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Abstract— Light-Field Rendering is quite an old concept, as 

most pillars of Computer Graphics. Ahead of its time, it was 

overlooked by many, as, even though it was a great concept, 

there was a lack of processing power to implement it. 

Nowadays, with the increasing capability of computers, the 

concept is being revisited with eyes set on VR. And one 

particular type of device that is being picked up are the 

mobile devices with its ever-growing processing power. This 

thesis focuses on implementing Light Field Rendering 

algorithms on a mobile device. An Android application was 

developed for this, following two approaches to the problem, 

a naive one and a more optimized one, to be able to check 

feasibility, analyse the effects of optimization and what are 

the bottlenecks in present time. The results of this work show 

that this technique is usable in real-time on mobile devices. 

The performance of the algorithm mainly depends on the 

memory size that the input lightfields occupy and how 

aperture effects are processed. With those issues addressed, 

the bottleneck relies on the device’s capacity of loading big 

image datasets into memory.  

Keywords— light-field, computer graphics, real-time 

rendering, OpenGL ES, Android 

I. INTRODUCTION 

The ever-increasing mobile market has opened exciting 
research opportunities. With the developments in VR in 
recent years and with mobile performance getting better and 
better, it is only logical to take advantage of the best of both 
worlds. In VR the strive for photo realism is big, but even for 
less detailed worlds, it is still a somewhat technical challenge 
to get everything running stably at the desired 90 FPS, even 
on modern desktop hardware. However, with the processing 
power as it stands today, we can look back in time to rather 
ambitious algorithms that can now be run interactively and 
which might help overcome this hurdle. One of them is Light-
Field Rendering (LFR), an algorithm that enables photo 
realism usually only possible with ray tracing methods, in real 
time rendering. Disney and Google have been researching 
and developing new technology in this field for the past few 
years, with the latter having implemented one specifically for 
mobile VR called Seurat [1]. Wanting to be at the forefront 
of the Computer Graphics field and more specifically in the 
VR field, Samsung UK is aligned with our excitement about 
this technique and with that a partnership was established 
with them to help on the development of this thesis. 

Image based rendering is a set of techniques that makes it 
possible to visualize 3D objects and scenes in a realistic way 
without actually reconstructing a full 3D geometric model. It 
does this by interpolating through discrete input images or 
re-projecting pixels in input images. [2] 

The range of this set goes from rendering techniques with 
no geometry, to some with implicit geometry ending with 
explicit geometry. This work, as the title entails, focuses on 
the no geometry end of the spectrum with Light Field 
Rendering at its core. In the beginning of this thesis a study 

of what was done and was being done in Light Field 
Rendering was done to assess where to start working. 

A few papers and projects were analysed, including the 
initial proposal for this technique, but also recent research 
projects by Disney and projects like Seurat [1] by Google, all 
to be introduced in the next chapter. 

Seeing that these were quite complex approaches and 
over-engineered to follow for the purpose of this thesis, we 
opted for a simpler approach and went with porting two 
existing open-source light field viewers, similar to one 
another, where one is a naiver approach and the other an 
optimized one. 

It's clear from articles and projects like Seurat that real 
time Light Field Rendering applications or at least interactive 
ones are possible to implement in mobile devices. 

With this in mind, the main focus of this thesis became 
validating, optimizing and studying its effects on this specific 
device and see what the current bottlenecks are. 

The research was conducted in partnership with Samsung 
Research UK who provided the hardware to test the outcomes 
of this work, which led it focusing exclusively on Android 
devices. 

II. RELATED WORK 

A. Image-Based Rendering methods  

1) Texture-Based Volume Rendering 
It starts by loading the data volumes onto the CPU, 

creating the transfer function lookup tables and fragment 
shaders. Afterwards it enters an Update phase where every 
time there is a change in the viewing parameters, the proxy 
geometry is computed and stored in vertex arrays [3]. A 
change of rendering mode and/or transfer function 
parameters will trigger an update of textures. 

Moving on to the Draw phase, first there’s the setup of the 
rendering state which typically includes disabling lighting 
and culling and setting up alpha blending [3]. The rendering 
state is then restored after the slices are drawn in sorted order 
[3]. 

 

2) Texture-Mapped Models 
Texture mapping rendering has been around for many 

years now. The initial work is commonly attributed to 
Catmull in 1974. It's one great example of IBR and probably 
the most commonly used in present time. This technique can 
be seen being used in billboard rendering, when rendering 2D 
clouds in 3D games, 3D views of satellite imagery in 
applications such as Google Earth, or many different types of 
mapping for image fidelity such as ambient occlusion maps, 
normal maps, bump maps, etc.  
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Figure 1 – Billboard Rendering [4] 

 

Figure 1 - Effects of normal maps [5] 

Although visual results have been improving throughout 
the years while using such techniques, they are still a long 
way from achieving what can be achieved through offline 
rendering. 

 

3) Concentric Mosaics 
The Concentric Mosaics approach is a 3D 

parameterization of the plenoptic function proposed by Shum 
and He [6]. As the name implies, the camera motion is 
constrained along concentric circles on a plane [7]. They are 
simple to capture, much like a traditional panorama, but do 
require more images 

However, concentric mosaics allow the user to observe 
significant parallax and lighting changes, since the user is 
able to move freely in a circular region, providing a much 
better user experience.  

This technique does present vertical distortions in 
rendered images, but these can be smoothed out using depth 
correction. 

It offers good space and computational efficiency and it’s 
very easy to capture, offering a smaller file size than LFR 
since it only constructs a 3D plenoptic function. 

 

4) Transfer Methods 
Coming from a term used in the photogrammetric 

community, it uses a small number of images by applying 
geometric constraints to reproject image pixels appropriately 
at a given virtual camera viewpoint. [7] 

These constraints can be known depth values at each 
pixel, epipolar constrains between pairs of images, or 
trifocal/trilinear tensors that link correspondences between 
triplets of images. 

 

5) 3D Warping 
These techniques can be used to render viewpoints that 

are a short distance between themselves if depth data exists 
for every point in a set of images. When looking from any 
nearby viewpoint, an image can be generated by projecting 
the pixels of the original image to their respective 3D 
locations and re-projecting them onto the new picture. 

This technique has a common issue of existing holes in 
the warped image, due to difference of sampling resolution 
between input and output images, and because of parts of the 
scene which are seen by the output image and not by the input 
one. To easily fix this, the common method is to stretch a 

pixel from the input image to match a size of several pixels 
on the output image. 

 

6) View-Dependent Texture Maps 

This technique was brought to light as texture-mapped 

models of real environments being generated through a 3D 

scanner or application of computer vision techniques to 

captured images aren't as accurate as desired, with the 

addition of the difficulty of capturing highlights, reflections, 

and other visual effects through the use of a single texture-

mapped model. This is particularly useful for architectural 

environments. 

Debevec et al. [8] proposed an approach where, using a 

3D model of the real building and photographs of it from 

various viewpoints, the images are projected onto the model 

and merged between them, creating a composite rendering by 

taking into account the corresponding pixels in the rendered 

views. 

 

7) Multiple Viewpoint Rendering 
The Multiple Viewpoint Rendering (MVR) [9] technique 

bridges the gap between light fields and 3D scene geometry. 
Arranging the images from each camera by viewpoint 
location it is possible to form an image volume called the 
spatio-perspective volume. This rendering method takes 
advantage of the coherence and regular structure Epipolar 
Plane Image (EPI) representation, which is a slice through 
said volume, to efficiently render the scene. 

Comparatively to Single Viewpoint Rendering (SVR) 
algorithms, MVR reduces the cost of computing the 
perspective image sequence as it can perform as many 
calculations as possible once per sequence instead of once per 
view. 

 

8) View Interpolation 
View interpolation is the process of creating a sequence 

of synthetic images that, taken together, represent a smooth 
transition from one view of a scene to another view. [10] 

This technique was first introduced by Chen and Williams 
in 1993 [11]. It proposes using dense optical flow between 
two input images from a scene to interpolate arbitrary 
viewpoints [11]. It works really well if each two consecutive 
input images are close enough for there to exist overlapping 
between them. These view changes can also be improved by 
selecting an appropriate warping function, such as a cubic or 
quadratic interpolation, with each equation degree increasing 
the amount of computation rates needed to calculate said 
results. 

 

9) View Morphing 

View Morphing builds upon the work done for View 

Interpolation. It is better suited for larger camera angle 

changes and for non-linear camera paths. This is possible 

through the addition of Prewarping and Postwarping phases. 

The first one aligns the image planes without changing the 

optical centres of the camera with the latter yielding the 

image. 

B. Light Field Rendering Projects 

1) Seurat 
This project was developed by Google and works as a 

plugin for major game engines. It is a scene simplification 
technology designed to process very complex 3D scenes into 
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a representation that renders efficiently on mobile 6DoF VR 
systems. [12] 

It processes the scenes by generating data for a single 
headbox. It starts by generating RGBD input images of the 
scene, which should then be ran through the existing pipeline 
to generate the output geometry and RGBA texture atlas 
which can later be imported into the engine of choice. 

The scene captures are organized into view groups, also 
called cube maps, which consist of a set of views, containing 
a camera and the RGBD information. The most common 
setup is render 32 groups from random positions inside the 
headbox1. These images are then used as input in the pipeline 
and the outcome is a textured mesh, according to a 
configurable number of triangles, texture size and fill rate. 

 

2) Real-Time Rendering with Compressed Animated 

Light Fields 

Disney Research proposed a real-time rendering approach 

using compressed animated light fields [13]. The outcome is 

an end-to-end solution for presenting movie quality animated 

graphics to the user while still allowing the sense of presence 

afforded by free viewpoint head motion. It mainly targets VR 

applications, using the tracking in real-time of the head pose 

to display an immersive representation of movie content that 

was previously offline rendered. 

Contrary to immersive 360º videos, this approach enables 

motion parallax, as the input capture doesn't assume a fixed 

location. This in turn contributes to better immersion as the 

content doesn't seem flat and the user has free movement 

around the scene. 

The proposed solution works by generating, for each 

frame, using a set of 360º cubemap cameras positioned near 

potential viewer locations, a set of cubemap images per frame 

containing colour and depth information. Using an 

optimization process, the cameras are positioned in such a 

way that maximises coverage while producing minimal 

redundancy. The computed dataset then runs through a 

compression step. The colour and depth data are compressed 

separately, using schemes perfected for use on GPUs for VR 

applications. 

The algorithm for real-time rendering uses ray marching 

to reconstruct the scene from a given camera using data for a 

set of viewpoints (locations and color/depth textures) and 

camera parameters. [13] It first calculates the intersection 

with geometry by marching along the ray, and then calculates 

the colour contribution from all views. 

To aid performance, the authors developed the 

compression methods to support a view-dependent decoding 

mechanism, enabling the decoding of only the parts of the 

video that are visible to viewers, reducing the per-frame 

bandwidth necessary to update viewpoint texture data. They 

also applied view-selection heuristics to prioritize set of 

viewpoints for each calculation given that not all cameras can 

give useful data in every situation. 

C. Light Field Rendering 

1) What is a Light Field 

The concept of a light field comes from a proposition by 

Michael Faraday in an 1846 lecture, stating that light should 

be interpreted as a field, much like the magnetic fields2. The 

 
1 Stated in: https://github.com/googlevr/seurat 
2 Stated in: https://en.wikipedia.org/wiki/Light_field 

actual coining of the expression was by Andrey Gershun in 

1936 in a paper about the radiometric properties of light in 

3D space. 

A light field is a vector function that describes the amount 

of light flowing in every direction through every point in 

space2. A 5D plenoptic function gives us the space of all 

possible light rays, with Radiance giving us the magnitude of 

each of the light rays. 

The rendering technique is later proposed in 1999, by 

Levoy and Hanrahan, and proposes that the light field can be 

represented as radiance as a function of position and 

direction, in regions of space free of occluders (free space) 

[14]. 

This proposed restriction makes the five-dimensional 

function contain redundant information as the radiance along 

a ray remains constant as there are now obstacles to hit. Since 

this information is exactly one dimension, we can drop it, 

getting a 4D light field in the process. 

 
2) Radiance 
Radiance can be defined as the amount of light traveling 

along a ray, commonly represented in graphs by L and its unit 
of measurement is watts per steradian per meter squared. 

 

Figure 2 - Radiance can be thought of as the amount of light 
traveling along all possible straight lines through a tube 

whose size is determined by its solid angle and cross-
sectional area. [15] 

Steradian is the measure of a solid angle [16] and meter 
squared appears as is used as a measure of the cross-sectional 
area. 

3) 5D Plenoptic Function 
The plenoptic function describes the intensity of each 

light ray in the world as a function of visual angle, 
wavelength, time, and viewing position. 

Adelson in 1991 [17] defined the plenoptic function as the 
radiance along all such rays in a region of three-dimensional 
space illuminated by an unchanging arrangement of lights2. 
This function is particularly useful in computer vision and 
computer graphics to define an image of a scene from any 
possible viewing position and angle at any point in time. It is 
five dimensional as rays in space can be parameterized by 
three coordinates and two angles. 

https://github.com/googlevr/seurat
https://en.wikipedia.org/wiki/Light_field
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Figure 3 - 5-dimensional function [15] 

4) 4D Light Field 
As previously mentioned, we get a four-dimensional light 

field once we restrict ourselves to the locations outside the 
convex hull of an object, which defines it as radiance along 
rays in empty space. 

A big difficulty with its representation is how to 
parameterize it as there are several issues to take into account, 
mainly efficient calculation, as the calculation of the position 
of a line from its parameters should be fast [14], control over 
the set of lines, since only a finite subset of line space is ever 
needed from the infinite space of all lines [14], and uniform 
sampling, where the number of lines in intervals between 
samples should be constant everywhere [14]. 

The most common way to parameterize a light field, 
proposed in Levoy's paper, is to represent lines by their 
intersection with two planes in arbitrary positions [14]. These 
lines represent rays of light hitting these planes. This 
representation is called a light slab: 

 

Figure 4 - Light slab representation [14] 

Making the connection between this and the concept of IBR, 

an image corresponds to a 2D slice of the 4D light field 

making that, to create a light field from a set of images is the 

same as inserting each 2D slice in the 4D representation. 

This representation enables the placing of one of the planes 

at infinity which in turn makes it possible to define lines by a 

point and a direction. That enables constructing light fields 

from orthographic images or images with a fixed field of 

view. 

D. Mobile Architecture 

Mobile devices nowadays feature some similarities to 
computers. Some even call them computers themselves. 
Which they are, as they feature most of the characteristics that 
define a computer: a screen, memory, storage, and a power 
source. 

If component-wise they are quite similar, at least 
superficially, the way everything works is quite different. 
Starting at the size of each component, in the smartphone 
everything is quite a bit smaller, as these are handheld 
devices, meant to be carried in everyone’s pockets. Then 
weight, power supply and heat dissipation are also major 

 
3https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrate

d_graphics 

issues when talking about a computer that fits on the palm of 
your hand. And all of this means that processing power is also 
much more reduced than the one found in personal 
computers. 

 
1) Unified Memory Architecture 
UMA may also be known as Integrated graphics 

processing unit (IGPU)3, and the difference to a dedicated 
graphics card is that it uses a portion of a computer's system 
Random Access Memory (RAM) rather than dedicated 
graphics memory. While on desktop it is used something 
called Immediate Mode as graphics pipeline, on mobile this 
isn’t feasible. This happens because desktop GPU’s have a 
dedicated memory interface with fast RAM optimised for 
GPU usage. 

 

Figure 5 - Desktop memory layout 

However, on mobile, communication between GPU and 
RAM is quite expensive, performance wise, with the devices 
not having a dedicated graphics memory but using a shared 
memory interface instead. So, the Tiled based method takes 
care of this issue. 

 

Figure 6 - Shared memory interface on mobile 

2) Tile Based Rendering 
While on desktop it is used something called Immediate 

Mode as graphics pipeline, on mobile this isn’t feasible. This 
happens because of the non-existent GPU with a dedicated 
memory interface with fast RAM optimised for GPU usage, 
as mentioned in the previous section. However, on mobile, 
communication between GPU and RAM is quite expensive, 
performance wise, with the devices not having a dedicated 
graphics memory but using a shared memory interface 
instead. So, the Tiled based method takes care of this issue. 
In an Immediate Mode renderer, as each triangle is submitted 
its data enters the GPU pipeline, and all the pixels for this 
triangle (and its Z buffer values) pop out of the other end of 
the pipeline. 

https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrated_graphics
https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrated_graphics
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Figure 7 - Tile-based Renderer [18] 

Which means that each geometric primitive is rendered 
one at a time, while storing information in colour, depth, and 
stencil buffers in the RAM. This takes up a lot of memory and 
makes it necessary for the GPU to communicate with the 
RAM quite a lot which is unmanageable on mobile devices 
as previously told. Enters the tiled based renderer. On this 
approach fragments are processed in tiles, as the name 
implies. More specifically, the ARM Mali GPUs process 
fragments in 16x16 tiles. 

The first step to achieve this is to use a concept called 
Tiled Memory where we start reducing memory bandwidth 
by treating each cache line a two-dimensional rectangular 
area, in simpler terms a "tile", in memory. This will lead to 
less transfers to memory as more rendering happens within 
the cache because we are using square cache areas that are the 
same size as a linear cache. It works given that usually, 
triangles that are near to each other in space are often 
submitted near each other in time, resulting in more cache 
hits. [19] 

 Rendering then is broken into two phases: 

• Binning phase (writes to memory) 

• Rasterization (reads the bin contents) 
In the first phase every triangle is checked to see whether 

it does or doesn't touch a tile. The renderer then goes through 
each tile and draws the triangles that were identified as 
touching that same tile. 

With this phase ended, we get to the tile-based 
rasterization, where the rasterizer processes the scene one bin 
at a time, writing only to local tile memory until processing 
of the tile is finished. [19] Given that the renderer is only 
rendering the area corresponding to that tile, it can be 
processed in fast on-GPU memory. With this, main memory 
is only touched once as the tile is written out to it only when 
rendering is finished. [20] 

When comparing this form of rendering with immediate-
mode rendering, it is to note that it introduces latency as the 
last phase cannot begin until all the geometry has been 
processed [19], but the reduction in bandwidth, in turn, 
increases the speed of this phase. A few more complete 
details about this type of rasterization can be found in [19]. 

III. IMPLEMENTATION 

As the title of this thesis implies, the work focused on the 
mobile environment and given the partnership with Samsung 
Research UK, Android was the underlying operating system 
for the application that was developed to test the algorithm 
for Light-field Rendering. 

Stemming from this partnership, a smartphone was 
provided for development and testing purposes, more 
specifically a Samsung Galaxy Note 9 (Model SM-N960U) 
which makes use of a Qualcomm Snapdragon 845 System on-
chip (SoC) with an octa-core CPU and a Qualcomm Adreno 
630 GPU that takes care of the graphics processing. 

Contrary to usual Android development, which is done in 
Java using Android’s Software Development Kit (SDK) since 

 
4 https://github.com/mpk/lightfield 

the operating system runs on a Java Virtual Machine (JVM), 
the application was developed in C++ by using the Native 
Development Kit (NDK), which links Java and C/C++ 
through the Java Native Interface (JNI), and OpenGL ES 
which Android includes. For this application, OpenGL ES 3.3 
was used.  

A. Base Algorithm 

The algorithm implemented follows what is stated in the 
original paper that first introduced the concept of Light Field 
Rendering. 

The idea behind it is quite simple. Using either some 
rendering software (in this case Blender was used, as an open-
source plugin was available to capture the light fields using 
any scene one would want to test) or a camera, one must shoot 
a scene from multiple consecutive angles. How much ground 
the camera captures images go left, right, up, and down will 
determine how much of the scene will be seen in the 
application. It is important too that the interval between 
camera angles isn’t severe, to ensure that no jarring 
transitions occur when interacting with the app. 

Having this set of rendered images, the application then 
introduces the set in a texture atlas, with the images ordered 
from left to right and then top to bottom. 

The shader will receive the camera position, which is 
calculated using the motion values gathered by the 
gyroscope, which will then be used in conjunction with the 
aperture and focus values to select the right sub image from 
the texture atlas. 

The selected image is then set to the texture that is being 
shown in the screen and mimics the way we would move 
through a scene, limited by boundaries which are defined 
when rendering the set of images offline. 

The algorithm is quite simple, delivering great results, 
with great quality, resembling a flipbook animation. 

The shader receives the camera position and checks the 
images positioned in the texture atlas around said vector 
position, with the search being limited by the aperture size, 
and if all parameters check out, the colour from for the current 
pixel is a combination of the adjacent ones. 

B. Optimized Algorithm 

When starting to implement this optimized approach, it 
was found that a small open source WebGL project was 
available on GitHub4. 

Given the lack of information on light field rendering 
implementation, the time constraints on this thesis, and with 
the major focus of this work being more on the study of the 
performance of this type of rendering in a mobile 
environment, it was decided to take inspiration from it and 
work on a form of a port of it in C++ and as an Android app. 
Taking advantage of memory features of C++, many of the 
variables we stored as pointers to reduce copies of variables 
and with that conserve memory. The user input gathering was 
changed to support gyroscope information as the original 
application was created to be interacted using a mouse and by 
clicking and dragging to mover around the scene. The shaders 
were also optimized to cache some calculations. 

The original project not only optimizes the algorithm, but 
also compresses the input dataset. It does so by dividing it 
into intra and predicted frames. 

The algorithm basis its processing on two shader passes 
while having four textures. Two are virtual textures, more 

https://github.com/mpk/lightfield
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commonly known as texture atlas, one for the intra frames 
and another for the predicted ones. The third texture works as 
a lookup table, called Page Table in this case. It does so by 
storing in each pixel one two colours: black or blue. When 
calculating the fragment colour in the shader, it will sample 
from the intra atlas if black or from the predicted if blue. 

The last is a Render Target which will be the output image 
on the last shader pass. 

In each render cycle, a set of frames are selected for 
bilinear interpolation based on the current viewpoint and 
aperture. The frames are adjacent to the current viewpoint 
both on the y axis and x axis, and the range in which these are 
selected is bounded by the aperture value. 

With the selection finished, it updates the respective 
texture atlas according to the type of frame. When updating 
the virtual textures, it also updates the Page Table with the 
new information regarding each new frame. 

The first shader pass generates the composite image that 
is stored in the render target. The framebuffer is changed 
from the default one to point to the render target texture. Any 
calculations done in the current bound shader will be stored 
in said texture. 

It uses the current viewpoint, the intra and predicted 
virtual textures and the lookup texture as input for calculating 
the composite image to be shown at the end of the current 
render cycle. 

Using frame offsets of a maximum of one unit to each 
axis, and adding that to the current viewpoint, on the vertex 
shader pixel entries are selected from the page table. Four 
entries are selected and passed onto the fragment shader. 

On the fragment calculation, these entries are used to 
either sample from the intra texture atlas or the predicted one, 
as stated previously. The final fragment colour is calculated 
by mixing the four calculated colours. This mix of sampled 
colour information enables the smooth interpolation between 
existing image frames. 

The implementation described here was all ported into 
C++ and an Android app. It was able to display images and 
transition between frames, but this transition never got to be 
as smooth as the original application. A tremendous 
debugging effort was made to try and solve this issue, but 
with the delivery deadline approaching, development had to 
stop. 

IV. EVALUATION METHODOLOGY 

A. Metrics 

1) Frame rate 
Frame rate is the frequency at which consecutive images 

called frames appear on a display5. The reason for it being 
the most important metric comes down to a concept called 
Flicker Fusion Threshold, also known as Flicker Fusion Rate. 
It is a concept in the psychophysics of vision and is related to 
the persistence of vision6, and it is defined as the frequency 
at which an intermittent light stimulus appears to be 
completely steady to the average human observer7. If the 
frame rate falls below this threshold, the flicker will become 
apparent to observer, the so called “jerky” movement. This 
threshold varies with the viewing conditions. 

In this case, where we want real-time rendering for the 
purpose of interactivity with the scene displayed by the 

 
5 Stated in: https://en.wikipedia.org/wiki/Frame_rate 
6 https://en.wikipedia.org/wiki/Persistence_of_vision 
7 Stated in: https://en.wikipedia.org/wiki/Flicker_fusion_threshold 

application, ideally the values should be from 50Hz upwards, 
as studies show this value is the start of what most 
participants call stable images. However, we accept this value 
to drop down to 30Hz as it is still deemed acceptable by most 
users (many console video games are run at this frame rate). 

The way this is calculated in this application is we first 
store the current time using the respective window 
management method for that purpose and then calculate the 
delta between the current time and the previous stored current 
time. We also store the number of frames, increasing by one 
every time the method is called. The delta is always checked 
as an if clause, and when equalling or surpassing 1.0, the 
application runs the code associated with this condition, 
where the frames per second value is calculated by dividing 
the number of frames by the calculated delta. Afterwards we 
display the frame rate value (on desktop it is displayed in the 
window title bar and on mobile is displayed as an overlay) 
and then reset the number of frames to zero and store the 
current time in the variable for the previous current time, 
which is used on the delta calculation. 

 

2) Memory Usage 
Although processing and displaying the image is 

somewhat inexpensive, the main drawback of this approach 
is needing to store every image of the rendered set, which, to 
have good results is synonym of at least 169 images, and with 
devices nowadays supporting ever increasing resolutions, this 
quickly adds up. 

To measure all of this, we use the Snapdragon Profiler. 
This tool allows developers to analyse CPU, GPU, DSP, 
memory, power, thermal, and network data, so they can find 
and fix performance bottlenecks [21] by connecting with 
Android devices powered by Qualcomm® Snapdragon™ 
processors over USB [21]. We analysed these values by 
exporting them into a Comma Separated Values (CSV) file 
which in turn enables the data processing and creation of data 
visualizations. With such visualisations it was possible to 
confirm most of the expected outcomes that were conceived 
when developing the present work. 

B. Test Scenes and Testing Methodology 

Three scenes were created in Blender 8  using an open 
source lightfield generator plugin 9 . The idea behind the 
creation of the scenes was to make them progressively more 
complex.  

 
Figure 8 - Simple Scene 

8 https://www.blender.org 
9 https://github.com/lightfield-analysis/blender-addon 

https://en.wikipedia.org/wiki/Frame_rate
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://www.blender.org/
https://github.com/lightfield-analysis/blender-addon
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Figure 9 - Monkey Scene 

 
Figure 10 - Dragon Scene 

The first scene contains simple geometry consisting of a 
few cubes of different sizes and proportions. It was inspired 
by the Cornell Box scene and features a small cube 
surrounded by two cubes modified to resemble walls and 
another below to resemble a floor and features no texture 
mapping. The second scene features one complex object, in 
this case Blender’s mascot Suzanne, surrounded by a few 
cubes of different sizes and proportions. The third one is a 
simple scene comprised of a very complex object with a high 
poly count, in this case the famous Stanford Dragon [22]. 

The scenes were structured in such way to gradually 
increase the processual effort needed to obtain a photo 
realistic render when rendering offline in order to compare 
the time taken to complete such task versus displaying such 
scene interactively through the proposed work in this 
dissertation. 

To keep the conditions consistent the camera grid defined 
in Blender has the same configurations for every scene, with 
13 by 13 cameras at a 10 cm distance between them, and the 
light source is of the sun type, positioned to provide the best 
visual appeal. 

V. RESULTS 

Visual tests were done first to ensure the optimal 
parameters were chosen. This first step was important for two 
reasons: one because, given that the purpose of using this 
algorithm is to enable interactive apps using photorealism, 
human perception of how smooth the scene movement really 
is becomes key to the success of the application of such 
technique; and two because, given that there was going to be 
two test runs per scene, it was important to have chosen the 
right parameters to deliver the best results, as multiple 
configurations would quickly add up in terms of data to 
analyse. 

The testing phase moved into the second step which was 
comprised of two test runs, a static and a dynamic. The first 
occurred with the device resting on top of a table without any 
interaction whatsoever. The latter, as the name suggests, 
involved movement with the device being hold straight and 
steadily about the same height every run and once the 
application finished loading a series of movements were 
performed to move around the scene. It is worth noting that 

 
10 https://en.wikipedia.org/wiki/Bokeh 

the set of movements was always the same as well as the 
timestamps used to gather the data in between. 

A. Visual Tests 

For the focus plane variable tests revealed no impact on 
framerate so it was decided to just adapt it to each scene, since 
the objects are not all at the same distance from the camera. 
However, that is not the case for the aperture value. 
Analysing the fragment shader that calculates what image to 
display at any given camera position what was clear that this 
particular value would have an impact on the performance. 
Starting with the default value, where everything is in focus 
in the chosen focus plane, kept the framerate stable at 60 FPS. 
This situation was no longer true as soon as the aperture value 
started decreasing, introducing the famous blurring outside 
the focal area, the so called bokeh10. The framerate started 
having a noticeable impact, gradually dropping to the lowest 
measured value of 9 FPS, clearly not a suitable value for an 
interactive real-time application. Throughout this aperture 
range however, it is still possible to have some bokeh effect 
at an acceptable 30FPS, if keeping the value closer to the 
default setting. 

Influencing the ability of loading the app was also the size 
of the dataset being used and the resolution of each image that 
it comprises. Initially the app was developed using Stanford’s 
Light Field Archive11 datasets, mainly one of a 17x17 grid 
with image size of 1024x1024 pixels. Developing the first 
custom lightfields it was decided to follow the same grid 
structure but with 1920x1080 pixels. This revealed to be an 
issue as the app would crash even before displaying any 
image, running out of memory. Bringing down the grid 
structure to 13x13 cameras helped launch the application, but 
it still took a long time loading everything into memory and 
displaying the first image. It also would have an impact on 
generating the datasets, as an image with that size would take 
almost an hour to render, if not more, which would hinder the 
timeline of the project. A middle ground was found, by 
choosing to keep the 13x13 grid but instead which each image 
having 1280 pixels of width and 720 of height, keeping the 
16:9 ratio. Although the smartphone had a bigger resolution, 
keeping the ratio helped maintain a decent visual quality. 
Possible solutions to get around this issue can be found on 
section 6.2. It is also worth noting that, alongside the stable 
60 FPS framerate, transition between viewpoints offered no 
jarring effects. 

B. Performance Tests 

One key measurement of these tests is the percentage of 
CPU utilization versus GPU: 

 
Figure 11 - CPU Utilization (%) 

From Figure 11, it is possible to conclude that the 
application relies very little on the CPU and in turn is GPU 
intensive, as expected. It is also worth noting the variation 
that exists between each static and dynamic test. This is due 

11 http://lightfield.stanford.edu/ 

https://en.wikipedia.org/wiki/Bokeh
http://lightfield.stanford.edu/
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to extra work processing the camera position from the always 
changing gyroscope values. 

The next Figure 12 helps support the previous statement 
about most processing happening mainly in the GPU. 
Although a small variance is present, it is mostly negligible, 
and the values stay rather constant. 

 
Figure 12 - Average Bytes loaded from main memory 

per vertex 

Figure 13 shows a bigger discrepancy in the measurements 

suggesting more operations on the GPU side. Given the 

Monkey scene being the most visually complex one it is 

understandable that the number of bytes being loaded is 

higher than on the others.  
 

 

Figure 13 - Average Bytes loaded from main memory 
per fragment 

Supporting the affirmations above, we have figures 
Figure 14 and Figure 15. Looking at the values presented, we 
can see that the values stay fairly consistent between both 
measurements, meaning that most if not all information being 
transferred from memory is mainly texture data. There is a 
small deviation in the case of the Simple Scene Dynamic test, 
possibly due to some misreading of the data from the profiler. 

 
Figure 14 - MB of texture data read from memory per 

second 

 
Figure 15 - Total num. of MB read from memory per 

second 

Figures Figure 16 and Figure 17 support this claiming 
even further as practically 100% of the running time is spent 
shading fragments and not vertices: 

 
Figure 16 - Percentage of time spent shading fragments 

 
Figure 17 - Percentage of time spent shading vertices 

This matches what was expected when developing the 
application given that the algorithm resembles the behaviour 
of a flipbook animation, displaying every render cycle a 
texture corresponding to a given viewpoint, nothing more, 
nothing less. 

 
Figure 18 - Total num. of MB written to main memory 

per second 

Further analysing the GPU’s work, and how the algorithm 
functions, figures Figure 19 through Figure 21 show that, as 
expected, not much work happens at the vertex level, as it is 
only displaying a texture and no more geometry. In fact, in 
terms of Elementary Function Unit (EFU) instructions, there 
is a total of zero operations per vertex. In contrast, close to a 
thousand Arithmetic Logic Unit (ALU) instructions happen 
per fragment. 
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Figure 19 - Average number of ALU instructions per 

vertex 

 
Figure 20 - Average number of ALU instructions per 

fragment 

 
Figure 21 - Average number of EFU instructions per 

fragment 

In terms of texture loading, given that all input images are 
loaded onto a texture atlas right at the beginning, and the 
application therefore only uses this structure, it was expected 
that not much stall would happen when the GPU tried to load 
new information. Although loading data from memory is 
really heavy on mobile devices, this technique has this major 
advantage of having everything needed preloaded at the 
expense of more memory occupied throughout the entire 
application lifetime. 

 
Figure 22 - Percentage of clock cycles where no more 

requests for texture data are possible 

However, given that there is no way of blocking the 
gyroscope action as even really small variations are detected, 
the GPU is always calculating new information, making it 
difficult to have successful cache requests. Figures Figure 23 
and Figure 24 show this phenomenon, with high percentages 
of missed cache requests. 

 
Figure 23 - Percentage of failed L1 texture cache 

requests 

 

Figure 24 - Percentage of failed L2 texture cache 
requests 

As for System Memory Usage, Figure 25 shows that 
memory consumption stays fairly stable throughout different 
scenes, only slightly increasing in the dynamic tests, which 
matches the results found in Figure 11, with the extra 
processing also having an influence here. 

 
Figure 25 - MB of System Memory used 

C. Summary 

From these results it was possible to confirm many of the 
ideas had in the beginning about how the application would 
perform: 

• It is possible to run interactive real-time applications 
using light field rendering; 

• The application is GPU intensive; 

• The main bottleneck is the amount of storage needed 
for the datasets; 

• Low overhead for fetching textures as these are 
preloaded into memory at startup. 

VI. CONCLUSIONS AND FUTURE WORK 

The seed for this thesis was to test the feasibility of doing 
light field rendering on mobile devices, since photorealism 
and mobile graphics don’t usually go hand in hand. Since this 
had already been done in some way, and since we were 
partnering with Samsung UK, we decided to focus on 
studying how a Samsung smartphone would cope with such 
rendering approach and what we could do to achieve the best 
results. 

A. Achievements 

With this work we were able to explain the topic of Light 
Field Rendering in a more simplified way and successfully 
develop a mobile app which implements the algorithm 
proposed in the original paper, bringing LFR to mobile 
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graphics and exposing its potential. The initial concerns about 
the main bottleneck being the amount of memory needed to 
store the datasets, were quickly confirmed the moment we 
started rendering the custom scenes. For the best results we 
needed to generate 169 images (13x13), with at least 1280 x 
720 pixels, and even with that the megabyte count quickly 
went up. Since the algorithm works as a flip book animation, 
selecting the right view from the camera position, the main 
issue is having to have a big texture atlas containing all the 
views generated previously. As the dataset grows, the burden 
on memory grows too. 

B. Future work 

There is room for optimization. As previously stated, the 
original plan was to implement a “naive” approach, which is 
the one presented in section 3.2, and then optimize the 
algorithm in some way and compare both implementations. 
Work was started to achieve this, but a roadblock was hit. As 
stated in section 3.3, although it was possible to get the 
application running, displaying views from the scenes and 
reacting to user input, the transition between novel views was 
jittery, which is clearly not desirable on an interactive real-
time application. Graphics debuggers such as RenderDoc12 
were used to a great extent in order to try and fix such 
problems. Although some bugs were found and quickly 
corrected, none were the solution for the jittery transition. 

With this, one that wishes to continue this study could 
pick up on this and debug the application even further as time 
constraints dictated those efforts had to come to a halt. 

Alongside this, one could also follow other approaches 
that could have an impact on the performance. The fragment 
shader could be refactored to work better without so much 
computational effort and the data sets could have their images 
further compressed and even be optimized by removing 
similar lightfields, as this WebGL viewer showed that these 
can be predicted through the neighbouring viewpoints. It 
would be interesting too to try tackling the memory 
bottleneck by exploring scene streaming possibilities so no 
dataset preloading would be necessary, enabling even bigger 
scenes to be used which in turn could improve interactivity 
and open new possibilities for this technique. Pairing this 
with the emergent 5G technology could prove to be really 
valuable. 
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