger stiffness from the Euler-Bernoulli theory and how close the developed Timoshenko model

is to the OpenPulse model.

OpenPulse
Timoshenko Model
Euler-Bernoulli Model

A
b
so

lu
te

 S
tr

u
ct

u
ra

l 
R

es
p
o
n
ce

 (
m

)
A

b
so

lu
te

 S
tr

u
ct

u
ra

l 
R

es
p
o
n
ce

 (
m

)

1010
−99

1010
−88

1010
−77

1010
−66

1010
−55

1010
−44

1010
−33

Frequency (Hz)Frequency (Hz)

00 2020 4040 6060 8080 100100

Figure 4.12: Structural response (in-plane) of free end with a transverse unit applied force

53



(a) Mode 1 (Out-of-plane)

(b) Mode 3 (Out-of-plane)

(c) Mode 5 (Out-of-plane)

Figure 4.13: Out-of-plane modes of L shape clamped-free pipe system

54



(a) Mode 2 (In-plane) (b) Mode 4 (In-plane)

(c) Mode 6 (In-plane)

Figure 4.14: In-plane modes of L shape clamped-free pipe system

55



4.2 Steady Internal Flow Results

Now, the results of the vibration of a pipe with fluid flow are presented. First, it is shown the results

comparing it to the experiment performed by Dodds and Runyan [40]. In that experiment, the objective

was to study the effect of high-velocity fluid flow on the bending vibrations and stability of a simple

supported pipe. To investigate free vibrations, the pipe transporting different fluid velocities, a small

disturbance to the pipe was necessary. The procedure was done using the material, fluid and geometry

present in table 4.6.

Table 4.6: Pipe material, geometry and fluid properties used in [40]
Parameters Values

Length 3.048 m
Modulus of elasticity 68.9 GPa
Poisson coefficient 0.3
External diameter 0.0254 m
Internal diameter 0.0012 m
Density of pipe 2699 kg/m3

Density of water 1000 kg/m3

For the fundamental mode of vibration, the experimental data for two identical pipes are shown in

table 4.7. The frequency results from the internal flow model using the Euler-Bernoulli theory with 20

number of elements are also present for a given flow velocity.

Table 4.7: Natural frequencies for different models and elements for pinned-pinned pipe conveying fluid

Pipe Flow velocity
(m/s)

Experiment
(rad/s)

FEM model
(rad/s) Error %

0 29.59 30.78 4.02
1 13.10 26.0996 29.15 11.69

23.485 24.1116 25.169 4.39
29.722 18.8 21.084 12.15

6.59 29.9052 30.376 1.57
2 13.973 27.2072 28.919 6.29

21.433 26.19 26.19 0
29.6826 21.0615 21.116 0.26

A graphical interpretation of the results is present in figure 4.15, where it can be seen that the model

follows the experimental results with some precision. As predicted, the system becomes unstable which

results in permanent deformation of the pipe [40]. The velocity for which the system becomes unstable,

or ω = 0, is called critical flow velocity.

Now, this fluid flow model is compared with a model proposed by Piet-Lahanier and Ohayon [41].

This proposed method considers a slender fluid-structure system, consisting of an elastic pipe with a

compressible, viscous fluid. A finite element computer program was developed that makes possible to

represent a pipe as a frequency dependent elasto-acoustic element. For this comparison, a cantilever

pipe conveying fluid is used. This system is excited by a unit transverse force at the free. The response

of the pipe free end in the direction of the force is presented in figure 4.16 for flow velocities of V = 0m/s

56



Pipe 1Pipe 1

Pipe 2Pipe 2

FEMFEM

N
at

u
ra

l 
F
re

q
u
en

cy
 (

ra
d
/s

)
N

at
u
ra

l 
F
re

q
u
en

cy
 (

ra
d
/s

)

00

55

1010

1515

2020

2525

3030

3535

Flow Velocity (m/s)Flow Velocity (m/s)

00 1010 2020 3030 4040

Figure 4.15: Lowest natural frequency of the simply supported straight pipe conveying fluid

and V = 50m/s.

V = 0 m/sV = 0 m/s

V = 50 m/sV = 50 m/s

A
b
so

lu
te

 v
al

u
e 

(m
)

A
b
so

lu
te

 v
al

u
e 

(m
)

1010
−1010

1010
−99

1010
−88

1010
−77

1010
−66

1010
−55

1010
−44

1010
−33

0.010.01

Frequency (Hz)Frequency (Hz)

00 5050 100100 150150 200200

Figure 4.16: Transverse displacement of the free end for two fluid velocities

When V = 0m/s, and not considering material damping, the system presents sharp resonances

corresponding to the theoretical natural frequencies. When the fluid is flowing, the response is smoother

because of the damping forces originated by the fluid flow. This response is close to the response obtain

by [41] model, only differing on the response for low frequencies when V = 50m/s. This difference might

be caused by the authors model since the static displacement (f = 0Hz) only involves the stiffness

matrix and force vector for the displacement calculation, and, since with the increase in flow velocity

through the pipe, the overall stiffness decreases and the static deflection is increases. So the higher the

flow velocity, the higher the first data point in figures 4.16 and 4.17 should be.

57



Figure 4.17: Transverse displacement response of the free end given by [41]

In this thesis, the same method for solving straight pipes is used in circular pipes but with a larger

number of element to approximate the curvature. However many authors studied and developed meth-

ods for analysing the dynamics of curved pipes transporting fluid. Kisra, Paidoussis, and Van [42], Chen

[43] and Zhang, Ouyang, Zhao, and Ding [44] developed different methods of dealing with this problem.

In this section a comparison will be made to ensure a good structural approximation plus fluid flow ap-

proximation to this other methods. A semi-circle clamped-clamped pipe (Figure 4.18) is used because it

is present in all author results. The radius and material properties are listed in table 4.8.

Figure 4.18: Semi-circle clamped-clamped pipe conveying fluid

For flow velocity of zero and using Euler-Bernoulli model the first 6 natural frequencies are presented

in table 4.9.

Dimensionless natural frequencies and dimensional flow velocity are calculated by

ω∗ = ωR2

√
mp +mf

EI
(4.1)

V ∗ = V R

√
mf

EI
(4.2)

58



Table 4.8: Pipe material, geometry and fluid for the clamped-clamped semi-circle pipe
Parameters Values

Radius 0.7 m
Modulus of elasticity 200 GPa
Poisson coefficient 0.3
External diameter 0.1 m
Internal diameter 0.094 m
Density of pipe 7900 kg/m3

Density of water 1000 kg/m3

Table 4.9: Dimensionless natural frequencies for different models and elements for V ∗ = 0 in the semi-
circle pipe

In-plane Out-of-plane

ω∗
1 ω∗

2 ω∗
3 ω∗

1 ω∗
2 ω∗

3

Model 4.808 9.474 18.114 1.812 5.205 10.927
Ref [44] 4.4054 9.6531 17.9456 1.8464 5.2800 11.0460
Ref [42] 4.39 9.64 17.95 1.83 5.28 11.10

where R is the semi-circle radius, mp is pipe mass per unit length and mf is fluid mass per unit length.

If natural frequencies are calculated for an increasing flow velocity a graph of dimensionless natural

frequencies versus dimensionless flow velocity can be constructed. From figure 4.19, one can see that

the lowest three natural frequencies of both the in-plane and out-of-plane motions decreases as the

velocity increases, and the pipe may lose stability by buckling at critical velocities, V ∗ = 0.

Comparing with figure 4.20 from [44] it can be seen that the critical flow velocities have an error

associated because a completely different method has used to predict the same model.

59



Out-of-plane Mode 1
In-plane Mode 2
Out-of-plane Mode 3
In-plane Mode 4
Out-of-plane Mode 5
In-plane Mode 6

D
im

en
si
o
n
le

ss
 f
re

q
u
en

cy
, 

D
im

en
si
o
n
le

ss
 f
re

q
u
en

cy
, 
ω

*
ω

*

00

55

1010

1515

2020

Dimensionless flow velocity, V*Dimensionless flow velocity, V*

00 0.50.5 11 1.51.5 22 2.52.5

Figure 4.19: Dimensionless natural frequencies versus dimensionless fluid velocity for a semi-circle fluid
conveying pipe under clamped-clamped boundary conditions

Figure 4.20: Dimensionless natural frequencies versus dimensionless fluid velocity for a semi-circle fluid
conveying pipe under clamped-clamped boundary conditions from [44]

60



4.3 Acoustic Results

In order to verify the acoustic model, and with the lack of literature results, OpenPulse [7] software

was used to, first verify the code developed and second to check the differences in implementation. The

L pipe system presented in figure 4.11 from section 4.1 is used for acoustic and coupled verification.

The pipe properties, material and fluid are presented in figure 4.10.

Initial check is performed with pressure boundary conditions at each end of the pipe system (Table

4.11). Figure 4.21 shows the pressure response at a node in the middle of the pipe (middle of 90◦

elbow) and it can be seen that for low frequencies, and since both pressure boundary conditions have

the same numeric value, the pressure is around 5 Pa.

Table 4.10: Pipe material, geometry and fluid properties
Parameters Values

Pipes length 0.9 m
Elbow radius 0.127 m
Modulus of elasticity 210 GPa
Poisson coefficient 0.3
External diameter 0.1 m
Internal diameter 0.09 m
Density of pipe 7800 kg/m3

Density of fluid 1.1614 kg/m3

Fluid speed of sound 347.21 m/s

Table 4.11: Acoustic boundary conditions for the L pipe
Node Pressure

Clamped Node 5 Pa
Free Node 5 Pa

If an volume velocity value is set at the free end (table 4.12), instead of pressure boundary condition,

the pressure response in the center of the elbow is presented in figure 4.22 and at the free node,

pressure response is shown in figure 4.23.

Table 4.12: Acoustic boundary conditions for the L pipe
Node Pressure/Volume Velocity

Clamped Node 5 Pa
Free Node 5 m3/s

With pressure fields calculated for each of the analysis frequencies, is now possible to calculate

the structural response of the pipe network with a force vector calculated based on the pressure field,

introduced in section 3.3.3. Figure 4.24 presents the transverse in-plane response of the free node given

the prescribed values shown in table 4.12.

All graphs shown in this section present an high degree of similarity between the acoustic model

developed and OpenPulse software. In figure 4.24 a difference in displacements is visible and can be

explained by some factors. In section 4.1 a comparison between the developed Timoshenko model and

61



OpenPulse
Model

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
ce

 (
P
a)

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
ce

 (
P
a)

1010

100100

10001000

Frequency (Hz)Frequency (Hz)

00 2020 4040 6060 8080 100100

Figure 4.21: Acoustic pressure response in the center of the elbow with pressure boundary conditions
at each end

OpenPulse
Model

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
ce

 (
P
a)

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
ce

 (
P
a)

1010
44

1010
55

1010
66

1010
77

1010
88

Frequency (Hz)Frequency (Hz)

00 2020 4040 6060 8080 100100

Figure 4.22: Acoustic pressure response in the center of the elbow with pressure boundary conditions
and volume velocity at each end

OpenPulse was performed. From this comparison it was concluded that the structural response is very

similar between them, so the structural stiffness and mass matrices can’t explain this discrepancy in

results. The pressure responses, figures 4.22 and 4.23, show that there is no significant pressure field

difference between models so one of the explanations possibles has to do with the formation of the force

vector or the formulation of fluid mass matrix. Since the lines in graph 4.24 are shifted only in the vertical

direction the most probable cause is the formulation of the force vector, because in the model developed,

for each frequency, the harmonic displacement is lower than the OpenPulse model and using the same

frequency ranges and discritezation.

62



OpenPulse
Model

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
ce

 (
P
a)

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
ce

 (
P
a)

10001000

1010
44

1010
55

1010
66

1010
77

1010
88

Frequency (Hz)Frequency (Hz)

00 2020 4040 6060 8080 100100

Figure 4.23: Acoustic pressure response in the free end with pressure boundary conditions and volume
velocity at each end

OpenPulse
Model

A
b
so

lu
te

 S
tr

u
st

u
ra

l 
R

es
p
o
n
ce

 (
m

)
A

b
so

lu
te

 S
tr

u
st

u
ra

l 
R

es
p
o
n
ce

 (
m

)

1010
−99

1010
−88

1010
−77

1010
−66

1010
−55

1010
−44

1010
−33

Frequency (Hz)Frequency (Hz)

00 2020 4040 6060 8080 100100

Figure 4.24: Structural response of the free end given the pressure field

63



4.4 OpenPulse Industrial Example

An industrial example is analysed in this section, kindly provided by Olavo M. Silva from the team of

developers of OpenPulse [7] software. Figure 4.25 shows a pipe system, a structural frame and a beam

supporting the large chamber on the left side of the image. The ends of the frame and supporting beam

are clamped to ground, and the pipe is connected to the frame beams through elastic links.

Figure 4.25: Industrial example with pipe system and structural frame

Figure 4.26: Industrial example with pipe system

Figure 4.26 only shows the pipe system. A compressor excitation is placed in pipe at the lowest

node in the figure (node with lowest z coordinate). All the other pipe endings are connected to other

64



pipe network sections. The compressor excitation profile is displayed in figure 4.27. This compressor

excitation was a range from 0 Hz to 250 Hz with unitary increments. This means that both acoustic

harmonic analysis and coupled analysis need to perform with that range and increment.

A
b
so

lu
te

 V
o
lu

m
e 

V
el

o
ci

ty
 S

o
u
rc

e 
(m

A
b
so

lu
te

 V
o
lu

m
e 

V
el

o
ci

ty
 S

o
u
rc

e 
(m

33
/s

)
/s

)

1010
−1818

1010
−1212

1010
−66

11

Frequency (Hz)Frequency (Hz)

00 5050 100100 150150 200200 250250

Figure 4.27: Compressor volume velocity source

The first step to replicate this network, using the method in section 3.1, is to extract, from the CAD

model, all relevant pipe system points and radius of corners. Node coordinates and corner radius are

presented in table 4.13 and 4.14, respectively. The node numbering is performed by the user as well as

the node connectivity matrix displayed in table 4.15. Along with this connectivity matrix, each of the 34

elements and 15 corners, need to be refined. This is also done by the user, in which he chooses the

number of nodes each of the elements and corners has.

Table 4.13: Pipe network input nodes coordinates
Node x (m) y (m) z (m) Node x (m) y (m) z (m)

1 -1.25 2.75 0.25 19 1.75 -1.75 3.75
2 -1.25 2.75 1.75 20 1.50 2.75 3.00
3 -1.25 2.75 3.75 21 1.50 -0.25 3.00
4 -1.25 2.75 4.75 22 2.25 -1.00 3.00
5 4.25 -1.00 4.00 23 2.25 -1.75 3.75
6 0.25 2.75 -0.25 24 2.00 2.75 3.00
7 0.25 2.75 0.75 25 2.00 -0.25 3.00
8 0.25 2.75 1.75 26 2.75 -1.00 3.00
9 0.25 2.75 3.00 27 2.75 -1.75 3.75

10 4.50 2.75 3.00 28 2.50 2.75 3.00
11 0.25 1.75 0.75 29 2.50 -0.25 3.00
12 0.25 1.75 1.70 30 3.25 -1.00 3.00
13 0.25 0.75 1.70 31 3.25 -1.75 3.75
14 3.25 0.75 1.70 32 3.00 2.75 3.00
15 4.00 0.45 1.70 33 3.00 -0.25 3.00
16 1.00 2.75 3.00 34 3.75 -1.00 3.00
17 1.00 -0.25 3.00 35 3.75 -1.75 3.75
18 1.75 -1.00 3.00

65



Table 4.14: Pipe network corner radius
Node r (m) Node r (m) Node r (m)

9 0.2 17 0.5 26 0.5
11 1.7 18 0.5 29 0.5
12 1.7 21 0.5 30 0.5
13 1.7 22 0.5 33 0.5
14 1.7 25 0.5 34 0.5

Table 4.15: Pipe network element connectivity
Element N1 N2 Element N1 N2

1 1 2 18 28 32
2 2 3 29 32 10
3 3 4 20 16 17
4 3 5 21 17 18
5 2 8 22 18 19
6 6 7 23 20 21
7 7 8 24 21 22
8 7 11 25 22 23
9 11 12 26 24 25
10 12 13 27 25 26
11 13 14 28 26 27
12 14 15 29 28 29
13 8 9 30 29 30
14 9 16 31 30 31
15 16 20 32 32 33
16 20 24 33 33 34
17 24 28 34 34 35

Given nodal coordinates and connectivity the mesh, without refinement, is presented in MATLAB as

in figure 4.28 and with every element represented with 3 elements and each corner with 5 elements,

the final mesh is displayed in figure 4.29. Pipe cross-section geometry, material and fluid properties are

displayed in table 4.16 and structural boundary conditions in table 4.17. Since that in the real model

the chamber is supported by a clamped beam, an approximation was performed and it was set that

the bottom of the chamber (Node 1) is clamped. Another approximation that was carried out is the

connection between pipe tubes and structural frame (not modeled in MATLAB). It was assumed that

some points along pipe tubes, that are close to the frame, are fixed. This means that there is a rigid

connection between pipe and frame at some specified points.

As seen before, node 6 (Figure 4.28) was a compressor type excitation with a given volume velocity.

Nodes 5, 15, 10, 19, 23, 27, 31, 35 have an imposed acoustic impedance that simulates a pipe continuity.

Performing an harmonic acoustic analysis the absolute pressure response at node 6 is given by

figure 4.30. This result is very similar to the one computed with OpenPulse and with a mesh composed

with 251 nodes compared with more than 6000 nodes used in OpenPulse. The same mesh is used for

structural and acoustic analysis because it facilitates the transmission of data between models.

66



Figure 4.28: Pipe network in MATLAB with important nodes

Table 4.16: Pipe material, geometry and fluid properties
Parameters Values

Modulus of elasticity 210 GPa
Poisson coefficient 0.3
Density of pipe 7860 kg/m3

External diameter 0.254 m
Internal diameter 0.244 m
Density of fluid 1.1614 kg/m3

Fluid speed of sound 347.21 m/s

Table 4.17: Structural boundary condition degrees of freedom without connection between pipe and
structural frame

Node ux uy uz rx ry rz

1 0 0 0 0 0 0
5 - - 0 - - -
6 - - 0 - - -

19 - - 0 - - -
23 - - 0 - - -
27 - - 0 - - -
31 - - 0 - - -
35 - - 0 - - -

67



Figure 4.29: Example pipe network in MATLAB with refinement

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
se

 (
P
a)

A
b
so

lu
te

 P
re

ss
u
re

 R
es

p
o
n
se

 (
P
a)

1010
−99

1010
−66

1010
−33

11

10001000

1010
66

Frequency (Hz)Frequency (Hz)

00 5050 100100 150150 200200 250250

Figure 4.30: Compressor node absolute pressure response

68



Chapter 5

Conclusions

Considering Euler-Bernoulli and Timoshenko developed models compared to the analytical solution

for simple beams with common boundary conditions it can be seen that the number of element neces-

sary of archive a precise result increases with the increase of frequency mode number, for both models.

The distinction between models stiffness is very clear an it can be seen that with the increase of mode

number the difference between models increases. As the pipe thickness-to-length ratio reduces differ-

ences between models are not significant. However as ratio increases the differences in models and

their application are evident. In more complex pipe designs, model validation was perform with the use

of OpenPulse where it was concluded that the developed models results, both natural frequencies and

modes of vibration, are very close to the ones in OpenPulse.

Different models to characterize a pipe system with steady internal flow exist. Many of those models

approach to the same problem differ but all the models analysed in this thesis are very close to the

one developed, for straight pipes and curved pipes. A comparison between the model and a laboratory

experiment [40] proved that the model follows the experimental data with high precision.

For the acoustic results a comparison between the developed model and OpenPulse was performed.

The pressure field was calculated for different pressure and volume velocity boundary conditions. The

results show an high precision in pressure at different nodes. Given the calculated pressure field the

coupled force vector has calculated and the structural response presents an error compared with Open-

Pulse. This error is only associated with the absolute response for a given frequency. This means

a difference in the calculation of force vector between the models exist, but the model developed is

capable of being used to calculate pressure fields and structural response of a pipeline excited by a

compressor.

The pressure field calculated for an complex industrial example is a good evidence of the model

precision given an compressor flow rate source. This example also provided a good opportunity to

check that the mesh processing algorithm developed is capable of model very complex pipe network.

69



5.1 Future Work

When performing a structural analysis with steady internal flow some problems arise from the model

developed. Since the user can only enter one value for the fluid velocity, in more complex pipe networks,

internal velocity will change based on the amount of branches or connections, also assuming no change

in cross-section area along the network. One method to solve this issue is to define the velocity for a

given length section. In a branched T element the user must be able to define three different velocities

with mass conservation in mind. This is not recommended to do automatically because depending on

the T angle between tubes and pressures at each of the segments, the calculation of the exit velocity

for two of the pipes is very time consuming only with an input velocity.

Pressure effects can also be implemented and with this an transient analysis should also be per-

formed, because since we are dealing in steady flow, the fluid-structure interaction forces are constant.

Those interactive forces can now contain the change in fluid momentum, not implemented in the acous-

tic coupled analysis, because of the already known velocities across system. Given this information,

friction coupling mechanism can also be modeled with ease, first because the direction of that force is

coincident with velocity vector and because this force can be easily computed with fluid and pipe surface

properties.

In acoustics developed code, some improvements can be performed. First different pipe elements

can be implemented, such as side branches, a large volume pipe and a resistance that decreases

pressure across it. This can be performed by changing the global mobility matrix based on the different

elements local mobility matrices. The same improvement given for the fluid-structure interaction detailed

above can be implemented for this analysis. The major problem is the need to solve the volume velocity

field for the entire system to be able to modify the coupled force vector to account for change in fluid

momentum.

70



References

[1] P. Gao, T. Yu, Y. Zhang, J. Wang, and J. Zhai. Vibration analysis and control technologies of

hydraulic pipeline system in aircraft: A review. Chinese Jornal of Aeronautics, 34(4):83–114, 2021.

[2] J. C. Wachel, S. J. Morton, and K. E. Atkins. Piping vibration analysis. Turbomachinery and Pump

Symposia, pages 119–134, 1990.

[3] M. Jaouhari, F. Self, and Y. Liu. Differentiating between Acoustic and Flow Induced Vibrations.

Bechtel Virtual Technology, November 2018.

[4] A. S. Tijsseling. Fluid-structure interaction in liquid-filled piping systems: A review. Jornal of Fluids

and Structures, 10:109–146, 1996.

[5] C. S. W. Lavooij and A. S. Tijsseling. Fluid-structure interaction in liquid-filled piping systems. Jornal

of Fluids and Structures, 5:573–595, 1991.

[6] A. Craggs. The application of the transfer matrix and matrix condensation method with finite ele-

ments to duct acoustics. Journal of Sound and Vibration, 132(2):394–402, 1989.

[7] O. M. Silva, D. M. Tuozzo, J. G. Vargas, L. V. Kulakauskas, A. F. Fernandes, J. L. Souza, A. P. Rocha,

A. Lenzi, R. Timbo, C. O. Mendonca, and A. T. Brandao. Numerical modelling of low-frequency

acoustically induced vibration in gas pipeline systems. Technical report, Federal University of Santa

Catarina, Multidisciplinary Optimization Group, MOPT/LVA, Campus Trindade, Florianópolis, Brazil.

Software Open Source GITHUB: https://github.com/open-pulse/OpenPulse#readme.

[8] S. S. Rao. The Finite Element Method in Engineering. Butterworth-Heinemann, 6th edition, 2018.

ISBN:978-0-12-811768-2.

[9] L. Andersen and S. R. K. Nielsen. Elastic beams in three dimensions. Aalborg University - DCE

Lacture Notes No. 23, August 2008.

[10] E. Oñate. Structural Analysis with the Finite Element Method. Linear Statics, volume 2. CIMNE, 1st

edition, 2013. ISBN:978-1-4020-8742-4.

[11] C. E. Augarde. Generation of shape functions for straight beam elements. Computers and Struc-

tures, 68:555–560, 1998.

71



[12] J. S. Przemieniecki. Theory of Matrix Structural Analysis. Dover Publications, 1968. ISBN-

13:9780486649481.

[13] H. P. Gavin. Structural element stiffness, mass, and damping matrices. Department of Civil and

Environmental Engineering, Duke University, 09 2020.

[14] A. Bazoune and Y. A. Khulief. Shape functions of three-dimensional timoshenko beam element.

Journal of Sound and Vibration, 259(2):473–480, 2003.

[15] G. R. Cowper. The shear coefficient in timoshenko’s beam theory. Journal of Applied Mechanics,

33(2):335–340, 06 1966. doi:10.1080/10618560701678647.

[16] T. J. R. Hughes. The finite element method: Linear Static and Dynamic Finite Element Analysis.

Prentice-Hall, 1987. ISBN:0-13-317025-X.

[17] L. Meirovitch. Computer Methods in Structural Dynamics. Sijthoff Noordhoff International Publish-

ers, 1st edition, 1980. ISBN:90-286-0580-0.

[18] R. D. Blevins. Flow-Induced Vibration. Krieger Publishing Company, 2nd edition, 2001. ISBN:1-

57524-183-8.

[19] M. Dangal and S. K. Ghimire. Modeling and analysis of flow induced vibration in pipes using finite

element approach. 11 2020.

[20] I. Grant. Flow induced vibrations in pipes, a finite element approach. Master’s thesis, Cleveland

State University, 05 2010.

[21] J. N. Durrani. Dynamics of pipelines with finite element model. Master’s thesis, University of

Calgary, August 2001.

[22] C.-L. Chu and Y.-H. Lin. Finite element analysis of fluid-conveying timoshenko pipes. Shock and

Vibration, 2(3):247–255, January 1995.

[23] F. M. White. Fluid Mechanics. McGraw-Hill Education, 8th edition, 2016. ISBN:978-9-38-596549-4.

[24] M. Abom. An Introduction of Flow Acoustics. KTH Royal Institute of Technology, 2010. ISSN:1651-

7660.

[25] S. W. Rienstra and A. Hirschberg. An introduction to acoustics. Eindhoven University of Technology,

February 2021.

[26] S. Kaneko, T. Nakamura, and F. Inada. Flow-Induced Vibrations. Elsevier, 2nd edition, 2014.

ISBN:978-0-08-098347-9.

[27] T. C. Lin and G. W. Morgan. Wave propagation through fluid contained in a cylindrical, elastic shell.

The jornal of the acoustical society of america, 28(6):1165–1176, November 1956.

[28] A. C. Ugural and S. K. Fenster. Advanced Strength and Applied Elasticity. Prentice Hall, 4th edition,

1995. ISBN:0-13-047392-8.

72



[29] A. R. Boresi, R. J. Schimdt, and O. M. Sidebottom. Advanced Mechanics of Materials. John Wiley

& Sons, 5th edition, 1993. ISBN:0-471-55157-0.

[30] O. Rodrigues. Des lois géométriques qui régissent les déplacements d’un système solide

dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés

indépendants des causes qui peuvent les produire. Journal de Mathématiques Pures et Ap-

pliquées, 5:380–440, 1840.

[31] K. K. Liang. Efficient conversion from rotating matrix to rotation axis and angle by extending ro-

drigues’s formula, October 2018.

[32] G. R. Liu and S. S. Quek. The Finite Element Method: A Practical Course. Butterworth-Heinemann,

1st edition, 2003. ISBN:0-7506-5866-5.

[33] J. L. Meek. Computer Methods in Structural Analysis. E & FN SPON, 1st edition, 1991. ISBN:0-

419-15440-X.

[34] D. L. Logan. A First Course in the Finite Element Method. Cencage Learning, 6th edition, 2016.

ISBN-13:978-1-305-63734-4.

[35] A. J. M. Ferreira. MATLAB Codes for Finite Element Analysis - Solids and Structures, volume 157

of Solid mechanics and its applications. Springer, 2009. ISBN:978-1-4020-9199-5.

[36] M. Tanaka and K. Fujita. Vibration of piping system by pulsation of containing fluid. (in Japanese).

[37] T. Belytschko, M. Karabin, and J. I. Lin. Fluid-structure interaction in waterhammer response of

flexible piping. Journal of Pressure Vessel Technology, 180:249–255, 1986.

[38] S. S. Rao. Mechanical Vibrations. Pearson, 6th edition, 2017. ISBN-10:1-292-17860-4.

[39] L. Lee and W. W. Schultz. Eigenvalue analysis of timoshenko beams and axisymmetric

mindlin plates by the pseudospectral method. Journal of Sound and Vibration, 269, 2004.

doi:10.1016/S0022-460X(03)00047-6.

[40] H. L. Dodds and H. L. Runyan. Effect of high-velocity fluid flow on the bending vibrations and static

divergence of a simply supported pipe. NASA TN D-2870, June 1965.

[41] N. Piet-Lahanier and R. Ohayon. Finite element analysis of a slender fluid-structure system. Journal

of Fluids and Structures, 4:631–645, 1990. doi:0889-9746/90/060063.

[42] A. K. Kisra, M. P. Paidoussis, and K. S. Van. On the dynamics of curved pipes transporting fluid.

part 1: Inextensible theory. Journal of Fluids and Structures, 2:221–244, 1988.

[43] S. S. Chen. Out-of-plane vibration and stability of curved tubes conveying fluid. Journal of Applied

Mechanics, 40:362–368, 1973.

[44] T. Zhang, H. Ouyang, C. Zhao, and Y. J. Ding. Vibration analysis of a complex fluid-conveying piping

system with general boundary conditions using the receptance method. International Journal of

Pressure Vessels and Piping, 166:84–93, 2018.

73



74



Appendix A

MATLAB Code

In this appendix, some relevant parts of the code written is presented. All the mesh, material, fluid,

structural and acoustic boundary conditions are imported into the program via text documents written by

the user and each one of the files must be inserted individually. The variables are stored in structures

and at the beginning of each functions all the required information is taken from this structures and at

the end all the relevant data is stored in the same or different structures.

A.1 Mesh Processing

This function is responsible to determine all the mesh parameters: number of nodes, number of

elements, nodes coordinates and element connectivity. First, using the initial mesh design provided

by the user, it calculates the total number of nodes and elements and constructs the connectivity matrix

based on the refinement number of each element. Finally, the nodes coordinates are calculated, starting

from the straight line segments and then the corner nodes if they exist.

Listing A.1: process mesh function MATLAB code
1 function [Mesh] = process_mesh(PreMesh , Mesh)

2
3 pre_number_nodes = PreMesh.number_nodes;

4 pre_number_elements = PreMesh.number_elements;

5 number_corners = PreMesh.number_corners;

6 pre_node_coordinates = PreMesh.node_coordinates;

7 pre_element_nodes = PreMesh.element_nodes;

8 element_segments = PreMesh.element_segments;

9 corner_nodes = PreMesh.corner_nodes;

10 corner_radius = PreMesh.corner_radius;

11 corner_segments = PreMesh.corner_segments;

12
13 element_nodes = pre_element_nodes;

14 number_nodes = pre_number_nodes;

15 number_elements = pre_number_elements;

16
17 % ----------------------------------------------------------------------

18 % Form elements

19 current_node = pre_number_nodes + 1;

20
21 corner_s_e = zeros(2, number_corners);

22 arc_s_e = zeros(2, number_corners);

75



23
24 for num_co = 1 : number_corners

25 cor_node = corner_nodes(num_co);

26 cor_seg = corner_segments(num_co);

27
28 c_element_nodes = zeros(2, cor_seg);

29 arc_s_e(1, num_co) = cor_node;

30
31 pos = 1;

32 for num_el = 1 : number_elements

33 node_a = element_nodes (1, num_el);

34 node_b = element_nodes (2, num_el);

35 if (node_a == cor_node)

36 corner_s_e(pos , num_co) = node_b;

37 pos = pos + 1;

38 elseif (node_b == cor_node)

39 corner_s_e(pos , num_co) = node_a;

40 pos = pos + 1;

41 end
42 if (pos == 3)

43 element_nodes (:, num_el) = [];

44 break;
45 end
46 end
47 for co_sg = 1 : cor_seg

48 if (co_sg == 1)

49 c_element_nodes (:, co_sg) = [cor_node; current_node ];

50 else
51 c_element_nodes (:, co_sg) = [current_node; current_node +1];

52 current_node = current_node + 1;

53 end
54 end
55 arc_s_e(2, num_co) = current_node;

56 % end element

57 e_element = [current_node; corner_s_e (2, num_co)];

58 c_e_nodes = [element_nodes , c_element_nodes , e_element ];

59 element_nodes = c_e_nodes;

60
61 number_elements = number_elements + cor_seg;

62 number_nodes = number_nodes + cor_seg;

63 current_node = current_node + 1;

64 end
65
66 line_segments = zeros(2, pre_number_elements);

67
68 for p_num_el = 1 : pre_number_elements

69 line_seg = element_segments(p_num_el);

70 node_a = pre_element_nodes (1, p_num_el);

71 node_b = pre_element_nodes (2, p_num_el);

72 line_segments (:, p_num_el) = [node_a; node_b ];

73
74 number_c_e = 0;

75 if (line_seg > 1)

76 corner_sum = zeros(1, 2);

77 for num_co = 1 : number_corners

78 if (node_a == corner_nodes(num_co) || node_b == corner_nodes(num_co))

79 number_c_e = number_c_e + 1;

80 corner_sum(number_c_e) = corner_nodes(num_co);

81 end
82 end
83 if (number_c_e == 1)

84 ind = find(corner_nodes == corner_sum (1));

85 if (node_a == corner_sum (1))

86 position = find(corner_s_e (:, ind) == node_b);

87 pos = position;

88 node_a = arc_s_e(pos , ind);

89 elseif (node_b == corner_sum (1))

76



90 position = find(corner_s_e (:, ind) == node_a);

91 pos = position;

92 node_b = arc_s_e(pos , ind);

93 end
94 elseif (number_c_e == 2)

95 ind2 = [find(corner_nodes == corner_sum (1)); find(corner_nodes == corner_sum (2))];

96 opti = [...

97 arc_s_e(1, ind2 (1)), arc_s_e(1, ind2 (2)); ...

98 arc_s_e(1, ind2 (1)), arc_s_e(2, ind2 (2)); ...

99 arc_s_e(2, ind2 (1)), arc_s_e(1, ind2 (2)); ...

100 arc_s_e(2, ind2 (1)), arc_s_e(2, ind2 (2))];

101 for opn = 1 : 4

102 for num_el = 1 : number_elements

103 if (opti(opn , 1) == element_nodes (1, num_el) && ...

104 opti(opn , 2) == element_nodes (2, num_el))

105 node_a = opti(opn , 1);

106 node_b = opti(opn , 2);

107 elseif (opti(opn , 1) == element_nodes (2, num_el) && ...

108 opti(opn , 2) == element_nodes (1, num_el))

109 node_a = opti(opn , 2);

110 node_b = opti(opn , 1);

111 end
112 end
113 end
114 end
115 line_segments (:, p_num_el) = [node_a; node_b ];

116 for num_el = 1 : number_elements

117 new_a = element_nodes (1, num_el);

118 new_b = element_nodes (2, num_el);

119 if (node_a == new_a) && (node_b == new_b)

120 element_nodes (:, num_el) = [];

121 break;
122 end
123 end
124 line_element_nodes = zeros(2, line_seg);

125 for l_seg = 1 : line_seg

126 if (l_seg == 1)

127 line_element_nodes (:, l_seg) = [node_a; current_node ];

128 elseif (l_seg == line_seg)

129 line_element_nodes (:, l_seg) = [current_node; node_b ];

130 else
131 line_element_nodes (:, l_seg) = [current_node; current_node +1];

132 current_node = current_node + 1;

133 end
134 end
135 current_e_n = [element_nodes , line_element_nodes ];

136 element_nodes = current_e_n;

137
138 number_elements = number_elements + line_seg - 1;

139 number_nodes = number_nodes + line_seg - 1;

140 current_node = current_node + 1;

141 end
142 end
143
144 % --------------------------------------------------------------------

145 % Form coordinates

146
147 node_coordinates = zeros(3, number_nodes);

148 node_coordinates (:, 1: pre_number_nodes) = pre_node_coordinates;

149
150 current_n_c = pre_node_coordinates;

151 current_node = pre_number_nodes + 1;

152
153 % Corners coordinates

154 for num_co = 1 : number_corners

155 node = corner_nodes(num_co);

156 radius = corner_radius(num_co);

77



157 segments = corner_segments(num_co);

158
159 node_a = corner_s_e (1, num_co);

160 node_b = corner_s_e (2, num_co);

161
162 v_a = current_n_c (:, node_a) - current_n_c (:, node);

163 v_b = current_n_c (:, node_b) - current_n_c (:, node);

164 v_a = v_a / norm(v_a);
165 v_b = v_b / norm(v_b);
166
167 theta_ab = acos(dot(v_a , v_b));

168 d_e = radius / tan(theta_ab / 2);

169 d_i = radius / sin(theta_ab / 2);

170
171 v_c = v_a + v_b;

172 v_c = v_c / norm(v_c);
173
174 center_p = current_n_c (:, node) + v_c * d_i;

175 start_p = current_n_c (:, node) + v_a * d_e;

176 end_p = current_n_c (:, node) + v_b * d_e;

177
178 v_ca = start_p - center_p;

179 v_cb = end_p - center_p;

180 v_ca = v_ca / norm(v_ca);
181 v_cb = v_cb / norm(v_cb);
182
183 v_n = cross(v_ca , v_cb);

184 v_n = v_n / norm(v_n);
185
186 theta_cacb = pi - theta_ab;

187 dtheta_cacb = theta_cacb / segments;

188 t = 0;

189
190 node_first = center_p + radius * v_ca;

191 node_coordinates (:, node) = node_first;

192
193 for s = 1 : segments

194 t = t + dtheta_cacb;

195
196 % Matrix notation

197 I = [1, 0, 0; 0, 1, 0; 0, 0, 1];

198 K = [0, -v_n(3), v_n(2); v_n(3), 0, -v_n(1); -v_n(2), v_n(1), 0];

199 R = I + sin(t) * K + (1 - cos(t)) * Kˆ2;

200 v_ca_rot = R * v_ca;

201
202 node_new = center_p + radius * v_ca_rot;

203 node_coordinates (:, current_node) = node_new;

204
205 current_node = current_node + 1;

206 end
207 current_n_c = node_coordinates (:, 1: current_node -1);

208 end
209
210 % Line coordinates

211 for p_num_el = 1 : pre_number_elements

212 segments = element_segments(p_num_el);

213 if (segments > 1)

214 node_a = line_segments (1, p_num_el);

215 node_b = line_segments (2, p_num_el);

216
217 v_a = node_coordinates (:, node_b) - node_coordinates (:, node_a);

218 L = norm(v_a);
219 v_a = v_a / L;

220
221 for li_seg = 1 : segments -1

222 node_new = node_coordinates (:, node_a) + v_a * (li_seg / segments * L);

223 node_coordinates (:, current_node) = node_new;

78



224 current_node = current_node + 1;

225 end
226 end
227 end
228
229 Mesh.number_nodes = number_nodes;

230 Mesh.number_elements = number_elements;

231 Mesh.node_coordinates = node_coordinates;

232 Mesh.element_nodes = element_nodes;

A.2 Structural Boundary Conditions

The processing of the structural displacement boundary conditions is done by this function. It iden-

tifies the number and value of the degrees of freedom provided by the user and determines the free

degrees of freedom.

Listing A.2: process struct dof function MATLAB code

1 function [Structural] = process_struct_dof(Mesh , PreStructural , Structural)

2
3 number_nodes = Mesh.number_nodes;

4 number_presc_nodes = PreStructural.number_presc_nodes;

5 node_number = PreStructural.node_number;

6 number_dofs_node = PreStructural.number_dofs_node;

7 dofs_values = PreStructural.dofs_values;

8
9 number_dofs = 6 * number_nodes;

10 dofs = 1 : number_dofs;

11 number_prescribed = sum(number_dofs_node);
12 number_free = number_dofs - number_prescribed;

13
14 prescribed_dofs = zeros(1, number_prescribed);

15 prescribed_values = zeros(1, number_prescribed);

16 p_n = 1;

17 for num_pn = 1 : number_presc_nodes

18 node = node_number(num_pn);

19 for num_dn = 1 : number_dofs_node(num_pn)

20 dof_node = dofs_values (1, num_dn , num_pn);

21 dof_value = dofs_values (2, num_dn , num_pn);

22 prescribed_dofs(p_n) = 6 * node - 6 + dof_node;

23 prescribed_values(p_n) = dof_value;

24 p_n = p_n + 1;

25 end
26 end
27 free_dofs = 1 : number_dofs;

28 free_dofs(prescribed_dofs) = [];

29
30 Structural.number_dofs = number_dofs;

31 Structural.number_prescribed = number_prescribed;

32 Structural.number_free = number_free;

33 Structural.dofs = dofs;

34 Structural.prescribed_dofs = prescribed_dofs;

35 Structural.free_dofs = free_dofs;

36 Structural.prescribed_values = prescribed_values;

79



A.3 Structural Matrices

The three-dimensional Euler-Bernoulli and Timoshenko beam theory matrices are constructed in this

section.

Listing A.3: stiffness mass matrix eb function MATLAB code
1 function [Structural] = stiffness_mass_matrix_eb(Mesh , Material , Section , Structural)

2
3 number_elements = Mesh.number_elements;

4 node_coordinates = Mesh.node_coordinates;

5 element_nodes = Mesh.element_nodes;

6 E = Material.young_modulus;

7 G = Material.shear_modulus;

8 Nu = Material.poisson_coefficient;

9 Rho = Material.density;

10 A = Section.area;

11 Iy = Section.second_moment;

12 Iz = Section.second_moment;

13 J = Section.polar_moment;

14 number_dofs = Structural.number_dofs;

15 Alpha = Material.mass_coefficient;

16 Beta = Material.stiffness_coefficient;

17
18 KK = zeros(number_dofs , number_dofs);

19 MM = zeros(number_dofs , number_dofs);

20 CC = zeros(number_dofs , number_dofs);

21
22 xx = node_coordinates (1, :);

23 yy = node_coordinates (2, :);

24 zz = node_coordinates (3, :);

25
26 for num_el = 1 : number_elements

27 node1 = element_nodes (1, num_el);

28 node2 = element_nodes (2, num_el);

29 element_dof = [...

30 6*node1 -5, 6*node1 -4, 6*node1 -3, 6*node1 -2, 6*node1 -1, 6*node1 , ...

31 6*node2 -5, 6*node2 -4, 6*node2 -3, 6*node2 -2, 6*node2 -1, 6*node2];

32 dx = xx(node2) - xx(node1);

33 dy = yy(node2) - yy(node1);

34 dz = zz(node2) - zz(node1);

35 L = (dxˆ2 + dyˆ2 + dzˆ2) ˆ0.5;

36
37 if (dx == 0 && dy == 0)

38 if (dz > 0)

39 Lambda = [0, 0, 1; 0, 1, 0; -1, 0, 0];

40 else
41 Lambda = [0, 0, -1; 0, 1, 0; 1, 0, 0];

42 end
43 else
44 CXx = dx / L;

45 CYx = dy / L;

46 CZx = dz / L;

47 D = sqrt(CXxˆ2 + CYxˆ2);

48 CXy = -CYx / D;

49 CYy = CXx / D;

50 CZy = 0;

51 CXz = -CXx * CZx / D;

52 CYz = -CYx * CZx / D;

53 CZz = D;

54 Lambda = [CXx , CYx , CZx; CXy , CYy , CZy; CXz , CYz , CZz];

55 end
56 T = [...

57 Lambda , zeros(3, 9); zeros(3, 3), Lambda , zeros(3, 6); ...

58 zeros(3, 6), Lambda , zeros(3, 3); zeros(3, 9), Lambda ];

59

80



60 % Local stiffness matrix

61 k1 = E * A / L;

62 k2 = 12 * E * Iz / Lˆ3;

63 k3 = 6 * E * Iz / Lˆ2;

64 k4 = 4 * E * Iz / L;

65 k5 = 2 * E * Iz / L;

66 k6 = 12 * E * Iy / Lˆ3;

67 k7 = 6 * E * Iy / Lˆ2;

68 k8 = 4 * E * Iy / L;

69 k9 = 2 * E * Iy / L;

70 k10 = G * J / L;

71 a1 = [k1, 0, 0; 0, k2, 0; 0, 0, k6] ;

72 b1 = [0, 0, 0; 0, 0, k3; 0, -k7 , 0];

73 c1 = [k10 , 0, 0; 0, k8, 0; 0, 0, k4];

74 d1 = [-k10 , 0, 0; 0, k9, 0; 0, 0, k5];

75 Kl = [...

76 a1 , b1, -a1, b1; ...

77 b1 ’, c1, (-b1)’, d1; ...

78 (-a1)’, -b1, a1, -b1; ...

79 b1 ’, d1’, (-b1)’, c1];

80
81 % Local mass matrix

82 a2 = [140, 0, 0; 0, 156, 0; 0, 0, 156];

83 b2 = [0, 0, 0; 0, 0, 22*L; 0, -22*L, 0];

84 c2 = [70, 0, 0; 0, 54, 0; 0, 0, 54];

85 d2 = [0, 0, 0; 0, 0, -13*L; 0, 13*L, 0];

86 e2 = [140*J/A, 0, 0; 0, 4*Lˆ2, 0; 0, 0, 4*Lˆ2];

87 f2 = [70*J/A, 0, 0; 0, -3*Lˆ2, 0; 0, 0, -3*Lˆ2];

88 Ml = Rho * A * L / 420 * [...

89 a2 , b2, c2, d2; ...

90 b2 ’, e2, d2, f2; ...

91 c2 ’, d2’, a2, -b2; ...

92 d2 ’, f2’, (-b2)’, e2];

93
94 % Local to global transformation

95 K0 = T’ * Kl * T;

96 M0 = T’ * Ml * T;

97 % Assembly

98 KK(element_dof , element_dof) = KK(element_dof , element_dof) + K0;

99 MM(element_dof , element_dof) = MM(element_dof , element_dof) + M0;

100 end
101
102 CC = Alpha * MM + Beta * KK;

103
104 Structural.stiffness_matrix = KK;

105 Structural.mass_matrix = MM;

106 Structural.damping_matrix = CC;

Listing A.4: stiffness mass matrix t function MATLAB code
1 function [Structural] = stiffness_mass_matrix_t1(Mesh , Material , Section , Structural)

2
3 number_elements = Mesh.number_elements;

4 node_coordinates = Mesh.node_coordinates;

5 element_nodes = Mesh.element_nodes;

6 E = Material.young_modulus;

7 G = Material.shear_modulus;

8 Nu = Material.poisson_coefficient;

9 Rho = Material.density;

10 A = Section.area;

11 Iy = Section.second_moment;

12 Iz = Section.second_moment;

13 J = Section.polar_moment;

14 k = Section.shear_coefficient;

15 number_dofs = Structural.number_dofs;

16 Alpha = Material.mass_coefficient;

81



17 Beta = Material.stiffness_coefficient;

18
19 KK = zeros(number_dofs);
20 MM = zeros(number_dofs);
21 CC = zeros(number_dofs);
22
23 xx = node_coordinates (1, :);

24 yy = node_coordinates (2, :);

25 zz = node_coordinates (3, :);

26
27 for num_el = 1 : number_elements

28 node1 = element_nodes (1, num_el);

29 node2 = element_nodes (2, num_el);

30 element_dof = [...

31 6*node1 -5, 6*node1 -4, 6*node1 -3, 6*node1 -2, 6*node1 -1, 6*node1 , ...

32 6*node2 -5, 6*node2 -4, 6*node2 -3, 6*node2 -2, 6*node2 -1, 6*node2];

33 dx = xx(node2) - xx(node1);

34 dy = yy(node2) - yy(node1);

35 dz = zz(node2) - zz(node1);

36 L = (dxˆ2 + dyˆ2 + dzˆ2) ˆ0.5;

37
38 if (dx == 0 && dy == 0)

39 if (dz > 0)

40 Lambda = [0, 0, 1; 0, 1, 0; -1, 0, 0];

41 else
42 Lambda = [0, 0, -1; 0, 1, 0; 1, 0, 0];

43 end
44 else
45 CXx = dx / L;

46 CYx = dy / L;

47 CZx = dz / L;

48 D = sqrt(CXxˆ2 + CYxˆ2);

49 CXy = -CYx / D;

50 CYy = CXx / D;

51 CZy = 0;

52 CXz = -CXx * CZx / D;

53 CYz = -CYx * CZx / D;

54 CZz = D;

55 Lambda = [CXx , CYx , CZx; CXy , CYy , CZy; CXz , CYz , CZz];

56 end
57 T = [...

58 Lambda , zeros(3, 9); zeros(3, 3), Lambda , zeros(3, 6); ...

59 zeros(3, 6), Lambda , zeros(3, 3); zeros(3, 9), Lambda ];

60
61 % Local stiffness matrix

62 Psi_y = 12 * E * Iy / (G * k * A * Lˆ2);

63 Psi_z = 12 * E * Iz / (G * k * A * Lˆ2);

64 k1 = E * A / L;

65 k2 = 12 * E * Iz / ((1 + Psi_y) * Lˆ3);

66 k3 = 6 * E * Iz / ((1 + Psi_y) * Lˆ2);

67 k4 = (4 + Psi_y) * E * Iz / ((1 + Psi_y) * L);

68 k5 = (2 - Psi_y) * E * Iz / ((1 + Psi_y) * L);

69 k6 = 12 * E * Iy / ((1 + Psi_z) * Lˆ3);

70 k7 = 6 * E * Iy / ((1 + Psi_z) * Lˆ2);

71 k8 = (4 + Psi_z) * E * Iy / ((1 + Psi_z) * L);

72 k9 = (2 - Psi_z) * E * Iy / ((1 + Psi_z) * L);

73 k10 = G * J / L;

74 a1 = [k1, 0, 0; 0, k2, 0; 0, 0, k6];

75 b1 = [0, 0, 0; 0, 0, k3; 0, -k7 , 0];

76 c1 = [k10 , 0, 0; 0, k8, 0; 0, 0, k4];

77 d1 = [-k10 , 0, 0; 0, k9, 0; 0, 0, k5];

78 Kl = [...

79 a1 , b1, -a1, b1; ...

80 b1 ’, c1, (-b1)’, d1; ...

81 (-a1)’, -b1, a1, -b1; ...

82 b1 ’, d1’, (-b1)’, c1];

83

82



84 % Local mass matrix

85 a2 = [140, 0, 0; 0, 156+504* Iz/A/Lˆ2, 0; 0, 0, 156+504* Iy/A/Lˆ2];

86 b2 = [0, 0, 0; 0, 0, 22*L+42*Iz/A/L; 0, -22*L-42*Iy/A/L, 0];

87 c2 = [70, 0, 0; 0, 54 -504*Iz/A/Lˆ2, 0; 0, 0, 54 -504*Iy/A/Lˆ2];

88 d2 = [0, 0, 0; 0, 0, -13*L-42*Iz/A/L; 0, 13*L+42*Iy/A/L, 0];

89 e2 = [140*J/A, 0, 0; 0, 4*Lˆ2+56* Iy/A, 0; 0, 0, 4*Lˆ2+56* Iz/A];

90 f2 = [70*J/A, 0, 0; 0, -3*Lˆ2-28*Iy/A, 0; 0, 0, -3*Lˆ2-28*Iz/A];

91 Ml = Rho * A * L / 420 * [...

92 a2 , b2, c2, d2; ...

93 b2 ’, e2, d2, f2; ...

94 c2 ’, d2’, a2, -b2; ...

95 d2 ’, f2’, (-b2)’, e2];

96
97 % Local to global transformation

98 K0 = T’ * Kl * T;

99 M0 = T’ * Ml * T;

100 % Assembly

101 KK(element_dof , element_dof) = KK(element_dof , element_dof) + K0;

102 MM(element_dof , element_dof) = MM(element_dof , element_dof) + M0;

103 end
104
105 CC = Alpha * MM + Beta * KK;

106
107 Structural.stiffness_matrix = KK;

108 Structural.mass_matrix = MM;

109 Structural.damping_matrix = CC;

A.4 Structural Free Vibration Analysis

Given stiffness and mass structural matrices a modal or free vibration analysis can be performed

with the following function only needing the free degrees of freedom of the system.

Listing A.5: struct modal analysis function MATLAB code

1 function [SolutionStructural] = struct_modal_analysis(Structural , SolutionStructural)

2
3 number_dofs = Structural.number_dofs;

4 number_free = Structural.number_free;

5 free_dofs = Structural.free_dofs;

6 KK = Structural.stiffness_matrix;

7 MM = Structural.mass_matrix;

8
9 K = KK(free_dofs , free_dofs);

10 M = MM(free_dofs , free_dofs);

11
12 [vec , val] = eig(K, M);

13
14 [natural_freq , ind] = sort(real(sqrt(diag(val))));
15
16 freq_modes = zeros(number_dofs , number_free);

17 freq_modes(free_dofs , :) = vec(:, ind);

18
19 SolutionStructural.modal.natural_frequencies = natural_freq;

20 SolutionStructural.modal.modes = freq_modes;

83



A.5 Structural Forced Vibration Analysis

The structural harmonic or forced vibration analysis is perform with the code below. Given the force

vector and structural matrices, absolute displacement field is calculated for the frequency array provided

by the user.

Listing A.6: struct harmonic analysis function MATLAB code
1 function [SolutionStructural] = struct_harmonic_analysis(Structural , SolutionStructural)

2
3 number_dofs = Structural.number_dofs;

4 number_prescribed = Structural.number_prescribed;

5 number_free = Structural.number_free;

6 dofs = Structural.dofs;

7 prescribed_dofs = Structural.prescribed_dofs;

8 free_dofs = Structural.free_dofs;

9 prescribed_values = Structural.prescribed_values;

10 FF = Structural.force_vector;

11 KK = Structural.stiffness_matrix;

12 MM = Structural.mass_matrix;

13 CC = Structural.damping_matrix;

14 harm_freq = SolutionStructural.harmonic.frequencies;

15
16 number_freq = length(harm_freq);
17 harm_displ = zeros(number_dofs , number_freq);

18
19 j = sqrt(-1);
20
21 for num_fq = 1 : number_freq

22 freq_hz = harm_freq(num_fq);

23 freq_rad = freq_hz * 2 * pi;
24 dynamic_matrix = KK - freq_rad ˆ2 * MM + j * freq_rad * CC;

25 d = dynamic_matrix(free_dofs , free_dofs) \ FF(free_dofs);

26 harm_displ(free_dofs , num_fq) = (real(d).ˆ2 + imag(d).ˆ2) .ˆ0.5;
27 end
28
29 SolutionStructural.harmonic.displacements = harm_displ;

A.6 Acoustic Stiffness Matrix

Acoustic one-dimensional stiffness matrix, also known as mobility matrix is calculated for each fre-

quency of analysis (Line 13).

Listing A.7: stiffness matrix function MATLAB code
1 function [Acoustic] = stiffness_matrix(Mesh , Section , Fluid , Acoustic)

2
3 number_elements = Mesh.number_elements;

4 node_coordinates = Mesh.node_coordinates;

5 element_nodes = Mesh.element_nodes;

6 A_i = Section.internal_area;

7 rho_f = Fluid.density;

8 c_o = Fluid.speed_sound_corrected;

9 number_dofs = Acoustic.number_dofs;

10 frequencies = Acoustic.frequencies;

11 number_freq = Acoustic.number_frequencies;

12
13 KKa = zeros(number_dofs , number_dofs , number_freq);

14
15 xx = node_coordinates (1, :);

84



16 yy = node_coordinates (2, :);

17 zz = node_coordinates (3, :);

18
19 for num_el = 1 : number_elements

20 node1 = element_nodes (1, num_el);

21 node2 = element_nodes (2, num_el);

22 element_dof = [node1 , node2];

23 dx = xx(node2) - xx(node1);

24 dy = yy(node2) - yy(node1);

25 dz = zz(node2) - zz(node1);

26 L = (dxˆ2 + dyˆ2 + dzˆ2) ˆ0.5;

27
28 j = sqrt(-1);
29
30 Zf = rho_f * c_o / A_i;

31 kL = frequencies * 2 * pi / c_o * L;

32
33 for num_fq = 1 : number_freq

34 c1 = -j * cos(kL(num_fq)) / (sin(kL(num_fq)) * Zf);

35 c2 = j / (Zf * sin(kL(num_fq)));
36 % Local mobility matrix

37 K0 = [c1, c2; c2, c1];

38 % Assembly

39 KKa(element_dof , element_dof , num_fq) = KKa(element_dof , element_dof , num_fq) + K0;

40 end
41 end
42
43 Acoustic.mobility_matrix = KKa;

A.7 Acoustic Harmonic Analysis

Using the mobility matrix presented above, and with the prescribed pressures, volume velocities and

acoustic impedance the pressure field is given by the code below.

Listing A.8: acoust harmonic analysis function MATLAB code

1 function [SolutionAcoustic] = acoust_harmonic_analysis(Acoustic , SolutionAcoustic)

2
3 number_dofs = Acoustic.number_dofs;

4 free_dofs = Acoustic.free_dofs;

5 prescribed_dofs = Acoustic.prescribed_dofs;

6 prescribed_values = Acoustic.prescribed_values;

7 volume_velocity_vector = Acoustic.volume_velocity_vector;

8 harm_freq = Acoustic.frequencies;

9 KKa = Acoustic.mobility_matrix;

10
11 number_freq = length(harm_freq);
12 harm_press = zeros(number_dofs , number_freq);

13
14 for num_fq = 1 : number_freq

15 harm_press(free_dofs , num_fq) = KKa(free_dofs , free_dofs , num_fq) \ ...

16 (volume_velocity_vector(free_dofs) - KKa(free_dofs , prescribed_dofs , num_fq) * ...

17 prescribed_values ’);

18 harm_press(prescribed_dofs , num_fq) = prescribed_values;

19 end
20
21 SolutionAcoustic.harmonic.frequencies = harm_freq;

22 SolutionAcoustic.harmonic.pressures = harm_press;

85



A.8 Coupled Force Vector

With pressure field defined, the fluid-structure interactive forces resulting from that pressure field are

calculated, and are summed to an existing external applied force vector.

Listing A.9: process coupled forces function MATLAB code
1 function [Coupled] = process_coupled_forces (...

2 SolutionAcoustic , Structural , Section , Material , Coupled , Mesh)

3
4 F_struct = Structural.force_vector;

5 number_dofs = Structural.number_dofs;

6 harm_press = SolutionAcoustic.harmonic.pressures;

7 harm_freq = SolutionAcoustic.harmonic.frequencies;

8 Di = Section.internal_diameter;

9 De = Section.external_diameter;

10 A = Section.area;

11 A_i = Section.internal_area;

12 number_elements = Mesh.number_elements;

13 node_coordinates = Mesh.node_coordinates;

14 element_nodes = Mesh.element_nodes;

15 Nu = Material.poisson_coefficient;

16
17 number_freq = length(harm_freq);
18 force_vector = zeros(number_dofs , number_freq);

19
20 xx = node_coordinates (1, :);

21 yy = node_coordinates (2, :);

22 zz = node_coordinates (3, :);

23
24 for num_fq = 1 : number_freq

25 F_fluid = zeros(number_dofs , 1);

26 for num_el = 1 : number_elements

27 node1 = element_nodes (1, num_el);

28 node2 = element_nodes (2, num_el);

29 node1_dof = [6*node1 -5, 6*node1 -4, 6*node1 -3];

30 node2_dof = [6*node2 -5, 6*node2 -4, 6*node2 -3];

31 dx = xx(node2) - xx(node1);

32 dy = yy(node2) - yy(node1);

33 dz = zz(node2) - zz(node1);

34 L = (dxˆ2 + dyˆ2 + dzˆ2) ˆ0.5;

35
36 % nodal pressure

37 press_1 = harm_press(node1 , num_fq);

38 press_2 = harm_press(node2 , num_fq);

39 press_avg = (press_1 + press_2) / 2;

40
41 % Poisson and junction

42 stress_axial = (press_avg * Diˆ2) / (Deˆ2 - Diˆ2);

43 f_p = - 2 * Nu * A * stress_axial;

44 f_j = press_avg * A_i;

45 F = f_j + f_p;

46
47 ux = (node_coordinates (:, node2) - node_coordinates (:, node1)) / L;

48 F_global_node1 = -F * [ux(1); ux(2); ux(3)];

49 F_global_node2 = F * [ux(1); ux(2); ux(3)];

50 F_fluid(node1_dof) = F_fluid(node1_dof) + F_global_node1;

51 F_fluid(node2_dof) = F_fluid(node2_dof) + F_global_node2;

52 end
53 force_vector (:, num_fq) = F_struct + F_fluid;

54 end
55
56 Coupled.force_vector = force_vector;

57 Coupled.frequencies = harm_freq;

86



A.9 Coupled Harmonic Analysis

Harmonic displacement is now calculated given the frequency dependent force vector and structural

matrices.

Listing A.10: coupled harmonic analysis function MATLAB code
1 function [SolutionCoupled] = coupled_harmonic_analysis(Structural , Coupled)

2
3 number_dofs = Structural.number_dofs;

4 free_dofs = Structural.free_dofs;

5
6 FF = Coupled.force_vector;

7 KK = Structural.stiffness_matrix;

8 MM = Structural.mass_matrix;

9 CC = Structural.damping_matrix;

10 harm_freq = Coupled.frequencies;

11
12 number_freq = length(harm_freq);
13 harm_displ = zeros(number_dofs , number_freq);

14
15 j = sqrt(-1);
16
17 for num_fq = 1 : number_freq

18 freq_hz = harm_freq(num_fq);

19 freq_rad = freq_hz * 2 * pi;
20 dynamic_matrix = KK - freq_rad ˆ2 * MM + j * freq_rad * CC;

21 d = dynamic_matrix(free_dofs , free_dofs) \ FF(free_dofs , num_fq);

22 harm_displ(free_dofs , num_fq) = (real(d).ˆ2 + imag(d).ˆ2) .ˆ0.5;
23 end
24
25 SolutionCoupled.harmonic.displacements = harm_displ;

26 SolutionCoupled.harmonic.frequencies = harm_freq;

87



88


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives and Deliverables
	1.4 Thesis Outline

	2 Background
	2.1 Structural
	2.1.1 Beam Theory
	2.1.2 Euler-Bernoulli Beam
	2.1.3 Timoshenko Beam
	2.1.4 Free Vibration Analysis
	2.1.5 Forced Vibration Analysis

	2.2 Internal Fluid Flow
	2.3 Acoustics
	2.3.1 Introduction
	2.3.2 Transfer Matrix Method
	2.3.3 Stiffness Matrix Method
	2.3.4 Fluid-Structure Interaction


	3 Implementation
	3.1 Mesh
	3.1.1 Mesh Import
	3.1.2 Element Connectivity
	3.1.3 Node Coordinates

	3.2 Structural Procedure
	3.2.1 Element Transformation Matrix
	3.2.2 Stiffness and Mass matrices
	3.2.3 Matrix Assembly
	3.2.4 Adding Spring
	3.2.5 Free Vibration Analysis
	3.2.6 Forced Vibration Analysis
	3.2.7 Internal Fluid Flow
	3.2.8 Plot Mode Shapes

	3.3 Acoustic Procedure
	3.3.1 Stiffness Matrix
	3.3.2 Pressure Field
	3.3.3 Fluid-Structure Interaction


	4 Results
	4.1 Structural Results
	4.2 Steady Internal Flow Results
	4.3 Acoustic Results
	4.4 OpenPulse Industrial Example

	5 Conclusions
	5.1 Future Work

	References
	A MATLAB Code
	A.1 Mesh Processing
	A.2 Structural Boundary Conditions
	A.3 Structural Matrices
	A.4 Structural Free Vibration Analysis
	A.5 Structural Forced Vibration Analysis
	A.6 Acoustic Stiffness Matrix
	A.7 Acoustic Harmonic Analysis
	A.8 Coupled Force Vector
	A.9 Coupled Harmonic Analysis


