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Abstract

Disruptions in tokamaks are one of the biggest challenges to the viability of nuclear fusion. One of the main
causes of disruptions is the occurrence of locked modes, which are non-rotating unstable magnetohydrodynamic
(MHD) modes. In this work, we intend to use deep learning tools to predict these types of disruptions and to
understand other possible triggering mechanisms. We developed a model based on a convolutional neural network
(CNN) that receives MHD activity in the form of a spectrogram, and predicts whether it is going to disrupt due to
mode-locking. The model can reasonably distinguish the classification classes, achieving an accuracy of almost
80%, although it cannot be compared directly with other state-of-the-art predictors. Additionally, an interpretable
machine learning tool called class activation mapping (CAM) is used in an attempt to understand which MHD
activity is relevant to the model. The results indicate a considerable focus placed by the CAM method in the
interruption of MHD activity, in particular internal kink modes, followed by its resurgence before the development
of the locked mode. This observation is congruent with the physical explanation given by the spectrogram and with
previous studies.
Keywords: Tokamaks; Magnetohydrodynamics; Disruption prediction; Spectrograms; Convolutional neural
networks; Interpretable machine learning

1. Introduction
A tokamak disruption is an abrupt event where the con-
finement of the plasma is practically lost. Due to its
destructive potential and imposition of limits on the ma-
chine’s operational space, it is crucial to develop meth-
ods that can detect either the early-stage development of
disruptions to prevent them and regain plasma confine-
ment or mitigate its effects on the device.

These events are the direct or indirect consequence
of magnetohydrodynamic (MHD) instabilities. One of
the most known precursors linked to disruption trigger-
ing is the locked mode [1]. The signal of the mode is
used for current disruption mitigation systems by defin-
ing a critical threshold to it [2]. The defined thresholds,
however, may depend on the analyzed dataset and can
present some fluctuations [3]. Additionally, there is a
risk that a considerable number of discharges are not
detected and non-disruptive discharges falsely activate
the mitigation systems with the threshold method if they
happen very close to the disruption instant [4].

Researchers are putting effort into the use of machine
learning and deep learning algorithms [5, 6, 7], such as
deep neural networks, which are applied to data com-
ing from the diagnostics available in the reactor to better
understand disruptions and predict them. The complex-
ity of the physical phenomena involved in the dynamics
of disruptions has not yet, however, allowed a complete
theoretical understanding and the establishment of real-

time disruption prediction systems which can detect all
disruptive discharges. Also, the complexity of the ob-
tained machine learning models may hinder the subse-
quent analysis of the results obtained, thus interpretabil-
ity is desired [8].

In this work, we try to predict disruptions due to the
locked mode with a deep learning model. Moreover,
we retrieve the most important features obtained by the
model for a given output to look for physical insight.

2. MHD Stability
The MHD model provides a framework that allows to
describe the plasma macroscopic behavior in a tokamak.
The stability analysis, including the study of possible
precursor modes during a disruption, can be described
with a displacement perturbation vector ξ,

ξ(r, t) = ξ(r)ei(mθ−nφ+wt) (1)

defined in space and time, where θ and φ are the poloidal
and toroidal angles, respectively, w is the frequency of
the perturbation,m and n are the respective poloidal and
toroidal mode numbers. Assuming that the perturbed
quantity amplitudes are much smaller than the equilib-
rium state, the perturbation vector is introduced in the
linearized MHD equations for stability analysis within
the perturbed fluid velocity term, v1, as seen in equation
2.

v1 =
dξ

dt
(2)
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In non-ideal MHD, the frequency w has both real and
imaginary parts (wr and wi), and the stability of the
mode is determined by the sign of wi. If wi is lower
than 0, then the system is said to be unstable, and stable
otherwise. By solving the linearized equations in terms
of ξ, one finds the eigenvalue equation,

− w2ρξ = F (ξ) (3)

where F is called the force operator. It is by isolating
F that one finds the stability limits for a given displace-
ment.

When taking into consideration the resistive MHD
theory a specific type of unstable modes driven by
current gradients, called tearing modes, can appear.
Destabilizing these modes can produce poloidal regions
where there is a reconnection of the magnetic field lines.
This is typically associated with the formation of mag-
netic islands [9], where the magnetic field lines break
and reconnect, forming island-like structures. A similar
instability to the tearing mode can also occur by pertur-
bations in the bootstrap current, facilitating the growth
of the magnetic island. These are called neoclassical
tearing modes (NTM) [10], and they can contribute to
confinement degradation, in particular with m = 2,
n = 1 modes.

During the growth of a tearing mode or a NTM, the
width of a magnetic island can be large enough to have
considerable interaction with the walls of the reactor.
This interaction can cause the deceleration of the mode,
eventually stopping its rotation and making it to lock.
The deceleration is attributed to applied torques in the
vacuum vessel wall [11]. This is a brief description of
the locked mode.

3. Experimental Setup
In this work, we use two main data sources from the
Joint European Torus (JET) tokamak. Both are part of
the magnetic diagnostics of the machine. They consist
of a system of coils and probes installed along the vac-
uum vessel that measure the magnetic field fluxes, al-
lowing important parameters such as the plasma posi-
tion on the vessel, the rotation frequency, and plasma
current, to be retrieved [12]. In order to study the plasma
equilibrium, stability, and spectral response, a set of in-
ductive, cylindrical coils are used, designated as Mirnov
coils. They consist of N loops of titanium wire that
measure the time variation of the local poloidal mag-
netic field, Bθ.

A single Mirnov coil (H305 coil) was used for this
work. It is part of an array of magnetic probes (High
Resolution Array Coils) distributed at different toroidal
angles and in the same poloidal section. The integrated
data acquisition system of the H305 coil provides a max-
imum sampling rate fs of 2 MHz. However, a down-
sampling to 125 kHz was made.

Figure 1 shows the magnetic pick-up coil data from
the database discharge 92213. The disruption instant is

visible with a well-defined spike. It is also clear that
the signal oscillates considerably throughout time, with
alternating peaks. Due to this behavior, the use of pro-
cessing techniques for non-stationary signals are more
suitable to capture the frequency component.

Figure 1: Raw data from the H305 coil. The dashed orange line indi-
cates the disruption instant.

Of equal importance to this work is the measurement
and use of the locked mode amplitude. This measure-
ment is possible due to a set of saddle flux loops, which
are located in the same poloidal plane at different ra-
dial positions, outside the vacuum vessel. According
to [13], the amplitude of a n = 1 locked mode, BLM ,
can be measured from the combination of magnetic field
fluxes generated by various current sources of the setup.
Examples of the locked mode signal from both disrup-
tive and non-disruptive discharges can be seen in figure
2. An increase in the locked mode amplitude at around
t = 53.40 s in discharge 92213 is noticed. This in-
crease is relevant in threshold-based methods to trigger
an alarm.

Figure 2: Example of the locked mode signal in a disruptive (top) and
non-disruptive (bottom) discharge.

The key instrument to analyze MHD activity is the
spectrogram, a time and frequency representation that
results from Fourier analysis applied to the data coming
from the H305 coil. More specifically, the used spec-
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trogram is calculated using a discrete-time implementa-
tion of the short-time Fourier transform (STFT). With
the STFT, an input signal is divided into N segments
of equal length, by multiplying it with a given moving
window function. A Fast Fourier transform (FFT) is ap-
plied within each segment. The result of the STFT can
be represented as a 2D matrix, S[t,ν], taking into account
the global contribution of each segment and providing a
local identification of FFT amplitude st,ν at each time t
and frequency ν indexes, as seen in equation 4,

S[t,ν] =


s1,1 s1,2 · · · s1,j
s2,1 s2,2 · · · s2,j

...
...

. . .
...

si,1 si,2 · · · si,j

 (4)

where i, j ∈ (t, f). To compute the STFT, a segment
length of 512 points was chosen, the same value of over-
lap points. The resolution for this segment length is
equal to 4.096 ms.

Figure 3: Spectrogram of discharge 92213. The dashed white line
indicates the disruption instant.

The spectogram representation of figure 1 can be seen
in figure 3. The disruption instants can be well charac-
terized as a sequence of one or more bursts, well de-
fined in time and covering almost the full spectrum of
frequencies. Regarding the observation of MHD activ-
ity, the dynamics of mode-locking can be visible within
this discharge. At t = 51.5 s, a n = 1 internal kink
mode over a q = 1 surface starts to decrease in fre-
quency, corresponding to the plasma deceleration. Af-
ter an interruption in the MHD activity, a n = 1, m = 2
mode (q = 2 surface) appears at a lower frequency af-
ter t = 53.0 s. Its frequency is reduced and the mode
eventually locks at around t = 53.4 s.

4. Methodology
The used data was comprised of a total of 486 pulses
from JET baseline scenario [14]. According to the prior
database definition of disruption time, there are 291
non-disruptive and 195 disruptive pulses. However, as
the first step of this work, the study of a direct link

between disruptive pulses and the occurrence of mode-
locking was made, similarly to other studies, thus lead-
ing towards a new definition of a disruptive experiment
in the context of this work.

The first goal was to understand how can we split
the available database between disruptive and non-
disruptive experiments by finding an optimal threshold
value to the locked mode amplitude. This initial study
was framed as a binary classification problem using ma-
chine learning standards, however, in this stage, instead
of having a trained classifier to make the predictions for
our data, we attribute in advance the classification labels
to each experiment. That is, each experiment was la-
beled according to locked mode amplitude and its max-
imum value by using the following definitions:

• if the pulse is disruptive and the locked mode am-
plitude exceeds the threshold before the disruption
time, then the pulse is classified as a true positive
(TP);

• if the pulse is non-disruptive and the locked mode
amplitude does not exceed the threshold at any
point in time, then the pulse is classified as a true
negative (TN);

• if the pulse is non-disruptive and the locked mode
amplitude exceeds the threshold at any point in
time, then the pulse is classified as a false positive
(FP);

• if the pulse is disruptive and the locked mode am-
plitude does not exceed the threshold at any point
in time or, if it exceeds, it does so on or after the
disruption time, then the pulse is classified as a
false negative (FN).

Deciding the optimal threshold is the same as obtaining
the best combination of previously chosen performance
metrics for binary classification.

When the binary classification metrics were applied
according to the previous labels to our data, an optimal
threshold value of 1.069 × 10−3 T was obtained. The
fact that most of these metrics are above 95% (see Fig-
ure 5) shows a quite satisfactory discrimination between
non-disruptive and disruptive experiments. This value is
also in line with previous studies on mitigation systems
that use the locked mode amplitude [2]. The obtained
performance metrics values for the optimal threshold
can be seen in table 1. These first obtained results were

Table 1: Performance results for the optimal BLM threshold.

Metric Result
Accuracy 0.979

Balanced accuracy 0.977
F1-Score 0.974

Matthews correlation coefficient 0.957

used to elaborate the following step, in which a binary
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Figure 4: Proposed CNN model.

Figure 5: Binary classification metrics with a threshold range on the
locked mode amplitude.

classifier based on a deep learning model is developed
to receive a sample of an MHD spectrogram and assign
as 0 if the locked mode amplitude does not exceed the
optimal threshold, and 1 if otherwise.

The proposed deep learning model (Figure 4) is based
on convolutional neural networks (CNN). These are a
specific class of neural networks, particularly adapted
to deal with image classification tasks and other 2D in-
put data [15, 16]. As indicated in the red region, at the
beginning of the network, the input consists of sample
windows from the spectrogram (previously computed
from the Fourier analysis) of 256 to 256 points in both
the time and frequency axis. This means that it covers
approximately 1.049 seconds in the time axis and the
whole frequency axis. In each 2D convolutional layer,
the two initial values refer to the width and height of the
resultant feature maps, while in each max-pooling layer
it refers to each feature map size after downsampling.
The third term is the number of applied kernels to the
input in the convolutional product and, for instance, the
number of obtained feature maps.

Following the input layer, the model is composed of
five convolutional blocks, each block with two convo-
lutional layers. A rectified linear unit (ReLU) activation
function is used within these layers to positively normal-

ize its inputs and to prevent the full stack of neurons to
be activated [17]. A max-pooling layer is placed after
the two convolutional layers, except at the last block.
Due to the implementation of the interpretation tech-
nique, the max-pooling layer in the final block is substi-
tuted with a global average pooling layer. To conclude,
the resulting vector from the previous layer is fed to a
one unit dense layer with a sigmoid activation function
to provide a probability value between 0 and 1.

The model is trained to discriminate two classes, thus
the binary cross-entropy L function is applied. Each pa-
rameter is updated by using a variation of Gradient De-
scent algorithm, called Adaptive Momentum Estimator
(Adam) [18].

The model was trained in samples of 485 experi-
ments. The inputs were sampled anywhere on the time
axis of the spectrogram. 90% of the total discharges
were used for training the model, and 10% for valida-
tion. The train was made using a batch size of 437 and
a learning rate of 1 × 10−4. The inputs were sampled
anywhere on the time axis of the spectrogram, i.e., at the
beginning of the experiment, where there is not any vis-
ible evidence of the possible outcome, and sometimes
only a very low frequency regime with no MHD activ-
ity, or after the disruption instant in a disruptive pulse,
if the locked mode has already occurred. This was also
done in order to any possible bias in the model towards
a desired outcome.

To obtain the physical interpretation from the classi-
fier and relevant MHD activity to the model, the class
activation mapping (CAM) technique [19] is used. With
CAM, we identify the regions in the spectrogram that
contribute the most to the classification of a determined
image by the CNN model. To employ CAM, one must
change the CNN model according to figure 6.

Both the global average pooling layer and the dense
layer are removed and replaced with a single custom
layer that computes the weighted sum of 16×16 feature
maps produced by the last convolutional layer. In or-
der to overlay the map on the input sample and directly
observe the results, it is also upsampled to the same di-
mensions of the input (256× 256).
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Figure 6: CNN model after the introduction of CAM.

5. Results and Discussion
The results of optimal training, after many trials, are
shown in figure 7. At epoch 357, the best value of vali-
dation L is achieved (0.38), reaching a validation accu-
racy of 0.83. After achieving the global minimum, it is
clear the development of overfitting.

Figure 7: L function and accuracy metrics obtained during training.

These results could be attributed to the nature of
both the input data and the method applied in training.
As previously mentioned, no constraints were set when
choosing a given sample in training, i.e., they could be
selected at any time of the discharge. This means that,
at the beginning of the discharge, the chosen sample is
identical between non-disruptive and disruptive cases.
Thus, if the behavior in frequency is practically the same
in two samples, even with different labels, the model can
behave very well on training data, but wrongly guess in
test data.

With the model fitted in training data, we use dis-
charge 92213 to see the prediction results. Each spec-
trogram sample window, at a given time index, was used
to make a prediction in the next window, from the be-
ginning of the experiment to the last sample. That is,
the sample window is positioned always to the past in
time from which the prediction is made. The result is
in figure 8. At t = 52.2 s, the prediction continuously
increases to almost 1, and practically stabilizes during
MHD activity interruption (from t = 52.5 s to t = 53.0
s), mode-locking (from t = 53.2 s to t = 53.4 s) and
the disruption instant. In practice, the model was able

Figure 8: Model prediction (white) for the spectrogram samples of
92213.

to recognize a disruption caused by mode-locking even
before the latter shows up, with a time window of ap-
proximately 1 s.

One of the relevant tasks when developing binary
classifiers is to test them in a new set of data and evalu-
ate its performance metrics to measure its capability to
generalize. However, all of the available data was used
during training of the model, and thus a test set with
new experiments could not be considered in this work.
The validation test was used as a test set equivalent to
elaborate this task, where 48 discharges were included.
Similarly to what was done in the study of the locked
mode amplitude, if the probability does not reach a de-
fined threshold value when the discharge has a locked
mode disruption, then the discharge is classified as FN,
and if it reaches that threshold in a 0 labeled sample is
classified as FP. The same performance metrics used in
the study of the locked mode threshold were also used,
with the addition of the receiver operating characteristic
(ROC) curve as seen in figure 9.

Figure 9: ROC curve of the developed predictor.

At the probability threshold value of 0.883 all the
metrics reach their maximum, with an accuracy of about
79.5% (see Table 2). The reason for this consider-
able high value to be obtained can be attributed to

5



fluctuations present during the predictions at both non-
disruptive and disruptive discharges. The ROC curve
indicates that the predictor is reasonably far from a ran-
dom classifier, which is a good indication, confirmed by
the area under curve (AUC) calculation of about 0.82,
despite the considerable number of FP discharges.

Table 2: Best performance metrics achieved for a probability threshold
of 0.883.

Metric Result
Accuracy 0.796

Balanced accuracy 0.804
F1-Score 0.762

Matthews correlation coefficient 0.594
AUC 0.819

After the evaluation of the performance metrics, we
used the modified model (see Figure 6) to produce the
CAM for a given sample. The negative values (as blue
color) represent the areas of the spectrogram that con-
tributed the most to the classification of the classifier
towards 0, which in the case of a more intense blue in-
dicates the saturation of the sigmoid function to its min-
imum value. For positive values (as red color), the ar-
eas in the spectrogram had a higher influence towards
a classification of 1. The intermediate value (as white
color) is equivalent to a random guess of the classifier.
The resultant map is overlaid on the spectrogram sam-
ple to facilitate further interpretations. The application
to discharge 92213 can be seen in figure 10.

The right-hand side of the image corresponds to the
CAM method when applied to the sample highlighted
by the yellow rectangle on the spectrogram at the left
side. It can be observed what most influenced the pre-
dictor to make a certain classification. In the case of
discharge 92213, there are features that converge with
the physical interpretation given by the previous anal-
ysis of the spectrogram. First, it is interesting to no-
tice the highlight on the interruption of the internal kink
mode, specifically at t = 52.4 s. This highlight by CAM
is sufficient to considerably raise the prediction value to
approximately 1, about one second before mode-locking
development. Secondly, two additional characteristics
can be seen by moving the sample window. A negative
area, where practically no MHD activity is present (only
a residual frequency band), and the positive highlight in
a m = 2, n = 1 mode (q = 2 surface), at a lower
frequency (approximately 4 kHz), which decreases due
to locking afterwords. This kind of behavior is consis-
tent with the work by Sweeney et al. [20], where these
modes, namely rotating m/n = 2/1 modes, are likely
to lock. In Pucella et al. [21], this is also observed and
correlated with a growth of a m/n = 2/1 islands due to
temperature hollowing, in which some impurities start
to accumulate in the plasma core.

The CAM method was applied to practically all dis-
charges in the dataset. In 22 discharges, the same pattern

described previously is explicitly observed, that is, the
interruption of the MHD activity and its resurgence, fol-
lowed by the locked mode. All these discharges surpass
the prediction threshold of the model, thus being clas-
sified as disruptive, which is consistent with the prior
attributed labels. In some cases, either the prediction
value or the positive highlight of CAM is before mode-
locking and could provide a sooner warning time than a
simple threshold on the locked mode amplitude.

However, these conclusions need to be carefully con-
strained. In some of the identified discharges, the CAM
method also gives a particular focus to the described pat-
terns, but it may not increase considerably the probabil-
ity value in those windows, as previous MHD activity
could enhance it. Additionally, the presence of many
FP discharges when the calculations of the performance
metrics were made can indicate that the instability of
the probability values throughout each discharge makes
the model wrongly classify some of the non-disruptive
discharges as disruptive. To conclude, some discharges
could be left out of the CAM behavior identification due
to the short duration of the locked mode.

6. Conclusions
In this work, we have shown a deep learning method
to be applied directly on spectrogram analysis of MHD
activity to predict the occurrence of disruptions with
mode-locking. Although it cannot be directly compared
with other predictors, due to the lower accuracy value
and the fact that no test set was used to measure the
performance metrics, it can reasonably discriminate the
classes of interest, having into account that only the data
coming from a magnetic coil was used as an input. Ad-
ditionally, the CAM method was implemented to allow
the addition of physical understanding of the results and
retrieve relevant MHD activity in the perspective of the
model.

Based on the application of CAM mapping to vari-
ous discharges, the most common feature to be compat-
ible with available physical insight is the interruption of
MHD activity, followed by its resurgence. In some dis-
charges, the model can provide an alarm before mode-
locking itself, and it can even surpass current predictors
in the time window for prediction.

To sum up, this work delivers a new technique to an-
alyze MHD activity in time and frequency representa-
tions, as well as provides some insight when data-driven
models are applied in nuclear fusion data. Furthermore,
it contributes to the new paradigm in the disruption pre-
diction field, where besides the capabilities of the pre-
dictors to correctly classify disruptive discharges, it al-
lows to increase the knowledge in the mechanisms in-
volved, as well as to validate the results from the applied
deep learning models in fusion data. The introduction of
this methodology and other interpretable deep learning
frameworks can be an important analysis tool for toka-
mak physicists, allowing a broader perspective of data-
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Figure 10: Result of CAM for discharge 92213 at t = 53.32 s.

driven models and providing the learned features from
the models to extend the analysis of MHD activity and
other machine diagnostics.

As future work, a new set of possible additional
tasks arise after the first approach with these method-
ologies. The parameter and hyperparameter spaces were
not completely explored, and a more extensive tuning,
with proper computational resources, could lead to im-
provements in the model’s accuracy. One could also
establish a new type of labeling and classification con-
straints, since using binary labels can be a limitation
specifically when samples are at the beginning of the
discharge. Finally, it would be interesting to examine
other behaviors retrieved by CAM in our data, or add
other interpretability techniques, which could bring ad-
ditional insight.
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