
1

Light-Field Rendering on Mobile Devices

Ricardo Fonseca

ricardopfonseca@tecnico.ulisboa.pt

Instituto Superior Técnico

October 2021

Abstract— Light-Field Rendering is quite an old concept, as

most pillars of Computer Graphics. Ahead of its time, it was

overlooked by many, as, even though it was a great concept,

there was a lack of processing power to implement it.

Nowadays, with the increasing capability of computers, the

concept is being revisited with eyes set on VR. And one

particular type of device that is being picked up are the

mobile devices with its ever-growing processing power. This

thesis focuses on implementing Light Field Rendering

algorithms on a mobile device. An Android application was

developed for this, following two approaches to the problem,

a naive one and a more optimized one, to be able to check

feasibility, analyse the effects of optimization and what are

the bottlenecks in present time. The results of this work show

that this technique is usable in real-time on mobile devices.

The performance of the algorithm mainly depends on the

memory size that the input lightfields occupy and how

aperture effects are processed. With those issues addressed,

the bottleneck relies on the device’s capacity of loading big

image datasets into memory.

Keywords— light-field, computer graphics, real-time

rendering, OpenGL ES, Android

I. INTRODUCTION

The ever-increasing mobile market has opened exciting
research opportunities. With the developments in VR in
recent years and with mobile performance getting better and
better, it is only logical to take advantage of the best of both
worlds. In VR the strive for photo realism is big, but even for
less detailed worlds, it is still a somewhat technical challenge
to get everything running stably at the desired 90 FPS, even
on modern desktop hardware. However, with the processing
power as it stands today, we can look back in time to rather
ambitious algorithms that can now be run interactively and
which might help overcome this hurdle. One of them is Light-
Field Rendering (LFR), an algorithm that enables photo
realism usually only possible with ray tracing methods, in real
time rendering. Disney and Google have been researching
and developing new technology in this field for the past few
years, with the latter having implemented one specifically for
mobile VR called Seurat [1]. Wanting to be at the forefront
of the Computer Graphics field and more specifically in the
VR field, Samsung UK is aligned with our excitement about
this technique and with that a partnership was established
with them to help on the development of this thesis.

Image based rendering is a set of techniques that makes it
possible to visualize 3D objects and scenes in a realistic way
without actually reconstructing a full 3D geometric model. It
does this by interpolating through discrete input images or
re-projecting pixels in input images. [2]

The range of this set goes from rendering techniques with
no geometry, to some with implicit geometry ending with
explicit geometry. This work, as the title entails, focuses on
the no geometry end of the spectrum with Light Field
Rendering at its core. In the beginning of this thesis a study

of what was done and was being done in Light Field
Rendering was done to assess where to start working.

A few papers and projects were analysed, including the
initial proposal for this technique, but also recent research
projects by Disney and projects like Seurat [1] by Google, all
to be introduced in the next chapter.

Seeing that these were quite complex approaches and
over-engineered to follow for the purpose of this thesis, we
opted for a simpler approach and went with porting two
existing open-source light field viewers, similar to one
another, where one is a naiver approach and the other an
optimized one.

It's clear from articles and projects like Seurat that real
time Light Field Rendering applications or at least interactive
ones are possible to implement in mobile devices.

With this in mind, the main focus of this thesis became
validating, optimizing and studying its effects on this specific
device and see what the current bottlenecks are.

The research was conducted in partnership with Samsung
Research UK who provided the hardware to test the outcomes
of this work, which led it focusing exclusively on Android
devices.

II. RELATED WORK

A. Image-Based Rendering methods

1) Texture-Based Volume Rendering
It starts by loading the data volumes onto the CPU,

creating the transfer function lookup tables and fragment
shaders. Afterwards it enters an Update phase where every
time there is a change in the viewing parameters, the proxy
geometry is computed and stored in vertex arrays [3]. A
change of rendering mode and/or transfer function
parameters will trigger an update of textures.

Moving on to the Draw phase, first there’s the setup of the
rendering state which typically includes disabling lighting
and culling and setting up alpha blending [3]. The rendering
state is then restored after the slices are drawn in sorted order
[3].

2) Texture-Mapped Models
Texture mapping rendering has been around for many

years now. The initial work is commonly attributed to
Catmull in 1974. It's one great example of IBR and probably
the most commonly used in present time. This technique can
be seen being used in billboard rendering, when rendering 2D
clouds in 3D games, 3D views of satellite imagery in
applications such as Google Earth, or many different types of
mapping for image fidelity such as ambient occlusion maps,
normal maps, bump maps, etc.

2

Figure 1 – Billboard Rendering [4]

Figure 1 - Effects of normal maps [5]

Although visual results have been improving throughout
the years while using such techniques, they are still a long
way from achieving what can be achieved through offline
rendering.

3) Concentric Mosaics
The Concentric Mosaics approach is a 3D

parameterization of the plenoptic function proposed by Shum
and He [6]. As the name implies, the camera motion is
constrained along concentric circles on a plane [7]. They are
simple to capture, much like a traditional panorama, but do
require more images

However, concentric mosaics allow the user to observe
significant parallax and lighting changes, since the user is
able to move freely in a circular region, providing a much
better user experience.

This technique does present vertical distortions in
rendered images, but these can be smoothed out using depth
correction.

It offers good space and computational efficiency and it’s
very easy to capture, offering a smaller file size than LFR
since it only constructs a 3D plenoptic function.

4) Transfer Methods
Coming from a term used in the photogrammetric

community, it uses a small number of images by applying
geometric constraints to reproject image pixels appropriately
at a given virtual camera viewpoint. [7]

These constraints can be known depth values at each
pixel, epipolar constrains between pairs of images, or
trifocal/trilinear tensors that link correspondences between
triplets of images.

5) 3D Warping
These techniques can be used to render viewpoints that

are a short distance between themselves if depth data exists
for every point in a set of images. When looking from any
nearby viewpoint, an image can be generated by projecting
the pixels of the original image to their respective 3D
locations and re-projecting them onto the new picture.

This technique has a common issue of existing holes in
the warped image, due to difference of sampling resolution
between input and output images, and because of parts of the
scene which are seen by the output image and not by the input
one. To easily fix this, the common method is to stretch a

pixel from the input image to match a size of several pixels
on the output image.

6) View-Dependent Texture Maps

This technique was brought to light as texture-mapped

models of real environments being generated through a 3D

scanner or application of computer vision techniques to

captured images aren't as accurate as desired, with the

addition of the difficulty of capturing highlights, reflections,

and other visual effects through the use of a single texture-

mapped model. This is particularly useful for architectural

environments.

Debevec et al. [8] proposed an approach where, using a

3D model of the real building and photographs of it from

various viewpoints, the images are projected onto the model

and merged between them, creating a composite rendering by

taking into account the corresponding pixels in the rendered

views.

7) Multiple Viewpoint Rendering
The Multiple Viewpoint Rendering (MVR) [9] technique

bridges the gap between light fields and 3D scene geometry.
Arranging the images from each camera by viewpoint
location it is possible to form an image volume called the
spatio-perspective volume. This rendering method takes
advantage of the coherence and regular structure Epipolar
Plane Image (EPI) representation, which is a slice through
said volume, to efficiently render the scene.

Comparatively to Single Viewpoint Rendering (SVR)
algorithms, MVR reduces the cost of computing the
perspective image sequence as it can perform as many
calculations as possible once per sequence instead of once per
view.

8) View Interpolation
View interpolation is the process of creating a sequence

of synthetic images that, taken together, represent a smooth
transition from one view of a scene to another view. [10]

This technique was first introduced by Chen and Williams
in 1993 [11]. It proposes using dense optical flow between
two input images from a scene to interpolate arbitrary
viewpoints [11]. It works really well if each two consecutive
input images are close enough for there to exist overlapping
between them. These view changes can also be improved by
selecting an appropriate warping function, such as a cubic or
quadratic interpolation, with each equation degree increasing
the amount of computation rates needed to calculate said
results.

9) View Morphing

View Morphing builds upon the work done for View

Interpolation. It is better suited for larger camera angle

changes and for non-linear camera paths. This is possible

through the addition of Prewarping and Postwarping phases.

The first one aligns the image planes without changing the

optical centres of the camera with the latter yielding the

image.

B. Light Field Rendering Projects

1) Seurat
This project was developed by Google and works as a

plugin for major game engines. It is a scene simplification
technology designed to process very complex 3D scenes into

3

a representation that renders efficiently on mobile 6DoF VR
systems. [12]

It processes the scenes by generating data for a single
headbox. It starts by generating RGBD input images of the
scene, which should then be ran through the existing pipeline
to generate the output geometry and RGBA texture atlas
which can later be imported into the engine of choice.

The scene captures are organized into view groups, also
called cube maps, which consist of a set of views, containing
a camera and the RGBD information. The most common
setup is render 32 groups from random positions inside the
headbox1. These images are then used as input in the pipeline
and the outcome is a textured mesh, according to a
configurable number of triangles, texture size and fill rate.

2) Real-Time Rendering with Compressed Animated

Light Fields

Disney Research proposed a real-time rendering approach

using compressed animated light fields [13]. The outcome is

an end-to-end solution for presenting movie quality animated

graphics to the user while still allowing the sense of presence

afforded by free viewpoint head motion. It mainly targets VR

applications, using the tracking in real-time of the head pose

to display an immersive representation of movie content that

was previously offline rendered.

Contrary to immersive 360º videos, this approach enables

motion parallax, as the input capture doesn't assume a fixed

location. This in turn contributes to better immersion as the

content doesn't seem flat and the user has free movement

around the scene.

The proposed solution works by generating, for each

frame, using a set of 360º cubemap cameras positioned near

potential viewer locations, a set of cubemap images per frame

containing colour and depth information. Using an

optimization process, the cameras are positioned in such a

way that maximises coverage while producing minimal

redundancy. The computed dataset then runs through a

compression step. The colour and depth data are compressed

separately, using schemes perfected for use on GPUs for VR

applications.

The algorithm for real-time rendering uses ray marching

to reconstruct the scene from a given camera using data for a

set of viewpoints (locations and color/depth textures) and

camera parameters. [13] It first calculates the intersection

with geometry by marching along the ray, and then calculates

the colour contribution from all views.

To aid performance, the authors developed the

compression methods to support a view-dependent decoding

mechanism, enabling the decoding of only the parts of the

video that are visible to viewers, reducing the per-frame

bandwidth necessary to update viewpoint texture data. They

also applied view-selection heuristics to prioritize set of

viewpoints for each calculation given that not all cameras can

give useful data in every situation.

C. Light Field Rendering

1) What is a Light Field

The concept of a light field comes from a proposition by

Michael Faraday in an 1846 lecture, stating that light should

be interpreted as a field, much like the magnetic fields2. The

1 Stated in: https://github.com/googlevr/seurat
2 Stated in: https://en.wikipedia.org/wiki/Light_field

actual coining of the expression was by Andrey Gershun in

1936 in a paper about the radiometric properties of light in

3D space.

A light field is a vector function that describes the amount

of light flowing in every direction through every point in

space2. A 5D plenoptic function gives us the space of all

possible light rays, with Radiance giving us the magnitude of

each of the light rays.

The rendering technique is later proposed in 1999, by

Levoy and Hanrahan, and proposes that the light field can be

represented as radiance as a function of position and

direction, in regions of space free of occluders (free space)

[14].

This proposed restriction makes the five-dimensional

function contain redundant information as the radiance along

a ray remains constant as there are now obstacles to hit. Since

this information is exactly one dimension, we can drop it,

getting a 4D light field in the process.

2) Radiance
Radiance can be defined as the amount of light traveling

along a ray, commonly represented in graphs by L and its unit
of measurement is watts per steradian per meter squared.

Figure 2 - Radiance can be thought of as the amount of light
traveling along all possible straight lines through a tube

whose size is determined by its solid angle and cross-
sectional area. [15]

Steradian is the measure of a solid angle [16] and meter
squared appears as is used as a measure of the cross-sectional
area.

3) 5D Plenoptic Function
The plenoptic function describes the intensity of each

light ray in the world as a function of visual angle,
wavelength, time, and viewing position.

Adelson in 1991 [17] defined the plenoptic function as the
radiance along all such rays in a region of three-dimensional
space illuminated by an unchanging arrangement of lights2.
This function is particularly useful in computer vision and
computer graphics to define an image of a scene from any
possible viewing position and angle at any point in time. It is
five dimensional as rays in space can be parameterized by
three coordinates and two angles.

https://github.com/googlevr/seurat
https://en.wikipedia.org/wiki/Light_field

4

Figure 3 - 5-dimensional function [15]

4) 4D Light Field
As previously mentioned, we get a four-dimensional light

field once we restrict ourselves to the locations outside the
convex hull of an object, which defines it as radiance along
rays in empty space.

A big difficulty with its representation is how to
parameterize it as there are several issues to take into account,
mainly efficient calculation, as the calculation of the position
of a line from its parameters should be fast [14], control over
the set of lines, since only a finite subset of line space is ever
needed from the infinite space of all lines [14], and uniform
sampling, where the number of lines in intervals between
samples should be constant everywhere [14].

The most common way to parameterize a light field,
proposed in Levoy's paper, is to represent lines by their
intersection with two planes in arbitrary positions [14]. These
lines represent rays of light hitting these planes. This
representation is called a light slab:

Figure 4 - Light slab representation [14]

Making the connection between this and the concept of IBR,

an image corresponds to a 2D slice of the 4D light field

making that, to create a light field from a set of images is the

same as inserting each 2D slice in the 4D representation.

This representation enables the placing of one of the planes

at infinity which in turn makes it possible to define lines by a

point and a direction. That enables constructing light fields

from orthographic images or images with a fixed field of

view.

D. Mobile Architecture

Mobile devices nowadays feature some similarities to
computers. Some even call them computers themselves.
Which they are, as they feature most of the characteristics that
define a computer: a screen, memory, storage, and a power
source.

If component-wise they are quite similar, at least
superficially, the way everything works is quite different.
Starting at the size of each component, in the smartphone
everything is quite a bit smaller, as these are handheld
devices, meant to be carried in everyone’s pockets. Then
weight, power supply and heat dissipation are also major

3https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrate

d_graphics

issues when talking about a computer that fits on the palm of
your hand. And all of this means that processing power is also
much more reduced than the one found in personal
computers.

1) Unified Memory Architecture
UMA may also be known as Integrated graphics

processing unit (IGPU)3, and the difference to a dedicated
graphics card is that it uses a portion of a computer's system
Random Access Memory (RAM) rather than dedicated
graphics memory. While on desktop it is used something
called Immediate Mode as graphics pipeline, on mobile this
isn’t feasible. This happens because desktop GPU’s have a
dedicated memory interface with fast RAM optimised for
GPU usage.

Figure 5 - Desktop memory layout

However, on mobile, communication between GPU and
RAM is quite expensive, performance wise, with the devices
not having a dedicated graphics memory but using a shared
memory interface instead. So, the Tiled based method takes
care of this issue.

Figure 6 - Shared memory interface on mobile

2) Tile Based Rendering
While on desktop it is used something called Immediate

Mode as graphics pipeline, on mobile this isn’t feasible. This
happens because of the non-existent GPU with a dedicated
memory interface with fast RAM optimised for GPU usage,
as mentioned in the previous section. However, on mobile,
communication between GPU and RAM is quite expensive,
performance wise, with the devices not having a dedicated
graphics memory but using a shared memory interface
instead. So, the Tiled based method takes care of this issue.
In an Immediate Mode renderer, as each triangle is submitted
its data enters the GPU pipeline, and all the pixels for this
triangle (and its Z buffer values) pop out of the other end of
the pipeline.

https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrated_graphics
https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrated_graphics

5

Figure 7 - Tile-based Renderer [18]

Which means that each geometric primitive is rendered
one at a time, while storing information in colour, depth, and
stencil buffers in the RAM. This takes up a lot of memory and
makes it necessary for the GPU to communicate with the
RAM quite a lot which is unmanageable on mobile devices
as previously told. Enters the tiled based renderer. On this
approach fragments are processed in tiles, as the name
implies. More specifically, the ARM Mali GPUs process
fragments in 16x16 tiles.

The first step to achieve this is to use a concept called
Tiled Memory where we start reducing memory bandwidth
by treating each cache line a two-dimensional rectangular
area, in simpler terms a "tile", in memory. This will lead to
less transfers to memory as more rendering happens within
the cache because we are using square cache areas that are the
same size as a linear cache. It works given that usually,
triangles that are near to each other in space are often
submitted near each other in time, resulting in more cache
hits. [19]

 Rendering then is broken into two phases:

• Binning phase (writes to memory)

• Rasterization (reads the bin contents)
In the first phase every triangle is checked to see whether

it does or doesn't touch a tile. The renderer then goes through
each tile and draws the triangles that were identified as
touching that same tile.

With this phase ended, we get to the tile-based
rasterization, where the rasterizer processes the scene one bin
at a time, writing only to local tile memory until processing
of the tile is finished. [19] Given that the renderer is only
rendering the area corresponding to that tile, it can be
processed in fast on-GPU memory. With this, main memory
is only touched once as the tile is written out to it only when
rendering is finished. [20]

When comparing this form of rendering with immediate-
mode rendering, it is to note that it introduces latency as the
last phase cannot begin until all the geometry has been
processed [19], but the reduction in bandwidth, in turn,
increases the speed of this phase. A few more complete
details about this type of rasterization can be found in [19].

III. IMPLEMENTATION

As the title of this thesis implies, the work focused on the
mobile environment and given the partnership with Samsung
Research UK, Android was the underlying operating system
for the application that was developed to test the algorithm
for Light-field Rendering.

Stemming from this partnership, a smartphone was
provided for development and testing purposes, more
specifically a Samsung Galaxy Note 9 (Model SM-N960U)
which makes use of a Qualcomm Snapdragon 845 System on-
chip (SoC) with an octa-core CPU and a Qualcomm Adreno
630 GPU that takes care of the graphics processing.

Contrary to usual Android development, which is done in
Java using Android’s Software Development Kit (SDK) since

4 https://github.com/mpk/lightfield

the operating system runs on a Java Virtual Machine (JVM),
the application was developed in C++ by using the Native
Development Kit (NDK), which links Java and C/C++
through the Java Native Interface (JNI), and OpenGL ES
which Android includes. For this application, OpenGL ES 3.3
was used.

A. Base Algorithm

The algorithm implemented follows what is stated in the
original paper that first introduced the concept of Light Field
Rendering.

The idea behind it is quite simple. Using either some
rendering software (in this case Blender was used, as an open-
source plugin was available to capture the light fields using
any scene one would want to test) or a camera, one must shoot
a scene from multiple consecutive angles. How much ground
the camera captures images go left, right, up, and down will
determine how much of the scene will be seen in the
application. It is important too that the interval between
camera angles isn’t severe, to ensure that no jarring
transitions occur when interacting with the app.

Having this set of rendered images, the application then
introduces the set in a texture atlas, with the images ordered
from left to right and then top to bottom.

The shader will receive the camera position, which is
calculated using the motion values gathered by the
gyroscope, which will then be used in conjunction with the
aperture and focus values to select the right sub image from
the texture atlas.

The selected image is then set to the texture that is being
shown in the screen and mimics the way we would move
through a scene, limited by boundaries which are defined
when rendering the set of images offline.

The algorithm is quite simple, delivering great results,
with great quality, resembling a flipbook animation.

The shader receives the camera position and checks the
images positioned in the texture atlas around said vector
position, with the search being limited by the aperture size,
and if all parameters check out, the colour from for the current
pixel is a combination of the adjacent ones.

B. Optimized Algorithm

When starting to implement this optimized approach, it
was found that a small open source WebGL project was
available on GitHub4.

Given the lack of information on light field rendering
implementation, the time constraints on this thesis, and with
the major focus of this work being more on the study of the
performance of this type of rendering in a mobile
environment, it was decided to take inspiration from it and
work on a form of a port of it in C++ and as an Android app.
Taking advantage of memory features of C++, many of the
variables we stored as pointers to reduce copies of variables
and with that conserve memory. The user input gathering was
changed to support gyroscope information as the original
application was created to be interacted using a mouse and by
clicking and dragging to mover around the scene. The shaders
were also optimized to cache some calculations.

The original project not only optimizes the algorithm, but
also compresses the input dataset. It does so by dividing it
into intra and predicted frames.

The algorithm basis its processing on two shader passes
while having four textures. Two are virtual textures, more

https://github.com/mpk/lightfield

6

commonly known as texture atlas, one for the intra frames
and another for the predicted ones. The third texture works as
a lookup table, called Page Table in this case. It does so by
storing in each pixel one two colours: black or blue. When
calculating the fragment colour in the shader, it will sample
from the intra atlas if black or from the predicted if blue.

The last is a Render Target which will be the output image
on the last shader pass.

In each render cycle, a set of frames are selected for
bilinear interpolation based on the current viewpoint and
aperture. The frames are adjacent to the current viewpoint
both on the y axis and x axis, and the range in which these are
selected is bounded by the aperture value.

With the selection finished, it updates the respective
texture atlas according to the type of frame. When updating
the virtual textures, it also updates the Page Table with the
new information regarding each new frame.

The first shader pass generates the composite image that
is stored in the render target. The framebuffer is changed
from the default one to point to the render target texture. Any
calculations done in the current bound shader will be stored
in said texture.

It uses the current viewpoint, the intra and predicted
virtual textures and the lookup texture as input for calculating
the composite image to be shown at the end of the current
render cycle.

Using frame offsets of a maximum of one unit to each
axis, and adding that to the current viewpoint, on the vertex
shader pixel entries are selected from the page table. Four
entries are selected and passed onto the fragment shader.

On the fragment calculation, these entries are used to
either sample from the intra texture atlas or the predicted one,
as stated previously. The final fragment colour is calculated
by mixing the four calculated colours. This mix of sampled
colour information enables the smooth interpolation between
existing image frames.

The implementation described here was all ported into
C++ and an Android app. It was able to display images and
transition between frames, but this transition never got to be
as smooth as the original application. A tremendous
debugging effort was made to try and solve this issue, but
with the delivery deadline approaching, development had to
stop.

IV. EVALUATION METHODOLOGY

A. Metrics

1) Frame rate
Frame rate is the frequency at which consecutive images

called frames appear on a display5. The reason for it being
the most important metric comes down to a concept called
Flicker Fusion Threshold, also known as Flicker Fusion Rate.
It is a concept in the psychophysics of vision and is related to
the persistence of vision6, and it is defined as the frequency
at which an intermittent light stimulus appears to be
completely steady to the average human observer7. If the
frame rate falls below this threshold, the flicker will become
apparent to observer, the so called “jerky” movement. This
threshold varies with the viewing conditions.

In this case, where we want real-time rendering for the
purpose of interactivity with the scene displayed by the

5 Stated in: https://en.wikipedia.org/wiki/Frame_rate
6 https://en.wikipedia.org/wiki/Persistence_of_vision
7 Stated in: https://en.wikipedia.org/wiki/Flicker_fusion_threshold

application, ideally the values should be from 50Hz upwards,
as studies show this value is the start of what most
participants call stable images. However, we accept this value
to drop down to 30Hz as it is still deemed acceptable by most
users (many console video games are run at this frame rate).

The way this is calculated in this application is we first
store the current time using the respective window
management method for that purpose and then calculate the
delta between the current time and the previous stored current
time. We also store the number of frames, increasing by one
every time the method is called. The delta is always checked
as an if clause, and when equalling or surpassing 1.0, the
application runs the code associated with this condition,
where the frames per second value is calculated by dividing
the number of frames by the calculated delta. Afterwards we
display the frame rate value (on desktop it is displayed in the
window title bar and on mobile is displayed as an overlay)
and then reset the number of frames to zero and store the
current time in the variable for the previous current time,
which is used on the delta calculation.

2) Memory Usage
Although processing and displaying the image is

somewhat inexpensive, the main drawback of this approach
is needing to store every image of the rendered set, which, to
have good results is synonym of at least 169 images, and with
devices nowadays supporting ever increasing resolutions, this
quickly adds up.

To measure all of this, we use the Snapdragon Profiler.
This tool allows developers to analyse CPU, GPU, DSP,
memory, power, thermal, and network data, so they can find
and fix performance bottlenecks [21] by connecting with
Android devices powered by Qualcomm® Snapdragon™
processors over USB [21]. We analysed these values by
exporting them into a Comma Separated Values (CSV) file
which in turn enables the data processing and creation of data
visualizations. With such visualisations it was possible to
confirm most of the expected outcomes that were conceived
when developing the present work.

B. Test Scenes and Testing Methodology

Three scenes were created in Blender 8 using an open
source lightfield generator plugin 9 . The idea behind the
creation of the scenes was to make them progressively more
complex.

Figure 8 - Simple Scene

8 https://www.blender.org
9 https://github.com/lightfield-analysis/blender-addon

https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://www.blender.org/
https://github.com/lightfield-analysis/blender-addon

7

Figure 9 - Monkey Scene

Figure 10 - Dragon Scene

The first scene contains simple geometry consisting of a
few cubes of different sizes and proportions. It was inspired
by the Cornell Box scene and features a small cube
surrounded by two cubes modified to resemble walls and
another below to resemble a floor and features no texture
mapping. The second scene features one complex object, in
this case Blender’s mascot Suzanne, surrounded by a few
cubes of different sizes and proportions. The third one is a
simple scene comprised of a very complex object with a high
poly count, in this case the famous Stanford Dragon [22].

The scenes were structured in such way to gradually
increase the processual effort needed to obtain a photo
realistic render when rendering offline in order to compare
the time taken to complete such task versus displaying such
scene interactively through the proposed work in this
dissertation.

To keep the conditions consistent the camera grid defined
in Blender has the same configurations for every scene, with
13 by 13 cameras at a 10 cm distance between them, and the
light source is of the sun type, positioned to provide the best
visual appeal.

V. RESULTS

Visual tests were done first to ensure the optimal
parameters were chosen. This first step was important for two
reasons: one because, given that the purpose of using this
algorithm is to enable interactive apps using photorealism,
human perception of how smooth the scene movement really
is becomes key to the success of the application of such
technique; and two because, given that there was going to be
two test runs per scene, it was important to have chosen the
right parameters to deliver the best results, as multiple
configurations would quickly add up in terms of data to
analyse.

The testing phase moved into the second step which was
comprised of two test runs, a static and a dynamic. The first
occurred with the device resting on top of a table without any
interaction whatsoever. The latter, as the name suggests,
involved movement with the device being hold straight and
steadily about the same height every run and once the
application finished loading a series of movements were
performed to move around the scene. It is worth noting that

10 https://en.wikipedia.org/wiki/Bokeh

the set of movements was always the same as well as the
timestamps used to gather the data in between.

A. Visual Tests

For the focus plane variable tests revealed no impact on
framerate so it was decided to just adapt it to each scene, since
the objects are not all at the same distance from the camera.
However, that is not the case for the aperture value.
Analysing the fragment shader that calculates what image to
display at any given camera position what was clear that this
particular value would have an impact on the performance.
Starting with the default value, where everything is in focus
in the chosen focus plane, kept the framerate stable at 60 FPS.
This situation was no longer true as soon as the aperture value
started decreasing, introducing the famous blurring outside
the focal area, the so called bokeh10. The framerate started
having a noticeable impact, gradually dropping to the lowest
measured value of 9 FPS, clearly not a suitable value for an
interactive real-time application. Throughout this aperture
range however, it is still possible to have some bokeh effect
at an acceptable 30FPS, if keeping the value closer to the
default setting.

Influencing the ability of loading the app was also the size
of the dataset being used and the resolution of each image that
it comprises. Initially the app was developed using Stanford’s
Light Field Archive11 datasets, mainly one of a 17x17 grid
with image size of 1024x1024 pixels. Developing the first
custom lightfields it was decided to follow the same grid
structure but with 1920x1080 pixels. This revealed to be an
issue as the app would crash even before displaying any
image, running out of memory. Bringing down the grid
structure to 13x13 cameras helped launch the application, but
it still took a long time loading everything into memory and
displaying the first image. It also would have an impact on
generating the datasets, as an image with that size would take
almost an hour to render, if not more, which would hinder the
timeline of the project. A middle ground was found, by
choosing to keep the 13x13 grid but instead which each image
having 1280 pixels of width and 720 of height, keeping the
16:9 ratio. Although the smartphone had a bigger resolution,
keeping the ratio helped maintain a decent visual quality.
Possible solutions to get around this issue can be found on
section 6.2. It is also worth noting that, alongside the stable
60 FPS framerate, transition between viewpoints offered no
jarring effects.

B. Performance Tests

One key measurement of these tests is the percentage of
CPU utilization versus GPU:

Figure 11 - CPU Utilization (%)

From Figure 11, it is possible to conclude that the
application relies very little on the CPU and in turn is GPU
intensive, as expected. It is also worth noting the variation
that exists between each static and dynamic test. This is due

11 http://lightfield.stanford.edu/

https://en.wikipedia.org/wiki/Bokeh
http://lightfield.stanford.edu/

8

to extra work processing the camera position from the always
changing gyroscope values.

The next Figure 12 helps support the previous statement
about most processing happening mainly in the GPU.
Although a small variance is present, it is mostly negligible,
and the values stay rather constant.

Figure 12 - Average Bytes loaded from main memory

per vertex

Figure 13 shows a bigger discrepancy in the measurements

suggesting more operations on the GPU side. Given the

Monkey scene being the most visually complex one it is

understandable that the number of bytes being loaded is

higher than on the others.

Figure 13 - Average Bytes loaded from main memory
per fragment

Supporting the affirmations above, we have figures
Figure 14 and Figure 15. Looking at the values presented, we
can see that the values stay fairly consistent between both
measurements, meaning that most if not all information being
transferred from memory is mainly texture data. There is a
small deviation in the case of the Simple Scene Dynamic test,
possibly due to some misreading of the data from the profiler.

Figure 14 - MB of texture data read from memory per

second

Figure 15 - Total num. of MB read from memory per

second

Figures Figure 16 and Figure 17 support this claiming
even further as practically 100% of the running time is spent
shading fragments and not vertices:

Figure 16 - Percentage of time spent shading fragments

Figure 17 - Percentage of time spent shading vertices

This matches what was expected when developing the
application given that the algorithm resembles the behaviour
of a flipbook animation, displaying every render cycle a
texture corresponding to a given viewpoint, nothing more,
nothing less.

Figure 18 - Total num. of MB written to main memory

per second

Further analysing the GPU’s work, and how the algorithm
functions, figures Figure 19 through Figure 21 show that, as
expected, not much work happens at the vertex level, as it is
only displaying a texture and no more geometry. In fact, in
terms of Elementary Function Unit (EFU) instructions, there
is a total of zero operations per vertex. In contrast, close to a
thousand Arithmetic Logic Unit (ALU) instructions happen
per fragment.

9

Figure 19 - Average number of ALU instructions per

vertex

Figure 20 - Average number of ALU instructions per

fragment

Figure 21 - Average number of EFU instructions per

fragment

In terms of texture loading, given that all input images are
loaded onto a texture atlas right at the beginning, and the
application therefore only uses this structure, it was expected
that not much stall would happen when the GPU tried to load
new information. Although loading data from memory is
really heavy on mobile devices, this technique has this major
advantage of having everything needed preloaded at the
expense of more memory occupied throughout the entire
application lifetime.

Figure 22 - Percentage of clock cycles where no more

requests for texture data are possible

However, given that there is no way of blocking the
gyroscope action as even really small variations are detected,
the GPU is always calculating new information, making it
difficult to have successful cache requests. Figures Figure 23
and Figure 24 show this phenomenon, with high percentages
of missed cache requests.

Figure 23 - Percentage of failed L1 texture cache

requests

Figure 24 - Percentage of failed L2 texture cache
requests

As for System Memory Usage, Figure 25 shows that
memory consumption stays fairly stable throughout different
scenes, only slightly increasing in the dynamic tests, which
matches the results found in Figure 11, with the extra
processing also having an influence here.

Figure 25 - MB of System Memory used

C. Summary

From these results it was possible to confirm many of the
ideas had in the beginning about how the application would
perform:

• It is possible to run interactive real-time applications
using light field rendering;

• The application is GPU intensive;

• The main bottleneck is the amount of storage needed
for the datasets;

• Low overhead for fetching textures as these are
preloaded into memory at startup.

VI. CONCLUSIONS AND FUTURE WORK

The seed for this thesis was to test the feasibility of doing
light field rendering on mobile devices, since photorealism
and mobile graphics don’t usually go hand in hand. Since this
had already been done in some way, and since we were
partnering with Samsung UK, we decided to focus on
studying how a Samsung smartphone would cope with such
rendering approach and what we could do to achieve the best
results.

A. Achievements

With this work we were able to explain the topic of Light
Field Rendering in a more simplified way and successfully
develop a mobile app which implements the algorithm
proposed in the original paper, bringing LFR to mobile

10

graphics and exposing its potential. The initial concerns about
the main bottleneck being the amount of memory needed to
store the datasets, were quickly confirmed the moment we
started rendering the custom scenes. For the best results we
needed to generate 169 images (13x13), with at least 1280 x
720 pixels, and even with that the megabyte count quickly
went up. Since the algorithm works as a flip book animation,
selecting the right view from the camera position, the main
issue is having to have a big texture atlas containing all the
views generated previously. As the dataset grows, the burden
on memory grows too.

B. Future work

There is room for optimization. As previously stated, the
original plan was to implement a “naive” approach, which is
the one presented in section 3.2, and then optimize the
algorithm in some way and compare both implementations.
Work was started to achieve this, but a roadblock was hit. As
stated in section 3.3, although it was possible to get the
application running, displaying views from the scenes and
reacting to user input, the transition between novel views was
jittery, which is clearly not desirable on an interactive real-
time application. Graphics debuggers such as RenderDoc12
were used to a great extent in order to try and fix such
problems. Although some bugs were found and quickly
corrected, none were the solution for the jittery transition.

With this, one that wishes to continue this study could
pick up on this and debug the application even further as time
constraints dictated those efforts had to come to a halt.

Alongside this, one could also follow other approaches
that could have an impact on the performance. The fragment
shader could be refactored to work better without so much
computational effort and the data sets could have their images
further compressed and even be optimized by removing
similar lightfields, as this WebGL viewer showed that these
can be predicted through the neighbouring viewpoints. It
would be interesting too to try tackling the memory
bottleneck by exploring scene streaming possibilities so no
dataset preloading would be necessary, enabling even bigger
scenes to be used which in turn could improve interactivity
and open new possibilities for this technique. Pairing this
with the emergent 5G technology could prove to be really
valuable.

VII. BIBLIOGRAPHY

[1
]

Google, "Seurat," [Online]. Available:
https://developers.google.com/vr/discover/seurat.

[2

]

Y. Chang and W. Guo-Ping, "A review on image-based

rendering".Virtual Reality & Intelligent Hardware.

[3

]

M. Ikits, J. Kniss, A. Lefohn and C. Hansen, "Texture-Based Volume

Rendering," Nvidia, [Online]. Available:

https://developer.nvidia.com/sites/all/modules/custom/gpugems/books
/GPUGems/gpugems_ch39.html.

[4

]

M. Harris and A. Lastra, "Real-Time Cloud Rendering," Computer

Graphics Forum, 2001.

[5

]

J. D. Vries, "Learn OpenGL," [Online]. Available:

https://learnopengl.com/Advanced-Lighting/Normal-Mapping.

[6
]

L.-w. He and H.-Y. Shum, "Rendering with Concentric Mosaics,"
Association for Computing Machinery, Inc., 1999.

[7

]

H.-Y. Shum and S. B. Kang, "A Review of Image-based Rendering

Techniques," Microsoft Research.

12 https://renderdoc.org/

[8

]

P. Debevec, C. Taylor and J. Malik, "Modeling and Rendering

Architecture from Photographs: A hybrid geometry- and image-based
approach," in SIGGRAPH, 1996.

[9

]

M. Halle, "Multiple Viewpoint Rendering for Three-Dimensional

Displays," Massachusetts Institute of Technology.

[1

0]

M. Russell, "View Interpolation," [Online]. Available:

http://pages.cs.wisc.edu/~rmanning/homepage/research/view.interpola

tion.html.

[1

1]

S. E. Chen and L. Williams, "View interpolation for image

synthesis".Proceedings of the 20th annual conference on Computer

graphics and interactive techniques.

[1

2]

Google, "Seurat," [Online]. Available:

https://developers.google.com/vr/discover/seurat. [Accessed October

2021].

[1

3]

B. Koniaris, M. Kosek, D. Sinclair and K. Mitchell, "Real-time

Rendering with Compressed Animated Light Fields," Graphics

Interface, 2017.

[1

4]

M. Levoy and P. Hanrahan, "Light Field Rendering," ACM

SIGGRAPH, 1996.

[1

5]

M. Levoy, "Light-Field Sensing," [Online]. Available:

https://graphics.stanford.edu/talks/lightfields-uncc-10jun08-

public.pdf.

[1
6]

S. P. Parker, "Steradian," in McGraw-Hill Dictionary of Scientific and
Technical Terms, McGraw-Hill, 1997.

[1

7]

E. B. J. Adelson, " The Plenoptic Function and the Elements of Early

Vision," Computation Models of Visual Processing, 1991.

[1

8]

P. Harris, "The Mali GPU: An Abstract Machine, Part 2 - Tile-based

Rendering," [Online]. Available: https://community.arm.com/arm-

community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-
an-abstract-machine-part-2---tile-based-rendering.

[1

9]

"GPU Framebuffer Memory: Understanding Tiling," Samsung,

[Online]. Available: https://developer.samsung.com/galaxy-
gamedev/resources/articles/gpu-framebuffer.html#Limitations-of-tile-

based-rendering.

[2
0]

A. Garrad, Moving Mobile Graphics: Mobile Graphics 101,
SIGGRAPH, 2018.

[2

1]

Qualcomm, "Snapdragon Profiler," [Online]. Available:

https://developer.qualcomm.com/software/snapdragon-profiler.

[2

2]

S. C. G. Laboratory, "The Stanford 3D Scanning Repository,"

[Online]. Available: http://graphics.stanford.edu/data/3Dscanrep/.

[2
3]

O. Kreylos, "Interactive Volume Rendering Using 3D Texture-
Mapping Hardware," [Online]. Available:

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/Texture

Mapping.html.

[2

4]

C. Lindsay, "CS563 Advanced Topics in Computer Graphics:

Introduction to Image Based Rendering," [Online]. Available:

http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/cliffl/cliffl
_ibr_intro.html.

[2

5]

ARM, "Tile-Based Rendering," [Online]. Available:

https://developer.arm.com/documentation/102662/0100/Tile-based-
GPUs?lang=en.

[2
6]

H.-Y. Shum and S. B. Kang, "A Review of Image-Based Rendering
Techniques," A Review of Image-Based Rendering Techniques, 2000.

[2

7]

E. Catmull and E. E., "A subdivision algorithm for computer display

of curved surfaces," 1974.

[2

8]

S. Chan, "Plenoptic Function," Computer Vision, 2014.

[2
9]

P. Debevec, Y. Yu and G. Boshokov, "Efficient View-Dependent
Image-Based Rendering with Projective Texture-Mapping,"

University of California at Berkeley, 1998.

https://renderdoc.org/

