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Abstract

We will study a specific way to shuffle a finite number of cards. The shuffle consists of drawing the
first card and flipping a coin: if it lands heads, we place the card at the last position of the deck, while if
tails come out, the card is placed at the second-to-last position of the deck. This shuffle was introduced
by Arunas Rudvalis (cf. [2], page 90), so we call it the Rudvalis shuffle. First, we define basic properties
of Markov chains and then, we study the Rudvalis shuffle, using Markov chains and the mixing time.
The first goal is to study the problem solved by Wilson in [11], i.e., to estimate a lower bound (as a
function of the number of cards in the deck) for the minimum number of times we have to shuffle the
cards if we want the deck to be well shuffled. The second goal is to apply the Rudvalis shuffle and
look at the configuration of the cards as a particle system (identifying the red cards as empty sites and
the black cards as occupied sites), making use of continuous time Markov chains. The main result we
obtain is the Hydrodynamic Limit, which characterizes the evolution of the particle density.
Keywords: Markov chains, partial differential equations, hydrodynamic limit, particle system, mixing
time, transport equation.

1. Introduction

A Markov chain is a stochastic process, i.e., a col-
lection of random variables indexed on time, which
has the property (Markov property) that the future
of the process depends only on its present and it
is conditionally independent of its past. There are
many real life occurrences of Markov chains but our
focus in this paper will be a Markov chain generated
by a card shuffle, more precisely, a random walk
followed by the permutations of the cards when the
deck is shuffled. Here the state space is the sym-
metric group Sn (whose elements are called permu-
tations) and the transitions are given by the specific
chosen way to shuffle the cards.

We are interested on the number of shuffles it
takes for a deck to be well shuffled. But what does
it mean for the deck to be well shuffled? Well, it
means that after a certain number of shuffles, all the
possible n! permutations are equally likely. We are
going to consider a shuffle, which was introduced
by Arunas Rudvalis [2], and it is very simple to
understand. We take the first card of the deck and
we insert it in the last position with probability 1/2
or in the second-to-last position with probability
1/2.

We shall look for the number of shuffles needed
for the deck to be well shuffled after successively
applying the previous shuffle. But how can we do
this? We will start by defining some basic concepts

of discrete time Markov chains, namely, the mixing
time, which gives the time it takes for the chain to
be arbitrarily close to its stationary distribution. If
the deck reaches the stationary state, which is the
uniform distribution, this means that at that mo-
ment any permutation is equally likely. In other
words, when the state of the deck reaches station-
arity, the deck is well shuffled. Thus, finding the
number of shuffles it takes for the deck to be well
shuffled boils down to estimating the mixing time of
the Markov chain described by the Rudvalis shuf-
fle. Having realized that, we will use some proper-
ties of eigenvectors to estimate the mixing time of
the Rudvalis shuffle. The upper bound of the mix-
ing time Rudvalis shuffle is O(n3 log (n)) [6] (after
that number of shuffles the deck is well shuffled).
Here we explain the method used by Wilson in [11],
which shows that the lower bound for the shuffle
is also O(n3 log (n)) (we need at least that number
of shuffles for the deck to be well shuffled). There-
fore we can conclude that the mixing time for the
Rudvalis shuffle is O(n3 log (n)).

For the second part of this paper, we will inter-
pret the Rudvalis shuffle as an interacting particle
system on n sites, associating black cards with par-
ticles and red cards with vacant sites. We want
instead to find what happens to the system when
n goes to infinity, i.e., we want to know how the
particles behave when the number of sites goes to
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infinity.

This scenario is motivated by the interaction be-
tween particles (microscopic) in a real system, such
as a gas or a fluid (macroscopic). In this kind of
systems, the number of particles is very large and
thus it is impossible to study the behaviour of each
particle individually in order to understand the col-
lective behaviour of the system, i.e., it is not easy to
study the macroscopic space (for example the gas)
using the microscopic space (looking at the motion
of all individual particles). To overcome this prob-
lem, what it is done instead is to consider that the
particles move randomly according to some proba-
bility law (this is shown to model well real macro-
scopic systems) and use the results obtained for the
microscopic case to draw conclusions for the macro-
scopic space.

The last strategy is done by considering an initial
density of particles at the macroscopic level and a
probabilistic law for the microscopic particles (this
will be determined by the Rudvalis shuffle). Then
we associate the density of the macroscopic system
with an initial distribution of particles in the mi-
croscopic system, to which we associate a continu-
ous Markov chain, modelling the microscopic sys-
tem. This system conserves one or more quantities
(in our case, the number of red and black cards is
the preserved quantity) but the distribution of this
quantity changes through time. The question we
ask is how can we approximate the distribution of
particles through time, and the hydrodynamic limit
tells us that the density of particles is described by a
solution of a partial differential equation (PDE). In
other words, the hydrodynamic limit allows finding
a macroscopic law (in general a solution of a PDE)
through a microscopic underlying random dynamic.

The hydrodynamic limit is really interesting in
the sense that it allows us to relate concepts of prob-
ability theory with partial differential equations.
This is because the density of particles in the macro-
scopic space is usually described by a weak solution
of a PDE. So if we take a random process (the card
shuffle), this random process gives rise, in the limit,
to a deterministic process. Furthermore, if we prove
the uniqueness of the weak solution of that PDE,
the hydrodynamic limit allows concluding the exis-
tence of a weak solution to a PDE which a priori we
did not know it existed. In other words, we use a
random process to prove the existence of a (weak)
solution of a PDE. This is exactly what we aim to
do in the second part of this paper: explore the
Rudvalis shuffle (which is a random process) and
use it to find the (weak) solution of a PDE, in our
case, the transport equation.

2. Discrete time Rudvalis shuffle
2.1. Discrete time Markov chains

In this section we start with an overview of dis-
crete time Markov chains and some of its properties.

2.1.1 Basic properties
Let (Ω̃,F ,P) be a probability space. Throughout

the rest of this section, we shall denote by {Xt}t∈N0

an irreducible and aperiodic Markov chain with fi-
nite state space Ω, transition matrix P and initial
measure µ0(·) = P (X0 ∈ ·). Let Ft := σ(Xs | s ≤ t)
be the σ-algebra generated by X1, X2, . . . , Xt and
{Ft}t∈N0

the filtration associated with {Xt}t∈N0
.

Moreover, denote by Eµ0
the expectation starting

from µ0. It is well known that every Markov chain
with finite state space has at least one stationary
distribution and that if the Markov chain is irre-
ducible, the stationary distribution is unique [9].
Let π be the stationary distribution of {Xt}t∈N.
Furthermore, the distribution of the chain converges
(in total variation distance) to the unique station-
ary distribution π (Section 4.3 of [9]).

But how much time t does it take for the distribu-
tion of the chain to get arbitrarily close to the sta-
tionary distribution? With that question in mind,
we define a function that keeps track of the distance
between the distribution of the chain at time t and
the stationary distribution:

d(t) = max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV

,

where
P t(x, y) := P(Xt = y|X0 = x)

is the probability of reaching state y in t time steps,
given that X0 = x, that is, given that the chain
started at state x.

Since d(t) is a decreasing function (Exercise 4.2
of [9]), i.e., the more the chain evolves, the closer
it is to stationarity, we define the mixing time of a
Markov chain as follows:

Definition 2.1 (Mixing time). For ε ∈ (0, 1),

tmix(ε) = min{t : d(t) ≤ ε}.

2.1.2 Eigenfunctions
It will be useful to introduce the concept of eigen-

functions and eigenvalues of the transition matrix
of a Markov chain. Moreover, there are properties
relating eigenfunctions and the stationary distribu-
tion of a Markov chain.

Definition 2.2 (Eigenfunction). Let P be a tran-
sition matrix of a Markov chain with finite state
space Ω. A function f on Ω is an eigenfunction (or
eigenvector) of P associated with the eigenvalue λ
if Pf = λf.

The fact that the transition matrix P is right
stochastic implies that all the eigenvalues have ab-
solute value bounded from above by 1.
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Lemma 2.1. Let {Xt}t∈N0
be a discrete Markov

chain with finite state space Ω, transition matrix P
and initial distribution µ0. Let f be an eigenfunc-
tion of P with eigenvalue λ. Then

1. Eµ0 [f(Xt)] = λtf(X0).

2. |λ| ≤ 1 and there exists always one eigenvalue
equal to 1.

Given a function Ψ : Ω → C and a probability
measure µ on a finite space Ω, we denote by Eµ[Ψ]
the expectation of Ψ under µ.

Lemma 2.2. Let P be a transition matrix of a
Markov chain with finite state space Ω and station-
ary distribution π. If f is an eigenfunction with
eigenvalue λ 6= 1, then Eπ[f ] = 0.

2.2. Rudvalis shuffle
We will now take a look at a very specific way to

shuffle a deck of cards. Since a card shuffle consists
of a random walk on the permutations of the deck,
this shuffle can be seen as a Markov chain.

Let us consider a deck with n cards numbered
from 1 to n (we label the first card with 1, the
second with 2, and so on). At each time t ∈ N, we
remove the card on top of the deck and insert that
card at the second position from the bottom with
probability p and at the bottom of the deck with
probability 1− p, where p ∈ (0, 1).

Figure 1: Inserting the top card at positions n − 1
or n with probability p or 1− p respectively.

In order to see the dynamics of the shuffle, con-
sider the following example of two consecutive shuf-
fles for a deck with n = 19 cards.

Example 2.3. Suppose the deck has n = 19 cards.
We can use a (not necessarily fair) coin to decide
where we place the first card. If it lands “heads”,
we place the first card at position n = 19, if it lands
“tails”, we place it at position n − 1 = 18. The
following image shows the four different possibili-
ties after two shuffles. The top card and bottom
cards of the initial configuration of the deck are re-
spectively the 3 of diamonds and 8 of clubs (we can
imagine the deck in a circle where the last and first
cards are “connected”). After the first shuffle, the

Figure 2: Example of the Rudvalis shuffle with n =
19.

3 of diamonds either goes to position n− 1 or posi-
tion n. We see that in both cases, all the cards but
the 3 of diamonds (and possibly the 8 of clubs) are
pushed up one position, i.e., almost all the cards ro-
tate counterclockwise. If the deck keeps being shuf-
fled, the cards keep “rotating” and as we will see
later on, this is what makes the Rudvalis shuffle so
unique.

The discrete-time Markov chain described by Fig-
ure 1 was introduced by Arunas Rudvalis (in fact it
is a slight generalization of the original shuffle pro-
posed by Rudvalis, which considers p = 1

2 ), and for
this reason, it is known as the Rudvalis shuffle. Its
state space is the symmetric group Sn of all possible
permutations of an n-element set. For σ ∈ Sn, we
write σ(x) = y if card y is in position x of the deck.
The transition matrix P is given by

P (σ, ξ) =


p, if ξ = σn−1

1− p, if ξ = σn

0, otherwise

where σx is the permutation obtained from σ after
we move the top card to position x.

We denote the Rudvalis Markov chain by
{σt}t∈N0

. Moreover, we denote by P t(σ, ·) the dis-
tribution of the deck after t shuffles, given that the
initial permutation of the deck is σ. For example,
P t(σ, ξ) is the probability of having permutation ξ
after t shuffles, given that the starting permutation
is σ.

We denote by Eσ the expectation with respect to
the law of the process when the initial distribution
µ0(·) = P(σ0 ∈ ·) is concentrated on σ, that is, the
initial permutation of the deck is σ.

If the Rudvalis shuffle was not an irreducible
chain, it would not make much sense to call it a
shuffle (we would not be able to achieve some spe-
cific configurations). But as it can be easily verified,
the Rudvalis chain is irreducible.

Since the chain is irreducible and has a finite state
space, it has a unique stationary distribution Un,
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which is the uniform distribution on Sn (cf. Propo-
sition 2.16 of [9]). In fact, it is simple to verify that
UnP = Un. For any permutation σ,

(UnP )(σ) =
∑
ξ∈Sn

Un(ξ)P (ξ, σ) =
∑
ξ∈Sn

1
n!P (ξ, σ)

= 1
n! (P (ξ1, σ) + P (ξ2, σ)) = 1

n! = Un(σ),

where ξ1 and ξ2 are the permutations such that σ =
ξn−1
1 = ξn2 .

If we keep shuffling this way, how long must we
shuffle the deck until it is well shuffled? But what
does it mean for the deck to be well shuffled? It
means that the arrangement of the deck is close to
random. Thus, another way to ask this question is:
How many shuffles does it take for the distribution
of the deck to become close to uniform? As we
have seen before, this can be done using the mixing
time of the Markov chain. While an upper bound of
O(n3 log(n)) for the mixing time was already found
(cf. [6]), in this paper we focus on finding a lower
bound for the mixing time of this chain. The bound
for the mixing time translates into a bound on the
number of shuffles which tells us that if we shuffle
the deck any number of times below that bound, we
know for sure that the deck is still not well shuffled.
In order to find this bound, we first find a lower
bound for the total variation distance between any
two probability measures. Then, we consider the
case in which one of the measures is the uniform
measure on Sn and the other is the distribution of
the state of the deck after t shuffles. This will allow
finding a lower bound for d(t). Finally, we will use
this result to obtain a lower bound for tmix(ε).

Thus, we need to find g(n, ε) such that tmix(ε) ≥
g(n, ε). If we can find such a function, we have just
shown that for any initial configuration of the deck,
we need to shuffle the deck at least g(n, ε) times if
we want the deck to become well shuffled. However,
shuffling g(n, ε) times does not guarantee that the
deck will be well shuffled.

2.2.1 Lower bound for the mixing time of the Rud-
valis shuffle

We will use the following proposition to find a
lower bound for the distance between the distribu-
tion of the chain at time t and the stationary distri-
bution, i.e., a lower bound for d(t). If we can bound
d(t) by a “large” number, i.e., if we show that for
small δ > 0, there is t∗ (possibly depending on ε)
such that d(t∗) ≥ 1− δ then we can conclude, since
d is decreasing, that tmix(ε) > t∗.

Proposition 2.4. Let µ and ν be two probability
distributions on a finite state space Ω and let f :
Ω→ C be a complex-valued function on Ω. Then,

‖µ− ν‖TV ≥ 1− 8
max{V arµ(f), V arν(f)}
| |Eµ[f ]| − |Eν [f ]| |2

. (1)

This result is particularly useful if we consider
the Rudvalis Markov chain {σt}t∈N0

and take µ :=
P t(σ, ·) (µ is time dependent), the distribution of
the state of the deck after t shuffles given that the
initial state is σ ∈ Sn, and ν := Un, the uni-
form measure on Sn (ν does not depend of t). In-
deed, by Proposition 2.4 we have a lower bound for
‖P t(σ, ·)− Un‖TV , which gives a lower bound for
d(t). We would just need to compute Eµ[f(σt)] :=
Eσ[f(σt)], Eν [f(σt)], V arµ(f(σt)) and V arν(f(σt)).

When we look at (1), we realize that in order to
get d(t) close to 1 (which means that the chain has
not mixed by time t), we would like the variances
to be small and the difference of expectations to be
large. But now the question is, how can we find a
function f : Sn → C which provides these proper-
ties? The main idea, as we will see, is to use the
eigenfunctions of the transition matrix of a Markov
chain.

In the rest of this section, we follow the approach
in [11]. The idea is to find an eigenvector Ψ (with
eigenvalue λ) not for the original chain, but for an-
other chain (Xt, Yt), where Yt is obtained by tak-
ing into account more information about the shuffle.
Wilson [11] refers to the chain {(Xt, Yt)}t∈N0

as the
lifted chain. We want the eigenvector of the lifted
chain to have the property that for all x, y1, y2, the
eigenvector verifies |Ψ(x, y1)| = |Ψ(x, y2)|, so that
|Ψ(Xt, Yt)| is a function of Xt alone. Now let us see
how to define Yt and then obtain an eigenfunction
Ψ with the desired properties.

Recall that the state σt of the Rudvalis chain is
the permutation giving the order of the cards at
time t. It will be convenient to look at the position
of a particular card. Hence denote the position of
card k (with k ∈ {1, · · · , n}) at time t by Xt(k) :=
σ−1
t (k) . Thus {Xt = (Xt(1), . . . , Xt(n))}t∈N0

is a
Markov chain with state space Sn. But we have
to consider more information about the Rudvalis
chain. We observe that when we place the top
card in position n, every card is cyclically shifted
counterclockwise and when we place the top card
in position n−1, every card except the last is cycli-
cally shifted (counterclockwise). Thus, at each time
t, besides keeping track of the position of card k,
Xt(k), we will also count, with Yt, the number of
times the deck is shifted counterclockwise (modulo
n). We shall consider the lifted chain {(Xt, Yt)}t∈N0

with state space (Sn,Zn), where{
Xt(k) = σ−1

t (k)

Yt = t (mod n).

With that in mind, given a card k, define

Ψk(Xt, Yt) = v(Xt(k))e
2πi
n Zt(k) (2)

where Zt(k) = (Xt(k)−X0(k) + Yt) (mod n) and
v : {1, . . . , n} → C is a function, to be determined
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later, which will turn, for all k ∈ {1, · · · , n}, Ψk

into an eigenfunction (for the lifted chain) with the
same eigenvalue λ. Furthermore, define

Ψ(Xt, Yt) =

n∑
k=1

Ψk(Xt, Yt)

which is an eigenfunction with eigenvalue λ, since
{Ψk}nk=1 are eigenfunctions with the same eigen-
value λ. Furthermore, note that |Ψk(Xt, Yt)| =

|v(Xt(k))|
∣∣∣e 2πi

n Zt(k)
∣∣∣ = |v(Xt(k))|, which means

that for fixed x, and for y1, y2, the eigenvector
satisfies |Ψk(x, y1)| = |Ψk(x, y2)| = |v(x)|, hence
|Ψ(Xt, Yt)| is a function of Xt only, as we wanted.
Finally, the function f to consider in Proposition
2.4 is

f : Sn → C
σt 7→ Ψ(Xt, Yt).

The next proposition determines the eigenvalue for
the previously defined eigenvector.

Proposition 2.5. The random walk performed by
a card k under the lifted Rudvalis shuffle has an
eigenvector of the form

Ψk(x, y) = v(x)e2πiz/n,

where v(x) is the x-th number in the list
λn−2, . . . , λ2, λ, 1, χ, the eigenvalue is

λ = 1− p

1− p
4π2

n3
+O( 1

n5 ),

χ = 1 + p
1−p

2πi
n +O( 1

n2 ), and z = x− k + y.

In order to apply Proposition 2.4, we need
to compute the expected value and variance of
Ψ(Xt, Yt). The expectation can be easily computed,
but the variance demands more effort, which is why
we compute instead E[|Ψ(Xt+1)−Ψ(Xt)|2] and use
the following Lemma.

Lemma 2.6. Let {Xt}t∈N0 be a Markov chain with
finite state space Ω, with eigenfunction Ψ and eigen-
value λ, and let µ be a probability distribution on Ω.
If <(λ) ≥ 1

2 and |λ| < 1, then

V arµ[Ψ(Xt)] ≤
Eµ[|Ψ(Xt+1)−Ψ(Xt)|2]

2(1−<(λ))
.

We need to compute the eigenvector at time t = 0
in order to get its expected value.

Lemma 2.7. Let {(Xt, Yt)}t≥0 be the lifted Markov
chain described above and let Ψ be the eigenvector
with eigenvalue λ. Then,

Ψ(X0, Y0) = n+O( 1
n ).

In particular, this value is independent from the ini-
tial configuration of the deck.

Now we can compute the expected value and the
variance of Ψ(Xt, Yt).

Lemma 2.8. Let (Xt, Yt) be the lifted Markov

chain described above, Ψ =
n∑
k=1

Ψk the eigenvector

(with eigenvalue λ) obtained from Proposition 2.5
and µσt := P t(σ, ·). Then, for any t ∈ N0, the ex-
pectation and the variance of the complex random
variable Ψ(Xt, Yt) under the probability distribution
µσt are given, respectively, by

Eµσt [Ψ(Xt, Yt)] = λtΨ(X0, Y0) = λtn+O( 1
n )

and
V arµσt [Ψ(Xt, Yt)] = O(n).

We can finally use (1) to find a lower bound for
the mixing time of the Rudvalis shuffle.

Theorem 2.9 (Lower bound on the mixing time of
the Rudvalis shuffle). For the Rudvalis shuffle with
n cards,

d(t) ≥ 1− 8e−2t log |λ| O(1)

n+O( 1
n )
,

where

λ = 1− p

1− p
4π2

n3
+O( 1

n5 ).

Furthermore, for ε ∈ (0, 1),

tmix(ε) ≥ 1− p
p

1

8π2
n3 log (n) +O(n3).

Remark. A generalization of the Rudvalis shuffle
is the top to bottom-k shuffle which places the first
card uniformly at random in one of the bottom kn
positions (for kn = 2, we have the Rudvalis shuffle).
In [3] we can see that if kn is a constant, we would
still have a lower bound (and upper bound) of order
n3 log (n).

3. Hydrodynamic limit for the continuous
time Rudvalis shuffle

Now that we have studied the discrete time Rud-
valis Markov chain, it is time to extend it to con-
tinuous time. In this section, we focus on the case
p = 1

2 (in order to simplify the computations and
notation). After defining the process, we will con-
vert it into a particle system and study the hydro-
dynamic limit of this system. Moreover, we shall
prove the existence and uniqueness of a (weak) so-
lution of a PDE, the transport equation, and this is
the main goal of this section.

As we will see, the hydrodynamic limit can be
seen as the convergence (in probability) of a random
measure to an absolutely continuous measure (with
respect to the Lebesgue measure) whose density is
the unique weak solution of a PDE. If we prove
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this convergence together with the uniqueness of
the solution, we will have proved that there exists
a unique weak solution of that PDE [4].

To prove this convergence, the entropy method
is employed. First, we prove that the sequence
of probability measures (associated with the ran-
dom measures of the density) is relatively com-
pact, which tells us that every subsequence has a
weakly convergent subsequence. Then, we charac-
terize their limit points by showing that they are
unique. Since all the (weakly) convergent subse-
quences converge to the same limit point, the whole
sequence converges to that unique limit point.

3.1. Rudvalis shuffle

Let us define a continuous-time version of the
Rudvalis Markov chain. Let us consider a Poisson
process {Tk : k ∈ N} of rate 1, that is, T0 = 0 and
{(Tk − Tk−1) : k ∈ N} is a sequence of i.i.d. ex-
ponential random variables with mean 1 which is
responsible for giving our process the Markov prop-
erty. The process {Tk : k ∈ N} is known as the
Harris process or the clock process (see [5] for in-
stance). It is important to observe that in Harris’
construction, the probability that two clocks ring
simultaneously is equal to 0. At each time a clock
rings, we toss a fair coin (since we fixed p = 1

2 ). If
the coin lands heads up, then we remove the top
card from the deck (the card at position 1) and in-
sert it at position n. If the coin lands tails up, then
we remove the top card from the deck and insert it
at position n−1. In particular, every card performs
a continuous-time random walk on the deck.

The continuous-time Rudvalis shuffle is the
Markov process {σt : t ≥ 0} with state space Sn
and infinitesimal generator (cf. Chapter 2 of [10])
given on f : Sn → R, by

LRn f(σ) =
1

2

n∑
x=n−1

Θxf(σ),

where Θxf(σ) = f(σx)− f(σ).

Denote by T = R/Z = [0, 1) the one-dimensional
continuous torus (macroscopic space), by Tn =
Z/nZ = {0, 1, . . . , n − 1} the one-dimensional dis-
crete torus with n points (microscopic space) and
by Ωn = {0, 1}Tn the space of functions from Tn to
{0, 1}.

Recall that σ(x) = y if, and only if, card y is at
position x in permutation σ. Now we will color the
cards, so, in order to identify the color of the card at
a position x, we define η(x) = 1{σ(x) is black}. Thus,
the projection σ 7→ P (σ) = η induces a Markov
process with state space Ωn, which we shall call
the space of configurations, and with infinitesimal

generator given on f : Ωn → R, by

Lnf(η) =
1

2

n∑
x=n−1

Θxf(η),

where Θxf(η) = f(ηx)− f(η) and ηx = P (σx).
Now we can think of a simple, yet remarkable,

mapping. Taking each position of the deck as a
site, the black cards as particles and the red cards
as empty sites, a particle system emerges!

Remark. For x ∈ Tn and η ∈ Ωn, η(x) is the
number of particles at site x:

η(x) =

{
1, if card x is black (site x is occupied)

0, if card x is red (site x is empty)
.

Example 3.1. Consider a simple example of a deck
of n = 5 cards.

Figure 3: The configuration of the particle system
corresponding to a deck with 5 cards.

The top card of the deck, the 3 of hearts, is red,
so we do not assign a particle to site 1, the king of
clubs is black, so we assign a particle to site 2. We
keep doing this procedure until there are no more
cards. Moreover, note that in Figure 2 we can see
a particle system in motion.

Our goal is to study the evolution in space and
time of this system. In order to restrict the system
to T, we shall consider the process evolving in Tn/n
and then we will take n→∞. We can identify the
microscopic space with Tn (discrete) and the macro-
scopic space with T (continuous). A site x in the
microscopic space Tn, can be identified with x

n in
the macroscopic space T. This means that the par-
ticles move between the sites 0, 1

n ,
2
n , ..., 1. If we let

n go to ∞, then we can think of an initial density
of particles, denoted by γ : T → [0, 1]. Moreover,
if we let the system evolve through time, we can
wonder what function describes the density of par-
ticles at each time, given that the initial density is
γ. As we will see, this function will be given by a
weak solution (proved to be unique) of some PDE.
This kind of behaviour of the density is the so-called
hydrodynamic limit.

Observe that applying the generator LRn to func-
tions that only depend on the colors of the cards
is equivalent to applying the generator Ln. If we
want to see a non trivial evolution of the system
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when n→∞, speeding up the process is absolutely
necessary. For this reason, from now on we will
speed up the process in the hyperbolic time scale
tn.

We will still denote by {ηt}t≥0 the Markov pro-
cess with generator nLn and denote the initial mea-
sure by µn. Owing to the fact that it was derived
from the Rudvalis card shuffle, we call the process
{ηt}t≥0 the Rudvalis process. In order to study
this process, we start by defining the space where
it lives.

Definition 3.1 (SpaceDX [0, T ]). Let T > 0 andX
be a metric space. Denote by DX [0, T ] the space of
functions x : [0, T ] → X that are right-continuous
and have left-hand limits:

(i) for 0 ≤ t < T , x(t+) = lim
s↓t

x(s) exists and

x(t+) = x(t);

(ii) for 0 < t ≤ T , x(t−) = lim
s↑t

x(s) exists;

and which is endowed with the Skorohod topology
(cf. Chapter 3 of [1]).

Remark. We call the elements of DX [0, T ] trajec-
tories and denote them by x., i.e., for each t ∈
[0, T ], we denote x(t) by xt.

The trajectories of the Rudvalis process {ηt}t≥0

belong to DΩn [0, T ], i.e., for each time t, ηt is an
element of Ωn. Moreover, the function t 7→ ηt is
càdlàg (it has jumps).

Let Pµn be the probability measure in DΩn [0, T ]
induced by the Rudvalis process with initial mea-
sure µn. Denote by Eµn the expectation with re-
spect to Pµn .

3.2. Initial measures
We have an initial profile, that we assume to be

measurable, denoted by γ : T → [0, 1] , i.e., γ is a
function which assigns mass to points on the torus.

Definition 3.2 (Sequence of measures associated
with a profile). A sequence of probability measures
{µn}n∈N on Ωn is said to be associated with a mea-
surable profile γ : T → [0, 1] if for every δ > 0 and
every continuous function G : T→ R

lim
n→∞

µn

(
η ∈ Ωn :

∣∣∣ 1
n

∑
x∈Tn

G
(
x
n

)
η(x)

−
∫
T
G(u)γ(u) du

∣∣∣ > δ
)

= 0.

Example 3.2. Let γ : T → [0, 1] be continuous.
An example of a sequence of measures satisfying the
assumption above is {νnγ(·)}n∈N, where νnγ(·) is the
Bernoulli product measure associated with γ:

νnγ(·)(η) =
∏
x∈Tn

[η(x)γ( xn ) + (1− η(x))(1− γ( xn ))]

which means that this measure assigns a particle
independently to each site x with probability γ( xn ).

Since the Bernoulli product measures are quite
simple, we can take them as initial distributions
when one wants to obtain scaling limits.

3.3. Empirical measure
We have already seen how to obtain a particle

system from the Rudvalis process. Now it is time to
study the evolution of the Rudvalis process {ηt}t≥0

with infinitesimal generator nLn and state space
Ωn.

LetM be the set of positive measures on T with
mass bounded by 1 endowed with the weak topol-
ogy. If {πn}n∈N, π ∈ M, we say that πn converges

weakly to π, which we denote by πn
w−−−→

n↑∞
π, if for

all G ∈ C(T)∫
T
G πn(du) −−−→

n↑∞

∫
T
G π(du).

Given a function G : T→ R, we denote the integral
of G with respect to a measure µ (on T) by 〈µ,G〉 :=∫
G(u) µ(du).
In order to study a scaling limit of the Rudvalis

process, we introduce a measure which gives weight
1
n to each occupied site of the configuration η.

Definition 3.3 (Empirical Measure). For each
configuration η ∈ Ωn, we define the empiri-
cal measure πn(η, du) in [0, 1] by πn(η, du) =
1
n

∑
x∈Tn η(x)δ x

n
(du), where δy is the Dirac measure

concentrated on y ∈ T.

Since we are interested in studying the behaviour
of this measure with respect to the Rudvalis process
{ηt}t≥0, define

πnt (du) := πn(ηt, du) =
1

n

∑
x∈Tn

ηt(x)δ x
n

(du) ∈M.

3.4. Transport equation
From now on, fix T > 0. When we think about

the Rudvalis shuffle, the behaviour of the cards is
quite similar to a wave: we take the top card and
put it in the bottom (or almost at the bottom),
pushing all the cards one position up. We shuffle
the deck over and over again, that is, the cards are
being pushed up continuously (Figure 2). With that
picture in mind, we analyze the following PDE: the
transport equation (sometimes called the one-way
wave equation), given formally by{

∂tρ(t, u) = ∇ρ(t, u), for t ∈ [0, T ], u ∈ T,
ρ(0, u) = γ(u), for u ∈ T,

(3)
where ∇ is the space derivative and γ : T → [0, 1]
is a measurable function.
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Observe that the solutions of this equation are
functions that behave like “waves” moving to the
left, i.e., if γ is C1 in space, then the function
ρ(t, u) = γ(u + t) is a (strong) solution of (3). For
example, we would have the following graph for
a solution of (3) captured at three distinct times
0 < t1 < t2 < t3 < T .

0 1
u

ρ(t1, u)

ρ(t2, u)

ρ(t3, u)

3.5. Motivation for the weak solution
Define C2,1([0, T ] × T) as the space of functions

f : [0, T ]× T→ R with first derivative in time and
second derivative in space, both being continuous
and let f ∈ C2,1([0, T ]×T). Multiplying both sides
of the equation ∂sρ(s, u) = ∂uρ(s, u) by f(s, u) and
integrating it on time [0, t], for t < T , and on space
T, and, applying Fubini’s theorem and using the
initial condition ρ(0, u) = γ(u), we can define the
concept of weak solution for the transport equation
(3).

Definition 3.4 (Weak solution of the transport
equation on T ). Let γ : T → [0, 1] be a measur-
able function and T > 0. A measurable function
ρ : [0, T ] × T → [0, 1] is said to be a weak solution
of equation (3) if for all f ∈ C2,1([0, T ]×T) and all
t ∈ [0, T ], ρ satisfies

∫
T
ρ(t, u)f(t, u)− γ(u)f(0, u) du−

∫ t

0

∫
T
ρ(s, u)∂sf(s, u) du ds

+

∫ t

0

∫
T
ρ(s, u)∂uf(s, u) du ds = 0.

3.6. Heuristic argument for the weak solution
As stated above, our goal is to prove that the

density of particles is ruled by the weak solution of
a PDE, in our case, the transport equation. In order
to do that, we work with the microscopic space Tn
and then take the limit on the number of sites, n.
For that reason, it is useful to define the notion of
derivative in the discrete case.

Definition 3.5 (Discrete left derivative). Given
G : T → R, n ∈ N and x ∈ Tn, the discrete left
derivative at x

n is defined by

∇−nG
(
x
n

)
= n

(
G
(
x
n

)
−G

(
x−1
n

))
.

Computing the generator on 〈πnt , G〉 is one of the
first steps when one wants to find how the empir-
ical measure evolves in space/time. The following
lemma is useful in that regard.

Lemma 3.3. Let {ηt}t≥0 be the Markov process
with generator nLn (Rudvalis process). Then, for
any t ≥ 0 and G : T→ R

nLn〈πn
t , G〉 = −〈πn

t ,∇−nG〉−
1

2n
(ηt(1)−ηt(0))∇−nG(0).

Now fix f ∈ C2,1([0, T ]× T) and apply Dynkin’s
formula (Appendix 1.5 of [8]) with F (t, ηt) =
〈πnt , ft〉. Define

Mn
t (f) := 〈πn

t , ft〉 − 〈πn
0 , f0〉 −

∫ t

0
(∂s + nLn)〈πn

s , fs〉 ds,

Nn
t (f) := (Mn

t (f))2 −
∫ t

0
Γn(〈πn

s , fs〉) ds,

(4)

where Γn(〈πn
s , fs〉) := nLn〈πn

s , fs〉2 − 2〈πn
s , fs〉nLn〈πn

s , fs〉
is the carré du champ operator. Then, {Mn

t }t≥0

and {Nn
t }t≥0 are martingales with respect to the

natural filtration Ft = σ(ηs : s ≤ t).
Using Lemma 3.3, we can rewrite the first mar-

tingale as

Mn
t (f) = 〈πnt , ft〉 − 〈πn0 , f0〉 −

∫ t

0

∂s〈πns , fs〉 ds

+

∫ t

0
〈πn

s ,∇−n fs〉 ds+
1

2n

∫ t

0
(ηs(1)− ηs(0))∇−n fs(0) ds.

(5)

Since the expected value of a martingale remains
constant and Mn

0 (f) = 0, we have for all t that
Eµn [Mn

t (f)] = 0. Consider the function ρnt (x) :=
Eµn [ηt(x)]. The martingale gives us an idea (in the
discrete case) of the condition satisfied by the so-
lution of the PDE which we are expecting. Taking
the expectation with respect to Pµn in (5), we get
the following equation for ρnt

0 =
1

n

∑
x∈Tn

ft
(
x
n

)
ρnt (x)− 1

n

∑
x∈Tn

f0

(
x
n

)
ρn0 (x)

−
∫ t

0

1

n

∑
x∈Tn

∂sfs
(
x
n

)
ρns (x) ds

+

∫ t

0

1

n

∑
x∈Tn

∇−n fs
(
x
n

)
ρns (x) ds+O( 1

n ).

If we look carefully and assume that |ρnt (x) −
ρt(

x
n )| −−−→

n↑∞
0, these are Riemann sums for the in-

tegrals in Definition 3.4.

3.7. Hydrodynamic limit
Now that we have seen an heuristic argument to

obtain a weak solution for equation (3), let us see
how to prove rigorously the hydrodynamic limit for
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the dynamics of the Rudvalis process. Recall Def-
inition 3.1 and the space DΩn [0, T ], where Pµn is
defined. The process {πnt }t≥0, induced by the Rud-
valis process, can be seen as a Markov process, but
this time in DM[0, T ] endowed with the Skorohod
topology (cf. Chapter 3 of [1]).

Let {Qn}n∈N be the sequence of probability mea-
sures in DM[0, T ] induced by the process {πnt }t≥0

and by the probability measure Pµn . Equivalently,
Qn is induced by the application

πn : (DΩn [0, T ],Pµn)→ (DM[0, T ],Qn)

η. → πn(η., du).

As we will see, the sequence {Qn}n∈N of probability
measures converges weakly to a limit point.

Recall the concept of a sequence of measures as-
sociated with a profile, given in Definition 3.2. We
now present the main result of this section.

Theorem 3.4 (Hydrodynamic Limit). Consider
the Rudvalis process {ηt}t≥0. Fix a measurable pro-
file γ : T → [0, 1] and let {µn}n∈N be a sequence of
probability measures associated with γ. Then, for
any t ∈ [0, T ], for any δ > 0 and any G ∈ C(T), it
holds

lim
n→∞

Pµn
(
η. ∈ DΩn [0, T ] :

∣∣∣ 1
n

∑
x∈Tn

G
(
x
n

)
ηt(x)

−
∫
T
G(u)ρ(t, u) du

∣∣∣ > δ
)

= 0,

(6)

where ρ(t, ·) is the unique weak solution of (3) with
initial condition ρ(0, ·) := γ(·).

Remark. We call equation (3) the hydrodynamic
equation of the Rudvalis process.

With respect to Pµn , the measure induced by the
Rudvalis process with infinitesimal generator nLn
and initial measure µn, verifies πnt

w−→ πt so another
way to express the limit in (6) is to say that πnt con-
verges in probability to πt (because the convergence
is only verified under Pµn). The hydrodynamic limit
is a consequence of the following proposition.

Proposition 3.5. Let γ : T→ [0, 1] be measurable
and consider a sequence of measures {µn}n∈N on Ωn
associated with γ. Let Q∗ be the probability measure
concentrated on a trajectory π. of DM[0, T ] consist-
ing of absolutely continuous measures with respect
to the Lebesgue measure, i.e., πt(du) = ρt(u)du
where the density ρ. is the unique weak solution of
(3). Then

Qn w−→ Q∗.

Since Qn is the measure induced by Pµn and the
application πn, the weak convergence of Qn to Q∗

is the same as the convergence in distribution of πnt
to πt, for any t ∈ [0, T ]. Since πt(du) = ρt(u)du is a
deterministic measure, the previous convergence is
also valid in probability (with respect to Pµn) and
whence, by the previous observations, Proposition
3.5 implies Theorem 3.4. For this reason, when we
want to prove the hydrodynamic limit, we often fol-
low the sequence of steps given below:

1. The sequence {Qn}n∈N is relatively compact in
Skorohod’s topology(Proposition 1.2 of [8]).

2. The limit points of the subsequences of
{Qn}n∈N are concentrated on trajectories of
measures which are absolutely continuous with
respect to the Lebesgue measure and whose
densities ρ(t, u) are weak solutions of the hy-
drodynamic equation.

3. The hydrodynamic equation has a unique weak
solution.

3.7.1 Relative compactness
The concepts of tightness and relatively compact-

ness are related in a well know theorem by Prohorov
(Theorem 5.1 and Theorem 5.2 of [1]).

When proving the tightness of {Qn}n∈N, we will
use Dynkin’s formula as in Section 3.6. Moreover,
the following lemma will be useful. But before, let
us just introduce the next notation (similar to the
big O). For two sequences {fk}k∈N and {gk}k∈N,
we say that fn . gn if there exists a positive con-
stant C, independent of n, such that fn ≤ C gn.
Moreover, given a space X and G : X → R, denote
the L∞(X)-norm by ‖G‖∞ = sup

x∈X
|G(x)|.

Lemma 3.6. Recall the operator Γn defined in (4).
Let G ∈ C1(T). Then,

Γn(〈πns , G〉) .
‖∇G‖2∞

n
.

Proposition 3.7. The sequence {Qn}n∈N is rela-
tively compact.

The next step is to characterize all possible limit
points, i.e., to find their properties.

3.7.2 Characterization of limit points
Having proven that {Qn}n∈N is relatively com-

pact, it is time to characterize the limit points of
the subsequences. We divide this proof into two
parts. First, we show that any limit point Q∗ is con-
centrated on trajectories (in DM[0, T ]) which are
absolutely continuous with respect to the Lebesgue
measure. Then, we prove that the density ρ is a
weak solution of (3).

The following lemma gives a sufficient condition
for a measure to be absolutely continuous with re-
spect to the Lebesgue measure.
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Lemma 3.8. Let µ be a measure which satisfies

|〈µ,G〉| ≤
∫ 1

0
|G(u)| λ(du) for all G ∈ C([0, 1]).

Then, µ� λ, where λ is the Lebesgue measure.

We prove that the sufficient condition of the
lemma holds for trajectories on which Q∗ is con-
centrated and we can conclude the following.

Proposition 3.9. Let Q∗ be a limit point of a sub-
sequence of the sequence {Qn}n≥1. Then, Q∗ is
concentrated on trajectories of measures absolutely
continuous with respect to the Lebesgue measure.

The previous result means that, for each t,
πt(du) = ρ(t, u)du where ρ is the density of π.

For the second part, we prove rigorously the ideas
explored before in the heuristic argument (Section
3.6).

Proposition 3.10. Let Q∗ be a limit point of a
subsequence of {Qn}n≥1 and assume without loss of

generality that Qn w−→ Q∗. Let f ∈ C2,1([0, T ] × T)
and define

A = {π. ∈ DM[0, T ] : sup
t∈[0,T ]

〈ρt, ft〉 − 〈γ, f0〉

−
∫ t

0
〈ρs, ∂sfs〉 ds+

∫ t

0
〈ρs,∇fs〉 ds = 0}.

(7)

Then, Q∗ is concentrated on A, that is, Q∗(A) = 1.

We still might have different subsequences of
{Qn}n∈N converging to limit points concentrated on
trajectories whose densities might not be the same.
It is thus left to show the uniqueness of the weak
solution of (3).

3.7.3 Uniqueness of weak solutions of the trans-
port equation

Recall Definition 3.4. Assume that ρl : [0, T ] ×
T → [0, 1], l = 1, 2, are two weak solutions of
(3) starting from the same initial condition. De-
fine ρ̂ = ρ1 − ρ2 and observe that ρ̂(0, u) = 0
for any u ∈ T. For t ∈ [0, T ] and u ∈ T,
let φm(t) = 1√

T
e2πimt/T , ξk(u) = e2πiku and

ψm,k(t, u) = φm(t)ξk(u) = 1√
T
e2πi(mt/T+ku). Then,

{ψm,k : m, k ∈ N0} is an orthonormal basis of
L2([0, T ] × T) (cf. Chapter 7 of [7]) for the inner

product 〈f, g〉 =
∫ T

0

∫
T f(t, u)g(t, u) du dt, where g

is the conjugate of g. Moreover, for any m, k ∈
N0 we have ∂s ψm,k(s, u) = 2πimT ψm,k(s, u) and

∇ψm,k(s, u) = 2πik√
T
ψm,k(s, u). Therefore, replac-

ing fs by ψm,k(s, ·) in Definition 3.4 for fixed m
and k, we obtain∫

T
ρ̂(t, u)ψm,k(t, u)du

= 2πi
(
m
T − k

) ∫ t

0

∫
T
ρ̂(s, u)ψm,k(s, u) du ds.

Taking a time derivative on both sides of the
above expression, we conclude that xm,k(t) =∫
T ρ̂(t, u)ψm,k(t, u) du is a solution of the first or-

der linear ordinary differential equation y′(t) −
2πi

(
m
T − k

)
y(t) = 0, that is, xm,k(t) =

xm,k(0) e2πi(m/T−k)t = 0. Recall that we can
write ρ̂(t, u) =

∑∞
m=0

∑∞
k=0 cm,k ψm,k(t, u), where

cm,k = 〈ρ̂, ψm,k〉 = 0. Therefore we conclude that
ρ̂(t, u) = 0 a.s. (almost surely), i.e., ρ1 = ρ2 a.s.,
which proves the uniqueness of weak solution of (3).

References

[1] P. Billingsley. Convergence of Probability Mea-
sures. Wiley Interscience, 1999.

[2] P. Diaconis. Group representations in proba-
bility and statistics. Lecture notes-monograph
series, 1988.

[3] S. Goel. Analysis of top to bottom-k shuffles.
The Annals of Applied Probability, 16:30–55,
2006.

[4] M. Guo, G. Papanicolaou, and S. Varadhan.
Nonlinear diffusion limit for a system with
nearest neighbor interactions. Communica-
tions in Mathematical Physics, 118(1):31–59,
1988.

[5] T. Harris. Nearest-neighbor markov inter-
action processes on multidimensional lattices.
Advances in Mathematics, 9:66 – 89, 1972.

[6] M. V. Hildebrand. Rates of convergence of
some random processes on finite groups. Har-
vard University, 1990.

[7] J. K. Hunter and B. Nachtergaele. Applied
analysis. World Scientific Publishing Com-
pany, 2001.

[8] C. Kipnis and C. Landim. Scaling limits of
interacting particle systems. Springer-Verlag,
Berlin, 1999.

[9] D. A. Levin, Y. Peres, and E. L. Wilmer.
Markov chains and mixing times. American
Mathematical Soc., 2017.

[10] T. M. Liggett. Continuous time Markov pro-
cesses: an introduction. American Mathemat-
ical Soc., 2010.

[11] D. Wilson. Mixing time of the rudvalis shuf-
fle. Electronic Communications in Probability,
8:77–85, 2003.

10


	Introduction
	Discrete time Rudvalis shuffle
	Discrete time Markov chains
	Basic properties
	Eigenfunctions

	Rudvalis shuffle
	Lower bound for the mixing time of the Rudvalis shuffle


	Hydrodynamic limit for the continuous time Rudvalis shuffle
	Rudvalis shuffle
	Initial measures
	Empirical measure
	Transport equation
	Motivation for the weak solution
	Heuristic argument for the weak solution
	Hydrodynamic limit
	Relative compactness
	Characterization of limit points
	Uniqueness of weak solutions of the transport equation



