
Multi-Robot Surveillance Task Planning Under Uncertainty

António Matos
antonio.a.matos@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

The usage of multi-robot teams has increasingly been considered as a good solution for improving
reliability and decreasing down-times in industrial and scientific applications. With the advent of the
multi-robot team, challenges have emerged in coming up with efficient coordination strategies that take
into account uncertainty in regards to action duration. Generalized stochastic Petri nets with rewards
(GSPNRs) models that interpret tokens as robots provide a formalism capable of modeling these
multi-robot scenarios with a compact state space, whilst also allowing an explicit stochastic modeling
of action execution time. The present thesis extends recent approaches based on these GSPNRs in
order to model heterogeneous teams made up of multiple types of robots and to allow the inclusion
of a single robot-specific attribute such as battery. Additionally, a software toolbox for MATLAB is
developed that provides an implementation of GSPNRs and methods to calculate optimal policies on
these models. The software package also includes the possibility of executing these policies on real
robots by interfacing with Robotic Operating System (ROS) middleware. Finally, an inspection task
planning scenario is solved and results were obtained in realistically simulated robots in Gazebo.
Keywords: Multi-Robot Systems, Multi-Robot Coordination, Planning Under Uncertainty, General-
ized Stochastic Petri Nets with Rewards, Heterogeneous Multi-Robot Systems

1. Introduction

Small, autonomous robots have become widely used
in both in scientific and industrial fields. While
these small robots have become more economical
and easier to deploy they generally suffer from a sig-
nificant shortfall: they are solely battery powered,
and limitations present on current battery technol-
ogy account for agents with relative short auton-
omy. On the other hand, their low-cost allows for
the deployment of multiple robots at once, and re-
cent research has examined the use of multi-robot
teams to mitigate these battery limitations. The
utilization of heterogeneous teams consists in using
together different robot types with distinct capabili-
ties. The main advantage of heterogeneous teams is
to allow for solutions that exploit each robot-types
strengths more effectively.

Multi-robot heterogeneous teams only provide
such advantages when correctly and efficiently co-
ordinated. Moreover, the use of heterogeneous
teams originates the problem of enforcing cooper-
ation while maintaining efficiency. A promising
line of research advocates the use of formal mod-
els to capture the multi-robot problem and the use
of dynamic programming algorithms to solve these
decision-making and planning problems. These ap-
proaches provide formal guarantees such as showing

that the multi-robot system has no deadlocks, and
at the same time allow synthesizing optimal policies
that coordinate the multi-robot system. Nonethe-
less, there is a lack modelling approaches that can
capture heterogeneous teams in a compact man-
ner, while also being able to track robot-specific
attributes such as battery and uncertainty in the
duration of action execution.

1.1. Objective and Contributions
The main objective of this thesis is to develop
methods that can coordinate heterogeneous multi-
robot systems by optimizing some defined perfor-
mance criteria, while taking into account various
constraints. Even though approaches that we devel-
oped are generic and can be applied to wide range
of problems in diverse application areas, we chose
to solve a specific multi-robot problem of interest
to the research group:

Inspection Problem - Consider an inspection
scenario, where the photo-voltaic panels in different
locations of a solar farm must be continuously in-
spected by several small unmanned ground vehicles
(UGVs) with limited autonomy, and a single larger
UGV is used to recharge the smaller ones and so in-
crease the autonomy of the system. How should
the robot team be coordinated in order to
make this inspection process as efficient as

1

possible? How can we take into account the
battery constraints of the small UGVs and
the uncertainty associated with the naviga-
tion, inspection and charging actions?

To solve this multi-robot planning problem, this
research will use Generalized stochastic Petri nets
with rewards (GSPNRs). This formalism will be
used to model the inspection task planning prob-
lem, and then convert it into the equivalent Markov
Decision Process (MDP) model, where policy syn-
thesis algorithms can be applied, that extract the
optimal policy by optimizing the utility function
while taking into account uncertainty in the dura-
tion of actions. This problem has been solved as
reported in [1] and [2]. This work introduces three
novel contributions, required to solve the motivat-
ing problem:

1. Extend current formal models based in GSP-
NRs into a general framework that is capable
of modelling a heterogeneous multi-robot task
planning problem. It will also include the abil-
ity to model system wide resources, e.g. coun-
ters, or robot specific attributes, e.g. battery.

2. Build and test a software package in MATLAB
environment capable of building GSPNR mod-
els, obtaining optimal policies for these mod-
els, and executing the obtained policies in real
robots, by integrating with the Robotic Oper-
ating System (ROS).

3. Solve the specific inspection task planning
problem. This will use the modelling frame-
work established, and utilize the software pack-
age developed to obtain and execute optimal
policies in simulated robots and environment.

2. Preliminaries - GSPNRs
A generalized stochastic Petri net with rewards is a
tuple GR = (P, T, I(.), O(.),W (.),m0, rP , rT). P is
a non-empty, finite set of places. T is a non-empty,
finite set of transitions, that is partitioned into two
subsets: T = TI ∪ TE . TI is the set of immediate
transitions, and TE the set of exponential transi-
tions. Immediate transitions fire instantaneously,
and exponential transitions fire with a stochastic
delay determined by an exponentially distributed
random variable. I(.) : P ×T → N is a function de-
fined over the set of input arcs (i.e. arcs connecting
places to transitions) specifying their multiplicity.
The multiplicity of each input arc corresponds to
the number of tokens consumed in the place con-
nected to the transition that fires. O(.) : T×P → N
is the output multiplicity function, defined over
the set of output arcs (i.e. arcs connecting tran-
sitions to places). For output arcs, the multiplic-
ity corresponds to the number of tokens created
in the place connected to the transition that fires.

W (.) : T → R≥0 is a weight function that maps a
transition tk to a real positive number, and is de-
noted by W (tk). This value wk denotes the firing
rate that characterizes the exponential distribution
of exponential transitions, or the weight of an im-
mediate transition. m0 = (m01,m02, · · · ,m0P) is
the initial marking. A marking m is an assignment
of tokens to places, and is represented by a vector,
where each element corresponds to the number of
tokens assigned to place: m : P → N. Place re-
wards are a mapping between places and real num-
bers, rP : P → R. They represent reward accumu-
lated for each time unit that the place is marked
by at least one token. A marking reward function
is defined, mapping between markings and rewards
R : M → R. This function maps each reachable
marking m ∈ R(G) to a real number which is the
sum of all place rewards in a given marking. Transi-
tion rewards represent a reward accumulated when
a given transition fires, and so is a mapping between
transitions and real numbers: rT : T → R

3. GSPNR Modelling
3.1. Homogeneous Systems
In multi-robot homogeneous systems where all
robots have the same capabilities, GSPNRs mod-
els can provide a compact way of representing the
overall team state. Robots are represented as to-
kens, and each place in the GSPNR represents a
particular state in which a robot may be at. If
such a place is marked by a token, this means that
a robot is currently in that particular state. The
overall team state is represented by the marking of
the GSPNR, specifying all the states in which each
robot composing the team is at.

Transition firing is the mechanism with which to-
kens transverse through the places in a GSPNR.
In a multi-robot problem where tokens represent
robots, GSPNR transitions model any event in
which the robot represented by a token changes
state. The place in which the token was previously
at represents the local state the robot was before
the event took place. The place where the token is
created by the transition firing models the state in
which the robot lands after the event takes place.

Immediate and exponential transitions model dif-
ferent types of events. An instantaneous event
such as a decision is modelled with an immedi-
ate transition. Thus, action selection and its non-
determinism is captured with several immediate
transitions connected to the same place by an input
arc. When a token reaches a place connected to sev-
eral immediate transitions, every conflicting imme-
diate transition represents a different decision that
the robot can choose to take. Exponential transi-
tions represent an uncontrollable timed event and
so are chiefly used to model uncertainty regarding
action execution. When a token reaches a place

2

Figure 1: Decision-action graph for an inspection
scenario; in green are decision nodes, and in red are
action nodes;

connected to an exponential transition by an input
arc, the time spent by the token in that place is a
random variable exponentially distributed.

3.2. Decision-Action Graphs

In most multi-robot problems involving sequential
decision-making, the states that a robot can oc-
cupy belong into one of two categories. A robot
can be in a state where it must decide between exe-
cuting several available actions, or it can be in a
state of executing an action. After finishing ac-
tion execution, the robot transitions again into a
state where it must make another decision to exe-
cute another action. This process occurs repeatedly
for all robots in the system. GSPNR models that
capture this kind of ”Decision/Action/Decision/...”
problem contain an underlying structure. Formally
defining this underlying structure provides a more
direct interpretation between the multi-robot prob-
lem and its GSPNR model. Moreover, by defining
this concept, algorithms to build GSPNR models
are easier to understand and implement.

This structure in GSPNR models is described us-
ing decision-action graphs (DecAct-G). Formally, a
decision-action graph is a bipartite directed graph
DA = (D,A,E), where D is the decision nodes
set, A is the action nodes set, and E is the edges
set. Each decision node represents a state where the
robot must choose between various possible actions,
and each action node represents an action that takes
non-zero time to execute. Edges that begin in a de-
cision node and end in an action node are denomi-
nated decision edges and represent all the possible
actions that the robot can execute in that decision
node; edges that begin in an action node and end
in a decision node are denominated outcome edges
and represent the decision state that the robot ends
up in when the action has finished executing. The
number of decision edges of an action node must be
the same as the number of outcome edges, as the
number of robots remains constant before and after
executing an action.

Figure 1 depicts the DecAct-G that represents a
homogeneous multi-robot problem where robots are
able to carry out an inspection action in two sepa-
rate locations and they are also able to travel be-
tween the two locations.

Figure 2: An action model for arbitrary action A;
the immediate transition tD models the decision to
execute A, and the exponential transition tF models
finishing the execution of A;

Action nodes directly represent states where the
robot is executing an action. Each action state
is associated with two events: 1) the controllable
event of deciding to start action execution; 2) the
uncontrollable event of finishing executing the ac-
tion. This leads us to define a function over the
action nodes ActionModel : A→ G, where A is the
set of all action nodes and G the set of all possi-
ble GSPNRs. ActionModel(a) is the GSPNR that
models the execution of action a. ActionModel()s
have only three elements:

• Decision transition - an immediate decision
representing the controllable event of deciding
to execute the action;

• Action place - the place that models the robot
state of actually executing the action;

• Final transition - an exponential transition
modelling the uncontrollable event of finishing
executing the action;

An action model for an arbitrary action a is rep-
resented in Figure 2 and is formally defined as a
GSPN GA = (P, T, I(.), O(.),W (.),m0) with the
following restrictions P = {pA}; T = {tD, tF };
I(pA, tF) = 1; O(tD, pA) = 1; m0 = (0).

DecAct-Gs allows us to build a multi-robot
GSPNR model in a precise manner. Each node and
arc in the graph is substituted by a corresponding
GSPNR element, and they are merged together to
create an overall GSPNR model that captures the
multi-robot problem considered. To build the full
GSPNR model from a DA = (D,A,E), each deci-
sion node is interpreted as a place denominated de-
cision place, and each action node a is replaced by
its GSPNR model ActionModel(a). Any decision
edge (d, a) is substituted by an input arc from the
corresponding decision place to the decision tran-
sition tD ∈ ActionModel(a) of the action model
corresponding to the action node. Any outcome
edge (a, d) is replaced by an output arc from the fi-
nal transition tF ∈ ActionModel(a) to the decision
place corresponding to the decision node.

3

3.3. Extension to Heterogeneous Systems

Until now, all tokens represented robots that were
the same type, with the same capabilities. This
means that robots could be represented anony-
mously as tokens in the GSPNR model. To ex-
tend this framework to model a heterogeneous robot
team, the GSPNR model must unambiguously de-
termine which type of robot each token represents.
This is done by partitioning the GSPNR place set
into several mutually exclusive subsets. Each sub-
set is associated with a single robot type. By
doing so, each token can be directly mapped to
a specific robot type by examining which subset
the marked place belongs to. Suppose we have a
GSPNR G = (P, T, I,O,W, rP , rT), and the multi-
robot problem involves n different robot types R =
{r1, · · · , rn}. The place set P is partitioned into n
subsets: P =

⋃
n Pi which are all mutually exclu-

sive ∀i, j : Pi ∩Pj = ∅. Tokens in a place belonging
to the subset Pi represent robots of type ri.

For homogeneous systems, the GSPNR model
had to be conservative: the number of tokens
needed to remain constant for all possible markings.
This translates the natural constraint of keeping the
number of robots constant, as robots cannot be cre-
ated or destroyed. When extending the framework
to heterogeneous systems, this constraint needs to
be stronger. The number of tokens in each place
subset representing different types of robots must
remain constant. In practical terms, this forbids
transitions connecting places belonging to different
robot type subsets. Such a transition would imply
transforming a robot of a particular type into an-
other robot type.

Decision-Action graphs can also be used to build
heterogeneous GSPNR models. By partitioning the
decision node set into separate sets that are each
associated with a single robot type, the mapping
between places and robot types defined previously
can be established when building the full GSPNR
model. In similar manner as previously defined
with GSPNR models, suppose DA = (D,A,E) is
a DecAct-G representing a multi-robot system with
n different robot types, R = {r1, · · · , rn}. The de-
cision node set D must be partitioned into n sub-
sets: D =

⋃
nDi, each being mutually exclusive

∀i, j : Di ∩ Dj = ∅. A decision node d belonging
to subset Di, d ∈ Di is associated with robot type
ri ∈ R. Furthermore, cooperation actions involv-
ing two or more robots can be represented using
DecAct-Gs. An action done in cooperation by mul-
tiple robots is represented by an action node with
multiple decision edges. Each decision edge con-
nected to this cooperation action node represents a
single robot that is involved in cooperatively exe-
cuting the action. As with homogeneous systems,
each decision edge that connects a decision node

d1 ∈ D to action node a ∈ A, must have a match-
ing outcome edge connecting the action node to a
decision node d2 ∈ D. When working with a het-
erogeneous system, these two decision nodes must
belong to the same type subset: d1, d2 ∈ Di. This
corresponds to respecting the constraint of keeping
the amount of each robot-type constant.

Actions done with cooperation require to define
as many action models as there are robots execut-
ing the action. We considered synchronized coop-
erative actions, where all robots start and end the
execution of the action at the same time. To model
a synchronized cooperative action that is done in
cooperation by n robots, n action places need to
be used. Each action place corresponds to one of
the robots executing its component of the coopera-
tive action. Synchronized cooperative actions begin
and finish at the same time. Thus, all action places
are connected by an input arc to the same immedi-
ate transition. This immediate transition represents
the decision to start the synchronized cooperative
action. When the immediate transition fires, tokens
are created in all action places and action execu-
tion begins. In similar manner, all action places are
connected by an output arc to the same exponen-
tial transition. This constrains all robots to finish
executing the action at the same time. When this
transition fires, all tokens in the action places are
consumed.

A synchronized action between n robots requires
n separate action models. Every action model
must contain the same decision and final transi-
tions. Consequently, when these action models are
merged, all action places are connected to same im-
mediate or exponential transition, by an output or
input arc, respectively. An example for a synchro-
nized action done by two robots can be seen in Fig-
ure 3. Each robot type has its own action model for
the same action a, comprising of its decision transi-
tion, action place, and final transition. The exam-
ple considers two arbitrary robot types ’Type1’ and
’Type2’. When transition ”JointDecision” is fired,
two tokens are created in each robot-type’s action
place. Finally, the two robots finish executing the
synchronized action at the same time, and so both
action places are connected to the same exponential
transition ”JointEnd”.

To build a heterogeneous GSPNR model from a
DecAct-G decision nodes are interpreted as decision
places and added to the GSPNR model. Unlike with
homogeneous systems, in heterogeneous systems a
single action node a can have multiple action mod-
els (if the action is done in cooperation by multi-
ple robots). All action models for each action node,
ActionModel(a, .) are instantiated and merged into
the GSPNR model. Afterwards, the algorithm con-
nects the action models to the appropriate decision

4

(a) ActionModel(a) for
Type1

(b) ActionModel(a) for
Type2

Type1 Places

Type2 Places

(c) Complete model obtained by merging the
two models for each robot type, connected to de-
cision places before and after executing the joint
action;

Figure 3: Separate and merged models for a coop-
erative synchronized action between two different
robot types

places, according to the edges in the DecAct-G.

3.4. Modelling Attributes
3.4.1 System Attributes

In order to allow a model of system resources or at-
tributes that can condition the decision-making of
the robots, a new type of place is used - Resource
places. In our approach, until now, all tokens have
represented robots, and the place where the token is
specifies the state of the robot. Tokens in resource
places do not follow this interpretation and they
represent a particular component of the state of the
environment. A direct consequence is that the sub-
GSPNR composed of all resource places does not
need to be conservative. The number of tokens in all
resource places can increase or decrease. Nonethe-
less, this sub-GSPNR made up of resource places
must still be bounded. We chose to distinguish re-
source places from decision and action places by
adding the label ”r.” to any resource place.

When building a GSPNR model from a DecAct-
G, resource places can be directly included in action
models, and can connect to its immediate or expo-
nential transition. By including the same general
place in multiple action models, specifications in-
volving different actions can be made.

3.4.2 Robot-specific Attributes

Modelling a multi-robot problem with a GSPNR
where robots are represented anonymously as to-
kens presents a difficult challenge when including
a robot-specific attribute. The GSPNR formalism
offers no manner of distinguishing between tokens,
and this is essential when capturing the evolution
of a robot-specific attribute. The model must dis-
tinguish between robots where the attribute is at

different states. Our approach to solving this chal-
lenge is including information on the current at-
tribute state of a robot within the GSPNR places.
Up to now, the place in which a token is specifies
the state of the robot, but to model an attribute,
each place must also specify the specific state of the
attribute.

The modelled attribute must have a discrete set
of possible states. For example, if the robot’s bat-
tery is modelled, it must be approximated into a
finite set of states such as {B0, B1, B2}. The bat-
tery state ”B0” would be a low battery level, ”B1” a
medium battery level, and ”B2” an almost full bat-
tery. A coarser approximation would discretize the
battery into only two states {discharged, charged}
that indicates if the robot still has battery or if it
is discharged.

Suppose a robot-specific attribute L has N dis-
crete states: L = {l1, · · · , lN}. Broadly speaking,
our approach to capture the attribute’s evolution is
to replicate N times all decision and action places
that pertain to the robot type with an attribute. In
this new GSPNR model, each of these places rep-
resents not only the state of the robot (in terms of
decisions available and action execution, for deci-
sion and action places respectively), but also con-
tains information about the particular state of the
robot attribute that the robot has. For example, if
a UGV robot had a battery discretized into three
states {B0, B1, B2}, all of its decision places di
would be replicated three times {d0i , d1i , d2i }. A to-
ken in place d0i would represent a robot with low
battery, a token in place d1i would represent a robot
with medium battery, and a token in place d2i would
represent a robot with high battery level. The same
reasoning applies to action places. By replicating
the action places, each token represents a robot with
a specific attribute level executing a particular ac-
tion.

But it is not enough to replicate only the action
places. The transitions that model the beginning
and end of each action also need to replicated.
Thus, every ActionModel involving a robot with
an attribute must to be replicated for each level
the attribute can take. These need to be unique:
the ActionModel for executing the Travel action
at battery level ”B2” cannot be the same as the
one when battery level is ”B1”. The simplest way
to achieve this is by using a template ActionModel.
This template can be then copied and customized
for each specific attribute level. This way, we avoid
having to explicitly list each ActionModels(a, r, l)
for each possible attribute level.

After a robot with an attribute finishes execut-
ing an action, its attribute may evolve to a different
state. This is modelled with an AttributeModel. An
AttributeModel is a GSPNR with a single place, de-

5

Figure 4: An attribute model for ”Travel” action
when the robot’s battery has state ”B2”

nominated attribute place. This place is connected
to multiple immediate transitions, each modelling
the event of the robot’s attribute progressing to
a different state. All of the immediate transitions
in a AttributeModel can be associated with transi-
tioning to a particular attribute state. For an at-
tribute with N possible states, L = {l1, · · · , lN},
each AttributeModel will have at most N immedi-
ate transitions {t1F , · · · , tNF }. The transition tiF is
associated with the robot’s attribute transitioning
to state li.

Consider, for example, the AttributeModel de-
picted in Figure 4. This is the GSPNR that
models the battery discharge for a robot that
has just finished travelling having battery at state
”B2”. A token reaches the attribute place ”Fin-
ished Travel B2”, and the immediate transition
that fires dictates which battery state the robot
transitions to. If the robot’s battery completely dis-
charges and its battery transitions from state ”B2”
to ”B0”, the transition ”AfterTravelB2 B0” fires,
and the token representing the robot is consumed
from the attribute place, and created in the deci-
sion place that represents the robot having battery
”B0”. The battery’s state also has a chance of tran-
sitioning to level ”B1”, or staying at the same level
”B2”.

Considering an arbitrary action a, and an at-
tribute with N possible states, all of the Attribute-
Models can be specified as a series of conditional
probabilities: p(lj |a, li). This expresses the proba-
bility of the robot’s attribute transitioning to level
lj after executing action a and having started out
at level li. An attribute model must be appended
after any action model involving the robot with a
modelled attribute. The transitions in the attribute
model are then connected to the appropriate deci-
sion places, according to the outcome edges of the
DecAct-G.

4. Multi-Robot GSPNR Toolbox
4.1. Overview and Architecture
We developed the software package as an open-
source add-on toolbox for the MATLAB platform.
The MATLAB platform was chosen for several rea-

Figure 5: Overview of the toolbox’s architecture

sons: 1) it has a large, established user community;
2) the company behind MATLAB provides long-
term support and backwards compatibility as the
platform is updated; 3) the simplicity of MATLAB’s
scripting language allows new users to take advan-
tage of our toolbox without having having to learn
complicated syntax.

Conceptually, the toolbox can be divided into
three separate modules, that can be used together
or independently. All of these modules and their
interactions can be seen in Figure 5. The main
component is the GSPNR module, and it provides
an implementation of GSPNR models and various
ways to create and edit them. This module also
allows the user to import and export these models
from/to two external software packages: PIPE and
GreatSPN. The Policy Synthesis module provides
functions to compute optimal policies over GSPNR
models using the value iteration algorithm on a
GSPNR’s equivalent MDP. The remaining module
Execution Manager allows users to execute GSPNR
policies on real robots. It does so by utilizing
Matlab’s ROS Toolbox, that allows communication
with ROS action servers.

The package is available in a public repository [3].
It includes interactive tutorials (using the MAT-
LAB’s LiveEditor feature) that explain exactly how
to use each of the three modules.

4.2. Computational Performance and Scala-
bility

To test the computational performance of the tool-
box and the scalability of each module, we devised a
virtual multi-robot scenario where multiple robots
operate in a indoors environment inside a house.
The robots can travel between each subdivision of

6

the house, and each of these rooms must be vacu-
umed and mopped by the robots. We ran two dif-
ferent experiments. The first experiment evaluated
how the toolbox’s performance scaled with mod-
elling multi-robot problems where a fixed amount
of robots could execute an increasing amount of ac-
tions. We did this by evaluating the performance
of each module for a domestic scenario with an in-
creasing number of rooms within the house. Adding
rooms equates to allowing the robots to vacuum
and mop more locations, and also adding possible
navigation actions. The second experiment eval-
uated how the toolbox’s performance scaled with
modelling multi-robot problems with an increasing
number of robots, for a fixed environment with the
same number of locations.

For the GSPNR module, we measured how much
time was taken to build the GSPNR model of the
multi-robot problem, and the CPU and memory
used. To characterize the Policy Synthesis module,
we measured how much time time it took to build
the equivalent MDP model, the number of states in
this MDP model, and the CPU and memory used.
Finally, the Execution Manager module was tested
by executing a GSPNR plan for a duration of 5 min-
utes. We simulated the robots by creating mock-up
ActionServers for the vacuuming and mopping ac-
tion. Each time one of these ActionServers received
a goal, it would block for a certain amount of time
and then return the result message as if the robots
succeeded carrying out the action.

All measures of CPU and memory usage were
taken using an external Python script. This script
measured the CPU and memory of the entire MAT-
LAB process, which can have considerable over-
head. CPU measurements were taken in relation
to usage of a single core. Thus, 100% usage corre-
sponds to fully utilizing one CPU core, 200% cor-
responds to fully utilizing two CPU cores, etc. On
the other hand, all time measurements were done
internally in MATLAB. The computer where all the
tests were run has the following specifications: an
i74690 CPU, 32GB RAM and a NVIDIA Geforce
RTX 2080 Super graphics card.

We found no significant bottlenecks when creat-
ing ever larger GSPNR models, or models of larger
robot teams. CPU and memory usage grew slowly
and linearly as the number of locations in our model
increased, and in particular CPU usage plateaued
at 110% usage. The largest GSPNR model of a
house with 42 different locations had 208 places
and 374 transitions. When increasing the number
of robots modelled, the CPU and memory used to
create the GSPNR remained constant, and so did
the time taken to create the GSPNR.

We did find a bottleneck when trying to synthe-
size policies over these models. The time taken to

Figure 6: Time taken to create equivalent MDP
with and without states as GSPNR model includes
more robots;

Figure 7: State space size of equivalent MDP with
and without wait states as GSPNR model includes
more robots;

convert a GSPNR model with an increasing amount
of robots grows according to the graph in Figure 6.
This is due to the size of the reachable marking
set, which can be seen in Figure 7. As more robots
are modelled, the corresponding state space also in-
creases in an almost exponential manner. However,
there is still a substantial advantage in modelling
a multi-robot system with a GSPNR where robots
are represented anonymously. Suppose we have a
system with r robots, and each robot can occupy P
different states. If the team’s state is the concate-
nation of each robot’s state steam = (p1, p2, ..., pr),
with pi ∈ P , the maximum state space size is
P r. The GSPNR model of the exact same multi-
robot scenario consists of P places, each represent-
ing a robot’s local state. The maximum num-
ber of reachable markings in such a GSPNR is
”P multichoose r”. This is confirmed by verifying
the number of states of the equivalent MDP with-
out wait states in Figure 7 (in blue). Even when
including wait states, the GSPNR model still has a
significantly smaller state space.

In regards to execution, the results were promis-

7

Figure 8: Running memory usage while executing
GSPNR plan for team with up to 20 robots;

Figure 9: Size in megabytes of the GSPNR object (in
blue) and the equivalent MDP object (in red) for an
increasing amount of reachable states/markings;

ing. Even as more robots were coordinated, the
computational requirements remained constant, as
can be seen in Figure 8 for the running memory.
Figure 9 further reinforces this point. For scenar-
ios up to 10 robots, we measured the memory occu-
pied by the MATLAB object that holds the GSPNR
model and its equivalent MDP model without wait
states. As the number of reachable states/markings
increased, the GSPNR size stays constant, while
the MDP model grows linearly. This is due to the
fact that an MDP model has to contain all possible
states, and all possible transitions for each state. A
GSPNR model only holds the current state of the
system, how the system evolves between states is
encoded in its place/transitions/arcs structure.

5. Solarfarm Inspection Task Planning

The inspection scenario that was solved involved
a set of 4 solar panels that need to be continu-
ously inspected by two small, mobile robots with
a limited battery life. In this application, there is
no fixed location where the robots may recharge
their battery, and so the team is augmented with a
larger mobile robot that can recharge the inspect-

Center

Panel2

Panel3

Panel1

Panel4

Figure 10: Gazebo world used in solarfarm simu-
lation, with the topological map superimposed and
the areas transversed by robots carrying out inspec-
tions outlined in red;

ing agents. We assumed that this larger UGV has
infinite battery-life and it can indefinitely recharge
the smaller UGVs as many times as needed.

The Gazebo world simulating this scenario is de-
picted in Figure 10. It is based on the inspection
world provided by Clearpath, but some modifica-
tions were done: the bridge was widened so that the
warthog could pass through, terrain was smoothed
to minimize slipping and some elements (such as the
underground mine and the pipes) were removed.

Two Jackal UGVs were used to inspect the solar
panels, and the already existing multi-jackal ROS
package was used. The native localization (that
fused GPS, IMU and odometry data) was turned
off, and the ground truth data from the simulator
was passed on to each jackal’s move base so that
they could localize themselves reliably. Each robot
had their own simulated battery. This battery was
deterministic, we did not include any type of noise
when measuring the current battery level. These
robots inspect each solar panel by navigating to a
set of three positions nearby to the solar panel. The
robots pause in each position to orientate them-
selves towards the solar panel, and then travel to
the next position. This is repeated until 90 seconds
have passed, and then the inspection is finished. To
recharge cooperatively with the warthog, the jack-
als line up ahead of the warthog robot so that the
jackal’s charging plug lines up with the warthog’s
charging port. The jackal then backups into the
warthog, and the simulated battery starts charging.

The existing warthog packages provided by
Clearpath provided the necessary ROS interfaces to
simulate a single larger UGV. These were adapted
to use within a multi-robot problem, and a move
base component was added to enable autonomous
navigation. Localization was done the same way as
the jackals, by passing on ground truth data from
Gazebo to the move base node. The warthog’s chas-
sis itself was modified to include the charging port.

8

5.1. Results
The action duration parameters of the GSPNR
model were estimated by running the navigation ac-
tion server a single time for each navigation edge.
We also estimated the mean charging time by run-
ning the charge action server a single time and
recording how much time elapsed. For the battery
discharge model, we chose simple parameters: ev-
ery time a jackal finishes executing an action, it has
0.8 chance of staying at the same battery level, and
0.2 change of depleting its battery. We tested three
different policies:

• Random policy - a policy where the sys-
tem chooses to randomly fire a single transition
from all available ones.

• Handcrafted policy - this policy was care-
fully designed by us, and it represents a greedy
policy that tries to maximize the immediate
number of inspections done. Both small UGVs
try to inspect the closest available panel, and
the larger UGV remains stationary until a
small UGV is discharged. When this happens,
the larger UGV navigates to closest discharged
small robot and starts charging it.

• Optimal policy - this policy maximizes the
discounted expected reward. We used a dis-
count factor of γ = 0.99, and a convergence
criterion of ε = 0.01 to run the value iteration
algorithm on the equivalent MDP without wait
states. This MDP had 84,545 states/reachable
markings.

In Gazebo, we did 8 one-hour runs of the three
policies. The results can be seen in Figure 11, where
the average accumulated reward is plotted as a func-
tion of execution time. The solid lines represent
the average value, while the shaded areas repre-
sent the mean value plus and minus the measured
standard deviation. The optimal policy was able
to slightly outperform the handcrafted policy we
designed. The handcrafted policy itself is good at
coordinating the robots according to our goal spec-
ification, as it is a very large improvement over the
random policy where no coordination is done. We
also ran model simulation without robots to evalu-
ate the accuracy of the our representation of uncer-
tainty. Each GSPNR plan, for each of the 3 policies,
was simulated in the model for 10 one-hour runs.

For each simulation, in both Gazebo and in
the model simulation without robots, we measured
three main metrics to classify the team’s perfor-
mance: the downtime percentage, the average time
taken to inspect all 4 solar panels, and the average
accumulated reward. The downtime percentage was
measured as the proportion of running time where
at least one robot was discharged and waiting for

Figure 11: Average accumulated reward in Gazebo
simulation in function of time, for three different
policies: the optimal policy (in blue), the hand-
crafted policy (in green), and the random policy
(in red).

the warthog to be able to recharge. The average
time between round of inspections was measured by
counting the number of times the transition of the
global counter ”InspectedAll” fired, and dividing it
by the running time.

These results can be seen in Table 1. The GSPNR
plan simulated directly in the model without robots
was a good predictor for the metrics measured in
the real system simulated in Gazebo. More impor-
tantly, even though the optimal policy induces a
larger downtime percentage when compared with
the handcrafted policy, it was able to coordinate the
inspections of the solar panels by the small robots
better. The overall time taken to inspect all solar
panels was shorter and on average it was also able
to gain a greater total accumulated reward over 1
hour of execution time.

6. Conclusions

This main objective was to solve a multi-robot in-
spection task planning problem using a heteroge-
neous robot team. To achieve this, we developed
a generic framework to model multi-robot hetero-
geneous task planning problems as a GSPNR. We
extended previous work where robots were repre-
sented as tokens to be able to model heterogeneous
teams, and we provided a way to include a robot’s
battery in the GSPNR model.

The toolbox developed is an open-source MAT-
LAB add-on where users can easily create GSPNR
models from scratch. We included a component
that is able to synthesize optimal policies over these
models. Lastly, we came up and implemented an
algorithm to execute GSPNR plans that use these
policies on real robotic systems, by integrating with
the popular, open-source software library ROS. We
characterized the toolbox’s computational perfor-
mance and scalability. The GSPNR modelling

9

GSPNR Plan with GSPNR Plan with GSPNR Plan with
optimal policy random policy handcrafted policy

Model Gazebo Model Gazebo Model Gazebo
of runs 10 8 10 8 10 8

downtime [%] 42.84 33.94 94.53 80.87 40.25 31.45
∆InspectAll [s] 528 614 3155 3136 636 642

r̄ [1/s] 1.3484 1.1074 -0.5756 -0.3622 1.0888 1.0094

Table 1: Results obtained for executing GSPNR plans in model simulation without robots, and with
robots simulated in Gazebo simulator. downtime is the proportion of time, where at least one robot
was waiting to be charged, ∆InspectAll is the average time between inspecting all 4 panels, and r̄ is the
average accumulated reward.

framework is scalable, and our extensions to het-
erogeneous systems and the ability to model robot-
specific attributes allows the representation of very
complex problems. Our implementation is also ef-
ficient and it allows users to save GSPNR mod-
els that have millions or billions of unique reach-
able states. Furthermore, our algorithm to execute
GSPNR plans scales well as the number of robots
coordinated grows, and it does not consume more
computational resources as the executed models be-
come increasingly more complex.

We finally solved the inspection problem. We
modeled a heterogeneous robot team composed of
three robots: 2 small UGVs and a single larger
UGV. We approximated the small UGVs’ bat-
tery into two discrete levels, and allowed the large
UGV to cooperatively recharge the small UGVs.
The toolbox we developed was able to create the
GSPNR model for this multi-robot problem, and
the optimal policy we obtained was able to out-
perform a carefully handcrafted strategy which was
itself a large improvement over an uncoordinated
system. This demonstrated the ease-of-use of our
toolbox in creating these complex models. Addi-
tionally, it provided a robust execution algorithm
whereby in the 24 hours of executing GSPNR task
plans, it was always reliable and it correctly coor-
dinated the robot team.

Limitations and Future Work

The main limitation of the approaches and the tool-
box we developed is associated with synthesizing
optimal policies over the GSPNR models. The
reachable marking set grows according to the ex-
pression ”P multichoose r”, where P is the number
of states each robot can have, and r is the number
of robots modelled. Even though this is an improve-
ment over individually modelling each robot, where
the maximum number of states grows exponentially
with the number of robots, it still severely limits the
size of the multi-robot scenarios where optimal poli-
cies can be synthesized in feasible time. Any future
work must tackle this limitation in order to be able

to apply these approaches to large robot teams.
An alternative that might mitigate the state

space problem are approximated approaches that
use heuristics to go through the state space in a
more efficient manner. However, policies obtained
with these methods are not necessarily optimal or
close to optimal. Additionally most of the heuristics
used are not domain independent, having to come
up with a good heuristic for each new problem ap-
proached. Still, the ability of our modelling frame-
work to model a complex multi-robot problem, and
the capacity of our toolbox to save and simulate
these very large models can be used to sample the
state space in model-based Reinforcement Learning
methods. This becomes particularly useful when
simulation of the system us not possible, and real-
world data is scarce.

Acknowledgements
The author would like to acknowledge the fund-
ing received from Mathworks that specifically sup-
ported the work done in Section 4, through a joint
Mathworks-RCF project, obtained via application.

References
[1] Masoumeh Mansouri, Bruno Lacerda, Nick

Hawes, and Federico Pecora. Multi-robot plan-
ning under uncertain travel times and safety
constraints. In The 28th International Joint
Conference on Artificial Intelligence (IJCAI19),
August 10-16, Macao, China, pages 478–484,
2019.

[2] Carlos Azevedo, Bruno Lacerda, Nick Hawes,
and Pedro Lima. Long-run multi-robot planning
under uncertain action durations for persistent
tasks. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS),
pages 4323–4328. IEEE.

[3] https://github.com/cazevedo/

multi-robot-gspnr-toolbox. Last visited:
25/10/2021.

10

