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Abstract

In the biomedical domain, the identification of synonymous concepts is highly challenging, due to vo-

cabulary heterogeneity, lexical variations, and non-uniform coverage across standardized terminologies.

This work tackles this particular challenge, arguing that concept alignment can be made through ap-

proximate string similarity using deep neural networks. In particular, this work extends recent studies

that assessed string-matching methods in non-biomedical fields, i.e. using bi-directional recurrent neu-

ral networks or transformer models to encode and match pairs of strings. The models were trained

with biomedical data collected from Wikidata, and tested on 15 datasets built from different biomedical

ontologies, representing specific domains. The tests assessed aspects such as the influence of posi-

tional encodings together with the inputs, the size of the training dataset or the contribution of model

fine-tuning with specific in-domain data. The experimental results show that deep neural networks con-

sistently performed better than traditional string similarity approaches, particularly with larger amounts

of training data. In most of the tests, models based on Transformers also performed better than models

based on recurrent neural networks.

Keywords: Biomedical Concept Alignment, String-Matching, Supervised Machine Learning, Recurrent

Neural Networks, Transformer Networks
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Resumo

No domı́nio biomédico, a identificação de conceitos sinónimos é altamente desafiante devido à hetero-

geneidade de vocabulário, às variações lexicais, e à cobertura não uniforme de terminologias médicas

padronizadas. Este trabalho aborda este desafio em particular, argumentando que o alinhamento de

conceitos pode ser feito através da semelhança aproximada de strings utilizando redes neuronais. Em

particular, foram aproveitados estudos recentes que avaliaram métodos de correspondência de strings

em áreas não biomédicas como, por exemplo, a utilização de redes neuronais recorrentes bidireccionais

ou modelos Transformer para codificar e combinar pares de conceitos. Em particular, foram treinados

modelos com dados biomédicos recolhidos da Wikidata, e testados em 15 conjuntos de dados (da-

tasets) construı́dos a partir de diferentes ontologias biomédicas, representando domı́nios especı́ficos.

Os nossos testes avaliaram aspetos tais como a influência de codificações posicionais enquanto input

destas redes, o tamanho do dataset de teste, e a contribuição do ajuste fino do modelo (fine-tuning)

com dados especı́ficos de cada domı́nio. Os resultados experimentais mostram que as redes neuronais

tiveram um desempenho consistentemente melhor do que as abordagens tradicionais de semelhança

de strings, particularmente com maiores quantidades de dados de treino. Na maioria dos testes, os

modelos baseados no modelo Transformer também tiveram melhor desempenho do que os modelos

baseados em redes neuronais recorrentes.

Keywords: Alinhamento de conceitos biomédicos, Correspondência de strings, Aprendizagem

supervisionada, Redes Neuronis Recorrentes, Modelos Transformer
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Chapter 1

Introduction

Terminology standardization is the process of establishing, in a community of experts, a shared com-

mon consensus on the use of technical terms and disambiguating their meaning. It is, therefore, a

collection of well-organized, well-structured terminological data [1]. Standardisation of biomedical ter-

minology is important in the biomedical and healthcare domain [2]. Standardized terminology can be

used to represent medical information in Electronic Health Records (EHR), data retrieval and reuse for

evidence-based decision making, as well as to improve communication between stakeholders. The use

of structured reporting and standardized medical language has been demonstrated to have a direct im-

pact on patient health and to enhance the use of medical data in secondary activities such as research,

public health, and case studies [3]. Moreover, it facilitates interoperability of health systems [4].

Interoperability is defined by the capacity of two or more systems to share health data and utilise it

after it has been received [5]. Interoperability between EHR systems and health-care stakeholders not

only provides for smoother workflows and less ambiguity, but also enhances data transmission between

them. Furthermore, an interoperable environment with information sharing enhances health-care de-

livery by making the suited data available to the right stakeholders at the right time. As a result, it is

possible to obtain a patient-centered, value-driven care that improves health outcomes while lowering

costs [6].

The standardisation of biomedical terminology and interoperability of electronic health systems are

enabled by controlled vocabularies and ontologies. Controlled vocabularies are expressed by cataloged

concepts and terms [7] whilst biomedical ontologies provide a formal definition of biomedical concepts

and relationships between them [8]. This type of resources, including well-known examples, such as

SNOMED1 or the International Classification of Diseases (ICD)2, usually contain synonyms for most

terms, with Natural Language Processing (NLP) methods leveraging terminological resources, but they

seldom cover all potential synonyms. This hinders tasks such as integrating clinical notes across dif-

ferent authors and domains or identifying new or rare terms that are not presented in standardized

terminology [9]. Moreover, there are many ontologies covering overlapping domains, which leads to the

same concept being defined in different ontologies with different terms [10]. The non-uniform cover-

age across subjects or languages motivates the development of methods for automatically performing

alignments between multiple existing specialized terminology resources, in order to link together synony-

1https://www.snomed.org/
2https://www.who.int/standards/classifications/classification-of-diseases
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mous concepts across different vocabularies and potentially unlock biomedical knowledge by bridging

inaccessible data [11].

Concept alignments have been extensively studied within the context of ontology alignment. Most

existing methods correspond to heuristic approaches combining multiple types of similarity metrics [12].

In the clinical-medical domain, similar concepts can be lexically similar (e.g. dilated RA and dilated

RV ), but also highly dissimilar (e.g. cerebrovascular accident and stroke). Thus, using similarity metrics

based on matching character sub-sequences can be especially challenging for medical synonym discov-

ery. As an alternative, recent studies have successfully explored deep learning approaches for synonym

discovery in various contexts [13, 14, 15]. Furthermore, other NLP tasks, including approximate string

similarity, have also relied on deep neural networks in other fields (e.g. the alignment of geographical or

organizational names) [16, 17].

Taking inspiration on the aforementioned recent studies, this dissertation will focus on a supervised

deep learning approach to perform approximate string matching in the biomedical field. A supervised

deep learning algorithm automatically adjusts weights according to a certain training set [18]. Hence,

it can contribute to the optimization of the process of concept alignment since this weight adjustment

takes into consideration different features of the pairs of concepts present in the training set instead of

focusing on a single similarity metric or a hybrid approach between two similarity metrics. This weight

adjustment can be specifically relevant in cases where synonymous concepts are lexically dissimilar.

The proposed deep learning approaches will be tested on datasets built from different different

biomedical ontologies, representing specific domains. It is, therefore, important to consider and be

aware of the vast dimension biomedical terminology encompasses. Many ontologies use different sys-

tems and Licenses To Use (LTU) [19], which adds technical and economic barriers to obtain a uniform

coverage in biomedical ontologies. Additionally, most biomedical ontologies were developed indepen-

dently [12] and are often focused in a certain sub-field (e.g. cover only anatomy related terms or only

disease related terms). Similarity tendencies are often related to a certain domain, posing difficulties in

cross-domain evaluation [20]. For instance, if a neural model is trained with molecular biology related

terms, its weights will be adjusted to their similarity predispositions that might not be equally weighted

in anatomical terms. Therefore, obtaining a representative trained neural network is an additional chal-

lenge when designing deep learning approaches across the biomedical scope. The use of general

resources such as Wikidata 3, a large-scale collaborative database, have aided in obtaining a broader

coverage of biomedical terms [19].

1.1 Objectives

The main goal is of this dissertation is to perform concept alignment through classification of pairs of

terms as synonyms. More specifically, this work presents and extends previously developed methodolo-

gies for string-matching, applying it to the biomedical field. Methods to be explored in the context of this

extension and further objects of study within this problem are further described below:

1. Extension of deep learning models by developing neural network layers capable of encoding char-

acter position (i.e. representing input strings with character position information);

3https://www.wikidata.org/
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2. Assessment of the influence of the aforementioned positional encoding;

3. Assessment of the impact of the training data size;

4. Assessment of cross-domain contribution (leveraging a generic training dataset to test the models

in datasets retrieved from different ontologies and terminologies, across biomedical sub-domains);

5. A general verification if these methods are indeed successful and can contribute to string-matching

within the biomedical scope.

1.2 Methodology

Taking inspiration in design science research process model [21] the methodology underlying this work

divided itself in five steps: problem awareness; suggestion; development; evaluation and conclusion.

In the first stage of this work a general revision was conducted with the goal of understanding why

biomedical concept alignment is a challenge and what approaches have already been used to tackle

the problem. Moreover it was important to understand how textual information can be represented and

the underlying theoretical background in neural networks. Related work revision focused particularly on

two main areas: on the one hand on the use of deep learning methods in the biomedical field for similar

NLP tasks (e.g. ontology and concept alignment or synonym discovery); and, on the other hand, on

state-of-the-art string matching approaches.

The suggested string-matching approach had as a starting point two neural network models: a RNN

proposed by Santos et al. [16] and extended by Borges et al. [17] and a transformer model [22] also

extended by Borges et al. An extension to both these models is presented by adding character positional

encoding, since it was shown to improve NLP classification tasks [23].

The development of the aforementioned models relied on the Python programming language 4, which

was chosen due to its popularity and extensive documentation. More specifically, Pytorch and 5 Pytorch-

lightning6, Python deep learning libraries, were used in this study. The datasets, trained model and

source code are available in a public github repository7.

In order to evaluate the proposed neural network in the biomedical field, it was trained with a generic,

balanced dataset, with terms and concepts retrieved from Wikidata. The final dataset size was of 1 250

000 pairs of concepts and had no repeating occurrences, hence contributing to a one-shot learning of the

neural network models. The methods were tested in 1 intra-domain and 14 cross-domain datasets. The

intra-domain dataset was also retrieved from Wikidata using the same methodology and was obtained

using a stratified fold with the goal of not having repeated pairs of concepts in the training and validation

set. The remaining datasets relied on various sources of ontologies and terminologies, covering different

areas of the biomedical scope. Results were compared against individual string similarity metrics and

the exact Borges et al. proposed models, in order to validate not only the model as a string-similarity

approach but also the value of the positional-encoding extension. Further experiments addressing the

impact of the dataset size and considering in-domain training were conducted relying on the same neural

4https://www.python.org/
5https://pytorch.org/
6https://www.pytorchlightning.ai/
7https://github.com/LeonorFernandesIST/BiomedicalConceptAlignment.git
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network models. The evaluation metrics used throughout the experiments were accuracy, precision,

recall and F1 measures.

Finally, conclusions were drawn in regard to the models’ success in performing the string-matching

task in the biomedical scope.

1.3 Contributions

The main contributions of this work are the following:

• A method for modelling biomedical concepts and aligning pairs of synonymous concepts within the

biomedical scope, using supervised deep learning approximate string matching. The success of

the model, which was shown to be better than traditional methods, is useful to the biomedical field

since correct concept alignments contribute to synonym discovery and ontology alignment which

can enhance healthcare.

• A study on the impact of the training dataset size, which showed that aligning biomedical concepts

relying on approximate string matching through deep neural networks are much more successful

with larger sets of training data.

• A study on the impact of considering in-domain and all-domain data in training, which showed that

not only does in domain training achieve, in general better results, but in cases where there is lack

of abundant information (a small dataset) leveraging from other ontologies in the training set is

useful (all-domain training). Hence, it calls attention to the importance of not only considering a

large generic dataset but also to take into consideration the existence of overlapping domains in

biomedical ontologies.

1.4 Thesis Outline

The remainder of this dissertation is organized into the chapters described below.

• Chapter 2 addresses important concepts and related work, focusing on deep learning and textual

representation methods as well as state-of-the-art work on biomedical concept alignment and

string-matching.

• Chapter 3 details the proposed approach for the concept alignment through approximate string

matching. It describes the deep learning models leveraged in this work and the proposed positional

encoding extension.

• Chapter 4 describes the experimental evaluation conducted in this work. It details the datasets and

evaluation methodology used. Then, it presents and discusses the experimental results obtained

in this work.

• Finally, chapter 5 draws the main conclusions regarding this dissertation and presents possible

future work proposals.

4



Chapter 2

Concepts and Related Work

The work presented in this thesis relies on Artificial Neural Networks (ANNs) to perform approximate

string-matching and, therefore, align biomedical concepts. Hence, it is important to not only understand

the basic ANN architectures, but also how textual information (i.e. the biomedical concepts) can be

represented. Sections 2.1 and 2.2 introduce these concepts and models. Moreover, it is also relevant

to explore traditional and state-of-the-art approaches on both string-matching and biomedical concept

or ontology alignment with the goal of understanding what has been done in similar tasks or fields and

leveraging previous successes whilst taking into consideration known limitations. Sections 2.3 and 2.4

overview these approaches and section 2.5 summarizes the related work.

2.1 Introduction to Neural Network Models

ANN are computational approaches inspired on the human nervous system, the biological system that

is responsible for locomotion (activating our muscles), processing and interpreting external and internal

stimuli, learning and decision-making, among other things [24]. To further understand the architecture

behind an ANN it is important to introduce concepts on a biological neural network. The human nervous

system’s basic unit is the neuron. In a very general way, a neuron receives a stimuli or signal with a

certain intensity and, if this intensity reaches a certain threshold, it generates the propagation of the

signal - through synapses - to another neuron, therefore forming a network of connected neurons [25].

An ANN is made up of a series of connected nodes that serve as a simplified representation of

biological neurons [26]. Each node receives a certain weighted input, whose product, after being pro-

cessed by a non-scalar function, will be passed as the subsequent output. A representation of synapses

is made whenever a certain output is passed on as input to another node. The learning process can be,

therefore, defined as the capability of learning weights that will produce the most appropriate response.

Several architecture types of ANN are used for deep-learning. In the following sections, the most

common architectures used in NLP will be introduced.

2.1.1 The Perceptron

The simplest neural network, introduced by Rosenblatt [27], is the single-layer perceptron. This single-

node network is used for binary classification problems. Mathematically, it can be described as linear

5



model according to Equation 2.1, where y is output vector, x is the input vector, w the weight vector, b a

bias vector and φ(·) an activation function that returns -1 if its input is negative or 1 otherwise:

y = φ(x · w + b). (2.1)

Training the perceptron entails selecting an example from the training dataset and updating each weight

in the weight vector w interactively according to Equation 2.2, where wi is the ith element of w, xi is the

ith element of x, y is the predicted output, ŷ the true label for the data point being processed, and η is

the learning rate:

wi = wi + η · (ŷ − y) · xi. (2.2)

The training algorithm converging to the correct classification depends on whether η is sufficiently small

and if the data is linearly separable (i.e. There is a set of weights that can accurately classify all of the

cases in the training set).

2.1.2 Multi-Layer Perceptron

In order to solve more complex problems, the single perceptron was extended to a neural network called

a Multi-layer Perceptron (MLP) [28]. In this case there are at least three set of nodes: an input layer;

an output layer where the required task is performed; and between them one or more hidden layers,

containing computational nodes. The signal propagates feed-forwardly layer by layer until it reaches the

output node(s). Mathematically, considering a single hidden layer, the MLP can be defined by Equation

2.3, where x and y are respectively input and output vectors, A and B are matrix’s representing the first

and second layer weights, a and b are the bias vectors of each corresponding layer and φ(·) and φ′(·)
are the activation functions of the hidden and output layers:

y = φ(φ′(x ·A+ a) ·B + b). (2.3)

In the final layer of a MLP classifier a softmax function (i.e., a normalized exponential function that

produces a probability distribution as an output) is frequently used to train the network while minimizing

a given cross-entropy loss. Training the neural network will therefore, similarly to the single layer percep-

tron, correspond to adapting all weights and bias to their optimal values. This adaptation can be done

by applying the back-propagation algorithm in combination with some variation of the gradient descent

optimization [29]. The Adaptive Moment Estimation (Adam) technique is an optimization procedure that

has been widely utilized to train deep neural networks [30]. Adam uses an exponentially decaying av-

erage of past gradients, along with adaptive learning rates for each parameter, to compute parameter

updates. In practice, infrequent parameters result in larger updates and frequent parameters in smaller

updates.

2.1.3 Convolutional Neural Networks

Convolutional Neural Networkss (CNNs) are complex ANNs in which a filter h, also known as kernel (i.e.

a linear transformation followed by an activation function) is applied to a given input sequence [31, 32].

To create a collection of feature maps, each filter conducts a local convolution (i.e. a multiplication of

6



elements in a matrix followed by a sum) on the sub-sequences of the input. Then, to obtain a single

scalar, a global average or max-pooling over time is performed, and the scalars from the h filters are

concatenated into the sequence representation vector.

In other words, assuming a sentence as input, the filter will be applied to each instant of a k-word

sliding window over the phrase, transforming a window of k words into a dimensional vector d that

captures significant features of the words in the window (i.e. the feature map). The pooling operation

joins the vectors from different windows into a single d-dimensional vector.

Hence, for a sequence of words x = x1, . . . , xn a convolution layer of width k creates several in-

stances of windows wi = [xi;xi+1; . . . ; xi+k−1]. The filter of size k is then applied to each window

resulting in m vectors p1, . . . , pm. These vectors are mathematically described in Equation 2.4, where

φ(·) is an activation function that is applied element wise and A and a are network parameters:

pi = φ(wi ·A+ a). (2.4)

The m vectors can then pass through a max-pooling or and average-pooling layer and a final represen-

tation of vector r is obtained. For the case of max-pooling, each element j of r is obtained according to

Equation 2.5, where pi[j] denotes the j-th component of pi:

r[j] = max
1≤i≤m

pi[j]. (2.5)

The max-pooling operation has the effect of obtaining the most important information across window po-

sitions. Each dimension should ideally ”specialize” in a specific type of predictor, with the max operation

selecting the most essential predictor of each type. On the other hand, the average-pooling operation

determines the average value for patches of a feature map, resulting in smoother feature extraction.

2.1.4 Recurrent Neural Networks

RNN are time-dependent complex ANN that compute a hidden state vector ht at each time step t [33].

As indicated by Equation 2.6, the hidden state is obtained by a non-linear transformation that takes as

inputs the prior hidden state ht− 1 and the current word input xt:

ht = f(ht−1, xt). (2.6)

The simplest RNN is the Elman RNN. At a certain time-step t, the hidden state ht is a function of the

input at the same time step xt, modified by a weight matrix W . This result is added to its own hidden-

state-to-hidden-state matrix U , also known as a transition matrix, and multiplied by the hidden state

of the preceding time step ht−1. The weight matrices are essentially filters that determine how much

importance should be given to both the present input and the past hidden state [34]. This RNN which is

described by Equation 2.7:

ht = φ(Wxt + Uhht−1). (2.7)

Previous research has shown that Elman RNN has difficulties in modeling long sequences. Some exten-

sions, such as Long Short-Term Memorys (LSTMs) units [35] and Gated Recurrent Units (GRUs) [36],

were created to address this limitation. These approaches combine prior states with the current input,
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requiring a specific interaction of gating mechanisms.

In GRUs a reset gate r controls how to merge the new input with the existing memory, and an update

gate z governs how much of the previous memory is maintained and how much new information is

added. Mathematically, these models can be defined by Equations 2.8 to 2.11, where xt refers to the

input vector at a certain time step t, � is the Hadamard product (i.e. the entry-wise product of two

matrices) and parameters W U and b denote different weight matrices and biases that are adjusted

when training the model through back-propagation:

zt = ϕg(Wz · xt + Uz · ht−1 + bz), (2.8)

rt = ϕg(Wr · xt + Ur · ht−1 + br), (2.9)

h̃t = ϕh(Wh · xt + Uh · (rt � ht−1) + br), (2.10)

ht = zt � ht−1 + (1− zt)� ht. (2.11)

Due to the gates specifying how much of the input and prior state vectors should be considered, the

network learns how to manage long-term dependencies through them.

LSTMs are similar to GRUs but have more parameters (e.g. an extra gate). These networks use

various gating mechanisms, including a forget gate ft, which determines how much of the previous gate

will be maintained, an input gate it, which determines how much of the proposed gate gt should be

preserved, and an output gate ot, which determines the output at time t. Mathematically they can be

described by Equations 2.12 to 2.17, where xt, ht, �, W , U and b have the same meaning as in the

GRUs equations.

it = ϕg(Wi · xt + Ui · ht−1 + bi), (2.12)

ft = ϕg(Wf · xt + Uf · ht−1 + bf ), (2.13)

ot = ϕg(Wo · xt + Uo · ht−1 + bo), (2.14)

gt = ϕh(Wg · xt + Ug · ht−1 + bg), (2.15)

ct = ft � ct−1 + gt � it, (2.16)

ht = ϕh(ct)� ot. (2.17)

LSTMs have reported to outperform GRUs when more training data is available in tasks requiring mod-

eling longer-distance relations [37].

Another extension of RNNs are Bidirectional RNNss (BiRNNs) which are composed of two RNNs
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and read an input sequence in both directions. The forward RNN reads the input from left to right, hence

capturing unbounded left side context and the backward RNN reads the input from right to left, therefore

capturing the unbounded right side context. The hidden states for each of the RNNs are concatenated

according to Equation 2.18 where hft and hbt are respectively the forward and backward hidden states

and ⊕ is the concatenation operator:

ht = hft ⊕ hbt . (2.18)

The output layer can get information from both past and future states at once using this network.

2.1.5 Transformer Models

Transformer models were proposed by Vaswani et al. [22] as a way to use an advanced attention scheme

to model input and output dependencies without needing recurrence or convolutions. Scaled dot product

attention mechanisms, in which numerous attention heads are applied in parallel, enabling the model to

attend to distinct representation sub-spaces at different points, are the foundations of this model.

A Transformer encoder has two sub-layers within each layer. The first sub-layer has a Multi-Head

Attention module that aggregates the embeddings (V ) of a collection of keys (K) to compute the output

embeddings for a set of queries (Q) (Equations 2.19, 2.20 and 2.21). The second sub-layer corresponds

to a position-wise fully-connected feed-forward network:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O, (2.19)

headi = Attention(QWQ
i ,KW

K
i , V WV

i ), (2.20)

Attention(Q,K, V ) = Softmax(
Q ·KT

√
dk

) · V. (2.21)

In the previous expressions, WQ
i , WK

i andWV
i are matrices that linearly project queries, keys and values

into the attention space of the ith head, while WO is a matrix that linearly transforms the concatenation

of the outputs of all heads.

Unlike RNNs, this model does not require sequential data to be processed in order.

Wang et al. [38] has recently extended the Transformer model combining it with a RNN. More specif-

ically, the R-Transformer is made up of a series of identical layers stacked on top of each other. Each

layer consists of a lower, middle and upper level. The lower level is made up of local recurrent neural

networks, which are designed to model local structures in a sequence; the middle level is made up of

multi-head attention, which can capture global long-term dependencies; and the upper level is made up

of position-wise feedforward networks, which perform a non-linear feature transformation.

2.1.6 Siamese Neural Networks

Siamese neural networks are networks that have an architecture where different parts have their pa-

rameters tied, forming two or more identical sub-networks (i.e. in terms of configuration, parameters

and weights) [39]. Whenever a parameter update is made in one of the sub-networks it is reflected
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throughout the other sub-network(s).

Siamese networks are widely used in tasks that require determining similarity or a link between

two similar objects [40, 41, 42, 43]. When the inputs are similar, it makes sense to use a comparable

model to handle them, which is why siamese architectures are effective for these tasks. As a result, the

networks will have representation vectors with the same semantics, which will make comparing pairs of

phrases easier. Since the weights are shared among sub networks, there are fewer parameters to train,

resulting in less training data and a lower risk of over-fitting [39].

2.2 Representing Textual Information

This thesis tackles a NLP problem using supervised machine learning. NLP is the study of computer

programs that take natural or human language as input [44]. Supervised machine learning is concerned

with inferring the parameters of models that accept a certain vector x as input and provide another vec-

tor as output, with each position indicating the likelihood of the input belonging to a specific class [45].

When performing a supervised machine learning task in the NLP domain, x will generally encode char-

acteristics of a text such as characters or words. Hence, it is necessary to represent textual information

as a vector [46]. A simple and common way to tackle this representation is relying on one-hot-vectors.

In this case, given a vocabulary (of words, n-grams or characters) with dimension V , each vocabulary

instance is represented as a V -dimensional vector with all values 0 except at the index of the word,

n-gram or character represented, which would have the value of 1 [47].

Vector space model are a simple, straightforward technique that uses one-hot vectors to represent

textual information in documents as fixed size vectors, by summing the word representations wi, in a

certain document d with N words [48]:

d =

N∑
i=1

wi. (2.22)

This will produce a V -dimensional sparse vector, where a certain word i’s frequency in the document is

represented by the ith vector element. Based on the idea that uncommon terms are more discriminative,

and therefore should be valued higher,the Inverse Document Frequency (IDF) score can, instead, be

taken into consideration [48]. This collective-level importance score is calculated by using a weighted

average of each word representation wi in a collection of documentsD. This representation is expressed

by Equations 2.23 and 2.24:

d =

N∑
i=1

IDF (i)

N
× wi, (2.23)

IDF (i) = log(
|D|

|{d′ ∈ D|wi ∈ d′}|
), (2.24)

where |D| is the number of documents in the collection of documents D and |{d′ ∈ D|wi ∈ d′}| repre-

sents the number of documents that contain the concept wi.

One-hot representations of words are less common nowadays [49]. This representation usually

results in vectors that are not efficiently handled due to their large dimension. Moreover, one-hot rep-

resentation consider all words to be totally independent, regardless of meaning. Hence, in more recent

years approaches involve representation of textual information through lower-dimensional dense vectors

10



[50]. Most of these methods attempt to represent words based on syntactic and semantic information so

that words with similar meaning are also closer together in the vector space that represents them [51]

(e.g. pain and ache would have similar representations). These methods are referred to as word em-

beddings and are applied to many NLP tasks (e.g. information extraction and retrieval, text classification

and machine translation) [47]. Formally, word embeddings can be defined as a map fwe : N→ RD from

a discrete word index to a D dimension real valued vector N = {0, 1, 2, ...} [23].

Many state of the art approaches to perform embeddings rely on neural network models, being one

of the most popular the word2vec [52, 53]. This method presents an unsupervised training of word

embedding based on the assumption that identical words appear in comparable contexts frequently. It

can rely on a skip-gram or a Continuous Bag of Words (CBOW) architecture. The first model focuses

on the predicting a context (i.e. surrounding words) given a center word, whereas the CBOW predicts a

center word given the context.

Mathematically, the skip-gram aims to, given a sequence of words w1, w2, ..., wT , maximize the fol-

lowing average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log(p(wt+j |wt), (2.25)

where c is the context size, T the total number of words, and wt the word at position t. The probability

p(wt+j |wt is mathematically defined by:

p(wO|wI) =
exp(V (wO)

TV (wI))∑W
w=1 exp(V (w)TV (wI))

, (2.26)

where V (wI) and V (wO) are a vector representations of the input word (center word) and output word

(a context word) and W is the vocabulary size.

On the other hand, the CBOW model, given a sequence of words w1, w2, ..., wT , is mathematically

defined by:
1

T

T∑
t=1

log(p(wt|wt−c, ..., wt−1, wt+1, ..., wt+c), (2.27)

where c also represents the context.

The usage of word and phrase embeddings have been shown to improve methods’ performance

when they are used as underlying input representations in neural network sentence encoders [54, 55].

Hence, encoding word representations is usually an important step in NLP tasks. Furthermore, when

considering one-hot encoding as input representations, studies have efficiently used character based vo-

cabularies instead of word vocabularies, capturing both word orthography arbitrary aspects and possible

sub-words or word shape information [56, 57]. This means that this representation may convey more

information at a more fundamental level, which is particularly beneficial when dealing with sparse or

noisy data [47]. However, due to parallelization, processing text can be computationally costly to model

with ANN [58]. This has been addressed by adding position embeddings to the feature level rather than

modeling word sequence at an architectural level. The Transformer model [22], which substitutes recur-

rent and convolution processes with solely attention methods, and the Convolutional Sequence Model

[59] have proposed methods to do this. Recently, Wang et al. [23] studied positional embeddings in the
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context of sequential word order. A positional embedding is formally defined as a map from a discrete

position index to a vector fpe : N → RD. In this case the final embedding of a word is obtained by

summing both the word and position embeddings (Equation 2.28):

f(j, pos) = fwe(j) + fpe(pos), (2.28)

where fwe is the word embedding of word j in a certain vocabulary and is in the pos-th in a sentence.

Wang et al. showed that in a variety of tasks, including positional encoding at a feature level, consistently

obtained better results, which inspired the extension proposed in this dissertation. Moreover, in order to

describe the smooth change across consecutive word locations and implicitly capture relative distances

between words, Wang et al. expanded word vectors to word functions with position as a variable.

2.3 Approximate String Matching Methods

Approximate string matching [16] (also referred to as string-matching in this work) is a use of NLP to

identify whether a pair of character strings represent the same entity or concept. Traditionally, concept

alignment methods were done through string similarity metrics. In many state-of-the-art approaches

neural networks have performed this task and achieved better results, however, it is still important to

understand the traditional metrics as they are an important baseline for the ANNs. In this section, both

traditional and state of the art approaches for string similarity are presented.

2.3.1 String similarity Metrics for String Matching

String similarity metrics can be based on character operations, vector-space representations or hybrid

methods of the aforementioned metrics.

Character-based operations [60], also called sequence-based or edit distance, take two strings

and calculate the edit distance between them using it as quantification for the similarity between two

strings. For instance, given to strings s1 and s2 the Levenshtein edit distance measure represents

the smallest number of changes (i.e., insertions, deletions, or substitutions) required to transform one

string into another. The string similarity based on this distance is calculated by Equation 2.29 where

levenshtein(s1, s2) is the aforementioned distance between strings s1 and s2 and |s1| and |s2| are the

lengths of each string:

simL(s1, s2) = 1− levenshtein(s1, s2)

(max{|s1|, |s2|}
. (2.29)

The Jaro metric [61] is another example of character-based operations. This metric is based on the

common number of characters and order between the strings, i.e. the difference between their positions

should be no more than half the length of the longer string. Character transpositions are also taken into

account. The Jaro similarity is given by the following Equation:

simj(s1, s2) =

0 ifm ≡ 0,

1
3 (

m
|s1| +

m
s2

+ m−t
m ) otherwise,

(2.30)

where m is the number of matching characters, t half the number of transpositions and |s1| and |s2| the
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lengths of strings s1 and s2. Winkler [62] extended this metric by considering a prefix scale that gives

higher scores to strings that match from the beginning of the string until a certain prefix length. This

extension is defined by:

simw(s1, s2) = simj + lp(1− simj), (2.31)

where simj is the Jaro similarity between strings s1 and s2, l is the length of common prefix at the start

of the string up to a maximum of 4 characters and p is a constant scaling factor or how much the score

is adjusted upwards for having common prefixes. This scaling factor is usually 0.1. In order to further

extend this metric, which showed to be problematic in strings that contained multiple words in a different

order Christen [63] developed alternative variations. These variations consisted on algorithms where (i)

the tokens that make up both strings are sorted before calculating their Jaro-Winkler similarity (the sorted

Winkler) or (ii) the similarity is computed across all conceivable token permutations and the maximum

value is returned (the permuted Winkler). A more recent character operation metric, the I-Sub measure

[64], has been used in many approaches, since it was specially developed for ontology alignment. This

measure claims that similarity is determined by both commonalities and differences between the two

strings being compared. Equation 2.32 formally defines this metric:

simISub(s1, s2) = comm(s1, s2)− diff(s1, s2), (2.32)

where comm(s1, s2) represents the commonalities and diff(s1, s2) the differences between the strings.

The commonalities comm(s1, s2) are calculated by repeatedly finding the longest common sub-string,

removing it, searching for the next longest common sub string and removing it, until there are no common

sub-strings left. The sum of the common sub-strings lengths of each i iteration is scaled by the length

of the original strings |s1| and |s2|:

comm(s1, s2) =
2 ·

∑
i |maxComSubstringi|
|s1|+ |s2|

. (2.33)

The difference between two strings is defined by:

diff(s1, s2) =
uLens1 ∗ uLens2

p+ (1− p) ∗ (uLens1 + uLens2 − uLens1 ∗ uLens2)
, (2.34)

where uLens1 and uLens2 are the lengths of unmatched sub-strings left by the last iteration step scaled

with the original string’s length and p is a factor usually scaled to 0.6.

Vector-space approaches focus on term-based similarity [60] (also known as token-based similarity),

whose main characteristic relies on likeliness quantification being associated to an overlap of two token

sets. Common approaches rely on computing the cosine [65] (Equation 2.35), Jaccard [66] (Equation

2.36) or Dice [67] (Equation 2.37) similarity measures that are based on character n-grams (i.e. based

on consecutive n character sequences, typically with n = 2 or n = 3). These methods are defined by:

simcos(A,B) =
A ·B
||A||||B|

, (2.35)

simjaccard(A,B) =
|A ∩B|
|A ∪B|

, (2.36)
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simdice(x, y) =
2nt

nx + ny
, (2.37)

where in both equations 2.35 and 2.36 A and B are a set of words or n-grams of s1 and s2 respectively

and in Equation 2.37 nt is the number of bi-grams found in both strings, nx the number of bi-grams in

string x and ny the number of bi-grams in string y. The cosine measure is generally used in information

retrieval whilst the Jaccard and Dice are more common in string comparison. Skip grams, or bi-grams of

non-adjacent letters with gaps of zero, one, or two characters, have also been recommended as a viable

alternative to standard n-grams when representing strings to be matched [68].

Hybrid approaches have the ability of being flexible about word order position whilst allowing for small

differences in word tokens, combining, therefore, advantages of the aforementioned approaches. Most

of these methods rely on a final score that is computed taking into account second-level measures, i.e.

sub-measures that are applied to all pairs of word tokens between two strings. For example, in the

approach provided by Monge and Elkan the average similarity between the most similar pairs of word

tokens is estimated according to a certain sub-measure such as the Jaro Winkler or the Levenshtein

similarity. This method is defined by Equation 2.38:

sim(s1, s2) =
1

|s1

m∑
i=1

n
max
j=1
{sim′(ai, bj}, (2.38)

where s1 is the length of string s1, {a1, a2, ..., an} is the set of words in s1, {b1, b2, ..., bm} is the set of

words in s2 and sim′(ai, bi) is the base similarity metrics applied to words ai and bj . When aligning

the individual word tokens, the cosine similarity and the Jaccard coefficient are also used in hybrid ap-

proaches. In these cases sets of tokens rather than sets of n-grams are considered which consequently

softens the metrics by allowing small mismatches (e.g., by applying a threshold over the results of a

character-based inner similarity metric) [65, 69, 64].

2.3.2 Neural network models in string-matching

Recently, deep learning approaches have been successfully explored as an alternative to standard string

similarity metrics in various domains.

Conneau et al. [70] advanced a generic architecture for determining, from a premise sentence, if

a given hypothesis sentence can be inferred. This architecture has also been used for string-matching

[16, 17]. In these cases both strings were encoded by a RNN, creating a representation of each vector

that were then matched in some way (e.g. by vector concatenation, vector difference, and/or element-

wise product), fed into a set of fully-connected layers, and finally processed through a feed-forward layer

with a sigmoid activation function, which generates a binary decision.

Santos et al.’s architecture [16] took inspiration on the previously described generic architecture,

leveraging two stacked layers of bi-directional Gated Recurrent Units (bi-GRUs) with shortcut connec-

tions as the string encoder. This model outputs the final hidden state of the second bi-GRU. Since this

is the underlying base of this work, chapter 3 presents further detail on this architecture. Borges et

al. [17] proposed several extensions to this model. Instead of considering the final hidden state of the

second bi-GRU as the input vector representation the authors considered: the use of max-pooling and
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average-polling operations over the hidden states from the second bi-GRU to create the representation

of the whole input string; the use of an inter-attention (i.e., alignment) layer, allowing the model to learn

to attend and align different pairs of characters between the two input strings. The substitution of the

activation functions of the GRU cell with a penalized hyperbolic tangent activation function was also ad-

vanced. In this study, the bi-GRU with the max-pooling and average-pooling extension presented better

results in most cases.

The string matching problem can also be formulated as retrieval-based ranking problem where, given

a string, the goal is to rank a set of other similar strings, with the most similar placed on top. Gan et al.

[71], Traylor et al. [72] and Tam et al. [73] all presented deep neural networks to address this problem.

Gan et al. [71] proposed a string encoder combined with a ranking component. The string encoder

was represented either by a CNN, where final vector representations for the input string were obtained

by concatenating results of a max-pooling operation over the outputs of the three convolution layers, or

a bi-directional LSTM, where vector representation was defined as the last hidden state of the neural

network. The ranking component rated the candidates based on their cosine similarity to the query

representation, given the vector representations of the query string and the candidate strings. Equation

2.39 represents the mathematical definition of the loss function used to learn the model parameters:

L(θ) = −log
∏

Q,D+

exp(γR(Q,D+))∑
D′∈D exp(γR(Q,D

′))
with R(Q,D) =

yTQ · yD
||yQ|| · ||yD||

, (2.39)

where Q represents the query string with a vector representation yQ, D a candidate string with a vector

representation yD, D+ the correct target string and D the set of candidate strings to be ranked. The

results showed that the CNN-based string encoder outperformed its RNN counterpart, which the authors

believe is due to the CNN’s greater capacity to catch local patterns in sequential data.

Traylor et al. [72] and Tam et al. [73] also used bi-directional LSTMs to encode pairs of strings,

but considered the whole sequence of vectors output by the bi-LSTM for the input strings. In the first

case, a CNN with max-pooling was applied to an alignment matrix (obtained by multiplying both string

representations) followed by a linear layer to output the final score. The system was trained on triples

of strings with a training target of σ(f(s, t)f(s, n)), where s represents a mention string, t represents

an alias of s, and n represents a string that is not an alias of s. The authors constructed five different

datasets for the tests, including Wikipedia entities, Wikipedia persons names, patent records, names of

music artists, and illness names. In their approach to use a retrieval-based assessment, the previously

disclosed model, which included bi-LSTMs and a CNN, outperformed other methods in terms of mean

average accuracy scores and hits at top K results, such as simpler neural models or traditional string

similarity approaches.

In the second case, after the bi-LSTM, Tam et al. [73] proposed a transport plan matrix (the conver-

sion of the encoding of one string to the encoding of the other string) that is multiplied element-wise by

a similarity matrix (the inner product of both string representations) and its result is fed to a three layer

CNN. Similar to the previous approach, a final linear layer outputs the desired score between the query

and the candidate string. In particular the transport plan matrix is obtained through transport problem

that is formally described using two probability distributions, p1 and p2, as well as a cost matrix C that

describes the cost of converting each element in the support of p1 to each element in the support of

p2. The aim is to create a transport plan matrix that describes how to transfer p1 to p2 for with minimal
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cost, which can be done using the Sinkhorn iteration method [74]. In this task, the input strings are

represented by p1 and p2 whilst the character representations generated by the bi-LSTM are hi and hj ,

and the cost matrix C as demonstrated in Equation 2.40:

Cij = max
i′j′

hi′ · hTj′ − hi · hTj . (2.40)

Zhao et al. [75] suggested a pre-training strategy for the entity matching problem of identifying which

records from two tables correspond to a match. The suggested technique begins by identifying which

attribute types exist in a table (e.g., person or organization). As a result, a type identification model was

trained using 49 distinct entity types taken from different knowledge sources. For each attribute type,

a neural string matching model was pre-trained with entities belonging to these specified types, taking

into account numerous entity aliases available in the knowledge bases. Considering a new dataset with

fewer training data, the type of attributes existing in the table is recognized first and if that type is known,

a model that has been pre-trained with data from that type is fine-tuned using instances from the dataset

at hand. Otherwise, fine-tuning is done using a model that has been pre-trained with all type-specific

data. The neural networks supporting this work to analyze the matches were a bi-GRU and inter-input

attention mechanisms at both the character and word level. The authors used training examples from

eight distinct datasets from various areas in their studies. One of the key findings was that fine-tuning

from a pre-trained model was consistently poorer than training on domain specific cases from scratch.

In terms of fine-tuning, they found that, in general, models that had previously been pre-trained on the

union of many variables performed well.

2.4 Biomedical concept and ontology alignment

Given a certain field, an ontology is generally defined as a collection of concepts and categories that

demonstrates their features and relationships [76]. Ontology alignment can be defined as the process

of corresponding semantically related concepts, classes and properties between two ontologies [77].

When considering ontology matching in the biomedical domain it is important to be aware of the rich

lexical component of biomedical vocabulary and consider a variety of annotations per class instead of

considering only the primary name of each class within each biomedical ontology. Faria et al. [12] have

shown that it is more effective to use all available synonyms for a certain concept and only by doing so

can biomedical ontologies from different communities be effectively bridged.

Several attempts have been made to build machine-learning algorithms based on binary classifica-

tion for ontology matching [78]. These approaches include, among others, classifiers based on decision

trees [79], Support Vector Machines [78], and Logistic Regression [80].

Many state of the-art-approaches rely on contextual or external information to aid on identifying

medical synonyms or performing biomedical ontology alignment. Wang et al. [13] and Jiang et al.

[14] both propose supervised ontology alignment methods through neural networks - a siamese multi-

layer percepton with a sigmoid function and a LSTM based method enhanced with a char-embedding

technique, respectively. In both cases, the datasets used were from already existing alignment data and

results showed that a capability of encoding additional information when available is beneficial.

On the other hand, Scumaster et al. [9] and Kolyvakis et al. [15] present unsupervised learning
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methods to tackle these challenges. Schumaster et al. [9] developed a neural network that makes use

of contextual information from surrounding text or patient information to build synonym representations

and perform the task of synonym discovery. Results from evaluating the neural network on a medical

related concept linking dataset were consistent on concluding that performance is better when providing

contextualized representations than non contextualized representations. Kolyvakis et al. [15] describe

a network based on embedding ontological terms in a high-dimensional Euclidean space to perform

ontology alignment, relying on a similarity function whose measurement is higher in the cases where

vectors of words that appear in the same sorts of context. The results show that using terminological

embeddings to capture semantic similarity can help with ontology alignment.

Although these methods have shown to be effective, there is an underlying struggle on identifying

the most suitable and useful sources of background knowledge [12], which in itself has also been a topic

of several studies. [81, 82, 83].

Another challenge related to concept alignment is that controlled vocabularies are not accessible in

all languages and often lack complete definitions. Rahimi et al. [84] focused on aligning a controlled

vocabulary - the Unified Medical Language System (UMLS) to Wikipedia, whose health related articles

can contribute with content and multilinguality, through a neural ranking model. With this approach,

a broader range of countries are able to adopt the UMLS, whilst also facilitating health information to

patient’s whose linguistic background differs from the doctor consulted or health system used. This

means that for a certain ULMS concept, a neural ranking model will retrieve relevant Wikipedia articles

that match that concept and it’s multilingual aliases. The results using this neural model showed a

substantial improvement of 20% over manual alignment with minimal effort.

2.5 Overview

Biomedical concept alignment is a challenging task where many recent systems have relied on contex-

tual data to facilitate these alignments. However, trustworthy source identification is an issue with these

methods. Thus, direct concept alignment between terms is important in this field and string-matching

methods can be applied. More specifically, since state-of-the-art approaches mainly rely on deep neural

networks that leverage textual processing it makes sense that biomedical concept alignment through

approximate string matching would also rely on them.
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Chapter 3

Neural Network Models for Biomedical

Concept Alignment

This dissertation tackles the string matching problem within the biomedical domain, leveraging from

neural network models from previous works. In particular, a RNN proposed by Santos et al. [16] and

extended by Borges et al. [17] and a transformer model also proposed by Borges et al. Section 3.1

describes these models. The strategy utilized to improve the models relies on extending them with

positional encoding as part of the textual representation mechanism. This extension is described in

Section 3.3 and Section 3.4 presents a general summary on the final models. The model implementation

relied mostly on Pytorch Lightning deep learning library, as mention in section 1.2.

3.1 Neural Network Models General Architecture

3.1.1 Textual Representation as Input

Each neural network model receives as input binary vector sequences that represent the strings to be

compared. Firstly, the strings are converted to a unicode canonical normalized format (i.e. a completely

decomposed UTF-8 representation with all combining character marks placed in a predetermined order)

and padded with a specific symbol that specifies the concept’s beginning and end. Each byte represents

a single bit set to one, and the normalized strings are subsequently encoded as a sequence of one-hot

binary vectors. The binary vectors are sent into either the bi-directional GRU or the transformer model

as input, which will consequently produce an embedding for each of the concepts being compared.

3.1.2 Architecture Based on RNN

The neural network proposed by Santos et al. [16] is a siamese RNN. The string encoder, consists of

a stack of two bi-GRU. A sequence of real-valued vectors is generated by the first bi-GRU layer and

transferred as input to the second bi-GRU. These last outputs form the first bi-GRU are concatenated

in each direction by the the second layer, outputting a single embedding for the input. It is important to

note that even though each of the concepts entered as input is processed by individual recurrent layers

the parameters of these GRUs are shared across the parts of the network that process each input term.
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Hence, if X = [x1, ..., xL] is a sequence of one-hot vectors corresponding to the byte representations

of the characters that compose an input string, with length L, then we can denote by H the sequence

of hidden states output by the second bi-GRU, and by s the final representation of the input string, as

described by Equations 3.1 and 3.2:

H = BiGRU(= BiGRU(X)) = (hi, ..., hL), (3.1)

s = hL. (3.2)

After obtaining the two embedding vectors from the two layers of bi-GRUs, they are combined into

a single representation by either concatenating them or by calculating the element-wise product the

difference between them. This representation is finally fed into two feed forward layers to produce the

final output. These layers consist of simple combination of the inputs in addition to a Rectified Linear

Unit (ReLU) (i.e. a nonlinear activation function) and a sigmoid activation function.

From the various extensions to this model explained in section 2.3, the current work leverages from

addition of max-pooling and average-polling operations over the hidden states from the second bi-GRU

since, in most cases it reported better results [17].

3.1.3 Architecture Based On the Transformer Model

Borges et al. [17] also proposed an extension with the transformer model for string matching. More

specifically, it extends the R-Transformer model [38] where the the encoder layers use a single and

first bi-GRU followed by multi-headed scaled dot product attention mechanism to capture interactions

between the two input strings. In order to obtain the vector representation for the input these layers are

followed by max-polling and average-pooling operations to aggregate the outputs of the final encoder

layer. The remaining layers maintain themselves the same as in the previous architecture (specifically,

the two feed-forward layers).

3.2 Positional Encoding

This thesis proposes adding a positional encoding to the aforementioned models as a class of the

textual representation encoder so that, given a certain pair of strings, the input representation includes

information on each character’s position, instead of containing information only on which character it

represents (one-hot vector).

A trigonometric position embedding [22] was added to the input representation in which each position

embedding is selected as:

PE2k(·, pos) = sin(pos/100002k/dmodel),

PE2k+1(·, pos) = cos(pos/100002k/dmodel).

(3.3)

In the previous expressions, pos is the position index, 2k and 2k + 1 are the dimension index and dmodel

is the dimension size of embedding.
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(a)

(b)

Figure 3.1: (a) The string encoder proposed by Santos et al. [16] with the extensions proposed by Borges et al. [17]
(average and max-pooling operations) and the positional encoding propsosed in the present work. (b) Transformer
extension proposed by Borges et al. [17] with the positional encoding proposed in the present work.

Hence, each character representation is no longer a byte representing a single bit set to one. It is,

instead, that unitary representation added to the positional encoding in each byte (equation 3.4):

si = 10 ∗ si + PE[si], (3.4)

where si is a single byte representation of a character in a string s, and PE is the positional encoding

calculated with equation 3.3. The single byte representation is multiplied by 10, so that the represented

character is still clearly encoded.

The overall sentence encoder models are instances of the generic approaches illustrated in Figure

3.1. The feed-forward layers after the pooling operations are not represented.

3.3 Summary

The presented string matching technique considers lexical information about concepts, and the model’s

structure is summarized below.

1. Input layer: input a pair of concepts to the model taking into consideration character representation

and positional encoding.

2. Encoder layers: map each character to a low dimensional vector using one of two cases:

(a) a siamese architecture of bi-GRUs followed by pooling operations;

(b) a bi-GRU followed by attention heads (from the R-Transformer model).

3. Output layers (linear layers): use the feature vector to classify (using the ReLU and sigmoid acti-

vation functions).
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Chapter 4

Experimental Evaluation

In order to understand the experimental outcomes it is important to assess the datasets used as well as

acknowledge and comprehend the underlying evaluation process, which is the emphasis of sections 4.1

and 4.2. The results and subsequent discussion are the focus of sections 4.3 and 4.4.

4.1 Description of the Datasets

In the course of this work a total of 16 different datasets were used. Each dataset corresponds to

a collection of pairs of strings from different biomedical ontologies or collected from biomedical text

corpora. In general, a positive instance corresponds to the case where both strings in a pair correspond

to the same concept.

The proposed neural networks were trained with a generic balanced dataset featuring instances

retrieved from Wikidata1. Wikidata is a secondary database (i.e. relies mainly on other resources to

develop its content) with an ever-growing number of application cases. It is a large-scaled, multilingual,

multidisciplinary, centralized, editable, structured, and linked knowledge-based resource being, therefore

valuable for data integration and semantic interoperability among biomedical computer systems [19].

Each concept is associated to a code and taxonomic relationships, such as ”instance of” and ”subclass

of,” connect these concepts, allowing data to be classified, categorized, and indexed [85].

In order to obtain a large and generic dataset, English concepts were retrieved as being ”instance

of” certain sub-classes that were themselves identified as ”subclass of” or ”part of” the following main

classes: physiological condition, biological component, health science, biology, group or class of chem-

ical substances, zootomy, veterinary medicine, comparative medicine, biomolecular structure, biological

region, anatomical entity, biological system, general anatomical term and phenotype. Positive instances

correspond to pairs of concepts that are presented as synonyms in this platform and, therefore corre-

spond to the same concept code (e.g. induced miscarriage and abortion) whereas negative instances

were generated with randomly selected concepts that were not synonyms or generated with the replace-

ment of words in a given list by their antonyms (e.g., concepts with anterior replaced by posterior ). A

significant portion of the non-matching pairs are not completely dissimilar, so that the dataset is repre-

sentative and challenging for automated classification (e.g., complex global pain syndromes and com-

1https://www.Wikidata.org/wiki/
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plex regional pain syndromes are non-matching pairs). This process led to the retrieval of 1 293 214

pairs of strings, being– half of them identified as positive synonyms. A stratified fold divided the data into

a testing datasets with 1 250 000 instances and a testing dataset with 43 215. No pairs of strings in the

training dataset were neither repeated on the same set nor repeated on the testing dataset, which was

considered as a validation set from the same domain.

The remaining testing datasets were retrieved from various sources that are presented below.

• Ontology Lookup Service (OLS)2, a repository for biomedical ontologies that desires to provide a

single point of access to latest ontology versions. To date, there are 265 different ontologies. OLS

allows term search to be general (gathering all ontologies where the exact term is found) or intra-

ontology, where the selection of a certain term provides a list of synonyms present in that ontology.

Concepts are identified by a code with the format ontology code: concept code, so even though

a general search it is possible to identify the same term in various ontologies, these equal terms

do not have the same code. The datasets used in this work that had OLS ontologies as sources

present pairs of strings retrieved intra-ontology. These ontologies cover disease, anatomical and

phenotypic domains and are briefly described below.

1. Orphanet Rare Diseases Ontology Health Records (ORDO) - a structured, categorized vo-

cabulary for rare diseases that captures links between diseases, genes, and other relevant

features. Dedicated to rare disease, it derived form the Orphanet database 3, that is a mul-

tilingual resource whose database is populated from literature and validated by international

experts. Moreover it links with other terminologies, databases or classifications.

2. Human Disease Ontology (HDO) - a standardized ontology for human disease that was cre-

ated with the goal of giving the biomedical community with consistent, reusable, and long-

lasting definitions of human disease terminology, phenotypic traits, and related medical vo-

cabulary disease concept.

3. Foundational Model of Anatomy Ontology (FMA) - a domain ontology for human anatomy that

represents a unified corpus of explicit declarative information.

4. Uber-anatomy ontology (Uberon) - a cross-species anatomy ontology that classifies a wide

range of items using standard anatomical criteria including structure, function, and develop-

mental lineage. The ontology offers complete links to taxon-specific anatomical ontologies,

allowing functional, phenotypic, and expression data to be integrated.

5. Human Phenotype Ontology (HPO) - a standardized vocabulary focused on abnormalities’

phenotype and clinical features present in human disease.

6. Mammalian Phenotype Ontology (MPO) - a ontology whose pre-coordinated phenotype con-

cepts, definitions and synonyms describe mammalian phenotypes.

In all datasets that relied on these OLS ontologies, positive instances were identified as cross-

reference concepts (i.e. with the same concept code).

2https://www.ebi.ac.uk/ols/index
3www.orpha.net
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• Ontology Alignment Evaluation Initiative (OAEI)4, a forum to collect benchmark datasets for on-

tology matching tools through controlled experiments. Its major purpose is to openly compare

systems and algorithms on an equal basis so that anybody is allowed to make informed decisions

regarding the best matching techniques. The OAEI organize a yearly evaluation event and provide

the publication of tests and results of the event for further analysis. This event is divided in a series

of tracks that have been growing over the years, with different foci being added. The ontologies or

subsets of ontologies from which datasets used in this work took advantage of are all present in

OAEI anatomy tracks and briefly described below.

1. FMA - a human anatomy ontology already described in the context of the OLS ontologies.

2. Mouse adult gross anatomy (MA) - a standardized nomenclature for anatomical structures

in the postnatal mouse, developed by the Gene Expression Database. Several database

services use it to describe gene expression patterns and other biological facts related to

mouse anatomy.

3. National Cancer Institute Thesaurus (NCIT)5 - a reference terminology that provides struc-

tured representation of cancer related concepts, including related diseases, findings, abnor-

malities for basic and translational research, as well as for clinical care. This ontology is used

by a broad variety of public and private partners. In the context of the OAEI anatomy track a

subset of the NCIT that contains information about the human anatomy is considered.

The datasets used in this work derived both from the independent ontologies and from alignments

between the FMA and MA ontologies with the human related NCIT subset. In the first case,

positive instances correspond to pairs of strings belonging to the same name set (i.e. group of

synonyms and main labels of a class). In the second case, positive instances correspond to

mapped synonyms in the performed alignment. In both cases, negative instances all have an ISub

similarity ≥ 0.7.

• Systemized Nomenclature of Medicine – Clinical Terms (SNOMED CT), a standardized, interna-

tional, multilingual core set of clinical healthcare terminology that can be used in electronic health

records.This terminology focuses on encoding the meanings employed in health information and

enhancing patient care by facilitating effective clinical data recording. The set of clinical healthcare

terminology includes concepts related to symptoms, procedures, clinical observations, diseases,

clinical observations, organisms and other etiologies, body structures, medications, chemicals,

equipment and specimens. Each term is associated to a concept code. In the dataset derived

from this terminology, positive instances correspond to English concepts with the same SNOMED

CT code.

• National Center for Biotechnology Information (NCBI) disease corpus6, a resource for disease

name recognition and normalization. In the datasets derived from this resoursce, positive in-

stances correspond to strings marked as entities in the text with the same SNOMED CT code.

4http://oaei.ontologymatching.org/
5http://ncit.nci.nih.gov/ncit-browser/
6https://www.ncbi.nlm.nih.gov/research/bionlp/data/di sease
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Table 4.1: Datasets Description

Dataset Source Total Positive
Dissimilar

Positive Negative

Wikidata (train) Wikidata 1 250 000 625 000 1.02% 0.00%

Wikidata (test) Wikidata 43 214 21 607 0.99% 0.00%

ORDO OLS 116 860 58 430 33.35% 0.10%

HDO OLS 98 494 49 247 7.55% 0.38%

FMA OLS 198 306 99 153 2.28% 0.00%

Uberon OLS 300 322 150 161 7.07% 0.30%

HPO OLS 350 234 175 117 8.93% 0.14%

MPO OLS 691 680 345 840 1.44% 0.01%

FMA + NCIT subset - 1 OAEI 26 752 9 229 0.00% 0.00%

FMA + NCIT subset - 2 OAEI 20 000 7 082 0.00% 0.01%

MA + NCIT subset - 1 OAEI 6 705 1 744 0.00% 0.01%

MA + NCIT subset - 2 OAEI 6 000 1 596 0.00% 0.01%

NCIT subset OAEI 7 592 3 796 0.09% 0.01%

MA OAEI 768 384 0.00% 0.00%

SNOMED CT SNOMED CT 3 988 1 994 0.00% 0.00%

NCBI disease entities NCBI Disease Corpus 15 541 7 770 0.76% 0.00%

All datasets are presented in the Table 4.1 detailing their source, the total number of pairs, the

total number of positive instances, the percentage of pairs with matching concepts that are completely

dissimilar and the percentage of pairs with non-matching concepts that are completely dissimilar. Non-

matching concepts were considered when the pairs had a Jaro-Winkler similarity of 0.

Apart from the OAEI datasets derived from the alignment between FMA or MA with the NCIT subset,

all other datasets are balanced (i.e. half of the instances correspond to matching concepts). The four

imbalanced datasets have more non-matching than matching concepts. The existence of totally dissim-

ilar matches, occurs with an incidence higher than 1% only in 8 of the datasets and from these, only the

ORDO dataset has an incidence superior to 10%. None of the datasets present a high percentage of

totally dissimilar non-matches (they are all below 1 percent).

Additionally, it is important to refer that none of the datasets present cross-language pairs. The

English language was considered in all cases.

4.2 Evaluation Methodology

The proposed approach was compared to baseline methods over all the testing tests. Specifically, the

considered baselines consist of (1) individual string similarity metrics, with a threshold value α tuned

for optimal F1 score and (2) the Borges et al. [17] neural network (i.e. the neural networks without the

positional encoding component). F1 score tuning was performed by obtaining the threshold value that

obtained the best average of all individual dataset scores per α value (between 0.1 and 0.9 with a 0.1
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step). All results were measured in terms of accuracy, precision, recall, and the F1 measure.

The accuracy measure tries to convey the overall effectiveness of a classifier, by evaluating the

proportion of correct decisions that are returned by the method being evaluated [16]:

Accuracy =
TruePositives+ TrueNegatives

TotalNumberofinstances
. (4.1)

Precision and recall focus on different per-class quality aspects of a classification system. Precision is

described by the number of items accurately assigned to a class divided by the total number of things

assigned to that class [16]. In the case of string-matching, a binary classification, precision is defined by

the agreement of actual labels with the positive labels predicted by the classifier:

Precision =
TruePositives

TruePositives+ FalsePositives
. (4.2)

Recall is the ratio within a class between correctly assigned items over the total instances of that class

[16]. It measures, therefore the effectiveness of a binary classifier to retrieve positive labels (equation

4.3):

Recall =
TruePositives

TruePositives+ FalseNegatives
. (4.3)

F1 score is the harmonic mean of precision and recall, which is important due to the fact that precision

can be increased at the expense of recall:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

. (4.4)

In terms of hyper-parameter choices and model training strategies, it is important to notice that there

was no hyper-parameter tuning. The tests with models leveraging RNNs used RNN hidden layer size

of 60, a hidden layer size of 120 in the dense layer processing the result from the interaction between

the string representations, a batch size of 32, and the Adam [30] optimizer with a learning rate of 0.001.

The experiments with the R-Transformer encoder considered 3 layers of dimension 512, leveraging 8

attention heads in parallel.

Model training is performed for a maximum of 20 epochs over the training dataset (the second Wiki-

data dataset), with early stopping being activated when the training loss does not decrease after 3

epochs. Other experiments were conducted in regards to the assessment of the impact of the training

dataset size or the contribution of model fine-tuning with specific in-domain data. The in-domain ex-

periments were done with two-fold cross validation, according to a stratified sampling procedure. This

means that all the available pairs of concepts in a dataset were split into two subsets, with an equal

proportion of positive and negative instances. In each dataset, accuracy, precision, recall and F1 score

were calculated by obtaining the sum of true positives, true negatives, false positives and false negatives

for both folds and calculating the aforementioned metrics.

4.3 Results

Tables 4.2, 4.3, and 4.4 present the obtained results. Results presented in bold are the best result in

terms of that metric for that dataset in the current table. Highlighted results are the best overall neural
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Table 4.2: Results with the Levenshtein and Jaro-Winkler metrics

Testing Dataset
Levenshtein (α = 0.1) Jaro-Winkler (α = 0.1)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 48.97 49.53 97.96 65.80 49.00 49.49 98.03 65.78

ORDO 43.23 46.37 86.47 60.37 45.56 47.68 91.13 62.61

SNOMED CT 50.00 50.00 100.00 66.67 50.00 50.00 100.00 66.67

HDO 48.95 49.47 97.90 65.73 49.69 49.85 99.39 66.40

NCBI 49.41 49.76 98.82 66.19 49.63 49.81 99.25 66.33

HPO 49.29 49.64 98.60 66.03 49.48 49.74 98.98 66.20

Uberon 49.75 49.87 99.50 66.44 49.84 49.92 99.68 66.53

FMA 49.85 49.93 99.70 66.54 49.93 49.97 99.86 66.61

NCIT subset 49.72 49.86 99.45 66.42 49.70 49.87 99.39 66.42

MA 49.61 49.80 99.22 66.32 49.70 49.87 99.39 66.42

MPO 49.37 49.68 98.75 66.11 49.70 49.87 99.39 66.42

FMA + NCIT subset - 1 34.49 34.49 100.00 51.29 34.48 34.51 99.97 51.31

FMA + NCIT subset - 2 35.41 35.41 100.00 52.30 35.40 35.43 99.96 52.32

MA + NCIT subset - 2 26.60 26.60 100.00 42.02 26.60 26.65 100.00 42.09

MA + NCIT subset - 1 26.01 26.01 100.00 41.28 26.01 26.06 100.00 41.34

network results in terms of that metric for that dataset.

Table 4.2 details the results over each dataset with traditional methods. Although experiments were

conducted with 6 traditional string similarity measures, only the results with the Levenshtein and Jaro-

Wrinkler metrics are presented in this section since they obtained better overall results and can, there-

fore, fairly be compared with the proposed neural network results. The remaining results are presented

in Appendix A. It is also important to notice that the threshold value α was tuned for optimal F1 scores,

and has, in both cases, the value of 0.1. Hence, it is highly likely that most pairs are considered positive

instances, which results in the high recall values observed. Table 4.3 presents the results obtained with

RNN and R-Transformer model proposed by Borges et al. [17] which correspond to the proposed neural

networks without positional encoding. Finally, Table 4.4 presents the results with the proposed neural

networks. All neural network models outperform traditional measures in terms of accuracy, precision and

F1 score. Focusing on Table 4.3, even though the RNN obtains better results than the R-Transformer

model in more than half the datasets, there is not a great difference between the performance of the

models. In terms of accuracy it the RNN achieves better results in 10 out of 15 datasets, however, in

terms of F1 score it performs better in only 8 out of 15 datasets, which is related to the high recall values

obtained in the R-Transformer model. In regards to table 4.4 the proposed R-Transformer outperforms

the proposed bi-GRU in most cases.

In order to to evaluate the value of the proposed extension in each neural network, the comparison of

the bi-GRU and R-Transformer model with or without positional encoding can be used as an ablation test.

In both neural networks, the positional encoding resulted in the models performing better, in general.

Particularly, in the RNN the proposed approach outperforms the Borges et al. [17] model in 13 out

28



Table 4.3: Results with the Borges et al. models without Positional Encoding

Testing Dataset
RNN R-Transformer

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 89.81 89.78 89.82 89.77 89.48 87.61 91.98 89.71

ORDO 86.18 90.26 81.09 85.38 88.49 92.69 83.55 87.84

SNOMED CT 83.75 76.85 96.67 85.59 83.37 77.14 94.84 85.04

HDO 81.39 78.15 87.19 82.36 86.07 82.19 92.08 86.81

NCBI 76.10 74.54 79.27 76.77 76.77 74.68 80.92 77.62

HPO 68.40 66.67 73.54 69.86 68.08 65.49 76.39 70.45

Uberon 67.12 64.68 75.43 69.57 67.98 64.37 80.61 71.51

FMA 65.67 62.34 79.28 69.71 70.86 67.96 78.92 72.96

NCIT subset 69.73 66.84 78.27 72.05 66.91 62.71 83.50 71.55

MA 63.80 62.40 68.90 65.49 62.11 59.08 78.02 67.19

MPO 59.76 58.55 66.87 62.35 57.42 56.17 67.57 61.26

FMA + NCIT subset - 1 67.42 51.64 88.97 65.25 62.40 47.64 92.16 62.72

FMA + NCIT subset - 2 66.24 51.33 88.80 64.95 61.05 47.39 92.33 62.54

MA + NCIT subset - 2 65.85 43.49 93.82 59.34 56.90 37.72 95.90 53.98

MA + NCIT subset - 1 66.04 43.07 93.69 58.95 57.14 37.31 96.35 53.71

of 15 datasets in terms of accuracy, and 11 datasets in terms of F1 score and precision. In terms

of recall the results are better in only 6 datasets. Regarding the R-Transformer model, the proposed

approach outperforms the Borges et al. [17] in terms of accuracy, F1 measure and precision in 13 out

of the 15 datasets. However, in terms of recall it only obtains better results in 2 datasets. Furthermore

the proposed R-Transformer model outperforms all three other models in terms of accuracy, precision

and F1 measure in 9 out of the 15 datasets. Hence, the combination of the R-Transformer attention

mechanism with textual input representation including positional encoding leads to better overall results.

The 4 imbalanced datasets (FMA + NCIT subset 1 & 2 and MA + NCIT subset 1 & 2) correspond

to the worst accuracy and F1 scores in the R-Transformer model. Additionally, they correspond to the

cases where the proposed RNN outperforms the proposed R-Transformer model. It is also interesting

to notice that the recall is always high (above 85 %) in these cases whilst precision is rather low (below

54%). These imbalanced classes not only have more negative instances than positive, but are also

datasets where negative instances in the pairs of strings presented a high similarity between them (ISub

≥ 0.7). Thus, contributing to the identification of false positives.

Datasets with pairs retrieved from disease related ontologies (ORDO, HDO, NCBI) or general health

terms (SNOMED CT) obtain better results than datasets related to phenotypes and anatomy terms.

This can be related to the classes from which the Wikidata training set was retrieved (i.e., anatomy and

phenotype terms are underrepresented in relation to disease related terms).

Another interesting note, is that the percentage of totally dissimilar pairs that are synonyms does not

seem to have an influence on the results. The ORDO presents the highest percentage of totally dissim-

ilar matches (33.35%) and is also the testing dataset with the highest scores (excluding the Wikidata
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Table 4.4: Results with the proposed RNN and R-Transformer models

Testing Dataset
Proposed RNN Proposed R-Transformer

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 89.87 89.48 90.34 89.87 93.00 92.33 93.80 93.03

ORDO 86.82 90.14 82.65 86.19 90.15 93.23 86.55 89.73

SNOMED CT 82.95 76.24 95.88 84.91 84.34 79.57 92.55 85.54

HDO 81.76 78.59 87.32 82.67 84.41 82.02 88.16 84.92

NCBI 75.48 73.43 79.62 76.34 76.46 74.36 80.73 77.34

HPO 68.97 67.72 72.48 69.94 73.69 73.57 73.95 73.68

Uberon 68.28 65.73 76.39 70.58 71.77 69.24 78.38 73.45

FMA 71.94 71.94 75.97 72.95 74.29 75.90 71.20 73.39

NCIT subset 69.83 67.43 76.73 71.73 70.03 66.68 80.02 72.69

MA 63.93 62.72 67.62 65.02 67.32 65.21 74.22 69.42

MPO 65.82 66.28 64.39 65.23 68.33 69.62 65.09 67.18

FMA + NCIT subset - 1 69.48 53.58 85.95 65.93 66.05 50.46 86.57 63.66

FMA + NCIT subset - 2 68.84 53.81 86.07 66.11 64.94 50.38 86.15 63.45

MA + NCIT subset - 2 68.42 45.21 91.22 60.36 63.90 41.77 92.52 57.44

MA + NCIT subset - 1 68.75 44.77 90.88 59.88 64.51 41.76 92.08 57.34

validation set). Furthermore, the datasets that don’t present any dissimilar matches do not perform nec-

essarily better or worse (e.g. comparing the SNOMED CT and MA + NCIT subset - 1 datasets’ results

one can infer that it does not have a direct influence).

In order to observe correctly and wrongly classified pairs, appendix B presents examples for the R-

Transformer model with positional encoding (the model that overall obtained better results). Since these

examples are not a signification portion of the whole datasets (due to their large size) they are merely

demonstrative.

4.3.1 Impact of training dataset size results

With the goal of assessing the impact of the training dataset size, experiments were conducted in which

the size of the training dataset was reduced (using stratified folds) and evaluated the effect on the accu-

racy and F1 score evaluation metrics, for the following testing datasets: Wikidata, which is considered

from the same domain; ORDO and MA + NCIT subset - 1 which obtained better and worse results in the

previous tests, respectively. This impact was measured by varying the dataset size between 1 250 000,

125 000, 12 500 and 1 250 instances. Figure 4.1 illustrates the results for this set of experiments.

Both the ORDO and Wikidata datasets show that a greater amount of training data leads to better

results, independently of the model used. The R-Transformer model continues to outperform the RNN

in most cases, although the difference between the two models’ scores is smaller with smaller training

sets. Results on the ORDO dataset show the least influence of varying the training set size, obtaining

for smaller training sets (12 500 and 1250) better results than the Wikidata, which was considered a
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Figure 4.1: Results changing the training dataset size

validation set. Once again, influence on representation of disease related terms is hypothesized to

have an influence. On the other hand, experiments with the MA + NCIT subset - 1 were different than

expected. Although, in the R-Transformer model the pattern maintains itself (higher scores for bigger

training sets), for the RNN model, the 12 500 size dataset presented the better scores. Moreover, in

this case the difference between the datasets scores is bigger when using smaller training sets (with the

R-Transformer model outperforming the RNN model in the extreme of the smallest training set).

For a small training generic dataset (1 250 pairs of strings) the results are rather discouraging, ob-

taining in both MA + NCIT subset - 1 and Wikidata worst scores than some of the traditional approaches.

In particular for the MA + NCIT subset - 1, the F1 score is extremely low, being less that 20% for both

models. The imbalanced dataset might contribute to this (e.g. precision being extremely low due to the

identification of many false positives). Hence, the proposed models are considered a good alternative

when using a generic training dataset, if it is big and representative enough of the biomedical domain.
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Table 4.5: In-domain or in-ontology results for the R-Transformer model

Testing Dataset
Fine-tuning Training with all ontologies

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

ORDO 95.87 97.19 94.47 95.81 92.22 96.47 87.66 91.85

SNOMED CT 98.76 97.56 100.00 98.77 91.02 88.44 94.49 91.36

HDO 91.80 95.04 88.22 91.50 89.96 91.63 87.94 89.74

NCBI 88.45 97.39 79.04 87.26 82.90 84.24 80.75 82.45

HPO 88.94 93.60 85.28 89.25 89.33 94.35 85.74 89.84

Uberon 82.38 89.70 73.15 80.59 87.59 86.60 88.95 87.76

FMA 97.04 96.37 96.37 97.06 94.67 96.72 92.47 94.55

NCIT subset 81.04 86.44 73.61 79.51 85.45 87.60 82.59 85.02

MA 74.80 79.43 67.66 73.07 89.55 90.58 89.50 90.03

MPO 90.22 96.30 83.66 89.54 89.24 93.71 81.10 88.29

FMA + NCIT subset - 1 87.63 86.51 76.17 81.01 84.38 73.96 84.46 78.87

FMA + NCIT subset - 2 86.40 84.88 75.15 79.72 83.62 73.44 84.28 78.49

MA + NCIT subset - 2 90.35 82.10 74.02 77.85 87.02 69.91 90.00 78.69

MA + NCIT subset - 1 89.82 83.21 76.04 79.46 86.93 69.04 78.62 73.52

4.3.2 Fine-tuning and All-Domain Results

The neural model that performed better in most cases (the R-Transformer model) was chosen to design

an additional set of experiments to evaluate the effect of how the training domain (i.e. the Wikidata

training dataset) affected performance when evaluating the results in same-domain settings. On the one

hand, fine-tuning experiments were conducted, where the training set included data from the ontology or

domain being tested. In particular, fine-tuning experiments had the models trained with the full Wikidata

training dataset, fine-tuned with each of the folds independently and tested on the opposite fold (not

included on the fine-tuning training). It was opted to fine-tune the pre-trained model instead of training it

from scratch every time since these are time consuming and resource intensive processes. On the other

hand, an experiment where a single 2-fold training was executed with the training dataset including data

from all ontologies at once was also conducted. Specifically, each fold contained the Wikidata training

dataset in its totality and a fold of each dataset which was tested individually on the other fold of each

dataset and vice-versa. Hence, in each test it was ensured that the dataset being evaluated was not

present at train time. Since the Wikidata testing set was used as reference for the same domain as the

training dataset (whilst the remaining datasets were considered cross-domain experiments), I expected

that the scores obtained in both cases to become more similar to the ones in the Wikidata dataset. Table

4.5 presents the obtained results for these tasks, where it can observed that in both cases the scores

obtained were better in the 4 evaluation metrics for all datasets. For the R-Transformer model, accuracy

scores were all above 80% and F1 scores all above 70%.

Fine-tuning involves initializing the deep learning process with weights of the pre-trained model, and

training it with the new data. The model is, therefore, adjusting its weights to the new data. In the
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case of imbalanced datasets this can be extremely important, since it can perform a class re-weighting

(i.e. to take into account asymmetry of cost error directly during the training of the classifier). In my

experiments, the results for the imbalanced datasets all improved significantly, increasing at least 21%

in terms of accuracy and 16% in terms of F1 score. These datasets also presented better results in

the fine-tuned models than when training with all ontologies, as expected. Seeing that there is less

adjustment to the imbalanced classes, recall maintains itself higher in the model trained from scratch. It

is also interesting to notice that the datasets which improve less with fine-tuning are the ORDO, in terms

of accuracy, and the Mouse Ontology, in terms of F1 score. In the first case it may be due to the fact

that the model already obtained high scores without fine-tuning, and hence the rare disease ontology

was probably already well represented in the model. In the second case, it is important to refer that the

mouse ontology is the smallest dataset, with only 768 pairs of strings. Consequently, when fine-tuning

the model with each fold of 384 pairs, the available data might not be enough to adjust the weights

significantly to the domain.

Concerning the results obtained from the model trained with a dataset including data from all ontolo-

gies at once, it is significant to note that these domains and ontologies are not only being added to the

training set but also enlarging it significantly (2 193 272 instances in each fold). As shown previously,

the size of the training dataset also influences the outcome and, therefore training with a dataset that

is approximately 1.75 times larger than the original training dataset contributes to the generally better

obtained scores. Furthermore, even though it is ensured that the testing dataset is not present in the

training set in each fold, due to different ontologies covering the same domains, their might be pairs of

strings that are present in more than one testing dataset and, therefore an exact pair being tested can

be present in the training set. In particular, this experiment showed that the ORDO dataset presented

worse results than with initial training; the rest of disease or general medical terms related datasets all

improved in comparison to initial training, but performed worse than fine-tuning the model. Most bal-

anced datasets with anatomy or phenotype related terms obtained improved scores. Assuming that,

as mentioned before, the initial Wikidata training dataset was underrepresented in terms of anatomy

of phenotype related concepts, then these results support this idea. These datasets benefit from each

other being in the training dataset and the percentage of anatomical and phenotype representation in-

creases. Disease or generic related datasets perform better with fine-tuning because the initialized

weights already benefited them and are then adjusted in-domain, not needing each other to perform

better.

4.4 Discussion

This thesis presents extensions of the neural string matching methods developed by Santos et al. [16]

and Borges et al. [17], augmenting the proposed architecture to include positional embeddings and

assessing performance in cross-domain settings (the main goal for biomedical concept alignment), in-

domain settings and when varying the amount of training data. The proposed models were tested on

different datasets, covering several biomedical ontologies and domains (i.e., disease, anatomy and phe-

notype related ontologies). A comparison was performed between the proposed neural models and

classical string similarity metrics, where the proposed neural network models consistently outperformed
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the traditional techniques. The influence of positional encoding was also studied through a direct com-

parison between the neural network models with and without this component. Findings showed that, in

most cases the inclusion of positional embeddings was beneficial. Between the two proposed models,

the R-Transformer model achieved better results than the one based on RNNs except for the 4 imbal-

anced datasets (out of 15 testing datasets). In regards to the impact of the training dataset size, the

experimental outcome demonstrated that neural network models are a good alternative to traditional

measures in the case of the training set being large enough. Finally, in-domain and all-domain analysis

revealed that when training data included in-ontology terms the models accomplished better outcomes.

One of the great challenges in aligning biomedical concepts is that they do not follow a lexical sim-

ilarity pattern. The use of deep neural networks is capable of identifying highly dissimilar concepts as

synonyms (e.g. ovocytes and egg from the NCIT subset) but also highly similar concepts as not syn-

onyms (e.g. larynx muscle and pharynx muscle from the MA dataset). The addition of a positional

encoding in the biomedical domain can better tune this classification by taking into consideration char-

acter position, and therefore adjusting weights according to it. For instance it can consider a sequence

of characters in the beginning, end or middle of a concept to be more or less important (e.g. the iden-

tification of a letter or number in the end of the concept can mean it is different than the other concept

like in the HPO dataset terms digit and digit i 1 that were only correctly classified as negative instances

by the models with positional encoding; or the identification of a suffix in a word that can be irrelevant

like in the propanoic acid and propoic acid concepts from the same dataset that were also only correctly

classified as synonyms in the models with positional encoding).

On the other hand, it is also interesting to look at cases where none of the models correctly classified

certain pairs of strings. For example, in the FMA dataset, the pair of concepts hippocampus proper and

hippocampus major were always classified as negative instances when, in reality they are synonyms

whilst in the HDO dataset gastric liposarcoma and pediatric liposarcoma were always classified as syn-

onyms when they are not. Although these are randomly selected examples and are not representative

of all datasets’ instances where the classifiers fail it is interesting to note that the first word seems to

have less importance than the second word on the concepts. In this case, character positional might

have even reinforced this word position importance. These examples highlight the issue of biomedical

lexical complexity and diversity.

Another challenge related to aligning biomedical concepts is the ontology diversity regarding the

biomedical sub-domains coverage. This issue was highlighted throughout my experiments. Specifically,

it was noted that disease and general medical terminology ontologies performed better than anatomy

and phenotype related ontologies. However, these anatomy or phenotype related ontologies did not

necessarily present a higher percentage of dissimilar synonyms. As mentioned in the introduction,

similarity tendencies are often related to a certain domain [20], which poses an additional difficulty in

supervised classification of synonyms (i.e. the training set has to represent all biomedical sub-domains

in a balanced way). Even though, the Wikidata training was obtained from various classes, I hypothesize

anatomy related sub-classes are less represented in the training set. This is in accordance with the fact

that anatomy datasets leveraged each others’ presence in the training set in the all-domain experiments.

The assessment using an all-domain training set is also interesting to mention in the aspect of overlap-

ping domains. Due to many source ontologies covering the same domain, the same pair of terms can

be present in different datasets (e.g. ear lobule and lobule of pinna are synonymous concepts present
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as a pair in both the MA and FMA datasets). Hence, it seems to be extremely challenging to find a large

and generic dataset that not only includes all relevant biomedical classes but that also contains them

proportionally so that it is applicable to all ontologies without the need to rely on all-domain training.
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Chapter 5

Conclusion

In this dissertation, a deep learning approach to aid in biomedical concept alignment was presented. It

specifically addresses this problem using approximate sting marching, with the objective of classifying

the type of relationship (synonyms or not) between two terms. The present chapter provides a summary

of the work’s key contributions and suggests future research direction in biomedical concept alignment

using deep learning approaches.

5.1 Contributions

Throughout this thesis and the underlying work behind it, it was clear that aligning biomedical concepts

is a challenging task. Tackling this problem as an approximate string matching task and leveraging deep

neural networks showed to be an efficient method to model biomedical concepts.

In particular, two main neural network model architectures were studied in the context of this work.

The R-Transformer model obtained, in most cases, better results then the bi-GRU. Related work in NLP

tasks have increasingly relied on this architecture to model textual information. Hence, the achieved

results are mostly concordant with recent studies. Moreover, the inclusion of positional encoding em-

bedding in the neural networks’ encoder layers also showed to improve results, in most cases. Therefore,

the proposed extension enhances model performance in aligning biomedical concepts.

When studying the impact of the training dataset size it was observed that approximate string match-

ing through the deep neural networks perform better with larger sets of training data. Nevertheless

these models presented a limitation on smaller training sets (specifically in the order of 1 000 pairs of

concepts), which lead in some cases to worst classifications than traditional approaches.

Regarding the datasets used in the present work, it is important to notice that they covered a wide

range of biomedical sub-domains and had a variety of source ontologies and terminologies. It was

possible to observe that results differed within domains and datasets, which shows the overcoming

difficulty in obtaining a single resource which covers the vast biomedical scope. At the same time, this

shown difficulty also highlights the importance of obtaining models that efficiently align concepts, so

that the consideration of the scope as a whole is possible information is, in fact, interoperable between

systems and people.

Furthermore, studies related to the impact of in-domain and all-domain training achieved better re-
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sults. Specifically in cases where there is lack of abundant information (a small dataset) leveraging from

other ontologies in the training set was found useful. This is can be related to the fact that many ontolo-

gies were developed independently and cover overlapping domains. However, the usage of a generic

datasets is useful to perform concept alignment even when the ontology is not known, or to leverage

overcoming ontology-matching challenges. All things considered, a large training dataset that considers

and represents the most biomedical categories it can should be aimed for. Wikidata, still seems to be a

good option for this data retrieval since it is a large-scale collaborative ontological medical database.

In conclusion, using the proposed approach, with a large and generic training set can provide im-

provements and contributions in identifying biomedical synonyms. Enhancing this identification is useful

to aid in other tasks such as ontology alignment or synonym discovery which improves standardization

of biomedical terminology and information interoperability (e.g. synonymous information identification

between several authors and contexts), contributing therefore to the improvement of healthcare.

5.2 Future Work

Building on the results reported on this thesis, there are several interesting directions for further work

in exploring neural architecture improvements, textual representation methodologies and taking into

consideration the vast biomedical data scope.

A straightforward future experiment would be to retrieve a larger amount of data from Wikidata for the

training dataset, including a larger amount of classes in order to obtain more anatomy and phenotype

related terms. However, it is also important to notice that these models are time and resource consum-

ing, so there should be a balance between enlarging the dataset and computational effort. Fine-tuning

pre-trained models has showed to be a successful alternative for this balance (e.g. using the already

trained model and adding more data).

In regards to the textual representation of the input concepts other extensions could also be consid-

ered. Maintaining the positional encoding, it would be interesting to generalize the word and character

embeddings as continuous functions over a variable (position) instead of being defined as independent

vectors. Recently Wang et al. [23] demonstrated this to be more efficient. Another textual representation

extension would be to consider Wasserstein distance regularized sequence representation, proposed by

Yu et al. [86].

Keeping in line with recent advances in natural language processing, other extensions to the Trans-

former model might be beneficial to the task in hand (e.g. considering the residual attention layer Trans-

former proposed by He et al. [87]).

Other interesting experiment directions would be testing cross-language datasets, therefore con-

tributing to the multilinguality challenge [84] mentioned in Chapter 2. For this, Wikidata could still be

used for concept retrieval since it is a multilingual resource. However, it would be possible that more

resources had to be considered in order to cover a greater amount of languages (e.g. the term lower leg

does not have correspondence in Portuguese in Wikidata).

Finally, taking into account state-of-the-art approaches in biomedical concept and ontology align-

ment, it would also be interesting to include contextual information or definitions. In this case the datasets

would have to be reviewed to include such information, taking into consideration that context should be
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given by reliable resources. Moreover, Wikidata would also not be adequate to be the sole source of the

generic dataset (e.g., a pre-processing could be performed by matching Wikidata terms with wikipedia

definitions could be made to form the dataset).
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large-scale collaborative ontological medical database,” Journal of biomedical informatics, vol. 99,

p. 103292, 2019.

[20] D. Lopresti and G. Wilfong, “Cross-domain approximate string matching,” in In Procedings of the

6th International Symposium on String Processing and Information Retrieval, 1999.

[21] J. R. Venable, J. Pries-Heje, and R. L. Baskerville, “Choosing a design science research methodol-

ogy,” 2017.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-

sukhin, “Attention is all you need,” in Proceding of the Annual Meeting on Advances in neural

information processing systems, 2017.

[23] B. Wang, D. Zhao, C. Lioma, Q. Li, P. Zhang, and J. G. Simonsen, “Encoding word order in complex

embeddings,” arXiv preprint arXiv:1912.12333, 2019.

[24] P. Simmons and D. Young, Nerve cells and animal behaviour. Cambridge University Press, 2010.

[25] E. Kandel, J. Schwartz, and T. Hessell, “Propagated signaling: the action potential,” in Principles of

neuroscience, pp. 150–175, McGraw Hill, New York, 2000.

[26] S. C. Kleene, Representation of events in nerve nets and finite automata. Princeton University

Press, 2016.

[27] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in

the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[28] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[29] Y. Goldberg, “A primer on neural network models for natural language processing,” Journal of Arti-

ficial Intelligence Research, vol. 57, pp. 345–420, 2016.

42



[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[31] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep

convolutional neural networks,” Artificial Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[32] L. Borges, B. Martins, and P. Calado, “Combining similarity features and deep representation learn-

ing for stance detection in the context of checking fake news,” Journal of Data and Information

Quality (JDIQ), vol. 11, no. 3, pp. 1–26, 2019.

[33] H. Apaydin, H. Feizi, M. T. Sattari, M. S. Colak, S. Shamshirband, and K.-W. Chau, “Comparative

analysis of recurrent neural network architectures for reservoir inflow forecasting,” Water, vol. 12,

no. 5, p. 1500, 2020.

[34] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–211, 1990.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,

pp. 1735–1780, 1997.

[36] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural

networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[37] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of cnn and rnn for natural language

processing,” arXiv preprint arXiv:1702.01923, 2017.

[38] Z. Wang, Y. Ma, Z. Liu, and J. Tang, “R-transformer: Recurrent neural network enhanced trans-

former,” arXiv preprint arXiv:1907.05572, 2019.
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Appendix A

Traditional String Metric Measure

Results

Table A.1: Results with the Cosine Similarity and Jaccard metrics

Testing Dataset
Cosine Similarity (α = 0.1) Jaccard (α = 0.1)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 23.83 50.74 47.68 49.16 39.22 45.87 78.46 57.89

ORDO 15.41 24.04 30.82 27.01 47.46 51.05 94.92 66.39

SNOMED 43.23 46.52 86.46 60.49 6.29 14.09 12.59 13.30

HDO 29.85 39.00 59.70 47.18 43.75 51.65 87.50 64.96

NCBI 26.37 45.11 52.75 48.63 46.69 52.97 93.37 67.60

HPO 35.47 42.10 70.96 52.85 41.29 51.32 82.60 63.31

Uberon 37.05 43.53 74.10 54.84 41.04 50.26 82.09 62.35

FMA 40.49 44.76 80.98 57.66 33.33 54.50 66.65 59.97

Human Ontology 31.47 40.58 62.93 49.34 40.73 49.56 81.45 61.62

MouseOntology 29.43 37.79 58.85 46.03 44.92 51.57 89.84 65.53

MPO 38.90 43.94 77.81 56.16 38.41 47.27 76.83 58.53

FMA and NCI - 1 31.15 35.03 90.32 50.49 13.27 18.78 38.46 25.23

FMA and NCI - 2 32.01 35.99 90.40 51.48 13.53 19.36 38.20 25.69

MA and NCI - 2 25.80 27.68 96.99 43.07 5.85 8.40 21.99 12.16

MA and NCI - 1 25.16 27.04 96.73 42.27 5.68 8.17 21.85 11.90
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Table A.2: Results with the Monge-Elkan and I-Sub metrics

Testing Dataset
Monge-Elkan (α = 0.1) I-Sub Measure (α = 0.1)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 13.87 56.37 27.75 37.19 33.56 41.95 67.13 51.64

ORDO 9.46 88.48 18.93 31.19 20.74 29.33 41.47 34.36

SNOMED 3.13 88.03 6.27 11.70 50.00 50.05 100.00 66.71

HDO 4.67 51.97 9.34 15.84 33.11 39.87 66.22 49.77

NCBI 3.40 22.19 6.81 10.42 31.45 39.64 62.90 48.63

HPO 2.09 70.87 4.17 7.88 36.19 42.01 72.39 53.16

Uberon 1.24 41.14 2.47 4.67 35.36 41.62 70.73 52.40

FMA 0.54 95.62 1.08 2.13 42.73 46.10 85.47 59.89

Human Ontology 3.99 48.02 7.98 13.69 37.95 43.21 75.90 55.06

MouseOntology 3.78 44.62 7.55 12.92 34.64 40.92 69.27 51.45

MPO 1.84 86.24 3.67 7.04 40.24 44.60 80.48 57.39

FMA and NCI - 1 11.73 64.90 34.01 44.63 34.89 35.21 98.53 51.88

FMA and NCI - 2 12.06 65.73 34.04 44.86 33.96 34.26 98.45 50.83

MA and NCI - 2 17.23 68.30 64.79 66.50 26.40 26.53 99.25 41.87

MA and NCI - 1 16.97 65.89 65.25 65.57 25.83 25.95 99.31 41.15
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Appendix B

Example of Classified Strings

In this appendix example of classified strings for each dataset using the transformer model are pre-

sented.
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Table B.1: Examples of classified strings for the Transformer model

Dataset True Positive True Negative False Positive False Negative

Wikidata
amyotrophic lat-
eral sclerosis-
parkinsonism/dementia
complex type 1

thiamine levoglutamide kirz

guam disease tiamina n-acetamide kir2dl6

ORDO
net of the small intes-
tine

rare genetic move-
ment disorder

alternating hemiplegia
of childhood

classic glycine en-
cephalopathy

net of the small intes-
tine

rare genetic coagula-
tion disorder

benign nocturnal alter-
nating hemiplegia of
childhood

neonatal glycine en-
cephalopathy

SNOMED
CT

inspectionaction dihydroergocristine malignant melanoma
of skin of external au-
ditory canal

family lutjanidae snap-
per

inspection action dihydroergotamine malignant neoplasm of
skin of external audi-
tory meatus

family lutjanidaesnap-
per

HDO
schimmelpenning syn-
drome

malignant neoplasm of
gallbladder

periumbilic abdominal
lump

antenatal deep vein
thrombosis unspeci-
fied (disorder)

nevus sebaceus of
jadassohn

malignant neoplasm of
heart

periumbilic abdominal
mass

deep phlebothrombo-
sis postpartum with
delivery

NCBI
genetic disease severe neonatal jaun-

dice
mesothelioma breast or ovarian can-

cer
inherited human disor-
der

severe acroparesthe-
sia

pseudoglioma sporadic breast can-
cers

HPO
recurrent venous
thrombosis

decreased anteriopos-
terior diameter of lum-
bar vertebral bodies

regulation of con-
sumption behavior

longitudinal fissure

recurrent deep vein
thrombosis

cervical vertebral bod-
ies with decreased an-
teroposterior diameter

regulation of eating
behavior

longitudinal fissure of
the cerebrum

Uberon
space of thoracic com-
partment

ethmoidal bone sinus mesenchyme of pala-
toquadrate arch

textus muscularis of
cardiac muscle

thoracic cavity ethmoid bone mesenchyme of upper
jaw

textus muscularis
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Table B.1: Examples of classified strings for the Transformer model

Dataset True Positive True Negative False Positive False Negative

FMA
hepatovenous seg-
ment ix

compact bone of dia-
physis of distal pha-
lanx of thumb

intervertebral foramen
of sixth thoracic verte-
bra

trunk of mid segment
of anterior interven-
tricular branch of left
coronary artery

couinaud hepatic seg-
ment ix

compact bone of dia-
physis of middle pha-
lanx of left middle fin-
ger

intervertebral foramen
of fifth thoracic verte-
bra

trunk of mid zone of
anterior interventricu-
lar branch of left coro-
nary artery

NCIT subset
cerebral arteries collagen fibril external plantar artery cd4 plus t lymphocyte
cerebral artery collagen fiber external mammary

artery
t4 cells

MA
liver parenchyma stomach secretion left vagus x nerve

trunk
vestibular membrane

hepatic parenchyma stomach region vagus x nerve reissner’s membrane

MPO
mucous membrane of
principal bronchus

regulation of inter-
leukin 5 secretion

abnormal clear layer
morphology

negative regulation of
smoothened signalling
pathway in ventral
spinal cord patterning

main bronchus organ
mucosa

regulation of cellular
secretion

abnormal dej morphol-
ogy

negative regulation of
hedgehog signaling
pathway involved in
ventral spinal cord
patterning

FMA and
NCIT subset
- 1

interstitial cell leydig epithelium gingiva cauda spermatozoon somatotropin
interstitial cell of testis epithelium spermatozoon somatotropic hormone

FMA and
NCIT subset
- 2

musculus rectus abdo-
minis

articulatio radio-
carpalis

lobe of lung uroepithelium

rectus abdominis articulation middle lobe of lung urothelium
MA and
NCIT subset
- 2

thymus trabecula foot hand connective tis-
sue

subcutaneous adipose
tissue

thymic trabecula foot bone connective tissue subcutaneous tissue
MA and
NCIT subset
- 1

tonsil capsule respiratory system
mucosa

smooth muscle tissue zygomatic bone

tonsillar capsule respiratory system
lung

arterial system
smooth muscle tissue

zygoma
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