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Óscar Amaro
oscar.amaro@tecnico.ulisboa.pt
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Abstract

Recent advances in laser technology will soon allow explorations into new regimes of electrodynamics,
and possibly lead to the discovery of new physics. One of the most promising experiments to observe
signals from Quantum Electrodynamics is a frontal electron-laser scattering. Accurate estimates of
observables in these experiments usually require ab-initio simulations (e.g. Particle-in-cell codes with
Monte Carlo routines), which are computationally expensive. Furthermore, analytical models usually
restrict to highly idealized setups, like the plane wave, which do not map well to experiments. In
this work we propose a new semi-analytical approach to focused laser scattering, which allows extend-
ing scaling laws originally derived for plane wave to realistic scenarios. This method allows accurate
estimations and optimization of the positron yield when the laser spotsize is a free parameter.

In a parallel line of work we investigate the potential use of Quantum Computing (QC) to model
extreme plasmas. This new information processing paradigm promises significant speedups for certain
classes of problems in the coming decades. Although already somewhat mature in the areas adjacent to
Quantum Mechanics, QC is still in its cradle regarding Plasma Physics. We highlight some scenarios
where new quantum algorithms could be developed.

Keywords: Plasma; Radiation reaction; Quantum Electrodynamics; Compton Scattering; Pair
Production; PIC simulations; High Performance Computing; Quantum Computing; Variational
Algorithm

1. Pair Production in Electron-Laser
Scattering

1.1. Introduction

Plasma Physics is the field of many-body Physics
dealing with long-range electromagnetic interac-
tions. A plasma is a state of matter in which
charged particles are mostly free (few bound atoms
or molecules) and collective phenomena dominate
(as opposed to inter-particle collisions) and is the
most abundant form of ordinary matter in the uni-
verse. They are fundamental to understanding fu-
sion in stars, turbulence, and the origin of magnetic
fields in space.

Recent progress in laser technology and parti-
cle acceleration will allow experiments in ultrarel-
ativistic and quantum electrodynamical processes
in plasmas [1]. At the same time, the dynamics of
astrophysical objects such as pulsars [2] and jets
from and accretion disks around black holes de-
pend heavily on Plasma Physics [3, 4]. These phe-
nomena are part of the subfield of Extreme Plasma
Physics, whose simulations are numerically heavy
due to their inherent nonlinearity. It would, there-

fore, greatly benefit from new algorithm develop-
ment, namely in the quantum paradigm.

In an intense electromagnetic background,
charged particles obtain relativistic velocities and
emit energetic photons. A fraction of these photons
decays into electron-positron pairs, which can them-
selves be accelerated by the fields and radiate new
photons [5, 6]. These effects can then lead to quan-
tum vacuum polarization, light-by-light scattering,
vacuum birefringence, four-wave mixing, and high
order harmonic generation from the vacuum.

Although Quantum Electrodynamics (QED) is
one of the most thoroughly verified physical theories
for elementary processes, the rich dynamics arising
from plasmas’ collective behavior is still poorly un-
derstood. It has been suggested that energy den-
sities similar to those required to observe these ef-
fects can be re-created in the laboratory by using
counter-propagating intense laser pulses [1]. This
has led to the study of variations of this configura-
tion using kinetic simulations[7, 8, 9, 10].

Because the required laser intensities (I ∼
1024 Wcm−2) are still beyond what is currently
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possible with the latest technology, it is not easy
to study the highly nonlinear dynamics of extreme
plasmas.

The technique of LWFA [11] consists of send-
ing a laser pulse through a plasma and using the
EM wake generated to accelerate electrons in very
short distances. This allows having energetic beams
and intense lasers at the same laboratory and study
electron-laser scattering.

Currently, conventional accelerators still allow
better quality and control than LWFA because its
technology is more mature. However, as LWFA be-
comes a standard scientific tool, laboratories can
become increasingly more compact and use a single
laser system for acceleration and scattering.

Before lasers become sufficiently intense to gener-
ate dense e+e− pair plasmas from light, a head-on
collision between a pulsed laser and a very energetic
electron beam can allow us to generate dilute e+e−

beams by applying currently available technology
[12]. Research on stochastic effects in radiation re-
action is also expected to benefit from the laser-
electron scattering experiments [13, 14, 15, 16, 17],
with new ways to infer the peak laser intensity at
the interaction point [18, 19] and probing the tran-
sition from the classical to the quantum-dominated
laser-electron interaction. Two all-optical experi-
ments have shown the electron slowdown due to ra-
diation reaction [20, 21], but were not able to dis-
criminate between different theoretical descriptions
of radiation reaction.

We anticipate that the near-future facilities (e.g.
ELI, Apollon , CoReLS , FACET-II [22], LUXE
[23], EXCELS, ZEUS) are to probe electron-
positron pair production, covering several differ-
ent regimes of interaction. This manuscript focuses
on head-on laser-electron scattering that maximizes
the strength of the electric field in the electron rest
frame. This is the first planned experiment in most
of the aforementioned facilities, and we aim to im-
prove the current predictive capabilities for positron
creation.

Figure 1: Scattering of an relativistic electron beam
(blue) and a counter-propagating laser pulse (red).

Due to the inherent non-linearity of the Breit-
Wheeler pair production, there is no general
roadmap on what would be an optimal strategy to
obtain the highest possible positron yield using any

given laser system. If the laser is assumed to be a
plane wave (adequate when the laser is much wider
than the interacting beam), the analytical predic-
tions state that the best strategy would be to use
the highest conceivable laser intensity. Therefore
it is tempting to conclude that the laser should be
focused on the smallest attainable focal spot. Our
work shows that this strategy may not always be op-
timal, as there is a trade-off between the high laser
intensity and the size of the interaction volume.

This work has resulted in a paper [24], submitted
to New Journal of Physics.

1.2. QED phenomena

In QED theory, the threshold field for which the
vacuum becomes unstable for pair creation is Ecr =
1.326 × 1018 Vm−1. Above this value the field can
no longer be described classically, and we should
expect a significant production of electron-positron
pairs [25]. The invariant parameter that quantifies
the effects of radiation reaction on the trajectories
of leptons is χe = |Fµνpν | /(Ecrm), where Fµν is
the EM field tensor and pν is the corresponding
particle four-momentum. The larger its value, the
greater the differences between the quantum and
classical predictions of radiation emission. There is
an analogous quantity for photons χγ .

The rate of photon emission by a lepton is given
by

d2P

dt dχγ
=

αmc2√
3π~γχe

[(
1− ξ +

1

1− ξ

)
K2/3(χ̃)

−
∫ ∞

χ̃

K1/3(x)dx

]

(1)

where χ̃ = 2ξ/ (3χe(1− ξ)) , ξ = χγ/χe, γ is the
lepton’s Lorentz factor. Analogously, photons can
decay into electron-positron pairs in the presence of
extreme fields according to

d2P

dt dχe
=

αm2c4√
3π~ωχγ

[(
ξ+

ξ−
+
ξ−

ξ+

)
K2/3(χ̃)

+

∫ ∞

χ̃

K1/3(x)dx

] (2)

where χ̃ = 2/ (3χγξ
+ξ−), ξ+ = χe/χγ = 1 − ξ−,

and ω is the photon frequency. These rates can
be included in Monte-Carlo codes in order to self-
consistently simulate the evolution of an extreme
plasma.

1.3. Pair Production in a Plane Wave

The simplest description of a laser pulse is a plane
wave with a temporal envelope. Such a wave
is fully described by the wavelength λ, a pulse
duration τ , and the normalized vector potential
a0, which relates to the intensity through a0 =
0.855

√
I[1018 W/cm2]λ[µm] (for linearly polarized

lasers). As a relativistic electron interacts with
the strong electromagnetic wavepacket, it emits

2



high-energy photons that can decay into electron-
positron pairs through the Breit-Wheeler mecha-
nism [26].

In the plane wave approximation, the total num-
ber of new pairs per interacting electron can be esti-
mated if we know the initial electron energy γ0mc

2

(where γ0 is the electron Lorentz factor, m the elec-
tron mass and c is the speed of light), and the
laser parameters (peak a0, central wavelength λ and
pulse duration τ , which is defined as the full width
at half maximum of the laser intensity). The total
number of pairs is then given by [27]:

NPW
+ (γ0, a0, λ, τ) ' 3

√
π

2
P±(ωc) χc,rr

(γ0mc
2 − ~ωc)2

~γ0mc2
dNγ
dω

∣∣∣∣
ω=ωc

(3)

The first term P±(ωc) represents the probability of
a photon of frequency ωc decaying during interac-
tion with the laser pulse; the second is the recoiled
χc,rr which accounts for the radiation reaction on
the beam electrons and the final term dNγ/dω is the
value of the emitted photon distribution at ω = ωc.

According to this model, all positrons are gener-
ated from photons with a critical frequency ωc, and
there is no feedback by the produced pairs on the
photon spectra (in other words, there is only one
generation of secondary particles). Furthermore,
the model assumes a semi-classical equation of mo-
tion of the electrons as they lose energy through
the emission of radiation and uses the locally con-
stant field and rigid-beam approximations. This al-
lows an implicit calculation of the laser phase φc
at which χe is maximized, which is later used to
estimate the emitted photon spectrum and conse-
quently the number of created pairs.

1.4. Beyond Plane Wave

Let us now consider a diffraction-limited laser pulse
illustrated in figure 1. The maximum laser inten-
sity an individual particle within the electron beam
interacts with depends on two geometrical factors:
the transverse offset from the laser axis compared to
the laser spotsize and the initial longitudinal posi-
tion that affects the temporal synchronization of the
interaction. While interacting with a Gaussian laser
pulse, electrons far from the focus interact with a
lower average (and peak) field, which must be taken
into account. The model assumed for this type of
focused laser is

a0,eff =
a0√

1 + (z/zR)2
exp

(
− (x2 + y2)/W 2

0

1 + (z/zR)2

)

(4)
where W0 is the laser spotsize, zR ≡ πW 2

0 /λ is the
Rayleigh range.

The electron encounters the peak of the laser
pulse at time t in an (x, y, z) point of configuration

space which defines the maximum field felt by this
particle. We can therefore assign an effective vec-
tor potential a0,eff(t, x, y, z) that corresponds to the
maximum laser intensity the particle experiences
during the interaction.

We define an equivalent distribution of beam par-
ticles according to the maximum intensity they in-
teract with during the scattering. This intensity is
identified through the maximum instantaneous vec-
tor potential associated with an individual beam
particle as a0,eff . In the case of a plane wave inter-
action, there is no defocusing, and particles always
interact with the same intensity, regardless of where
or when they overlap with the peak of the laser
(a0,eff = a0, and the equivalent distribution, in this
case, would be a dirac Delta function). For a more
general case, by considering a corrected a0,eff for
each particle, we can apply the equations already
derived for a plane wave (equation 3), and then in-
tegrate over the distribution function in a0,eff to ob-
tain the total yield of positrons in the laser-electron
scattering. This calculation can be performed either
by sampling the distribution function numerically
or by performing an analytical integration over the
configuration space.

In Ref. [27] the authors calculate the total num-
ber of positrons by analytically and numerically in-
tegrating the scaling law for the plane wave in full
coordinate space (x, y, z). Our approach allows to
make this procedure shorter and applicable to dif-
ferent beam shapes and sizes. After deriving the
distribution of particles dN/da0,eff , a 1-dimensional
integration in a0,eff -space is enough to make predic-
tions on the total number of expected positrons (or
some other relevant quantity).

Our approach is to first obtain a distribution of
the interacting particles according to their a0,eff .
For every bin in this distribution dN(a0,eff)/da0,eff

one can calculate the contribution for pair pro-
duction using NPW

+ (γ0, a0,eff , λ, τ). This method is
cost-effective because it eliminates the need to per-
form multiple variable integration in configuration
space.

The problem can be addressed using cylindrical
coordinate system (ρ, φ, z), centered at the laser
focus. For a Gaussian laser beam (in the parax-
ial approximation), the configuration space can be
mapped according to the laser intensity isosurfaces
shown in figure 2, that do not depend on the coordi-
nate φ. For simplicity, let us first assume that the
electron beam is a cylinder with a constant den-
sity nb. Each particle meets the laser beam at a
different point of space, and is assigned a0,eff(ρ, z),
where ρ and z are its coordinates at the instant
of time when it is synchronised with the peak of
the laser. Performing a one-to-one mapping to the
new coordinates of a flat-top relativistic beam in
counter-propagation with the laser, the beam den-
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sity in the new coordinates doubles and the length
halves because the laser-electron crossing occurs at
twice the speed of light. The number of parti-
cles dNb(a0,eff) with a0,eff that falls in the interval
[a0,eff , a0,eff + da0,eff ] can then be estimated to be
dNb(a0,eff)/da0,eff = 2nb dV/da0,eff , where dV is
the volume between two adjacent isosurfaces asso-
ciated with a0,eff and a0,eff + da0,eff . Due to the
geometry of the problem, this expression can be
transformed to the following:

dNb(a0,eff)

da0,eff
=

∫

S

2nb dS

||∇a0,eff ||
(5)

where the surface element dS = ρ
√

dρ2 + dz2 dφ =

ρ
√

1 + (∂ρ/∂z)2 dz dφ is calculated at the isosur-
face that is by definition perpendicular to the gra-
dient of the vector potential given by ||∇a0,eff || =√

(∂a0,eff/∂ρ)
2

+ (∂a0,eff/∂z)
2
.

Letting beam plasma density vary in space nb(~r)
allows considering cases of short or long, wide or
narrow beams, including non-ideal spatio-temporal
synchronization with the laser. It is worth noting
that even a point-particle interaction with a Gaus-
sian beam is not equivalent to a plane wave approx-
imation unless the particle is in perfect temporal
synchronization with the laser pulse.

An alternative way to obtain the distribution of
particles in a0,eff is to numerically sample the elec-
tron beam density nb(r, θ, φ) in space (the “sam-
pling” method). The sampled distribution function
can be directly binned into a histogram according
to the maximum value of a0 each section interacts
with.

x

z

⃗∇a

y

dS

⃗n

Figure 2: A volume element between two isosurfaces
of the effective normalized vector potential a0,eff .
The volume element contains all the points where
particles experience the peak a0 within the interval
[a0,eff , a0,eff + da0,eff ].

In this work we consider 3 new types of geome-
tries beyond the plane wave setup (see Figure 3).
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y
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⃗n
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Figure 3: Geometries considered in this Thesis:
point-like, short, thin, and wide beams.

1.5. Synchronized scattering for a Wide
beam

In the case of a wide electron beam (R � W0),
is is possible to derive an analytical distribution of
particles in a0,eff

dNb

da0,eff
=



4π nb W
2
0 zR

a0,eff

√
a2

0 − a2
0,eff

3a0,eff

(
2 +

(
a0

a0,eff

)2
)
,

a0,eff ≥ az

4π nb W
2
0 zR

a0,eff

L

4zR

(
1 +

(
L

4zR

)2
)
,

a0,eff < az
(6)

where az = a0/
√

1 + (z/zR)2.
In figure 4 this distribution is plotted for different

beam lengths.
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Figure 4: Particle distribution in the geometry of
a Wide beam: dot - sampling, dashed - analytical
distribution. Several beam lengths were considered.

1.6. Unsynchronized scattering

In experiments, the timing of the scattering can suf-
fer from parameter fluctuations in the laser system,
such that the middle of the electron beam will cross
the peak of the laser at a distance ∆‖ from the fo-
cus. This unsynchronization will break the sym-
metry assumed in the previous calculations, and in
general lead to a lower average intensity felt by the
particles. However, it is straightforward to extend
the synchronized distributions to this new case, as
illustrated in Figure 5.
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Whereas before the boundaries of the electron
beam were mapped to z− = −L/4 and z+ = +L/4,
now they are shifted to z− = −L/4 + ∆‖ and
z+ = +L/4 + ∆‖. The beam can be divided into
two parts: the blue part on the left-hand side of the
focal plane and the yellow part on the right-hand
side of the focal plane. This can be interpreted as
follows: the total distribution in a0,eff can be writ-
ten as a sum of the distributions coming from the
blue and the yellow sections of the beam. Each
of these beams contributes with exactly half of the
distribution function associated with a symmetri-
cal (temporally synchronized) beam twice its size.
This means we can reuse the distribution functions,
modifying the beam lengths to |z−| and |z+|. For a
large temporal offset ∆‖ > L/4, none of the beam
particles interact with the laser in the focus (this
is illustrated in figure 5 b) ). In this case, we sub-
tract the contribution of the blue beam from the
contribution of the yellow beam.

Δ∥ − L /4

dN
da0,eff

Δ∥ + L /4
++

Δ∥ − L /4 Δ∥ + L /4
+−

|Δ∥ | > L /4|Δ∥ | < L /4

z z

az+

a0

az−

dN
da0,eff

dN
da0,eff

=
+ 1

2

L /2
Δ∥ < L /4

z− z+

dN
da0,eff

=
L /2

Δ∥ > L /4

z− z+

+ 1
2 + 1

2

− 1
2

+ 1
2

L /2a) Δ∥ < L /4

z− z+

L /2

z− z+
+ 1

2 + 1
2

− 1
2

b) Δ∥ > L /4

Figure 5: Geometrical approach to calculate the
particle distribution in a unsynchronized scattering.

1.7. Optimal laser spotsize

When designing experiments to test the theory of
plasma-QED, one of the goals is to maximize the
number of positrons created, such that, in the end,
the measured signal is large. To achieve this, the
first idea would be to focus the laser on the small-
est attainable focal spot (with all other parameters
fixed). However, there will be a trade-off between
the high laser intensity and the size of the interac-
tion volume. With a short focus, the highest in-
tensity region becomes small both transversely and
longitudinally, which can reduce the number of seed
particles that interact with the high intensity and
the duration of this interaction. Using tight focus-
ing also increases the number of particles that are
not temporally synchronized with the laser pulse’s
peak at the focal plane and changes the effective
angle of interaction due to the wavefront curvature.

To find the balance between the competing ef-
fects, we can first scan the possible values of the
laser focusing and numerically compute the corre-
sponding positron yield. From this, optimal spot
sizes can be extracted (see Figure 6). The same
procedure can be done with other parameters, such
as the laser pulse duration. Ideally, these optimal
values could be derived analytically. We can then

recommend optimal experimental conditions for ex-
isting and future facilities. This would allow real-
time parameter scans and easily check the positron
production changes, for example, when upgrading
one component of the system.
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Figure 6: Positron yield variation with spot size.
For each laser pulse energy there will be an optimal
W0 value.

1.8. Optimal parameters for laser facilities

This section covers the optimal focusing strategy
for a wide range of laser parameters (in particu-
lar as a function of total energy content and pulse
duration), as well as different electron beam en-
ergies. We assume that the electron beam is 200
µm long (flat-top longitudinal envelope) and has a
Gaussian transverse shape. The electron beam is
spatio-temporally synchronized with the laser (i.e.,
the center of the beam interacts with the laser peak
at the focal plane, and they share the propagation
axis). The transverse beam profile is Gaussian with
σx = 24.4 µm and σy = 29.6 µm. The chosen on-
axis beam density nb = 1016 cm−3 corresponds to
the total beam charge ofQb = 2 nC. The results can
be scaled to other values for the central beam den-
sity by introducing a factor nb/1016 cm−3. A spe-
cific laser system has a fixed total energy content,
which for a Gaussian transverse profile is approxi-
mately given by ε[J] ∼ 2.1×10−5 a2

0 (W0/λ)2 τ [fs].
The laser intensity (proportional to a2

0) is therefore
inversely proportional to the square of the spot size
W0. As the number of pairs produced per interact-
ing electron NPW

+ is a monotonously rising function
of the effective a0, and the number of seed electrons
that would experience the high intensity is propor-
tional to the size of the interaction volume ∼W 2

0 zR,
to obtain the highest possible number of positrons,
one should strike the right balance between a high
value of a0 and a large W0. In other words, there
is a trade-off between using a short focal length to
obtain the highest conceivable laser intensity and
having a wider interaction volume where more seed
electrons participate in the interaction.

What follows is a calculation of the optimal focal
spot and the corresponding pair yield for lasers with
energy below 1 kJ and relativistic particle beams
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with energies lower or equal to 20 GeV. These val-
ues include what will soon be available in several
experimental facilities (e.g. SLAC, HiBEF [28] or
ELI [29]).

For each combination of the electron beam energy
and the laser total energy content, we apply the
analytical expression to calculate the effective a0

distribution of the interacting particles. Then, we
integrate the results numerically to find the optimal
spotsize and maximum positron yield for this set of
parameters.

Figure 7 summarizes the optimization results cov-
ering ∼ 1000 different parameter combinations,
keeping the laser duration constant at 35 fs. For
10 GeV electrons and a 1 kJ laser, a maximum
number of pairs is 109, which is obtained using
W0 > 8 µm. The FACET-II 13 GeV electron beam
at SLAC could generate 4×108 pairs/shot if paired
with a 300 J laser-focused to W0 = 5.7 µm. The
LUXE 17.5 GeV beam with the same laser param-
eters could produce 7× 108 pairs per shot, using a
slightly larger W0 = 6.8 µm.
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Figure 7: Iso-contours of the positron yield for var-
ious values of laser and electron energy.

2. Quantum Algorithms
2.1. Introduction

Quantum Computing is a new paradigm in perform-
ing calculations. It relies on the laws of quantum
mechanics to process information in a non-classical
manner and may offer advantages over standard
techniques in some situations.

The idea of quantum computation, as suggested
by Feynman [30], Manin and others, was primar-
ily motivated by the problem of quantum simula-
tion. There are already quantum machines capable
of simulating small molecules and other systems,
which may accelerate progress in fundamental sci-
ence and industrial applications.

We are now in the so-called Noisy Intermediate-
Scale Quantum (NISQ) era [31], in which quantum
hardware still faces many issues on performance,
limiting the number of qubits and the number of
quantum operations allowed in a single computa-
tion. Until error-corrected codes and better hard-
ware are developed, algorithms need to be designed

considering these constraints.

The development of quantum algorithms in
Physics has been mainly motivated by fundamen-
tal Quantum Mechanics, Quantum Chemistry, and
Condensed Matter problems. Only recently has
there been an interest in developing quantum ver-
sions of algorithms used in Plasma Physics, lever-
aging the extensive know-how of this scientific com-
munity. This late development of the field is partly
justified by the inherent difficulty of solving nonlin-
ear problems in quantum computers and the recent
progress on quantum hardware.

2.2. Fokker Planck

The Fokker-Planck equation is a stochastic differ-
ential equation and is used in areas such as in laser-
plasma interaction, namely to kinetically model col-
lision between plasma species. An important appli-
cation is in simulating the energy loss of an elec-
tron beam as it interacts with electromagnetic fields
[13, 14]. In this case, the particle distribution
evolves through

d

dt
f(t, ~p) =

∂

∂pl

[
Alf +

1

2

∂

∂pk
(Blkf)

]
(7)

with Al =
∫
qlw(~p, ~q)d3~q, Blk =

∫
qlqkw(~p, ~q)d3~q,

the drift and diffusion coefficients respectively, and
w(~p, ~q) d3~p is the probability per unit time of mo-
mentum change of the electron ~p → ~p − ~q, with ~q
the momentum of the photon.

In [15] the authors apply the Fokker Planck equa-
tion to simulate an electron beam that looses energy
as it emits photons. As electrons propagate perpen-
dicularly to a constant magnetic field B, this is ef-
fectively a 1D problem. The change in momentum
for a single particle then becomes

dγ(t) = −S(χ) dt+
√
R(χ, γ) dW (8)

where S(χ) and R(χ, γ) are related to the QED rate
of photon emission, χ ∝ γ B and dW is a Wiener
motion.

There has been some progress in developing quan-
tum algorithms to solve stochastic differential equa-
tions, mainly motivated by finance, physics and
biology. In [32] the authors apply a variational
method to solve equations of the type

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dW (9)

where µ(X(t), t)σ(X(t), t) are real-valued functions
of time and coordinate, and W is a Brownian mo-
tion. This is exactly of the form of 8.

Applying this quantum algorithm to the Fokker-
Planck equation in the context of Extreme Plasma
Physics will be left for future work.
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2.3. Plasma-QED Kinetic equations

In the regime where the fraction of the lepton’s
energy change is close to unity dγ ≤ γ, the
Fokker-Planck equation is no longer adequate, and
one needs to use the linear Boltzmann equation.
Whereas the previous method only connects neigh-
bour grid cells in momentum space, the full Boltz-
mann equation is dense in the sense that there is a
finite probability of a particle transitioning to any
other value of energy (as long as physically allowed
by conservation laws). The dynamical evolution of
lepton-boson distributions functions can be given
by [33, 15]

d

dt
fe =

∫ +∞

0

wχ (γ + γγ , γγ) fe (t,x, γ + γγ ,Ω) dγγ

− fe(t,x, γ,Ω)

∫ +∞

0

wχ (γ, γγ) dγγ

(10)

d

dt
fγ =

∫ +∞

1

wχ (γ + γγ , γγ) fe (t,x, γ + γγ ,Ω) dγ

(11)

where Ω is the velocity direction and wχ is the rate
of photon emission. Other phenomena such as Pair
Production can also be added, which can reduce the
photon population and increase the lepton num-
bers. The RHS of 10 is interpreted as a collision
term in the Boltzmann equation, while the total
time derivative in the LHS is the standard in the
Vlasov equation.

An alternative form of these equations is

d

dt



f−
f+

fγ


 =




nCS1 0 nBW1

0 nCS1 nBW1

nCS2 nCS2 nBW2





f−
f+

fγ


 (12)

where f± and fγ are the lepton and photon popula-
tions respectively, nCS1,2 and nBW1,2 are subma-
trices representing the rates of nonlinear Compton
Scattering (photon emission) and nonlinear Breit-
Wheeler (pair production). A pictorial representa-
tion of this matrix can be seen in figure 8.

Figure 8: Matrix representation of the evolution
operator in equation 12.

It can be seen that the system is linear in the
distribution functions f , and can readily be put into
matrix form (although nor Hermitian nor sparse).
This problem could then be addressed using HHL
[34] (or a variant), but as discussed previously, this
approach is not suited for the NISQ era.

3. Summary and conclusions

The method described in the first part of this
work allows accurate estimations of positron pro-
duction in laser-electron collisions, including effects
of 3D focusing geometry, spatio-temporal synchro-
nization, and the realistic beam shape and size.
This opens a possibility for fast parameter optimiza-
tion, either through purely analytical calculations
(if the scaling law has a simple functional form) or
through numerical integration. Being much faster
than full-scale PIC-QED or Monte Carlo simula-
tions, this method can be run on a single CPU. Con-
sequently, this allows real-time optimization and
data analysis in experiments.

Other applications of the equivalent intensity dis-
tributions are possible, namely the asymptotic en-
ergy spread and divergence of the interacting elec-
tron beams, which are also imprinted on the emit-
ted photon beams in the hard x-ray and gamma-ray
range.

This analytical model could be extended to the
tight-focusing regime (beyond the paraxial approx-
imation W0 < 2.5λ) if corrections on the effective τ
and λ, and tilted interaction angle are introduced.

Additionally, in this work, we reviewed and im-
plemented several quantum simulation techniques
(in both real and simulated quantum hardware),
with the long-term goal of developing algorithms to
study extreme plasmas. Some methods were found
more promising than others, especially in the con-
text of applications on near-future quantum com-
puting hardware.

In particular, we simulated the Kompaneets
equation using the Carleman technique for the first
time and identified potential setups within extreme
plasma physics which can be transposed to quan-
tum algorithms.

Although well established and routinely used in
the scientific community, classical multidimensional
nonlinear Vlasov codes are very demanding in terms
of memory, which hints at the possibility of quan-
tum codes being more efficient for specific applica-
tions. Even if it is not efficient to reconstruct en-
tire distribution functions in a quantum computer,
momenta like the average and mean-square of dis-
tributions can be easily retrieved. It is, therefore,
probable that variational algorithms will play an
important role in near-future applications in plasma
physics.
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