
Vision based collaborative task planning and execution with a

UR3 robotic manipulator

Tomás Moreira Furtado Carvalho Fernandes
tomasmcfernandes@tecnico.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

December 2021

Abstract

This thesis aimed at developing a collaborative interface between an automation bench and an
operator. It is intended for the system to be able to collect and deliver objects from the hands of
the operator. An Intel D435 depth camera an a UR3 collaborative robot were used. The algorithm
developed employs the colour images and depth information from the camera to generate a path for
the robot to follow. The algorithm could correctly segment the hands of the operator and the objects
to be carried in normal operation conditions. The robot followed correctly the paths generated, except
when sharp changes in direction occur or when transitioning from control on joint space to control in
tool space. In these situations, the blend radii selected was not respected. The discrepancy between
the positions reported by the camera and the robot were under 15 mm in the XY plane and 40 mm in
terms of depth. These errors are due to the camera and the transformation between camera coordinates
and robot coordinates. Collaboration was achieved since the algorithm reacted in real time to demands
from the operator and the tool deviation observed were acceptable for the task at hand.
Keywords: collaborative robotics, computer vision, depth camera, pick and place

1. Introduction

The first industrial robot called UNIMATE was in-
troduced in 1961 [7]. Since then, the majority of
robots used to be confined in a cage where hu-
mans were not allowed to enter to prevent acci-
dents. More recently, collaborative robots were in-
troduced. The fundamental difference is that they
halt their movement if contact is detected. This al-
lows the robot to operate together with people and
in a dynamic environment, since the collision de-
tection prevents the robot from seriously injuring
someone or damaging itself when contacting with
other equipment.

By adding other devices into the environment
such as cameras, LIDAR or torque sensors, it is
possible to achieve collaboration in a wider sense.
This means having the robot and the operator work-
ing together. This cooperation can be very useful
in situation where eliminating human presence can
increase safety or quality. A prime example would
be an operating rooms where a robot could act as
a instrumentalist. By replacing a nurse and conse-
quently lowering the risk of contamination, it would
also liberate the nurse to execute more complex
tasks. This concept can be extended to other con-
texts such as biosafety laboratories and electronics
or composite cleanrooms.

1.1. Collaborative robotics

Cobots, short for collaborative robots, are a partic-
ular kind of robots designed to interact directly with
humans. They were developed to get rid of physi-
cal barriers between humans and robots on indus-
trial environments, allowing for a greater produc-
tion performance. Universal Robot (UR) is one of
the companies in developing cobots for industrial
applications. It’s robots are famous for achieve-
ments such as the UR5e robot who was the first
robot to ring the New York Stock Exchange bell
[12], and the UR3 who was capable of performing a
Boeing 737’s landing procedure [14].

1.2. Depth estimation

To estimate depth with one or more cameras, sev-
eral approaches exist. Price used to be a great fac-
tor when deciding which technology to use for a
given application. Today, these devices are afford-
able and the nature of the applications is the sole
factor of choice.

Time of flight cameras measure the distance by
emitting a modulated light and measuring the re-
flection’s delay. The Kinect V2 from Microsoft is
an example of a popular camera of this type . The
modern models rely on a single observation to gen-
erate the depth map, as opposed to older models

1



who required multiple observations and thus were
prone to artifacts due to motion in dynamic scenes.
The main problem of this type of camera is multi-
path interference, which happens when the modu-
lated light arrives to the sensor through more than
one path [3]. Another disadvantage is that the pres-
ence of other cameras of the same type can harm
the results obtained.

Structured light cameras have a light projector
and a camera. The camera captures an image of
the scene with a pattern coming from the projector
on it. The distortion of thee pattern can be used to
compute the depth map using a process called tri-
angulation. These cameras don’t suffer from mul-
tipath interferences, but because the pattern pro-
jected must be known in advance, they can have
interferences if two or more projectors overlap in
part of the image [5].

Stereo vision uses two cameras and a triangula-
tion process. Pixels in both images are matched
and the position disparity is used to compute depth.
However, the pixel matching in low texture regions
is difficult which lead to poor depth maps [2]. To
solve this problem, active stereo was introduced.
Active stereo measures depth from a pair of cameras
where a pattern is projected. This artificially adds
texture to the scene, improving the pixel match-
ing. The main advantage of this method is that the
pattern doesn’t need to be known beforehand and
therefore there is no problem with multiple cameras
of this type interfering with each other.

Estimating the depth from images can also be
accomplished with a single camera. If the scene
is static, a single camera can be used to take two
pictures of the same scene from different perspec-
tives, provided the translation and rotation between
the shots is known [10]. If the scene is not static,
the process is more complex as there can be sev-
eral independently moving bodies. In that case, it
is necessary to use optical flow in combination with
multiple view geometry.

In addition, machine learning with supervised
learning can be employed [13]. The training re-
quires images with their corresponding depth maps
to be provided.

1.3. Real-time robot manipulation

The idea of manipulating a robot in real time using
visual cues is not recent. It is used for robot ma-
nipulators and mobile applications. Sports is one
of the fields where cameras have been used to auto-
mate robots, such as ping-pong [16] to track the ball
or football [11] to identify the ball, the other players
and the current position on the pitch. Tasks can be
relatively simple, such as catching a ball with a cup
[15], that a robot can easily accomplish due to it’s
speed and accuracy when a correct estimate of the

ball’s position is provided. The remote operation
of a robot to map and evaluate the state of Cher-
nobyl’s Unit 4 [1] is a more meaningful example of
what can be achieved when combining computer vi-
sion and robotics.

2. Background

The majority of industrial robots can be decom-
posed in several links considered to be rigid bod-
ies. Links have relative motion from one another by
mean of mechanical joints that can be of two types,
prismatic or revolute. To describe their position
and orientation, we attach to each link an orthonor-
mal reference frame. Among others, the Denavit-
Hartenberg convention can be used to express their
relative position and orientation [6]. This conven-
tion establishes a set of rules regarding how the
frames are placed so that there is always four pa-
rameters that define their pose relative to the previ-
ous reference frame. These parameters can be used
to construct a matrix called transformation matrix,
which relate the poses of a reference frame to an-
other. Knowing each of the links position and ori-
entation depending on the joint angles is called di-
rect kinematics. The inverse procedure, finding the
joint angles given a desired pose of the end effector,
is called inverse kinematics.

2.1. Transformation matrix

As transformation matrix T is a 4x4 matrix used to
perform transformations from one frame to another.
The matrix T 1

0, expressing the transformation from
reference frame 0 to reference frame 1 is of the form:

T 0
1 =

[
(R

0
1)

⊤ 0
(p0

1)
⊤ 1

]
, (1)

where R1
0 is the rotation matrix from frame 0 to

frame 1 and the vector p1
0 is the translation be-

tween the two reference frames expressed in the co-
ordinates of frame 0. The last line is all zeros except
the last column which is a one. If the frames have
the same origin, then p0

1 is a null vector. Transfor-
mation matrices can be multiplied sequentially to
express new transformations. In general, we have:

T 0
n =

n∏
k=1

T k−1
k . (2)

2.2. Rotation matrix

A matrix that describes the change in orientation
between two reference frames is called a rotation
matrix. The matrix representing the change from
frame 0 to frame 1 can be written as R0

1. Its
columns are the direction cosines of the axis of
frame 1 expressed in frame 0.

Because the reference frames are orthonormal,
rotation matrices are orthonormal matrices. This

2



means both columns and rows are orthonormal vec-
tors, which lead to:

RR⊤ = I , (3)

where I is the identity matrix. As a result:

R−1 = R⊤. (4)

Therefore, to reverse a given rotation, it suffices
to re-multiply by the transpose of the rotation ma-
trix used previously due to the transpose being
equal to the inverse.

2.3. Euler angles

Rotation matrices have nine parameters which are
not independent. The minimal number of parame-
ters to fully characterize a rotation is three, called
Euler angles. There are twelve sets of Euler angles,
the one used in this work is the ZYX combination.
Therefore, the first parameter is a rotation about
the Z axis, then a rotation about the new Y axis
and finally a rotation about the final X axis. To
obtain the same final result when performing the
rotations around the fixed original axes, it suffices
to use the reverse set of Euler angles, XYZ in our
case.

2.4. Axis-angle representation

In this representation, a rotation of and angle θ
is made about the vector u . This notation is not
unique as a rotation of−θ about−u yields the same
rotation. It is possible to reduce this notation to a
single vector by multiplying u by θ. The resulting
vector will have the same direction as the original
one and the rotation angle can be retrieved by cal-
culating the magnitude of the resulting vector. This
procedure also eliminates the non-uniqueness of the
axis-angle representation.

2.5. Unit quaternion

Unit quaternion is a four parameter representa-
tion that can be separated into scalar and vectorial
parts:

Q =
[
qw qx qy qz

]
, (5)

where qw is the scalar part and qx, qy, qz form the
vectorial part. A quaternion can be retrieved from
the axis angle representation as

Q =
[
cos(θ/2) usin(θ/2)

]
. (6)

To add two rotations represented by two quater-
nions Q and J, we use the following formula:

S =


qwjw − qxjx − qyjy − qzjz
qwjx + qxjw + qyjz − qzjy
qwjy − qxjz + qyjw + qzjx
qwjz + qxjy − qyjx + qzjw


⊤

. (7)

2.6. Convert Euler angles to axis-angle

There is no direct way to convert from the Eu-
ler angles to the axis-angle notation. One of
the workarounds is to convert Euler angles into a
quaternion, before being put into axis-angle form.

To convert from a set of Euler angles to a quater-
nion, we apply equation 6 to each of the elemental
rotations, resulting in:

QX = [cos(α/2) sin(α/2) 0 0],

QY = [cos(β/2) 0 sin(β/2) 0],

QZ = [cos(γ/2) 0 0 sin(γ/2)].

(8)

The axis-angle representation can be retrieved by
inverting equation 6:

θ = atan2(
∥∥[qx qy qz

]∥∥, qw),
u =

[
qx qy qz

]∥∥[qx qy qz

]∥∥ , (9)

where the quaternion Q is obtained by adding the
three elemental rotations in the order ZYX accord-
ing to equation 7

2.7. Rotation from one vector into another

Let v and n be two unit vectors three dimensional
space space. A rotation from n to v happens around
and axis that is orthogonal to both vectors. To
compute a vector along that axis, we can use the
cross product operator:

u = n× v

=

nyvz − nzvy
nzvx − nxvz
nxvy − nyvx

 ,
(10)

and the angle can be determined knowing that

∥n× v∥ = sin(θ), (11)

and

n · v = cos(θ), (12)

which leads to:

θ = atan2(∥n× v∥, n · v). (13)

From the axis-angle notation, a rotation matrix
can be using Rodrigues’ rotation formula:

R = I+ sin(θ)Ku + (1− cos(θ))K2
u, (14)

where K is the cross product matrix of u defined as

Ku =

 0 −uz uy

uz 0 −ux

−uy ux 0

 . (15)

3



2.8. Colour spaces
To convert from RGB format to HSV, where the
hue, saturation and value range from 0 to 1, we use
the formula

V =
max(R,G,B)

255
;

S =


∆

V
if V > 0;

0 if V = 0;

H =
1

6
×



G−B

∆
mod 6 if R > G,B;

B −R

∆
+ 2 if G > R,B;

R−G

∆
+ 4 if B > R,G;

0 if V = 0 or S = 0,

(16)
with

∆ = max(R,G,B)−min(R,G,B). (17)

One of the formulas that have been defined to
convert an RGB image to a greyscale image is:

G = 0.299R+ 0.587G+ 0.114B. (18)

This formula was defined by the International
Telecommunication Union and each colour has a dif-
ferent contribution due to the way humans perceive
light [4].
Binary images can be obtained by thresholding

an image using

B =

{
0 , ifI ≤ t,

1 , ifI > t,
(19)

where I is the original image and B the obtained bi-
nary image. The variable t is an array of thresholds,
one for each of the image’s channels. The thresh-
olds cans be the same in the entire image or vary
according to the image’s region they are being ap-
plied to.

3. Implementation
This thesis was developed using a UR3 collabo-
rative robot from Universal Robots and a D435
depth camera from Intel. The integration is made
through a desktop computer running MATLAB ver-
sion 2019a. The host computer is responsible for re-
ceiving the information from the depth camera and
choosing accordingly the appropriate actions to be
executed by the robot. It is connected to the cam-
era by a USB cable. The robot is connected to a
router by an Ethernet cable and therefore instruc-
tions can be sent from any part of the world through
the internet.
The camera was attached to the ceiling so it can

capture the entire workspace at all times. Since
the goal is to use the robot as interface between

the automation benches and the users, the robot
is placed on the tabletop, adjacent to where the
benches will be. This planned position is marked
orange in the figure. A single robot will be used to
for two automation benches, therefore the robot is
located at the border between two workbenches.

3.1. UR3e Robot

The UR3e is a cobot produced by the danish com-
pany Universal Robots (UR), and is the smallest
of their second generation of robots, designated e-
Series. The robot uses a programming language
from UR called URScript. Like every other lan-
guage, it has variables, arithmetic operations and
program control flow. The variables can be of eight
types: none, int, float, bool, array, matrix, pose and
string. The flow of control is ensured by while loops
and if statements.

Besides the universal functions necessary to be
considered a programming languages, URScript
also has functions to manipulate and gather the
robot’s state. These include functions to define the
tool’s parameters, specify the gravitational acceler-
ation in the robot’s reference frame, move the robot
in tool or joint space and calculate the inverse kine-
matics for a given end effector pose.

The teach pendant is the easiest way of pro-
gramming the robot as it offers a graphical inter-
face, designated PolyScope, that allows the user
to program resorting to a Program Tree. The
commands to be executed are added to the Pro-
gram Tree as new nodes and the user programs en-
tirely in pseudocode rather than programmings in
URScript, the programming language used by UR
robots. The URScript commands that are gener-
ated by the blocks of pseudocode in a program can
be viewed by opening on a text editor the file of
type script generated when saving said program.
The teach pendant can also be used as a simulation
environment, allowing the user to visualize how the
robot will behave when executing a program before
running it on the physical robot. This can be done
by simply toggling a button on the footer on the
interface.

3.2. RG2 Gripper

The RG2 is a gripper manufactured by OnRobot
that can be attached to robots of fourteen brands,
including the ones from UR. The gripper is not at-
tached directly to the robot, but to a mounting
bracket that is screwed to the robot’s arm. On-
Robot has three different mounting brackets that
allow to attach one or two tools depending on the
model. The simplest one was used in this work, it
allows only one tool to be connected at the time
and has no integrated force or torque sensor. The
mounting bracket is connected electrically to the
robot using an eight pin cable and to the tool

4



through eight contact pads. A tool change happens
in under a minute due to a quick release system in
the gripper.
The RG2 gripper can be powered at 12 V or 24 V,

the latter being the recommended working voltage
because it allows the gripper to operate at its full
speed and force range. The fingers can be adjusted
to internal or external grip and the maximum stroke
is around 110 mm, depending on the grip direction
and type of fingertips used. The gripping force can
be set between 3 N and 40 N, the gripping speed is
conditioned by the selected grip force and the gap
between fingers.

3.3. Intel RealSense D435
The RealSense D435 is a depth camera from Intel,
it connects to the host computer through a USB
cable. It has two infrared (IR) cameras that consti-
tute a stereo pair, a RGB camera and an IR projec-
tor. The IR cameras are used at 848x480 resolution.
This is the resolution that gives the most precise
results. The RGB camera is used at 640x480 reso-
lution because higher resolutions have lower frame
rates and the increase in field of view would be fruit-
less, since those zones are not relevant for the task
at hand.
Before usage, it is essential to calibrate the cam-

eras. To do that, Intel provides a calibration soft-
ware that estimates the intrinsic parameters of the
IR cameras, the baseline, the principal points and
the rotation matrices between the cameras’ and the
world’s frame. The calibration software uses a pat-
tern, that can be printed or displayed on a mobile
phone screen, where an app ensures the correct pat-
tern size is displayed.

3.4. Software Architecture
The functions employed to treat the point cloud
coming from the camera belong to the Computer
Vision toolbox. Regarding the communication with
the robot, the functions used belong to the Instru-
ment Control toolbox.
The interface with the camera is accomplished

with a Software Development Kit provided by In-
tel for several programming languages, including
MATLAB. The snippets provided make use of
MATLAB’s object programming facet, defining a
superclass realsense. This class has a set of sub-
classes, which allow all the actions to be performed
within MATLAB instead of resorting to Intel’s pro-
prietary software.
The camera was implemented as a class Camera,

which is responsible for interacting with the cam-
era and detecting objects or the operator’s hand de-
pending on the required task to be performed. The
position and orientation of the interest regions are
calculated and transformed to the robot’s reference
frame before being outputted.

Similarly to the camera, the robot was also imple-
mented as a class The interface with the robot con-
sists in opening the necessary communication routes
through TCP/IP protocol, generating and sending
strings of text with the URScript commands to be
executed by the robot and receiving information
about the robot’s state.

The main script acts as an intermediary between
the camera, the robot and the user. First, the script
creates two objects from classes Camera and UR-
Robot. Since the constructors of the classes need in-
put parameters, those must be defined beforehand.
Then, it proceeds to the calibration of the system.
For that, the robot is moved to a position where
the camera has an unobstructed view of the top of
the base of the robot. Next, a frame is retrieved
and the transformation matrix between the camera
reference frame and the robot reference frame is es-
timated using the method calibrate. At this stage,
the system is ready to operate therefore the robot
place in its rest position.

The script then enters an endless loop, where it
is continuously monitoring the shared workspace to
determine if the operator is present resorting to the
method isPresent. When the operator is detected,
it is necessary to instruct which operation is to be
executed. Two operations are possible, retrieve an
object from the hands of the operator and place it
on the tabletop or pick an object on the table and
give it to the operator.

If the operator chooses to give the robot an object
so it can place it on the table, the camera checks
that the operator has an object in its hands. If
an object is found, the robot checks if the part is
reachable and if so the object is carried to the hand
of the operator. Finally, the robot returns to its
rest position. If there is no object or the object is
not reachable, no action is taken.

If the user wants an object that is on the table,
the camera checks how many object there are. If
no object is found, no action is performed. Other-
wise, if there are multiple objects, the user has to
select which object is to be transported. If the ob-
ject is reachable, the robot grips it. The camera is
then used once again to verify that the operator is
still inside the shared workspace and that its hand
is reachable. If so, the object is delivered to the
operator and then returns to its rest position. Oth-
erwise, the robot is sent back to its rest position
without moving the object.

4. Segmentation results

To achieve correct results, it is paramount that the
objects and the hands of the operator are correctly
detected. The parameters used for segmentation
were tuned according to the conditions of the labo-
ratory, particularly lighting conditions.

5



4.1. Hand segmentation
The hand segmentation algorithm uses a mix of 3D
and colour cues. Figure 1 displays the segmenta-
tion results a few hand configurations. The top row
shows the original RGB images and the bottom row
the obtained segmentation result.
In the first column, a single hand is present, the

algorithm had no problem correctly segmenting the
hand from the rest of the arm at the wrist. In the
second column, there are two hand in the image
approximately at the same depth. The left hand
is closer to the base of the robot and hence is cho-
sen. Third column has the left hand below the right
hand. The latter becomes the closest hand to the
base of the robot and therefore is preferred. Re-
garding the last column, the hands are at different
depths but appear as a single entity in the RGB im-
age. As a result, the segmenting algorithm fails and
yields a binary image where both hands are present.

Figure 1: Examples of hand segmentation results

4.2. Segmentation of objects in the hand
Figure 2 depicts the original RGB images and the
corresponding object segmentation below for six dif-
ferent cases. The first two images demonstrate that
the way the operator is holding the object is unim-
portant. As long as the object is visible, the al-
gorithm can identify it and isolate it. The third
frame demonstrates that a cluttered background is
not a problem for the algorithm, as it was able to
correctly segment the held object even though sev-
eral other objects were scattered on the table be-
low. The next two columns show how clothes can
affect the result obtained. In the fourth image, the
sleeve and the object are detached from one an-
other. Therefore, the object is correctly identified.
However, in the fifth image the sleeve is overlapping
the object. The algorithm is deceived into consid-
ering as the sleeve as part of the object. Finally,
the rightmost image shows how the hand being too
close to the table can cause issues. The shadow of
the hand makes the algorithm recognize part of the
table as belonging to the object.

4.3. Segmentation of objects on the table
Figure 3 shows the outcome of the object segmenta-
tion in three different cases. The blobs in the bot-
tom row are coloured according to the colour the
algorithm detects on the RGB image, black objects

Figure 2: Examples of segmentation for objects in
hand

appear in white.
In the first two columns show a correct segmen-

tation and colour choice. However, the rightmost
column shows a case where two objects close to-
gether are mistaken as a single object. The algo-
rithm recognizes a single yellow objects instead of
two distinct yellow and red objects since the latter
is smaller in size.

Figure 3: Examples of object segmentation results

4.4. Computation times
In order to ensure a fluid interaction between the
robot and the operator, the robot has to act in
real time which requires low computational times.
The median running time of the methods was deter-
mined using the inbuilt function timeit. The fastest
method was the hand segmenting, with a median
time of 23 ms, then the object in hand segment-

6



ing with 25 ms. Retrieving a frame from the cam-
era and segmenting objects on the table were the
slowest methods with a median running time of 36
ms. The latter greatly depends on the number of
objects on the table, each additional object results
in an increase of approximately 4 ms in processing
time. The time needed to retrieve a frame indicates
the acquisition is made at 30 Hz. This is a limita-
tion from having connected the camera to the host
computer through a USB2 cable.

5. Accuracy testing
To test the accuracy of the overall system, an exper-
iment was designed. In this analysis several points
were considered and the position reported by the
robot was compared to the position yielded by the
camera and transformation matrix.
The part was placed in 15 different locations in-

side our two areas of interest, the table where ob-
jects can be placed to be picked up by the robot
and the shared workspace. For each position, five
frames were captured.
The errors were split in error in the XY plane

and error in the depth error, as shown in Figure 4.
In both cases, the error increases with the distance
to the camera. The distance to the camera is in-
ferior to 1.2 m for objects placed on the table. In
these cases, the depth error under 10 mm and an
error in the XY plane under 20 mm is acceptable
for this application. In regard to the accuracy for
objects inside the shared workspace, the results de-
teriorate quickly with the increase of the distance
to the camera. In that situation, even though the
operator can adjust it’s hand position to cope with
errors from the robot, the errors were deemed too
significant. Therefore, the source of such errors had
to be determined to mitigate it if possible.

Figure 4: First accuracy results

The calibration process was examined, and found
to have a considerable variability. To attempt at
lowering the obtained errors, two other calibration
methods were devised. The surface used as a ref-
erence for the XY plane of the robot is a glossy
white colour and is placed directly underneath two
lamps. Light is reflected to the cameras resulting
is lens flare. As a consequence, the IR projector

pattern is not visible which reduces the camera ac-
curacy because of the lack of texture.

One of the proposed solution for this problem was
to perform the calibration in a darker environment.
Only the set of lights farther from the surface was
kept on for this trial. To adjust for the reduced
incident light, the exposure times of the RGB and
IR cameras were increased. The best obtained re-
sult was similar to the best one previously obtained.
The improvements are negligible, both in terms of
error on the XY plane and depth error. However,
the worst results obtained are significantly better
than before. Comparing the worst cases, the er-
rors are approximately half. This indicates that the
outcome from low light calibration is more homo-
geneous.

Another solution proposed was to add texture
to the tabletop by placing a pattern on it. How-
ever, this approach was considerably worse. Figure
5 compares the best achieved result from this meth-
ods and the best calibration previously obtained.

Figure 5: Comparison of calibration methods

The transformation matrix that provided the
best results, resulting from calibration with dimmed
light, used through the remaining of this work is:

TC
R =


−0.7069 0.7069 −0.0246 0.2332
0.7071 0.7071 0.0016 0.0544
0.0186 −0.0163 −0.9997 1.0936

0 0 0 1.0000

 .

(20)

5.1. Camera depth error
In an attempt to determine if the depth errors
achieved are inherent from the camera or a sys-
tematic error from the calibration method devised,
the depth error of the camera alone was estimated.
For that purpose, the same red part was used. It
was placed at varying distance from the camera.
The latter was mounted on a tripod to guarantee
it would not move. The red part was placed in a
vertical surface, parallel to the plane of the camera.
This surface was place at a distance ranging from
0.5 to 1.7 meters from the camera with increments
of 100 mm. A measuring tape was used to place the
camera at the correct depth.

7



Figure 6 depicts the errors observed. One can
note how the depth is predominantly overestimated
for closer distances and underestimated for the far-
thest positions. This same phenomena can be no-
ticed in Figure 5

Figure 6: Depth error estimate

6. Paths
This section is a review of the paths generated by
the algorithm and the execution of such paths by
the robot. These paths were generated with accel-
eration and speed modifier of 1, a blend radius of 20
mm and a base-to-TCP clearance of 300 mm. All
actions consist in a sequence of elementary move-
ments. First, the robot approaches the object.
Then it transports it to the target position. Finally,
the robot returns to its resting position. There are
four elementary movements, the approach towards
the object, the transport of an object to a defined
position, the transport of an object to a surface and
the return towards the rest position. Since the last
two are almost an exact reverse of the first two, only
the first two will be evaluated.

6.1. Approach the object
The paths generated by the algorithm are con-
structed to preserve the integrity of both the op-
erator and the robot. Hence, it is necessary that
robot follows a path as close as possible to the path
provided. Figure 7(a) exhibits an example of ap-
proach towards an object created by the algorithm
in orange and the path executed by the robot in
blue. Regarding the generated path, only the part
accomplished in the tool space is shown. Figure
7(b) is a zoomed perspective on the middle way-
point. Since there is a blend radius between sections
of the path, the TCP never reaches this waypoint.
The green sphere has a radius of 20 mm, the same
as the blending radius. Outside the sphere, the two
paths should coincide which is not the case. Further

testing has shown that this phenomena happens for
all blend radii tested.

(a) Generated path and actual robot path (b) Zoom on the
effect of blend
radius

Figure 7: Comparison of generated and actual ob-
ject approach path

Figure 8 is a montage of still images taken from
[9], a video of the robot following approaching an
object.

Figure 8: Montage from video of robot approaching
object

6.2. Carry an object to a specified position
Regarding the transport of an object to a defined
position, the following is more accurate. Figure
9(a) demonstrates that the path followed by the
robot in blue coincides with the planned path in
orange. Figure 9(b) shows two examples of blend-
ing in this path. At the bottom, the blending near
the waypoint created to guarantee a clearance be-
tween the tool and the base of the robot. As can
be seen, the blend occurs with the correct radius

8



and the robot followed the planned path outside of
the blending region. At the top is the blending that
occur when transitioning from vertical to horizontal
motion. The path following is suitable, however the
actual blend radius is less than half of the one speci-
fied. This behaviour was observed independently of
the blend radius chosen. As a consequence of these
narrow blends, the robot has to reduce its speed
more than it would be necessary had it used the
provided blend radii.

(a) Generated and actual robot path (b) Zoom on
the effect of
blend radii

Figure 9: Comparison of generated and actual de-
liver in place path

A video of the robot can be seen in [8], a montage
of still images taken from such video is presented in
Figure 10.

7. Conclusions
Regarding the setup arrangement on the work-
bench, the position of the robot is ideal since it is as
far away from the operator as possible, but still al-
lowing a shared workspace dimension ample enough
for the objective proposed. As for the camera, its
elevated position allows an overlook over the entire
working range of the robot. However it proved less
accurate than desirable in terms of depth. Con-
cerning the lighting, having only the farthest light
switched on during the calibration proved to be the
best option, but this would origin too many shad-
ows in the shared workspace during normal oper-
ation. Having all three ceiling light switched gave
the best results, even though shadows could still be
noticeable when the arms of the operator were too
close to the table.
The procedure to estimate the transformation

matrix between the camera and robot coordinates
proved to be unreliable. Although fast, it runs in
under 2 seconds, the results display a high variabil-
ity.
The desired accuracy was achieved when look-

ing at the XY plane, with error bellow 15 mm for
the best calibration obtained. Regarding depth, the
accuracy is sufficient when considering object on
the tabletop but was poorer when considering the
shared workspace, with an error up to 30 mm.
The paths generated allow a correct handle of

Figure 10: Montage from video of robot transport-
ing an object to a specified position

the object from and to the hands of the operator,
ensuring correct separation between objects being
held, the robot and the environment.

Collaboration has been achieved, the algorithm
correctly identifies the operator and the objects us-
ing the depth camera and the robot is able to answer
in real time to the orders of the operator. The over-
all system provides sufficient accuracy for the task
and is able to handle the operator changing hand
position mid operation or even removing it from the
workspace.

References

[1] J. Abouaf. Trial by fire: teleoperated robot
targets chernobyl. IEEE Computer Graphics
and Applications, 18(4):10–14, 1998.

[2] K. Atsuta, K. Hamamoto, S. Kondo, et al. A
robust stereo matching method for low texture
stereo images. In 2009 IEEE-RIVF Interna-

9



tional Conference on Computing and Commu-
nication Technologies, pages 1–8. IEEE, 2009.

[3] A. Bhandari, M. Feigin, S. Izadi, C. Rhemann,
M. Schmidt, and R. Raskar. Resolving multi-
path interference in kinect: An inverse problem
approach. In SENSORS, 2014 IEEE, pages
614–617. IEEE, 2014.

[4] R. I.-R. BT et al. Studio encoding parameters
of digital television for standard 4: 3 and wide-
screen 16: 9 aspect ratios. 2011.

[5] D. A. Butler, S. Izadi, O. Hilliges,
D. Molyneaux, S. Hodges, and D. Kim.
Shake’n’sense: reducing interference for over-
lapping structured light depth cameras. In
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages
1933–1936, 2012.

[6] J. Denavit and R. S. Hartenberg. A kinematic
notation for lower-pair mechanisms based on
matrices. 1955.

[7] J. G. C. Devol. Programmed article transfer,
June 13 1961. US Patent 2,988,237.

[8] T. Fernandes. Video of carrying
an object to a specified position.
https://vimeo.com/638601757, 2021.

[9] T. Fernandes. Video of the approach towards
an object. https://vimeo.com/638588434,
2021.

[10] R. Nevatia. Depth measurement by motion
stereo. Computer Graphics and Image Process-
ing, 5(2):203–214, 1976.

[11] A. F. Ribeiro, C. Machado, I. Costa, and
S. Sampaio. Patriarcas/minho football team.
1999.

[12] U. robots. Universal robots’ ur5e rings the nyse
closing bell.

[13] A. Saxena, S. H. Chung, A. Y. Ng, et al. Learn-
ing depth from single monocular images. In
NIPS, volume 18, pages 1–8, 2005.

[14] A. F. Sciences. Robotic co-pilot flies and lands
a simulated boeing 737.

[15] C. Smith and H. I. Christensen. Using cots to
construct a high performance robot arm. In
Proceedings 2007 IEEE International Confer-
ence on Robotics and Automation, pages 4056–
4063. IEEE, 2007.

[16] Y.-h. Zhang, W. Wei, D. Yu, and C.-w. Zhong.
A tracking and predicting scheme for ping pong
robot. Journal of Zhejiang University SCI-
ENCE C, 12(2):110–115, 2011.

10


