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Abstract

Over the time, many peer-to-peer energy trading mechanisms have been proposed. Nonetheless, they

continue to face challenges in terms of infrastructure spending and environmental value creation. The

main goal of this thesis is to improve the socioeconomic aspects of the local energy market by designing

a simple trading mechanism in which the distance of peers participated in the Local Energy Markets

(LEM) from the community centre is used as the preference. The trading decisions are based on the

merit order list generated, considering the price and preferences of the market peers. The proposed

method is tested on a 14-participant market, and simulation results are compared to those of the existing

python library Pymarket, which is a key enabler of ongoing research in the Local Energy Markets (LEM).

The findings show that the proposed strategy produces more environmental value and higher profits for

market participants than the traditional game theory-based approach.

Keywords

Game Theory, Local Energy Trading,Peer-to-Peer trading, Pymarket, Sustainable Value.
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Resumo

Com o tempo, muitos mecanismos de comércio de energia par a par foram propostos. No entanto, eles

continuam a enfrentar desafios em termos de gastos com infraestrutura e criação de valor ambiental.

O principal objetivo desta tese é melhorar os aspectos socioeconômicos do mercado de energia local,

projetando um mecanismo de negociação simples no qual a distância dos pares participantes nos

Mercados Locais de Energia (LEM) do centro comunitário é usada como preferência. As decisões de

negociação são baseadas na lista de ordens de mérito gerada, considerando o preço e as preferências

dos pares de mercado. O método proposto é testado num mercado de 14 participantes, e os resultados

da simulação são comparados aos da biblioteca python existente Pymarket, que é uma ferramenta

chave para o desenvolvimento de Mercados Locais de Energia (LEM). Os resultados mostram que a

estratégia proposta produz mais valor ambiental e maiores lucros para os participantes do mercado do

que a abordagem tradicional baseada na teoria dos jogos.

Palavras Chave

Teoria dos Jogos, Comércio Local de Energia, negociação par-a-par, Pymarket, Valor Sustentável.

v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7

2.1 Local Energy Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Market Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Trading Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 17

3.1 Local Energy Market - Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Proposed Mechanism - Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Bid Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Creation of merit order list and trading pair . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Market Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Market Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Case Study & Result 29

4.1 SMILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Proposed Solution - Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



4.7 Major Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusions 51

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

A Code of Project 59

viii



List of Figures

1.1 Traditional Energy Market vs Decentralised Local Energy Market . . . . . . . . . . . . . . 4

1.2 Local Energy Market (LEM) challenges addressed by existing projects . . . . . . . . . . . 5

2.1 Centralised vs Decentralised Energy Market . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Local Energy Market Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Local Energy Market Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Decentralised Local Energy Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Example of supply vs demand graph obtained from user registered bid. . . . . . . . . . . 22

4.1 Consumption vs Excess Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Supply vs Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Case 1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Case 2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Case 3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Case 4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Case 5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Case 6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 UPAC One Day Excess Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 One day Market Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11 Market Result PYmarket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.12 Market Result Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



x



List of Tables

2.1 Different Market Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Types of Local Energy Market Clearing Mechanisms . . . . . . . . . . . . . . . . . . . . . 12

2.3 Trading model and their advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Bid Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Example of Bids from the Python bid module . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Buyers’ merit order list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Sellers’ merit order list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Sample transaction module output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Technical details of the installed UPACs (PPC: Peak Power Contract, IPV: Installed PV,

TOU: Time of Use, SR: Single-rate, SP: Single Phase, 3P: Three Phases) . . . . . . . . . 32

4.2 Bids used to verify the proposed mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Case 1 - Buyer and Seller Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Case 1 Market Comparision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Case 2 - Buyer and Seller Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Case 2 Market Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Case 3 - Buyer and Seller Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Case 3 Market Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.10 Case 4 - Buyer and Seller Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 Case 4 Market Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.12 Case 5 - Buyer and Seller Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.13 Case 5 Market Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.14 Case 6 - Buyer and Seller Bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.15 Case 6 Market Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.16 UPAC details for market simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



xii



List of Algorithms

3.1 Local Energy Market - User Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Local Energy Market - Merit Order List and Trading Pairs Formation . . . . . . . . . . . . . 23

3.3 Local Energy Market - Market Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Local Energy Market - Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xiii



xiv



Listings

A.1 PYTHON Code - Bid Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 PYTHON Code - Market Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 PYTHON Code - Market Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xv



xvi



Acronyms

LEM Local Energy Market

IoT Internet of Things

SMILE Smart Island Energy System

RAM Autonomous Region of Madeira

DER Distributed Energy Resource

DSO Distributed System Operators

BBS Battery Based Storage

VPPs Virtual Power Plants

P2P Peer to Peer

ML Machine Learning

EEM Empresa de Eletricidade da Madeira

DGs Distributed Generations

PHEVs Plug-in Hybrid Electric Vehicles

EV Electric Vehicles

AMI Advanced Metering Infrastructure

EMS Energy Management Systems

PV Photovoltaic

xvii



xviii



1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



2



Global population and industrialisation have grown significantly over the years, increasing our consump-

tion and demand for energy. The increase in energy demand over recent decades and advancements

in technologies have created the need to improve the distribution network [1]. This development in

technology enables residents to have their own Distributed Energy Resource (DER) - Rooftop solar,

microturbines, battery storage, and electric vehicles are some examples of DER. By integrating these

DERs into the distribution network, an active system capable of bidirectional power flow should be cre-

ated. Furthermore, when compared to the traditional power network, this decentralised energy system

has numerous environmental and operational advantages. Technological advancements in smart en-

ergy meters, home batteries, and other Internet of Things (IoT) devices enable customers to become

prosumers—people who consume and produce energy—which has encouraged DER installation in the

local community. Despite this, the increased DER penetration has caused a number of operational

and technological problems dependent on their geographic location. People began local energy trading

within their communities to solve these geographically based limitations. Local energy trading is gaining

traction in the field of distribution networks.

In traditional power system the consumers purchase energy from utilities or retailers. Traditional

markets, in some ways, resemble vertically integrated operations as described in figure 1.1. Consumer

tariffs in the traditional market are extremely high when compared to their buy-back rates, resulting in

a lower number of participants in the energy market [2]. People are getting increasingly interested in

the sharing economy notion as a result of the success of business strategies such as Airbnb and Uber.

This prompted them to apply these business models to the electricity grid and create a Local Energy

Market (LEM), a trading platform where people can sell and buy energy, thereby encouraging more

renewable deployment within the community. Participation in LEM, on the other hand, gives consumers

greater control over their electricity consumption, price, and system flexibility. Furthermore, local energy

trading allows individuals to contribute to their communities by allowing them to use green energy while

earning more from distributed generation, with or without storage systems. Simultaneously, through

LEM, people who lack the infrastructure to access renewable energy can benefit from local renewable

energy installed by neighbors within the community through local energy trading [3]. The following are

the objectives of local electricity markets [4]:

• Local demand must be managed to match intermittent supply.

• Congestion and transmission/distribution constraints should be considered.

• Participants’ financial management should be supported, taking into account their location and

network requirements.

• Replace/postpone grid investments with utilisation of local flexibility.

3



Figure 1.1: Traditional Energy Market vs Decentralised Local Energy Market [5]

The challenges and implementation of local electricity markets differ from those of traditional power

markets, which do not necessarily require such close attention to the distribution grid. As a result, the

challenges of local electricity markets are closely linked with those of optimal distribution grid operation.

These five factors have been identified as the primary sources of difficulties in establishing and operating

a local electricity markets [4].

• Optimized use of distributed supply.

• Optimized utilisation of demand response.

• Localized markets must be operated in an efficient and secure manner, as well as technically

implemented.

• Existing and emerging legal frameworks.

• Human interaction and socioeconomic aspects
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The LEM approach can simplify system operation when there is a high penetration of DERs at intercon-

nected nodes in a network. LEM can also be used to operate intra/inter microgrids and Virtual Power

Plants (VPPs), resulting in a scalable, flexible, and dependable power system. Furthermore, LEMs

flexibility services are changing distribution companies’ approaches. Bilateral energy exchange, market

decentralization, and widespread end-user participation are some of the distinguishing features of such

a market. Prior implementations, on the other hand, were all aimed at achieving technical and/or eco-

nomic goals. As a result, the primary goal of this thesis is to enhance the social aspects of the LEM

market [6].

1.1 Motivation

Figure 1.2: LEM challenges addressed by existing projects [4]

From Figure 1.2, it is possible to see that the majority of existing projects aimed to improve factors

such as integrated demand response, generation distribution, and market decentralisation. Whereas the

fewest projects concentrated on improving social aspects and the legal framework. One of the advan-

tages of the local energy market over traditional markets is the ability to address the various preferences

of consumers and prosumers in a more assertive manner. The NRGcoin1 project proposes trading en-

ergy between renewable energy producers and local consumers using smart contracts in an LEM. The

project’s goal is to make it easier for end users to express their preferences for local emission-free energy

by lowering volatility [7]. Energy Collective uses consensus-based pricing in a local market environment,

where user pricing is determined by individual user preferences [8]. The purpose of this thesis is to im-
1https://nrgcoin.org/
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prove the social aspects of the LEM, by developing a merit order list based on participants transmission

distance and bidding price. This merit order list is used to generate trading pairs for energy trading.

Furthermore, it covers the transmission loss by penalising market participants based on transmission

distance.

1.2 Organization of the Document

This thesis is structured as follows: Chapter 2 describes the current state of the art in the local energy

market, including market topologies, market clearing mechanisms, and prior implementation on the

local energy market. The mathematical model and Python implementation of the proposed solution

are explained in Chapter 3. Chapter 4 describes the Smart Island Energy System (SMILE) project’s

simulation results based on various scenarios, as well as the one-day simulated market result. The

limitations and future scope of the proposed solution are described in Chapter 5.
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2.1 Local Energy Market

In traditional power supply, consumers purchase energy from a utility/retailer for fixed or time-of-use

tariffs, while prosumers sell their excess energy at buy-back rates. Despite this, consumers’ electricity

market tariffs are very high when compared to their buy-back rates, and these consumer tariffs do not

include the other benefits that renewable generation brings to the power system [3]. In traditional system,

the entire market is designed to deliver generated power from a couple of large power generation sites

to multiple customers. The decentralized energy market, on the other hand, brings together a large

number of small-scale prosumers and DERs [9].

Figure 2.1: Centralised vs Decentralised Energy Market [10]

Local energy trading, in general, refers to the transfer of energy from a prosumer with excess energy

to consumer with a deficit. Local energy trading is divided into three groups based on the association of

market agents, as described in Figure 2.2 [6].

a) P2P energy trading: In the full P2P market, market participants interact directly with one another

without the use of middlemen.

b) Trading of energy through a mediator: A mediator participates in the market on behalf of sellers

and buyers, allocating energy from sellers to buyers, while customers act as price-takers in a

passive role.

c) Sellers and buyers can trade energy directly or through a middleman.

9



Figure 2.2: Local Energy Market Design [6]

Market Participants

Seller : Participant with the ability to generate or store energy can be a seller in the LEM.

Person who owns one or more DER, such as Distributed Generations (DGs), Plug-in Hybrid Elec-

tric Vehicles (PHEVs), energy cells, etc. ...

Buyer : Participants who purchase energy from LEM. Energy can be purchased from the market

by both consumers and prosumers. In fact, prosumers with excess energy are sellers, and if they

require more energy, they will enter the market as buyers.

Mediator : An independent agent who negotiates the purchase of electricity from retailers by

combining two or more consumers into a single purchasing unit.

10



Figure 2.3: Different Local Energy Market Topology [4]

2.2 Market Topologies

a) Centralized / Pool Market Trading - The coordinator acts as a communication bridge between

market participants in centralized / pool market trading. The coordinator gathers information from

market participants and decides on market transactions and energy import/export between market

participants.

b) Hybrid - A hybrid market is one that combines centralized and decentralized elements. In this

market, the coordinator usually indirectly influences market participants by sending pricing signals,

rather than directly instructing market participants about market transactions.

c) Decentralized / Full Peer to Peer (P2P) - There are no centralized coordinators in decentralized

P2P energy trading markets, and market participants can directly trade with one another. Market

participants’ privacy is well protected in decentralized markets, and information is partially shared

among market participants.

Market Topologies Advantages Disadvantages

Centralized /
Pool Market Trading

High coperation among
community members

Low Scalability,
Reliability

Good support for grid operators High maintenance cost
High-quality energy services Not consumer-centric

Hybrid High Scalability Integration and handling
of extensive data sets

Smooth integration
into existing systems Multi-market coordination

Decentralized /
Full P2P(Bilateral)

High Scalability,
Low computational cost Legal framework

Customer-centric Creation of environmental value

Table 2.1: Market topologies advantages and disadvantages P2P:challenge

Considering the size of participants in LEM, Decentralized / Full P2P topology is used in designing LEM.
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2.3 Trading Mechanism

Market Clearing Methods

Distributed Method

Decomposition Method
Networked Optimization

Game Theory Based
Multi - Agent System

Other Methods Auction Based
Multi level Optimization

Table 2.2: Types of Local Energy Market Clearing Mechanisms

Table 2.2 explains the various market clearing methods used in local energy markets. These methods

are typically not used independently, and a combination of them will be used for market clearing to

improve the accuracy and efficiency of system. Selecting market clearing methods is influenced by a

variety of factors like [4],

Assumptions

Market structure

Behaviour of market player

Market rules

The distributed optimisation algorithms are divided into four categories: decomposition, networked opti-

misation, game-theoretic, and agent-based methods. The majority of the local energy market focus on

using distributed optimisation methods because they are effective in markets with fewer players, on con-

trast to auction and multi-level optimisation methods, which are better suited to large markets with many

market participants.

The decomposition method is the common approach for distributed optimisation, in which a large-scale

complex problem is divided into several small problems depending on the structure and constraints of

the objective function. After decomposition, each small problems can be solved independently, but a

coordinator is required to ensure that local decisions converge to the global optimum [11].

When a problem needs to be decomposed based on its original structure, networked optimization is

used. The interaction of decision markers is based on the communication structure, and decomposition

is required to match this structure. The complete distribution network is illustrated by a graph in this

method, the graph’s vertices represents market participants like buyer/seller/agents. To model a local

market in a distribution network, various graphs such as random graphs, directed and undirected graphs,

weighted and unweighted graphs, can be used. This method is used in a market where players can only

exchange information with their immediate players [12].
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Game theory is defined as the study of a statistical model of several decision-making players with po-

tential cooperation and conflicting objectives. A cooperative game is a competition between groups of

cooperative players, whereas a non-cooperative game is one in which players make their own decisions.

Typically, game theory is used to counteract selfish behavior in LEMs. Game theory can be applied in

situations where information exchange is impractical for market participants, and thus agents prefer to

optimize their local or private objectives while reacting to limited network information [13].

This method is applicable to large-scale systems involving various types of interactions. Each market

player in this method is considered an agent (Buyer/Seller), and this method can be as simple as a single

variable or as complex as with infinite actions and decisions. Markets designed based on this model are

highly adaptable, scalable, and highly reliable. But this method suits for large market participants [14].

Trading Model Advantage

Centrally controlled
Energy Trading between two microgrids

Optimization method adopted to meet demand
and response is centrally controlled

and reliance on a central entity leads to
stability between connected microgrids.

Centrally controlled and incentive driven
Connection of multiple users to a same microgrid

The technique adopts two optimization methods
(centrally controlled and incentive-driven)
which beneficiates in improving accuracy.

Also, privacy among the connection
is also maintained

Centrally controlled and game theoretic
Trading among local consumers and prosumers

The employed game-theoretic model leads to
an efficiency of optimization model.

Cooperative
Energy Trading between a group of prosumers

Mutual benefit is a key concern for cooperative
optimization models that cause model stability.

Game theoretic
Energy trading between multiple prosumers

and a single consumer

The model addresses the issue of uncertainty
of energy trading between microgrids

Table 2.3: Different Trading model and their advantages [13,15,16]

The formulation of a decentralised electricity markets explained by authors in [17]. The energy mar-

ket is designed in such a way that communication links among market stakeholders (Buyer, Seller, and

Agent) are the only variables defining the type of market architecture: from community-based to peer-to-

peer, pool markets, and any hybrid combination of all of these architectures. As a result, the negotiation

process is transformed into a decentralized consensus problem, for which various optimisation tech-

niques such as game theoretical algorithms and distributed control strategies can be used [15].

The authors in [18] identifies that the centralised market has high understanding among the mar-

ket participants, high flexibility within the communities and high aid in services related to grid. But the

author’s also addresses the challenges like impartialities in energy sharing and struggle to maintain

participants interactions in market balance. These shows the current market lacks in customer centric

values.
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While [15] and [17] describes the market mechanism and negotiation techniques, it fails to address

the uncertainties in performing game theoretical algorithms. The authors in [19] address this uncertainty

and heterogeneity in market participants on decentralised electricity markets by defining cost and utility

curves. These cost and utility curves are based on risk attitudes, which aids in the recovery of market

fairness and efficiency. Human error in including risk attributes and challenges in financial transactions

continues to be a significant disadvantage in overall performance.

The advancement of technologies such as IoT, Blockchain, and Machine Learning (ML) has helped

in understanding the majority of the obstacles in the LEM. The authors in [20] focuses on a blockchain-

enabled predictive energy trading platform built on the combination of machine learning and blockchain

model. This advancement in technologies improved the local energy market operation and creates a

better control comparing to the previous model.

However, technological advancements have failed to address the issues raised in chapter 1, regard-

ing maintenance costs and transmission loss. The authors in [21] focus on including transmission and

maintenance cost through network charges, by including electrical distance between agents in a LEM.

Using incentives, they accounted the grid-related costs. This mechanism encourages encourages mar-

ket participants to sell the energy to the buyers near by avoiding network overload. If network charges

are not chosen wisely, it will affect the market participants and this approach may result in inefficient or

unfeasible solutions.

Authors in [22] explains various models for consumer-centric markets. Market evolution from pool-

based structures at the micro-grid level to full peer-to-peer network described in [23]. The degree of

centralisation is important in implementing these peer-to-peer models because it tells us whether the

market requires an external agent [23] and [24]. A market framework that allows all agents to express

their preferences is critical; because electricity is priced uniformly in forward markets, expressing prefer-

ences should have a significant impact on market performance [25]. The implementation of such novel

market structures in which user preferences play a critical role in trading decisions is a cornerstone for

behavioural change among electricity consumers [26].

According to the literature review, technological advancement focuses on improving overall system

modelling while struggling to improve social aspects and participant motivation. Taking this into account,

this thesis focuses on improving social aspects by incorporating participant-specific product differentia-

tion in the Local Energy Market. Since the proposed work is centered on small-scale community-based

14



markets, a simple market clearing mechanism based on a merit order list can be used. Unlike the game

theory model mentioned in paper [13], distance and price play an important role in creating trading pairs

in this work. The result obtained from proposed solution is compared with the market result obtained

from Pymarket, which is a significant enabler of ongoing research in the LEM [27].
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Figure 3.1: Local Energy Market [4]

There are two main types of stakeholders in the proposed LEM mechanism: the buyer and the seller.

Each seller has at least one unit of energy for sale, and each buyer has the ability to buy at least one

unit of energy. To bid in the market, the user must first register and provide the required information. In

the proposed local market, the necessary informations are listed below.

• Quantity - The quantity of electricity in kW that the user wishes to sell or buy in the local energy

market.

• Location - The user’s distance from the community center in kilometers.

• Price - The price in e at which the user wishes to sell or buy energy in the local energy market .

• Buying - True - if the user chooses to purchase energy from the market; False - if the user chooses

to sell energy in the market.

The proposed LEM is designed based on the following mentioned conditions. Conditions 2 and 3 are

presented in [13].

1) To exchange energy among neighbours in a community, with interaction based on full peer-to-peer

topology.

2) Agents are informed about the value of the traded good in an asymmetrically manner.
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3) Once the market is open, no new buyers or sellers are permitted.

4) Sellers and buyers are ranked based on the price and distance.

5) The merit order list is used to create trading pairs.

3.1 Local Energy Market - Mathematical Model

The mathematical model of the proposed LEM structure is adapted from [28] and is formulated as

following,

In Equation 1, Pn is the net active power injection by each agent n and is equal to the sum of traded

quantities with set of nearby agents in the community m ∈ ωn.

Pn =
∑

m∈ωn

Pnm (1)

The power boundaries of each agents n participating in the LEM are defined by the below mention

equation 2

Pn ≤ Pn ≤ Pn (2)

Each agent n in theLEM can play the roles of producer, consumer, and prosumer. The agent’s market

role is determined by the agent’s need for energy consumption or available excess energy energy in a

specific period t. In the case of the prosumer, where the agent can be either a seller or a buyer, the sign

of the decision variable determines the agent’s role.

1) The agent n is a producer, when (Pnm ≥ 0).

2) The agent n is a consumer, when (Pnm ≤ 0).

3) In Prosumer case, the agent n acts as seller when (P+
nm ≥ 0), and buyer when (P−nm ≤ 0).

The supply-demand equilibrium is represented below by a set of reciprocity constraints involving all

agents n ∈ ω and m ∈ Ω

Pnm + Pmn = 0
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The equation 3 maximize the social welfare of the agents n, participating in the local energy market,

under the constraints mention from (3b and 3d).

1) Time t - The agent participates in the local energy market on an hourly basis.

2) The total cost of the model is denoted by Cn,t

3) C̃n,t represents the product differentiation function, which includes additional preferences.

4) Pn,t is the net power of n agents at time t, and it is positive for producers but negative for con-

sumers.

5) The sets of producers and consumers are denoted by Ωp and Ωc.

min
D

∑
n∈Ω

Cn,t(Pn,t) + C̃n,t(Pn,t) (3)

s.t.Pn,t =
∑

m∈ωn

Pn,m,t n ∈ Ω, t ∈ T (3a)

Pn,t ≤ Pn,t ≤ Pn,t n ∈ Ω, t ∈ T (3b)

Pn,m,t + Pm,n,t = 0 n ∈ Ω,m ∈ ωn, t ∈ T (3c)

Equation 4 describes the overall trading coefficient of the agent n, can include various preferences

under criterion g. Distance, energy source, economic status, emissions, and other environmental factors

belongs to criteria g. Each agent’s criteria are denoted by γgnm.

cnm =
∑
g∈G

cgnγ
g
nm (4)

In the proposed solution takes distance as a preference. In this case, γgn would contain the distance

between the agents n and m in kilometer. The main goal of the proposed solution is to create a simple

trading mechanism. Given this, we will replace equation 4 by generating a merit order list based on

the agent’s price and preferences. A penalty will be included in the agent’s bidding price to cover the

transmission losses between agents using equation 5 and 6.

Buyer price = Bidding Pricebuyer −
Distancebuyer
Quantitybuyer

× 0.1 euro (5)

Seller price = Bidding Priceseller +
Distanceseller
Quantityseller

× 0.1 euro (6)
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3.2 Proposed Mechanism - Algorithm

The proposed solution focuses on creating a market without the use of an agent. A Python library is

created to simulate the proposed methodology.

3.2.1 Bid Registration

The below-mentioned algorithm is used to register the buyer/seller in the Local Energy Market. Table

3.1 shows the outcome of the user registration algorithm.

Algorithm 3.1: Local Energy Market - User Registration
Function Bid Manager(Quantity, Price, User, Buying,Distance):

1 new bid = (Quantity, Price, User, Buying,Distance)

2 self.bids.append(new bid)

3 self.n bids += 1

4 pd.Dataframe(Quantity,Distance,User ID,Price,Buying)

return bids

Quantity in kW Price in e User Buying Distance in KM Renewable
34 14 1 FALSE 89 True
52 18 13 TRUE 52 True
53 16 14 FALSE 54 True
39 17 15 TRUE 80 True

Table 3.1: Example of bids registered in the market

(a) Supply vs Demand Example 1 (b) Supply vs Demand Example 2

Figure 3.2: Example of supply vs demand graph obtained from user registered bid.
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In Algorithm 3.1, details such as (Quantity,Distance, UserID, Price,Buying) are obtained from

users through a registration portal or, in this case, a pre-stored excel file. Line 1 reads the value from

the excel file and sends it to the Python Bid Module. Line 2 and 3, generates the user bid by appending

the user information from the excel file. Line 4 converts the user details into a pandas data frame, with

the output looking more like a data format in an excel sheet. This pandas conversion was implemented

to facilitate data handling.

Table 3.1 shows an example of output from the Python Bid Module, and Figure 3.2 shows a sample

graph generated by the Python Bid Module after registering the user’s bid. Only when the supply and

demand bids intersect the market transaction occurs this is illustrated in Figure 3.2 b). In case of Figure

3.2 a), no market transaction occurs because the supply and demand bids do not intersect. This supply

and demand bid intersection was primarily determined by the user’s bidding price.

3.2.2 Creation of merit order list and trading pair

Upon creating the bidding list, the price of buyer and seller gets updated as per equations 5 & 6.

Algorithm 3.2: Local Energy Market - Merit Order List and Trading Pairs Formation
Function Merit Order List and Trading Pairs Formation (Bids):

1 buying = bids[bids.buying]

2 selling = bids[bids.buying == False]

3 buying[’price’]= np.round(bids[’price’]-(bids[’Distance’]/bids[’quantity’]*0.1),3)

4 selling[’price’]= np.round(bids[’price’]+(bids[’Distance’]/bids[’quantity’]*0.1),3)

5 Seller list = selling.sort values([’price’,’Distance’], ascending=True)

6 Buyer list = buying.sort values([’price’,’Distance’], ascending=False, True)

7 for UserID ∈ buyerlist do

8 for UserID ∈ sellerlist do

9 Create trading list(user ID from buyer list , user ID from seller list)

return trading pairs

Algorithm 3.2 takes the bids output from Python Bid Module. The main goal of this proposed method-

ology is to to include social aspects (product differenciation) of LEM. Taking this into account, equation

5 & 6 are used to update the bidding price. This updated price is determined by the user’s location - the

distance from the community center / market hosting area; this process is described in Lines 3 and 4.

After updating the price, Line 5 and 6 generates the buyer and seller merit order list by ranking them

23



based on their price and nearest distance. Line 7 − 9 generates potential trading pairs by matching the

highest ranked buyer with all sellers based on their rank in the merit order list.

The sample raw bid output from the Python bid module is described in Table 3.2. In Tables 3.3 and

3.4, the price is updated based on the user’s distance, and user’s are ranked based on their distance

and price. The sample merit order list generated by algorithm 3.2 is shown in Tables 3.3 and 3.4.

Following the creation of a merit order list, possible trading pairs are generated by mapping users from

the buyers’ merit order list to users from the sellers’ merit order list. For example, the first user in Table

3.3 is User 12, will be mapped to the first user in Table 3.4 which is User 1 and then with next user from

Table 3.4, User 13 and so on. This process is repeated until User 12 is paired with all of the available

sellers in Table 3.4.

Quantity in kW Price in euro User ID Buying Distance in KM
69 0.74 1 FALSE 1
53 0.81 2 FALSE 9

150 0.76 3 FALSE 2
80 0.95 4 TRUE 3

100 0.99 5 TRUE 7
59 1.01 6 TRUE 2
72 0.79 7 FALSE 0
82 0.85 8 FALSE 2

110 0.97 9 TRUE 6
58 0.74 10 FALSE 7
60 0.82 11 TRUE 4
50 1.06 12 TRUE 2

113 0.74 13 FALSE 9
53 0.76 14 FALSE 3

Table 3.2: Example of Bids from the Python bid module

Quantity in kW Price in euro User ID Buying Distance in KM
50 1.056 12 TRUE 2
59 1.007 6 TRUE 2
100 0.983 5 TRUE 7
110 0.965 9 TRUE 6
80 0.946 4 TRUE 3
60 0.813 11 TRUE 4

Table 3.3: Buyers’ merit order list
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Quantity in kW Price in euro User ID Buying Distance in KM
69 0.741 1 FALSE 1

113 0.748 13 FALSE 9
58 0.752 10 FALSE 7

150 0.761 3 FALSE 2
53 0.766 14 FALSE 3
72 0.79 7 FALSE 0
53 0.827 2 FALSE 9
82 0.852 8 FALSE 2

Table 3.4: Sellers’ merit order list

The number of trading rounds in this proposed mechanism is determined by the number of available

buyers, The possible trading pairs for each round considering the Tables 3.3 & 3.4 are listed below:

Round 1 (12, 1), (12, 13), (12, 10), (12, 3), (12, 14), (12, 7), (12, 2), (12, 8)

Round 2 (6, 1), (6, 13), (6, 10), (6, 3), (6, 14), (6, 7), (6, 2), (7, 8)

Round 3 (5, 1), (5, 13), (5, 10), (5, 3), (5, 14), (5, 7), (5, 2), (5, 8)

Round 4 (9, 1), (9, 13), (9, 10), (9, 3), (9, 14), (9, 7), (9, 2), (9, 8)

Round 5 (4, 1), (4, 13), (4, 10), (4, 3), (4, 14), (4, 7), (4, 2), (4, 8)

Round 6 (11, 1), (11, 13), (11, 10), (11, 3), (11, 14), (11, 7), (11, 2), (11, 8)

3.2.3 Market Transaction

Section 3.2.2 discusses the working of Line 1 − 9 from algorithm 3.3. Line 10 receives the potential

trading pairs generated by algorithm 3.2. Considering the sample trading pairs from 3.2.2, in round 1,

all potential sellers will try to trade with highest ranked user in buyers merit order list. The buyer and

seller will reach an agreement based on the condition mentioned in Line 11, if the trading pair meets the

required condition, the buyer and seller will reach an agreement, and the transaction will take place. The

quantity traded will be determined by the conditions listed below.

Traded Quantity = min(quantities buyer, quantities seller)

The trading price will be determined by the buyer’s price, which is updated in Line 13. Line 14 and 15,

update the transaction details; this is more like a ledger-based information, where details such as traded

quantity, trading price, buyer and seller ID, and whether the buyer/seller is available for the next round are

stored. Line 16− 17, deducts the traded quantities from the buyer and seller’s total available quantities.

The table 3.5 describes the sample output from the algorithm 3.3.
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Traded Quantity in kW Traded Price in e Buyer Seller Remaining Energy
Seller in kW

Remaining Energy
Buyer in kW

18 18.1 13 5 0 34
23 18.1 13 4 0 11
19 17.133 12 2 0 38
34 17.133 12 1 0 4
4 17.133 12 3 11 0
11 16.102 14 3 0 42
42 16.102 14 7 71 0

Table 3.5: Sample transaction module output

Algorithm 3.3: Local Energy Market - Market Transaction
Function Market Transaction(Bids):

1 buying = bids[bids.buying]

2 selling = bids[bids.buying == False]

3 buying[’price’]= np.round(bids[’price’]-(bids[’Distance’]/bids[’quantity’]*0.1),3)

4 selling[’price’]= np.round(bids[’price’]+(bids[’Distance’]/bids[’quantity’]*0.1),3)

5 Seller list = selling.sort values([’price’,’Distance’], ascending=True)

6 Buyer list = buying.sort values([’price’,’Distance’], ascending=False, True)

7 for UserID ∈ buyerlist do

8 for UserID ∈ sellerlist do

9 Create trading list(user ID from buyer list , user ID from seller list)

10 for UserID ∈ Trading Pair List do

11 if PriceBuyer ≥ PriceBuyer & QuantityBuyer/Seller > 0 then

12 Traded Quantity = min(quantities[buyer] ,quantities[seller])

13 Traded Price = price[buyer]

14 trans buyer = (b, q, round(p,4), s, (quantities[b] - q) < 0)

15 trans seller = (s, q, round(p,4), b, (quantities[s] - q) > 0)

16 quantities[b] − = q

17 quantities[s] − = q

18 trans.add transaction(trans buyer)

19 trans.add transaction(trans seller)

return transactions
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3.2.4 Market Profit

Algorithm 3.4: Local Energy Market - Profit
Function Profit(Bids, Transactions):

1 tmp = bids.reset index().rename(columns=’index’: ’bid’).copy()

2 tmp = tmp[[’bid’, ’price’, ’buying’, ’User’]]

3 merged = transactions.get df().merge(tmp, on=’bid’).copy()

4 merged[’gain’] = merged.apply(lambda x : get gain(x), axis=1)

5 profit player = merged.groupby(’User’)[’gain’].sum()

Function Gain(x):

6 gap = row.price y - row.price x

7 if not row.buying then

8 gap = - gap

return gap

return profit

Algorithm 3.4, computes the profit made by each user who participates in the market. The output of

Algorithm 3.3 and 3.1 are used to calculate the user profit. Line 3 merges the transaction details based

on the bid details and generates two price lists: row.price x - the price at which the user agreed for the

transaction and row.price y - the price the user provided when registering. Line 4 computes the gain,

gain = Price the user provided while registration− Price at which user agreed for transaction

Profit = gain ∗ traded quantity
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Several Local Energy Markets (LEMs) have been proposed in order to align energy consumption

with excess supply of renewable generation. This is implemented in the python library Pymarket [27],

which is an essential element of ongoing research in LEMs [27] [29]. To validate the proposed trading

mechanism, we will compare the market results with those from the Pymarket [27]. Different scenarios

will be simulated and results will be compared. The bids serves as an input for the proposed mechanism

designed in python as well as for the Pymarket [27]. The result obtained from proposed mechanism and

Pymarket [27] will be compared. These results will help us to understand the impact of distance and

price in Local Energy Market. The Pymarket [27] was designed considering the following conditions,

• Agents are asymmetrically informed about the value of the traded good.

• No new entrants are allowed once the market is open.

• Trading pair generation is based on game theory [13].

4.1 SMILE

The Autonomous Region of Madeira (RAM) aims to incorporate 50 percent renewable energy by 2020/2021.

In this regard, the local Distributed System Operators (DSO) / (Empresa de Eletricidade da Madeira

(EEM)) and governmental entities are working together on the new project SMILE (Smart Island Energy

System), which is co-funded by the European Commission under the Horizon 2020 program. SMILE is

made up of three large-scale pilot projects on three European islands (Madeira in Portugal, Sams in Den-

mark, and Orkneys in the United Kingdom) with similar geography but different policies, energy markets,

and restrictions. The SMILE project seeks to demonstrate both technological and non-technological

solutions suited to local conditions, with a focus on distribution system to facilitate demand response

schemes, smart grid functionalities, storage, and energy system integration, with the true objective of

laying the foundations for the market introduction of the tested innovation in coming years.

The Madeira involves 5 pilots addressing three main problems/issues:

• Optimization of self-consumption in domestic and commercial installations in only regime with the

help of Battery Based Storage (BBS) (pilots 1 and 2).

• Electric Vehicles (EV) smart charging (pilots 3 and 4).

• Voltage control with battery storage at the substation level (pilot 5).
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ID TYPE CONSUMPTION INSTALLATION SOLAR PV INSTALLATION
PPC(kVA) Phases Tariff NP (kWp) Phases

UPAC 1 RESIDENTIAL 6.9 SF 2 TOU 0.39 SF
UPAC 2 RESIDENTIAL 6.9 SF SR 1.5 SF
UPAC 3 RESIDENTIAL 5.75 SF 2 TOU 1 SF
UPAC 4 RESIDENTIAL 6.9 SF SR 0.5 SF
UPAC 5 RESIDENTIAL 6.9 SF SR 1.25 SF
UPAC 6 COMMERCIAL 10.35 3P 2 TOU 2.7 3P
UPAC 7 COMMERCIAL 20.7 3P 2 TOU 3.92 3P
UPAC 8 RESIDENTIAL 6.9 SF SR 4.5 SF
UPAC 9 RESIDENTIAL 6.9 SF SR 1.5 SF
UPAC 10 RESIDENTIAL 6.9 SF 2 TOU 1.5 SF
UPAC 11 RESIDENTIAL 6.9 SF 2 TOU 3 SF
UPAC 12 RESIDENTIAL 6.9 SF SR 1.5 SF
UPAC 13 COMMERCIAL 10.35 3P SR 0.75 3P
UPAC 14 COMMERCIAL 10.35 3P 2 TOU 1.5 3P

Table 4.1: Technical details of the installed UPACs (PPC: Peak Power Contract, IPV: Installed PV, TOU: Time of
Use, SR: Single-rate, SP: Single Phase, 3P: Three Phases)

As part of the SMILE program, selected UPACs 2 (A self-consumption production unit) on Madeira

Island are retrofitted with Advanced Metering Infrastructure (AMI) and Energy Management Systems

(EMS). This thesis simulates the LEM using data from these selected UPACs. The user/peer is a mix of

residential and commercial customers who have their own Photovoltaic (PV) installation and thus qualify

as a prosumer. The below mentioned 4.1 gives the overview about UPAC details and other technical

informations [30].

The data used in this thesis is obtained from SMILE project. The installed capacity details of selected

UPACs can be found in Table 4.1. Figure 4.1, shows that even though the UPAC 7 has one of the highest

DER installations, the excess energy considered every hour from UPAC 7 is very low. Given this, UPAC’s

total monthly excess energy obtained from EMS is used to simulate and verify the proposed local energy

market.

4.2 Proposed Solution - Verification

This section uses one of UPAC’s total monthly available excess energy obtained from energy manage-

ment system as the input data. Distance of buyer / seller from community centre / market hosted area is

assumed to be within 10 Km radius. The prices in euros used in the simulation are the average market

prices obtained from existing peer-to-peer markets [31]. This information is used to validate the trading

mechanism mentioned in chapter 3. The buyers and sellers are ranked upon their price and distance.

The trading pair is obtained by pairing each available buyer to available seller, depending on their merit

2”A self-consumption production unit (UPAC) allows you to produce and consume your own energy through renewable means,
saving on your electricity bill, and contributing to the improvement of the environment and avoiding CO2 emissions”.
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Figure 4.1: UPAC 7 consumption vs excess energy.

Quantity in kW Bidding Price in e User ID Buying Distance in KM Price in e based on equation 5 and 6
69 0.74 1 FALSE 1 0.741
53 0.81 2 FALSE 9 0.827

150 0.76 3 FALSE 2 0.761
80 0.95 4 TRUE 3 0.946

100 0.99 5 TRUE 7 0.983
59 1.01 6 TRUE 2 1.007
72 0.79 7 FALSE 0 0.79
82 0.85 8 FALSE 2 0.852

110 0.97 9 TRUE 6 0.965
58 0.74 10 FALSE 7 0.752
60 0.82 11 TRUE 4 0.813
50 1.06 12 TRUE 2 1.056

113 0.74 13 FALSE 9 0.748
53 0.76 14 FALSE 3 0.766

Table 4.2: Bids used to verify the proposed mechanism

order list.

The trading pairs are

{(11, 9), (11, 12), (11, 0), (11, 13), (11, 2), (11, 6), (11, 1), (11, 7), (5, 9), (5, 12), (5, 0), (5, 13), (5, 2),

(5, 6), (5, 1), (5, 7), (4, 9), (4, 12), (4, 0), (4, 13), (4, 2), (4, 6), (4, 1), (4, 7), (8, 9), (8, 12), (8, 0), (8, 13),

(8, 2), (8, 6), (8, 1), (8, 7), (3, 9), (3, 12), (3, 0), (3, 13), (3, 2), (3, 6), (3, 1), (3, 7), (10, 9), (10, 12), (10,

0), (10, 13), (10, 2), (10, 6), (10, 1), (10, 7)}

These are the list of all possible pairs, the transaction takes place depend on the market condition
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Figure 4.2: Supply vs Demand.

mentioned in chapter 3.

The trading pairs in each round and their outcomes are mentioned in Table 4.3 and Figure 4.4

describes the trading between the market participants.

• Round 1 : Trades until quantity of buyer/seller = 0

1. 50 kW traded between user 12 and 1 at e1.056, user 12 traded as much as required, user 12

will exit the market in this round.

• Round 2: Trades until quantity of buyer/seller = 0

1. 19 kW traded between user 6 and 1 at e1.007, still user 6 needs 40 kW but user 1 has sold

all the energy as a result the next seller in the trading list will start trading

2. 40 kW traded between user 6 and 13 at e1.007, user 6 traded as much as required, user 6

will exit the market in this round.

• Round 3: Trades until quantity of buyer/seller = 0

1. 73 kW traded between user 5 and 13 at e0.983

2. 27 kW traded between user 5 and 1 at e0.983

• Round 4 : Trades until quantity of buyer/seller = 0
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1. 31 kW traded between user 9 and 10 at e0.965

2. 79 kW traded between user 9 and 3 at e0.965

• Round 5 : Trades until quantity of buyer/seller = 0

1. 71 kW traded between user 4 and 3 at e0.946

2. 9 kW traded between user 4 and 14 at e0.946

• Round 6 : Trades until quantity of buyer/seller = 0

1. 44 kW traded between user 11 and 14 at e0.813

2. 16 kW traded between user 11 and 7 at e0.813

The result from the table 4.3 verifies the proposed solution, where the distance of user is considered in

making trading decision. The table 4.3 explains the complete trading process.

Traded Quantity in kW Traded Price in e Buyer Seller Remaining Energy
Seller in kW

Remaining Energy
Buyer in kW

50 1.056 12 1 19 0
19 1.007 6 1 0 40
40 1.007 6 13 73 0
73 0.983 5 13 0 27
27 0.983 5 10 31 0
31 0.965 9 10 0 79
79 0.965 9 3 71 0
71 0.946 4 3 0 9
9 0.946 4 14 44 0
44 0.813 11 14 0 16
16 0.813 11 7 56 0

Table 4.3: Result of market transaction
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4.3 Case Study

Three different scenarios are used in the case study. Scenarios 1 and 2 each have three cases. Scenario

3 is a one-day simulation based on SMILE project UPAC data. Scenarios 1 and 2 are more related to a

sensitivity analysis to determine the effect of market price and distance on market participant’s profit.

• Scenario 1 - Quantity and distance of market participant’s are fixed, three distinct sets of bidding

prices will be used.

• Scenario 2 - Quantity and price of market participant’s are fixed, three distinct sets of distance will

be used.

The following are the assumptions that were used in this simulation:

1) Market Participants

1. Buyer - Consumption > Production.

2. Seller - Consumption < Production.

2) The buyer’s or seller’s distance from the community center / market hosted area is assumed to be

within a 10 km radius..

3) In the simulation, the prices in e used are the average market prices obtained from existing peer-

to-peer markets. [31].

4) There is no involvement of an outside agent.
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4.4 Scenario 1

4.4.1 Case 1

Quantity in kW Price in e User Buying Distance in Km
69 0.74 1 FALSE 1
53 0.81 2 FALSE 9
150 0.76 3 FALSE 2
80 0.95 4 TRUE 3
100 0.99 5 TRUE 7
59 1.01 6 TRUE 2
72 0.79 7 FALSE 0
82 0.85 8 FALSE 2
110 0.97 9 TRUE 6
58 0.74 10 FALSE 7
60 0.82 11 TRUE 4
50 1.06 12 TRUE 2
113 0.74 13 FALSE 9
53 0.76 14 FALSE 3

Table 4.4: Case 1 - Bids

User ID Distance in Km Bidding Price in e Market Result - Profit in e
Pymarket Proposed Method

1 1 0.74 6.42 20.87
2 9 0.81 0.32 0
3 2 0.76 33.5 29.4
4 3 0.95 0 0
5 7 0.99 0 0
6 2 1.01 0 0
7 0 0.79 13.5 0.37
8 2 0.85 0 0
9 6 0.97 0 0

10 7 0.74 13.34 13.54
11 4 0.82 0 0
12 2 1.06 0 0
13 9 0.74 16.8 28.42
14 3 0.76 13.25 4.01

Table 4.5: Case 1 Market Comparision
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Figure 4.3: Case 1 result on comparing Pymarket with proposed solution

In Case 1, the bidding prices are priced in a narrow range, whereas the distances of the users are

spread across a 10 kilometer radius. This is a typical real-life scenario where bidding and distance have

a narrow margin. The bids generated during user registration are sent to Pymarket and to the proposed

solution. The difference between these two methods is about how the trading pair is formed. Because

the primary goal of this thesis is to increase the LEM’s socio-aspects by motivating more users partic-

ipation, the trading pairs are formed based on user price and distance, as opposed to the pymarket,

where trading pairs are formed based on a game theory model. According to table 4.5, user 1 has 1 km

transmission distance and a bidding price of 0.74 e, which is the lowest bidding price when compared

to other users. User 1 made a profit of 6.42 e in Pymarket, while the same user made a profit of 20.87

e using the proposed solution. user 2 has 9 km highest transmission distance and a bidding price of

0.81 e, which is a higher bidding price when compared to most of market participants. User 2 made a

profit of 0.32 e in Pymarket, while the same user made a profit of 0 e in the proposed solution. When

the user profit between proposed solution and pymarket is compared, 80 percent of participants in pro-

posed solution have higher profit than participants in pymarket. The only cases in which they make less

profit are with users 7 and 14. In this case, both users have very short transmission distances, but their

bidding price is higher, so the proposed system prefers other users over them.
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4.4.2 Case 2

Quantity in kW Price in e User Buying Distance in Km
69 2.74 1 FALSE 1
53 0 2 FALSE 9
150 0.76 3 FALSE 2
80 0.95 4 TRUE 3
100 0.99 5 TRUE 7
59 1.01 6 TRUE 2
72 0 7 FALSE 0
82 0.85 8 FALSE 2
110 0.97 9 TRUE 6
58 0 10 FALSE 7
60 0.82 11 TRUE 4
50 1.06 12 TRUE 2
113 0.74 13 FALSE 9
53 0.76 14 FALSE 3

Table 4.6: Case 2 - Bids

In Case 2, From table 4.7, user 1 has the highest bidding price compared to the other market participants,

and the user is also a seller; however, due to market conditions, this user will not trade any energy with

other market participants, so the user earns 0 e in both the pymarket and the proposed solution. User

2 , User 10 are priced at 0 e, and despite showing the highest transmission distance, due to their low

bidding price, they will be given preference over the other participants. This is a typical example , when

the market has a very low bidding price of 0 e, both pymarket and the proposed solution provide very

similar user profit. User 7 makes the most money, this is primarily due to the fact that user 7 has the

lowest bidding price and the shortest transmission distance.

User ID Distance in Km Bidding Price in e Market Result - Profit in e
Pymarket Proposed Method

1 1 2.74 0 0
2 9 0 51.41 52.1
3 2 0.76 38 22.09
4 3 0.95 0 0
5 7 0.99 0 0
6 2 1.01 0 0
7 0 0 25.65 74.95
8 2 0.85 6.84 0
9 6 0.97 0 0

10 7 0 47.56 57.9
11 4 0.82 0 0
12 2 1.06 0 0
13 9 0.74 16.09 25.89
14 3 0.76 10.07 0.69

Table 4.7: Case 2 Market Comparison
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Figure 4.4: Case 2 result on comparing Pymarket with proposed solution

4.4.3 Case 3

Quantity in kW Price in e User Buying Distance in Km
69 2.74 1 FALSE 1
53 0 2 FALSE 9
150 1.76 3 FALSE 2
80 0.95 4 TRUE 3
100 0.99 5 TRUE 7
59 1.01 6 TRUE 2
72 0 7 FALSE 0
82 2.85 8 FALSE 2
110 0.97 9 TRUE 6
58 0 10 FALSE 7
60 0.82 11 TRUE 4
50 1.06 12 TRUE 2
113 0.74 13 FALSE 9
53 2.76 14 FALSE 3

Table 4.8: Case 3 - Bids
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Figure 4.5: Case 3 result on comparing Pymarket with proposed solution

User ID Distance in Km Bidding Price in e Market Result - Profit in e
Pymarket Proposed Method

1 1 2.74 0 0
2 9 0 43.46 52.1
3 2 1.76 0 0
4 3 0.95 0 0
5 7 0.99 0 0
6 2 1.01 0 0
7 0 0 71.28 74.95
8 2 2.85 0 0
9 6 0.97 0 0

10 7 0 56.26 57.9
11 4 0.82 0 0
12 2 1.06 0 0
13 9 0.74 27.27 25.89
14 3 2.76 0 0

Table 4.9: Case 3 Market Comparison

In Case 3 from Table 4.9, multiple sellers were priced at very high bidding prices, but due to market

conditions, they never participated in trading. When comparing pymarket and the proposed solution,

users 2, 7, 10 and 13 have similar results. This is primarily due to the bidding price, as these users were

priced at the lowest and second lowest bidding price, respectively.
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4.5 Scenario 2

4.5.1 Case 4

Quantity in kW Price in e User Buying Distance in Km
69 0.74 1 FALSE 6
53 0.81 2 FALSE 3
150 0.76 3 FALSE 10
80 0.95 4 TRUE 2
100 0.99 5 TRUE 5
59 1.01 6 TRUE 4
72 0.79 7 FALSE 10
82 0.85 8 FALSE 2
110 0.97 9 TRUE 8
58 0.74 10 FALSE 5
60 0.82 11 TRUE 10
50 1.06 12 TRUE 9
113 0.74 13 FALSE 10
53 0.76 14 FALSE 6

Table 4.10: Case 4 - Bids

Figure 4.6: Case 4 result on comparing Pymarket with proposed solution

The bidding prices and distance in Case 4 are in a narrow range , Table 4.11. User 2 has one of the

shortest transmission distances, but the user’s bidding price is high in comparison to the majority of

market participants, so this user has 0 e profit in the proposed solution. User 3, on the other hand,

has the longest distance and the second lowest bidding price; in pymarket, the user made 15.4 eand
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in the proposed solution, the user made 29.38 e. User 1,3,10,13, and 14 have a close bidding price

range, and they also have the lowest bidding price when compared to other participants; when the

profit is compared, these users have a similar profit comparing the pymarket. Despite having the longest

transmission distance, users 3 and 13 made more profit in the proposed solution due to the user’s lowest

bidding price.

User ID Distance in Km Bidding Price in e Market Result - Profit in e
Pymarket Proposed Method

1 6 0.74 18.43 17.82
2 3 0.81 9.54 0
3 10 0.76 15.4 29.38
4 2 0.95 0 0
5 5 0.99 0 0
6 4 1.01 0 0
7 10 0.79 3.72 0
8 2 0.85 9.84 0
9 8 0.97 0 0

10 5 0.74 18 17.2
11 10 0.82 0 0
12 9 1.06 0 0
13 10 0.74 0 27
14 6 0.76 10.07 3.58

Table 4.11: Case 4 Market Comparison

4.5.2 Case 5

Quantity in kW Price in e User Buying Distance in Km
69 0.74 1 FALSE 2
53 0.81 2 FALSE 3
150 0.76 3 FALSE 1
80 0.95 4 TRUE 2
100 0.99 5 TRUE 0
59 1.01 6 TRUE 2
72 0.79 7 FALSE 1
82 0.85 8 FALSE 0
110 0.97 9 TRUE 3
58 0.74 10 FALSE 1
60 0.82 11 TRUE 0
50 1.06 12 TRUE 2
113 0.74 13 FALSE 1
53 0.76 14 FALSE 1

Table 4.12: Case 5 - Bids
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Figure 4.7: Case 5 result on comparing Pymarket with proposed solution

In case 5, table 4.13 all the market participants are placed under a 3 KM radius , with a bidding price

in a narrow range. In this case, the proposed solution generates a reasonable profit when compared to

the profit generated by pymarket. This is primarily due to the fact that , proposed solution’s weights price

and distance equally when making trading decisions. The only case in which the proposed solution

has a lower profit is with user 2, user 7 and user 8. Despite the fact that the user’s has the shortest

transmission distance, the user’s bidding price was high, and thus the proposed solution preferred other

players over this user’s.

User ID Distance in Km Bidding Price in e Market Result - Profit in euro
Pymarket Proposed Method

1 2 0.74 12.65 16.54
2 3 0.81 8.48 0
3 1 0.76 3.6 29.7
4 2 0.95 0 0
5 0 0.99 0 0
6 2 1.01 0 0
7 1 0.79 13.72 0.48
8 0 0.85 8.24 0
9 3 0.97 0 0

10 1 0.74 15.66 14.5
11 0 0.82 0 0
12 2 1.06 0 0
13 1 0.74 11.75 32.55
14 1 0.76 12.19 4.33

Table 4.13: Case 5 Market Comparison
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4.5.3 Case 6

Quantity in kW Price in euro User Buying Distance in Km
69 0.74 1 FALSE 10
53 0.81 2 FALSE 9

150 0.76 3 FALSE 8
80 0.95 4 TRUE 10

100 0.99 5 TRUE 7
59 1.01 6 TRUE 9
72 0.79 7 FALSE 8
82 0.85 8 FALSE 0

110 0.97 9 TRUE 9
58 0.74 10 FALSE 6
60 0.82 11 TRUE 8
50 1.06 12 TRUE 7

113 0.74 13 FALSE 9
53 0.76 14 FALSE 8

Table 4.14: Case 5 - Bids

Figure 4.8: Case 6 result on comparing Pymarket with proposed solution

In Case 6, all the participants are placed placed within 7 - 10 Km distance range, with a narrow range of

bidding prices. This case is selected to see the the impact of distance when user has a long transmission

distance range. In this case, the distance range is (6,7,8,9, & 10 Km), with 6 and 7 being the closest

distances. User 12, 10, and 5 are the users in this range. User 10 is a seller who earned a profit

of 1.68 e on pymarket and 14.09 eon the proposed solution. User 3 and 7 both have an 8-kilometer

transmission range, but User 3 bidding price is less comparing to User 7. Hence, User 3 has given more
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User Distance in KM Bidding Price in e Market Result - Profit in e
Pymarket Proposed Method

1 10 0.74 4.8 16.12
2 9 0.81 10.6 0
3 8 0.76 23.1 28.6
4 10 0.95 0 0
5 7 0.99 0 0
6 9 1.01 0 0
7 8 0.79 11.52 0.27
8 0 0.85 11.48 0
9 9 0.97 0 0

10 6 0.74 1.68 14.09
11 8 0.82 0 0
12 7 1.06 0 0
13 9 0.74 20.5 31.32
14 8 0.76 1.5 3.67

Table 4.15: Case 6 Market Comparison

preference comparing to the user 7. As a result, User 3 has given more preference than User 7. In this

case, mentioned in table 4.15, the user’s with the price range of 0.74 - 0.79 e resulted in a good profit

under the proposed solution. Other users, regardless of their location, have never profited. Users in

pymarket, on the other hand, have made a reasonable profit regardless of distance or price.
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4.6 Scenario 3

Figure 4.9: UPAC One Day Excess Energy

This section makes use of a full day’s worth of UPAC data from the SMILE project. Since the in-

stalled capacity of the UPACs is low, the excess energy of each UPAC is scaled to maintain the market

equilibrium. In this simulation, ten UPAC from the SMILE project act as market participants. They are

classified as buyers or sellers based on the balance between their production and concumption. The

following are the assumptions that were used in this simulation: The following are the assumptions that

were used in this simulation:

1) Market Participants

1. Buyer - Consumption > Production.

2. Seller - Consumption < Production.

2) The buyer’s or seller’s distance from the community center / market hosted area is assumed to be

within a 10 km radius..

3) In the simulation, the prices in e used are the average market prices obtained from existing peer-

to-peer markets. [31].

4) There is no involvement of an outside agent.

The buying and selling prices and distance of the UPACs are fixed in this simulation, and the bidding

quantity varies based on UPAC consumption and production. The Table 4.16 describes UPAC’s market

role, distance, and bidding price.

The obtained result from the proposed solution is validated by comparing market results to Pymarket

[27].
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User Distance in Km Price in e Role
UPAC 1 0 0.81 BUYER
UPAC 2 7 0.74 SELLER
UPAC 3 4 0.83 BUYER
UPAC 4 10 0.91 BUYER
UPAC 5 3 0.89 BUYER
UPAC 6 5 0.76 SELLER
UPAC 7 2 0.79 SELLER
UPAC 8 1 0.85 BUYER
UPAC 9 9 0.76 SELLER

UPAC 10 6 0.74 SELLER

Table 4.16: UPAC details for market simulation

Figure 4.10: UPAC one day market simulation result

Figure 4.10, represents UPACs one-day profit from participating in the proposed local energy market

and PYmarket. The results show that all the UPAC has a higher profit in proposed solution than the

pymarket, with the exception of UPAC 7. This is primarily due to the fact that UPAC 7 has the highest

bidding price when compared to the other UPACs. Because the proposed solution generates a merit

order list based on price and distance, other UPACs are preferred over UPAC 7.

The same is true for UPAC 2 and UPAC 6. UPAC 2 has a distance of 7 kilometers and the lowest

bidding price compared to the other UPACs, but he receives less profit than UPAC 6, who has a higher

bidding price than UPAC 2. This is due to the proposed solution favouring users with the shortest

transmission distance.

The below mention Figure 4.11 and 4.12 describes the UPAC profit in hourly basis.
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Figure 4.11: UPAC Result PYmarket

Figure 4.12: UPAC Result Proposed Solution

4.7 Major Findings

• A simple merit order based decentralised bilateral trading scheme is proposed for players in LEM

• Distance from community centre is included as the product differentiation / preference this helps

in making trading decision by including the environmental factor, Unlike the game theory where

trading decision is randomized.

49



• This proposed methodology shows the effectiveness of considering environmental factors in mak-

ing trading decision.

• When the market price are high both Pymarket and proposed solution tends to behave symmetri-

cally.

• Majority of cases user who has lowest bidding price and from the shortest distance has higher

profit comparing to the user from with longest distance, This shows that the proposed solution

have improved the projects sustainable factor.
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5.1 Conclusions

This thesis proposes a simple and direct trading mechanism for people who participate in a community-

based LEM. The proposed method bases its trading decision on a simple merit order list generated by

the market after taking into account the price at which the buyer/seller bids in the market as well as the

transmission distance based on the location from which the buyer/seller participates. In contrast to the

other methods mentioned in the literature, this solution is extremely simple to implement. Most market

clearing mechanisms are designed for large or medium-sized market participants. However, this method

can be used for small communities with fewer than ten participants.

The results of the six different cases show that the participants in the proposed solution make more

profit than the participants in the LEM, which is based on a non-cooperative game theory model. To

maintain trading fairness in a non-cooperative game theory model, trading pairs are formed by random

pairing, but the proposed solution involves environmental factors such as transmission distance in de-

termining trading pairs. As a result, the user who participates in the market from the shortest distance

earns a higher profit than the user who participates from a longer distance. This encourages user par-

ticipation in the local energy market. However, the impact of this mechanism in a sustainable community

must be thoroughly validated.

5.2 Future Studies

Considering the result the future research directions are suggested as follows

• Considering the distance and traded amount for evaluation would have a better result comparision.

• Including the distance between the peers rather than a fixed point distance would add significant

value in market result.

• Comparing the results with network optimization / decomposition method would remove the ran-

domness created by game theory.

• This thesis focuses on distance as an environmental factor, and the merit order list is formed by

taking into account the market participants’ bidding price and transmission distance. Taking into

account more environmental factors such as energy source (renewable/non-renewable), income,

type of organisation (private, government, non-profit), and so on, and developing a decision-

making mechanism that assesses user weights based on more environmental factors will add

further value to the market.
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5.3 Recommendation

The proposed mechanism has some limitations and assumptions; the recommendations for a sustain-

able community-based LEM are listed below,

• The proposed mechanism includes a penalty of 0.1 e for transmission losses; this value must be

validated in light of various economic factors and government regulations.

• The proposed system includes a penalty-based mechanism to address transmission loss, which

may result in a reduced profit for the seller. To address this, a different type of incentive-based

system could be proposed, or user participation in the market may suffer.
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A
Code of Project

Listing A.1: PYTHON Code - Bid Module

1 from module import *

2 class BidManager(object):

3 col_names = [

4 'quantity ',

5 'price ',

6 'User',

7 'buying ',

8 'Distance ',

9 'Renewable ',

10 'Use',

11

12 ]

13
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14 def __init__(self):

15 self.n_bids = 1

16 self.bids = []

17

18 def add_bid(

19 self ,

20 quantity ,

21 price ,

22 User ,

23 buying=True ,

24 Distance=0,

25 Renewable=True ,

26 Use=0,

27 ):

28 new_bid = (quantity , price , User , buying ,Distance ,Renewable ,Use)

29 self.bids.append(new_bid)

30 self.n_bids += 1

31

32 return self.n_bids - 1

33

34 def get_df(self):

35 df = pd.DataFrame(self.bids , columns=self.col_names)

36 return df

Listing A.2: PYTHON Code - Market Mechanism

1 from module import *

2 def p2p_random(bids , p_coef=0.5):

3 buying = bids[bids.buying]

4 selling = bids[bids.buying == False]

5 buying['price'] = np.round(buying['price '] + (buying['Distance '] / buying

['quantity '] * 0.1), 3)

6 selling['price '] = np.round(selling['price '] - (selling['Distance '] /

selling['quantity '] * 0.1), 3)

7 sd = buying.append(selling)

8 bids=sd.sort_values('User',ascending=True)

9 quantities = bids.quantity.values.copy()

10 prices = bids.price.values.copy()
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11 ordered = bids.User.values.copy()

12 sorted= bids

13 buyy=sorted[sorted.buying]

14 buyy=buyy.sort_values (['price ','Distance '], ascending =[False , True])

15 print( "Buyer /n")

16 print(buyy ,"/n")

17 selll=sorted[sorted.buying == False]. sort_values (['price ','Distance '],

ascending=True)

18 buy_index=buyy.index.values.copy()

19 sell_index = selll.index.values.copy()

20 prices1=prices.copy()

21 quantities1=quantities.copy()

22 list =[]

23 for b in buy_index:

24 for s in sell_index:

25 list.append ((b,s))

26 trans = P2P_Transaction.TransactionManager ()

27 for (b, s) in tqdm(list ,desc="P2P MARKET ---> Trading With Preference

......................"):

28 if prices[b] >= prices[s] and quantities[s] > 0 and quantities[b] >

0 :

29 q = min(quantities[b], quantities[s])

30 p = prices[b]

31 trans_b = (b, q, round(p,4), s, (quantities[b] - q) > 0)

32 trans_s = (s, q, round(p,4), b, (quantities[s] - q) > 0)

33 trans_h = ( q, round(p, 4),orde[b], orde[s], (quantities[s] - q)

,(quantities[b] - q))

34 quantities[b] -= q

35 quantities[s] -= q

36 trans.add_transaction (* trans_b)

37 trans.add_transaction (* trans_s)

38 time.sleep(0.1)

39 return trans ,hu
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Listing A.3: PYTHON Code - Market Profit

1

2 from module import *

3 from tqdm import tqdm

4 import time

5 def calculate_profits(

6 bids ,

7 transactions ,

8 reservation_prices=None ,

9 fees=None ,

10 ** kwargs):

11

12 users = sorted(bids.User.unique ())

13 buyers = bids.loc[bids['buying ']]. index.values

14 sellers = bids.loc[~bids['buying ']]. index.values

15 # 101

16 if reservation_prices is None:

17 reservation_prices = {}

18 for i, x in bids.iterrows ():

19 if i not in reservation_prices:

20 reservation_prices[i] = x.price

21

22 if fees is None:

23 fees = np.zeros(bids.User.unique ().shape[0])

24

25 profit = {}

26 for case in tqdm(['bid', 'reservation '],desc="P2P MARKET ---> Recording

Transactions ......................"):

27 tmp = bids.reset_index ().rename(columns ={'index ': 'bid'}).copy()

28 tmp = tmp[['bid', 'price', 'buying ', 'User']]

29 time.sleep(0.1)

30 if case == 'reservation ':

31 tmp.price = tmp.apply(lambda x: reservation_prices.get(x.bid , x.

price), axis=1)

32 #doing something

33 merged =transactions.get_df ().merge(tmp ,on='bid').copy()

34 merged['gain'] = merged.apply(lambda x: get_gain(x), axis=1)

35 profit_player = merged.groupby('User')['gain'].sum()

62



36 # print(profit_player)

37 profit_player = np.array([ profit_player.get(x, 0) for x in users])

38 profit[f'player_{case}'] = profit_player

39

40 if case == 'bid':

41 # print(merged)

42 mb = merged.loc[merged['buying ']]

43 ms = merged.loc[~ merged['buying ']]

44 # print(ms)

45 # print(ms.quantity.sum(), mb.quantity.sum())

46 # print(ms.price_x * ms.quantity)

47 profit_market = (mb.price_x * mb.quantity).values.sum()

48 profit_market -= (ms.price_x * ms.quantity).values.sum()

49 profit_market += fees.sum()

50 profit['market '] = profit_market

51

52 return profit

53 def get_gain(row):

54 """ Finds the gain of the row

55 Parameters

56 ----------

57 row : pandas row

58 Row obtained by merging a transaction with a

59 bid dataframe

60 Returns

61 -------

62 gain

63 The gain obtained by the row

64 """

65 global row1

66 row1=row

67 gap = row.price_y - row.price_x

68 if not row.buying:

69 gap = - gap

70 return gap * row.quantity

63



64



65


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Organization of the Document

	2 Literature Review
	2.1 Local  Energy Market
	2.2 Market Topologies
	2.3 Trading Mechanism

	3 Methodology
	3.1 Local Energy Market - Mathematical Model
	3.2 Proposed Mechanism - Algorithm 
	3.2.1 Bid Registration
	3.2.2 Creation of merit order list and trading pair
	3.2.3 Market Transaction
	3.2.4 Market Profit


	4 Case Study & Result
	4.1 SMILE
	4.2 Proposed Solution - Verification
	4.3 Case Study
	4.4 Scenario 1
	4.4.1 Case 1
	4.4.2 Case 2
	4.4.3 Case 3

	4.5 Scenario 2
	4.5.1 Case 4
	4.5.2 Case 5
	4.5.3 Case 6

	4.6 Scenario 3
	4.7 Major Findings

	5 Conclusions
	5.1 Conclusions
	5.2 Future Studies
	5.3 Recommendation
	Bibliography


	Bibliography
	Appendix A

	A Code of Project

