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Resumo

Os desenvolvimentos mais recentes no processamento de linguagem natural resultam em cada vez

mais modelos treinados intensivamente com grandes quantidades de recursos computacionais, com

o objetivo de se sobreporem e ultrapassarem os modelos do estado-da-arte em termos de resultados

obtidos. No entanto, o treino que estes modelos de alto desempenho requerem pode durar várias horas,

dias, ou mais tempo ainda. Para além disso, a complexidade dos modelos e dos recursos necessários

para os treinar e executar proı́be a sua utilização em dispositivos mais limitados em termos de memória,

poder de processamento e latência na capacidade de resposta.

Neste trabalho, focámos a nossa atenção no esforço necessário para treinar estes modelos de alto

desempenho, através da análise destes mesmos modelos e da recolha de informação acerca dos re-

cursos computacionais necessários, dos conjuntos de dados usados, e da complexidade dos modelos.

Aplicámos técnicas de compressão a modelos do estado-da-arte para criar versões compactas desses

mesmos modelos, a fim de comparar e avaliar a eventual perda de desempenho do modelo face à

simplicidade do modelo e à redução de recursos computacionais e gastos energéticos.

Palavras-chave: aprendizagem automática, redes neuronais, processamento de linguagem

natural, compressão de modelos, avaliação de modelos, pegada ecológica
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Abstract

Current research in natural language processing shows a growing number of models extensively

trained with large computational budgets, pursuing the goal of outperforming other state-of-the-art mod-

els in test-set performance scores. However, with such computationally demanding requirements, train-

ing these models often requires several hours, days, or worse. Furthermore, the sheer complexity and

resources required to evaluate such models prevents them from being deployed in devices with strict

resource and response latency limitations.

In this thesis, we focus our attention on the effort required to train and evaluate such high performing

models. We analyze several of the latest proposed models, gather information about their computational

budgets, datasets used and model complexity, and apply state-of-the-art model compression techniques

to create compact versions of those models. We then evaluate whether the trade-off between model per-

formance and budget is worthwhile, in terms of evaluation efficiency, model simplicity and environmental

footprint.

Keywords: machine learning, neural networks, natural language processing, model compres-

sion, model evaluation, environmental footprint
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Chapter 1

Introduction

The field of machine learning has brought a revolution in performing human-like tasks through com-

puting, especially with the research and development in neural network technology. With the advent of

better technology and computational capability, the resources available to train and execute such neural

networks have been steadily improving over the past decade; as such, the current trend towards bigger

and better models suited for Natural Language Processing (NLP) tasks is understandable to see. This

is especially true for recent models which are overwhelmingly based on the Transformer [1], a neural

network architecture that has revolutionized NLP with its well-performing generalization to several differ-

ent NLP tasks. Despite all of these incredible advances, this architecture favors bulky models containing

a big number of parameters – model weights and coefficients that change and learn with the training

data – which require large amounts of computational resources to both train and run. Looking at the

two previous years, we have seen several large-scale transformer-based models, ordered here by their

number of parameters1:

• BERT [2] – 340 million parameters2;

• GPT-2 [3] – 1.5 billion parameters3;

• Megatron-LM [4] – combined total of 8.3 billion parameters;

• Turing-NLG [5] – 17 billion parameters;

• The latest model from the GPT-n models, GPT-3 [6] – a staggering 175 billion parameters.

Models with this enormous scale have an extremely large computational overhead and memory

consumption, not to mention the energy cost required to perform any sort of task. Nonetheless, this

trend will most likely continue for the foreseeable future as the results speak for themselves: all of the

aforementioned models set new state-of-the-art results; as mentioned by Microsoft in their Turing-NLG

blog post [5], “larger natural language models lead to better results”.

1Following the U.S. convention of a billion (109).
2Parameters in the largest BERT model, BERTLARGE . The default BERTBASE uses 110 million parameters instead.
3Parameters used in the largest GPT-2 model, GPT-2 XL. The commonly used GPT-2Small has a more modest 124 million

parameters.
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Figure 1.1: Number of parameters of some of the larger NLP models released between 2018 and 2019.
Source: [7]

1.1 Motivation

The issue with such high requirements for high-performing language models becomes more apparent

once the scale of the hardware is taken in consideration; fitting a model with a billion parameters in a

single advanced data-center GPU, such as the NVIDIA Tesla V100 with 32GB of memory, is impossible.

Several approaches tackle this problem by using model parallelism to partition very large models over

several GPUs, such as using a framework like Mesh-Tensorflow [8]; this same parallelism technique was

used to train the 8.3 billion parameters of the Megatron-LM model over 512 GPUs [4]. However, even

with parallelism, the memory consumption remains a major problem for less advanced hardware used

outside of data-centers, especially if we consider devices with low-end hardware (such as smartphones,

that have to be portable, have limited cost, and rely on battery for power).

Another concern with executing such large models is the time they take to infer a result – the latency

of the model. Similarly to the training process, model latency is heavily dependent on the environment

where the model is deployed; using low-performing hardware results in slower inference times in large

models. Basic benchmarking done on a GPT-2 model deployed to AWS [9] showed that the usage of a

GPU provides substantially lower latency than the usage of a CPU for model inference; this can impact

the usefulness of the model in performing tasks that require very low inference time, such as auto-

completing word typing. The hardware requirements become increasingly worrisome if the model is not

deployed on the cloud but instead on devices with hardware constraints, such as the integrated GPUs

often used in smartphones; this effectively leads to an undesirable trade-off between model accuracy

and response latency.

2



Benchmark Error Rate
Polynomial Exponential

Environmental
Cost (CO2)

Economic
Cost ($)

Environmental
Cost (CO2)

Economic
Cost ($)

SQuAD 1.1
Today: 4,621% 104 105 105 105

Target 1: 2% 107 107 1015 1015

Target 2: 1% 1010 1010 1032 1032

CoLLN 2003
Today: 6,5% 105 105 105 105

Target 1: 2% 1035 1035 1073 1074

Target 2: 1% 1053 1053 10173 10173

WMT 2014
(EN-FR)

Today: 54,4% 104 104 104 104

Target 1: 30% 1015 1015 1022 1022

Target 2: 10% 1035 1035 1099 10100

Table 1.1: Implications of achieving performance benchmarks on carbon emissions (lbs) and economic
costs ($USD) from deep learning in NLP (namely, question answering, named entity recognition and
machine translation) based on projections from polynomial and exponential models. The carbon emis-
sions and economic costs of computing power usage are calculated using the conversions from [10].
Adapted from source: [11]

When expanding the scope of language model resources onto the real world, there are some con-

cerns that cannot be ignored but are often overlooked in an academic perspective: the monetary cost

and the environmental footprint. Training a large, state-of-the-art model is not cheap. A recent review

[12] of the cost of training differently sized BERT models estimates that training a model with 1.5 billion

parameters costs around $80k4 for a single training run; if considering proper hyperparameter tuning

and 10 training runs, the cost escalates to around $1.6m. These alarming figures understandably act

as a paywall for developing new models, as not many research labs can afford costs of this magnitude;

this leads to an increase in popularity in fine-tuning large models to specific tasks, while letting “the big

players” actually train the models and make them available to the public. However, we are reaching a

point where not even those who can make such high monetary investments are willing to do it: when re-

viewing datasets for testing GPT-3, the authors of the model found a mistake made when implementing

the system, but decided against fixing it since “due to the cost of training it was not feasible to retrain the

model” [6]. There is also a considerable environmental cost in heavily training models: a recent study

[10] reported that a fully trained BERT model, taking about 79 hours to train using cloud computing

GPUs, emits roughly as much CO2 as a trans-American flight from New York to San Francisco. Not only

that, but future models may bring much more drastic effects to the environment; using projections based

on the computational costs required to hit current state-of-the-art benchmark results (shown in Table

1.1), we can expect both the environmental and economical cost of training a deep learning model for

NLP usage to be higher in the order of a few magnitudes at best, or hundreds of magnitudes at worst,

not to mention the necessary computational requirements to achieve such high energy expenditure.

4Costs denoted in U.S. dollars
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1.2 Objectives

As an effort to tackle the issues previously explained, the objectives of this work lie in the study of

model compression techniques applied on language models and the results thereof.

We propose a comparison of three different compression techniques when used on language mod-

els, with each of them following a separate compression methodology: knowledge distillation, weight

pruning and model quantization. To do so, we apply each of these compression techniques on three dif-

ferent language models, fine-tuned to perform very common NLP tasks – sentiment analysis, named

entity recognition and dialog-driven sentence generation5 – and compare the resulting compressed

models, determining whether the trade-off between performance and resource usage is worth it. We

also propose combining two of the compression techniques, quantization and pruning, to compare the

resulting compressed language models against the separately compressed models for both techniques.

To answer whether large models can be compressed to obtain better performance without severely

degrading model quality, we propose a well-detailed evaluation of every model: we display the expected

validation performance for all evaluation metrics, the final size of the model, average training and in-

ference time, computing infrastructure used, model hyperparameters and dataset splits, as well as a

link to model implementation code. We verify the inversely proportional correlation between execution

latency and the size and complexity of the compressed model. Furthermore, we propose a brief com-

parison between uncompressed and compressed models when running in low-end hardware by testing

the performance of quantized models in a Raspberry Pi.

Additionally, we compare the training process in terms of training time and power usage, as well as

provide an estimation of CO2 emissions for the same model to be trained in a data center, to understand

whether the reduction in model size and complexity – the performance squeeze mentioned in the title

of this work – also translates to a decrease in the computational budget required to further train and

fine-tune the model, as well as a decrease in the environmental footprint of the overall training process.

1.3 Main Contributions

The main contributions of this work are the following:

• Provide a fair comparison between common model compression techniques across the same base

models, that can be applied to state-of-the-art language models. This is achieved by only utilizing

compression techniques that do not require a fundamental change to the architecture of the model

in order to work, as well as guaranteeing that the models are trained and tested on the same

hardware.

• Test compressed models in an environment with limited resources. Besides evaluating models in a

standard GPU-rich environment for large-scale models, we made use of compression techniques

that create CPU-oriented models and tested those same models in a low-end device.

5The work reported in this dissertation relates with the research target of project MAIA (CMU-PT MAIA Ref. 045909).

4



• Make every experiment available for further study and usage. All of our code repositories are

open-source and made available on the GitHub platform (listed in Section 4.1).

1.4 Thesis Outline

In Chapter 2, we describe in detail the main concepts of model compression, as well as some state-

of-the-art techniques applicable to language models; in Chapter 3, we present some of the active and

more recent work being done in model compression and provide a more in-depth overview on these

studies, their results and possible shortcomings. We detail our experiments in using model compression

techniques on recent NLP models, as well as our approach to evaluating said models in Chapter 4, and,

in Chapter 5, we compare our results and draw out a conclusion on the subject of model quality versus

computational budget. Finally, we outline the main findings of this study and mention the advantages of

applying model compression techniques to current models in Chapter 6.

5
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Chapter 2

Background

In this section, we explain the concepts behind the most common model compression techniques

used today, as well as their advantages and drawbacks.

Current high performing models are usually slow in execution and have large space and memory

requirements. As such, model compression techniques [13] aim to lower the resources necessary for

the model to perform, thus reducing the budget required to train and execute the model while retaining as

much accuracy as possible compared to the original, uncompressed model. Several of these techniques

have been proposed and studied over the past years, with some of them becoming more common

recently: knowledge distillation, pruning and quantization.

2.1 Knowledge Distillation

Knowledge distillation [14, 15], also known as teacher-student learning, refers to the training of a

small, compact model – the student – to approximate the knowledge learned by a highly-parameterized

complex model, trained over massive amounts of unlabeled data – the teacher. This larger model has

higher knowledge capacity and can provide high performance but is also computationally expensive to

evaluate. By training a fast and compact model on a separate dataset – called a transfer set – while

regulating the training using the soft outputs provided by the larger model’s output layer, the student

model starts learning the so-called “dark knowledge” of the teacher model: it learns to mimic the output

of the larger model, therefore approaching the function learned by the teacher model without having to

be trained on the massive dataset that made the model end up with said function. Hopefully, the student

model ends up performing only slightly worse than the teacher model, while substantially lowering the

computational budget required to execute it. Knowledge distillation is also independent from the archi-

tecture of the model, since it depends solely on the output provided by the teacher model, making it a

very versatile model compression technique to apply.

Some work has also been done in further knowledge extraction from the teacher model. Patient

knowledge distillation [16] is an approach to teacher-student learning where the student model extracts

information from intermediate layers of the teacher model, and not exclusively from the output layer. This

7



Transfer Set
(input)

Teacher Model
(previously trained)

Student Model

Combined Loss
(student output + 

teacher hint)

Backpropagation
(training)

Figure 2.1: An overview of teacher-student learning.

patient learning approach can follow one of two approaches: either the student focuses on learning from

the last k layers, or it learns from every other k layers. This multi-layer distillation process shows an

improvement in accuracy regarding regular knowledge distillation approaches, while still compressing

the original model as intended.

Although knowledge distillation as a model compression technique originally focused on the training

of a fast and compact model from scratch, research has been done in applying knowledge distillation to

pre-trained models instead [17]. This form of pre-trained distillation has the compact student model pre-

trained on unlabeled language model data, turning the model into a well-read student. The student can

now take full advantage of the teacher’s soft label outputs while training over the transfer dataset, since

pre-training mitigates the initial error present in the otherwise randomly initialized distillation process. A

pre-trained distilled model can then be subjected to fine-tuning, to make the model more robust for the

task at hand.

2.2 Pruning

Network pruning refers to the removal of redundant and non-informative connections within the net-

work of the model, thus achieving a reduction in model size and potential improvements in execution time

and energy efficiency, while only slightly degrading the quality of the model [18]. Despite the improve-

ments that can be obtained, such pruned models often end up with sparse connection matrices, which

have an additional storage overhead compared to regular matrices and require purpose-built hardware

capable of efficiently loading and performing operations; these details must be taken into consideration

to consider the overall trade-off.

Very early works on the pruning of neural networks performed pruning by first computing an ap-

proximation of the loss function of the model with respect to its parameters. This allows for an iterative

checking of increases in the loss function of the model when setting a given weight to zero, thus calcu-

8



Pruning connections

Figure 2.2: Representation of pruning applied to a network (weight-based pruning).

lating the importance of that weight to the network - its saliency. A parameter with small saliency will

have a minimal effect on the training error if it is removed. Two of the most popular techniques, Optical

Brain Damage (OBD) [19] and Optimal Brain Surgeon (OBS) [20], compute a complex approximation of

the loss function of the model and use it to determine the parameters with low saliency, which are then

pruned from the network; the model is then retrained. Both techniques show significant improvements

to the inference time and accuracy of the neural network, but applying these techniques is unfavorable

due to the high computational complexity of the approximation.

More recent approaches [18, 21] use magnitude-based weight pruning. This technique consists in

picking a percentage of weights to be pruned, and removing that same percentage of weights with values

closest to zero [22]. Despite creating pruned models with worse results in accuracy than those obtained

from both OBD and OBS, magnitude-based approaches are often preferred due to being computationally

efficient and scaling better to large models and datasets, which are particularly common in recent years.

2.3 Quantization

A logical step in compressing a model would be to trim down the model parameters themselves.

Network quantization [23] refers to the compression of the weights present in the inner layers of the

model, such that the weight values can be represented using a smaller amount of bits. The parameter

matrices end up occupying less memory and any required arithmetic operations become faster as a

result. Previous works have shown that both network pruning and quantization are effective not only in

lowering the complexity of the model, but also as a way to address over-fitting. Furthermore, the two

techniques are compatible with each other and can be used simultaneously for further model reduction.

A simple but extreme way of performing quantization forces every weight value to be represented by

a single bit, effectively turning them into binary weights – hence called binarization. This can be done by

using the sign of the weight value: any positive values become 1, and any negative values become 0.
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Binarization is applied to neural networks from scratch, so they can directly learn binary weights during

the model training. Although it provides a meaningful compression to the data of the model, binarization

tends to drastically reduce the accuracy of the model; this reduction is significantly noticeable when

dealing with large neural networks.

Another simple method of quantization is a method of weight sharing, called scalar quantization [24]:

by clustering the weight values using k -means clustering, each weight can be represented by one of the

k cluster centers, and gets assigned an index for that specific cluster. The calculated cluster centers can

then be stored separately in a codebook, whose values can be looked up directly whenever necessary.

Using this approach, parameters can be compressed into the log2(k) bits necessary to represent each

cluster index, while the uncompressed cluster values are stored in the codebook. Considering the fast

value lookup on the codebook and the negligible size of the codebook, even for a relatively high number

of k clusters, this approach gives a good performance for compressing parameters, especially in models

with large weight matrices.

Generally, these quantization techniques are applied post-training; this allows for immediate com-

pression of the model in its fully trained state, lowering the size of the model. However, for most of

these techniques, the model itself still computes using floating-point arithmetic operations, so no im-

provements to the model latency are achieved. Furthermore, the quantized model does not take in

consideration the error obtained from losing precision in the weights of each layer, resulting in slightly

worse accuracy results. To avoid a significant drop in model quality derived from the loss in accuracy and

latency, we can employ quantization during the training process – Quantization-Aware Training (QAT).

We explain quantization-aware training in further detail in Section 3.2.1. Models trained this way have

smaller accuracy losses over the base model compared to post-training quantization.

2.4 Summary

Model compression techniques study different ways of reducing the size occupied by a model, as

well as the computational resources necessary to train and execute the model, while maintaining as

much performance of the original model as possible.

Knowledge distillation focuses on training a small and compact model by supervising its learning

with a large and well-trained model. The smaller model inherits the knowledge of the larger model by

evaluating against the outputs of the larger model during the training process, thus resulting in a faster

and compact model with the quality and performance of the initial larger model.

Pruning tackles the outright removal of some of the weights present in the model layers, which

reduces the number of trainable parameters in the model, theoretically allowing for faster inference times

and reduced model size. However, in practice, the size reduction is limited by the method of storing

model weights, and efficient sparse matrix storage is only available for very highly sparse matrices [25].

Quantization studies the size compression on the scale of weight values, by either clustering similar

parameters and sharing them across the weight matrices or reducing the bit representation of those

values (for example, from floating-point to integer). These processes tend to drastically reduce model
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size at the cost of a degradation in model quality, but have the benefit of being able to be applied post-

training. Several different quantization techniques have been developed to be applied during training

instead, which helps reduce the loss in model performance.
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Chapter 3

Related Work

In this section we take an in-depth look at other works regarding model compression techniques

used in NLP, as well as improved ways of reporting results when evaluating models. We also examine

the environmental impact of training recent models.

3.1 Better Model Evaluation and Result Reporting

An important but often overlooked part of comparing the performance of language models is the

way the experiment details and consequent results are reported. Papers often only report their best

accuracy values, but omit important details such as the time spent training the model, or any finely

tuned hyperparameter values. Not only that, but displaying the best accuracy values does not confidently

portray the performance of a model since accuracy values can often vary depending on several testing

factors, such as random weight initialization. With this in mind, a recent novel technique for comparing

performance between different language models has been presented: expected validation performance

[26] as a function of computational budget. For a given model, its performance is calculated via the

expected accuracy value obtained from validation data, given a resource budget to train and evaluate

n models. This expected value takes in consideration every accuracy value obtained during model

development and testing, instead of simply reflecting the best observed value after n evaluations. Not

only is this expected value a more accurate reflection of the overall performance of the model, but the

measuring technique also requires no extra calculations besides the ones obtained during the model

training and fine-tuning; training a model is an iterative procedure, and several results will be obtained

throughout model tweaking and testing.

For a given model, trained over a set of n hyperparameter values, we can calculate the expected

validation performance of a model as follows:

E[V ∗n | n] =
∑

v
v · P (V ∗n = v | n) (3.1)

where V ∗n is the maximum value obtained during model evaluation for the given set of n hyperparameter
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values, and P (V ∗n = v | n) is the probability mass function for the maximum value. It is worth noting

that the computational budget can be measured by other metrics, such as training duration; in this case,

V ∗n would denote the maximum value obtained for the given training duration. Another notable detail is

that, for singular sets of values (such as comparing a single hyperparameter value, or using the training

duration) we get n = 1, and the expected value simply becomes the mean of all values.

By displaying the performance of the model as a function of computational budget, we can estimate

the resources required to attain a certain expected performance value. This can be useful in scenarios

where the budget provided for training a model is limited, or if there is a minimum accuracy value re-

quired: the estimated budget for a given performance value can be calculated, and unnecessary budget

expenses are avoided by only spending resources below the estimated value.

Considering the advantages obtained from this evaluation approach, we will be using this technique

to display our results. Every model trained and evaluated under our working environment will have their

results detailed as a graph of the expected validation performance as a function of the training duration.

3.2 Compressing BERT

For the past couple of years, NLP research has thoroughly taken advantage of model development

based on large pre-trained models, refining and fine-tuning them into performing different tasks; one

of the most widely used models as the starting point is none other than BERT. As previously stated,

despite being a very versatile and effective model, BERT still has a large memory footprint and requires

heavy computing during inference; therefore, model compression has been an especially important field

of study for any BERT -based models.

3.2.1 Q8BERT

One of the compression techniques we previously mentioned tackles both the memory and the la-

tency issue, by reducing the representation of weight values to a smaller quantity of bits while also

enjoying faster computation on those smaller bit values: quantization. Based on this, Q8BERT [27] was

created: a quantized version of BERT that achieves a 4× smaller memory footprint while only losing

less than 1% accuracy relative to the original model. This was achieved by quantizing all weights within

the Embedding and Fully Connected layers – which contain over 99% of the weights present in BERT –

to 8-bit values.

To quantize a given weight x, the following symmetric linear quantization function was used:

Quantize(x | Sx,M) = Clamp(bx× Sxe,−M,M),

Clamp(x, a, b) = min(max(x, a), b)
(3.2)

where Sx is the quantization scaling factor for the weight x, and M is the highest quantized value possible
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Dataset Metric BERT baseline
accuracy (STD)

QAT BERT
8-bit (STD)

DQ BERT
8-bit (STD)

CoLA Matthew’s corr. 58.48 (1.54) 58.48 (1.32) 56.74 (0.61)
MRPC F1 90 (0.23) 89.56 (0.18) 87.88 (2.03)
MRPC-Large F1 90.86 (0.55) 90.9 (0.29) 88.18 (2.19)
QNLI Accuracy 90.3 (0.44) 90.62 (0.29) 89.34 (0.61)
QNLI-Large Accuracy 91.66 (0.15) 91.74 (0.36) 88.38 (2.22)
QQP F1 87.84 (0.19) 87.96 (0.35) 84.98 (0.97)
RTE Accuracy 69.7 (1.5) 68.78 (3.52) 63.32 (4.58)
SST-2 Accuracy 92.36 (0.59) 92.24 (0.27) 91.04 (0.43)
STS-B Pearson corr. 89.62 (0.31) 89.04 (0.17) 87.66 (0.41)
STS-B-Large Pearson corr. 90.34 (0.21) 90.12 (0.13) 83.04 (5.71)
SQuADv1.1 F1 88.46 (0.15) 87.74 (0.15) 80.02 (2.38)

Table 3.1: GLUE tasks and SQuAD datasets, metrics and results for the baseline pre-trained BERT
model and two quantized versions (quantized to 8-bit weights): Quantization-Aware Training (QAT) and
Dynamic Quantization (DQ). Tasks suffixed with Large were performed with BERTLARGE ; all others
were performed with BERTBASE . Source: [27]

for b number of bits. M is calculated as follows:

M = 2b−1 − 1 (3.3)

For Q8BERT, the weights were quantized to 8-bit, therefore M = 28−1 − 1 = 127. The quantization

scaling-factor Sx can be calculated based on statistics collected during training, or dynamically deter-

mined during inference; in this instance the scaling-factor for weights was calculated as follows:

SW =
M

max(|W |)
(3.4)

The weight quantization was done during training, using a technique called quantization-aware train-

ing: during model fine-tuning, fake quantization [23] is used to simulate the value errors obtained when

rounding down floating-point numbers. These values are then back-propagated to the model, which ends

up learning how to overcome quantization errors. To compare the effectiveness between quantization-

aware training and simply performing quantization after fully training the model – also called dynamic

quantization – testing was done on several NLP tasks. The results (displayed in Table 3.1) show that

quantization-aware training outperforms dynamic quantization in every task, and even performs better

than or equal to the original uncompressed model in certain tasks.

3.2.2 DistilBERT

To lower the memory footprint, an immediate solution would be to train a smaller model; this is

one of the main reasons why knowledge distillation has been one of the most researched topics in

model compression in recent years. A general-purpose distilled version of BERT, DistilBERT [7], was

developed by teaching a smaller version of the base model using the available pre-trained one as a

teacher. It manages to retain 97% of the accuracy from the original model, while being 40% smaller and

60% faster.
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Model Parameters
(millions)

Inference time
(seconds) GLUE score IMDb (acc.) SQuAD (EM/F1)

BERTBASE 110 668 79.5 93.46 81.2 / 88.5
DistilBERT 66 410 77.0 92.82 77.7 / 85.8

Table 3.2: Overall comparison between the pre-trained BERT and DistilBERT, displaying total number
of parameters, inference time of a full pass of a GLUE task (sentiment analysis task), resulting score
in the GLUE benchmark, and performance on two downstream tasks: sentence classification (IMDB
dataset, measured by accuracy) and question answering (SQuAD, measured by ExactMatch (EM) and
F1 score). Data source: [7]

DistilBERT has the same architecture as BERT, with a focus on reducing the amount of layers from

the regular 12 to just 6; the authors also investigated compressing the hidden size dimension, but found

that it had a much smaller impact on computation efficiency than compressing the number of layers.

Additionally, due to the common dimensionality between the teacher and the student models, the small

model was able to be initialized by directly taking layers out of the teacher model.

To train the student model, the authors used a linear combination of the regular supervised training

loss with the model distillation loss, which was then back-propagated. The distillation loss over the

probabilities of the results output by the teacher model were calculated as follows:

Lce =
∑

i
ti ∗ log(si) (3.5)

where ti is the probability calculated by the teacher for the soft label i (and likewise, si refers to the

probability output by the student). These probabilities are calculated using a softmax-temperature [15]:

pi =
exp(zi/T )∑
j exp(zj/T )

(3.6)

where zi is the score attributed to a class i, and T is the temperature which controls how smooth the

output distribution is. During training, the same temperature value was used for both student and teacher

probabilities; at inference time T was set to 1, thus becoming a regular softmax function.

The distilled model displayed results expected from following a compression technique (displayed

in Table 3.2): the size of the model was considerably reduced and the execution speed rose, while

only losing a small amount of performance relative to the base model. The authors also refer to the

orthogonality of other model compression techniques relative to knowledge distillation; with additional

pruning and quantization, DistilBERT could be compacted even further, not without some expected

losses in performance.

Additionally, the authors studied the performance of the compact model on mobile devices; two

smartphone applications were built for question answering, one using BERTBASE and the other Distil-

BERT, and both were deployed on an iPhone 7 Plus. The average inference time was measured, with

DistilBERT being 71% faster than the base model.
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Figure 3.1: The relative performance of subnetworks at 70% sparsity obtained by iterative magnitude
pruning when transferred to other tasks. Rows represent source tasks and columns represent the target
tasks (the task Θ0 represents the pre-trained BERT model, with no further training). Each cell displays
the performance of the transferred network for the target task relative to the performance of the pruned
network on the same task. Dark cells mean the subnetwork found by pruning a model for the source
task accomplished a better performance than the subnetwork found for the same target task. Source:
[28]

3.3 Lottery Ticket Hypothesis in NLP

In recent years the NLP community focused on building larger Transformer models, as stated before.

Concurrently, the computer vision community of researchers explored the Lottery Ticket Hypothesis

[29], which states that “dense, randomly-initialized, feed-forward networks contain subnetworks (winning

tickets) that – when trained in isolation – reach test accuracy comparable to the original network in a

similar number of iterations” ; simply put, conventional pruning techniques can unveil smaller neural

networks (mentioned as subnetworks) which can be trained to reach performances similar to the parent

network.

Based on this formulation, and considering the possibility of application towards NLP and its ever-

growing models, several concurrent studies [22, 28, 30] focused on applying the same line of thought

to BERT. The results demonstrate that the Lottery Ticket Hypothesis holds true for NLP, and valuable

conclusions arrived from this research:

• Matching “winning ticket” subnetworks can be found between varying values of sparsity, from as

low as 40% to as high as 90%. This means that, for specific tasks, a model consisting of roughly
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one tenth of the pre-trained BERT model can hit similar performances;

• These subnetworks can be found with no extra training required, by directly pruning the pre-trained

BERT model with no need for any fine-tuning beforehand. The pruned model can still reach a

similar performance to the full model;

• For most models fine-tuned to accomplish downstream NLP tasks, the subnetworks found appear

to be specific for that specific task, and are unable to be transferred to other tasks.

One of the conclusions opened up new possibilities: “winning tickets” found at 70% sparsity using

the task originally used for pre-training BERT (masked language modeling) were shown to be universal

(results displayed in Figure 3.1), showing that learning can be transferred to other downstream tasks

while maintaining accuracy. The resulting implication of a pre-trained BERT model properly pruned

down to nearly a third of its size still being able to accomplish similar accuracy values when fine-tuned

to a downstream NLP task is an incredible breakthrough, especially for low-end or otherwise budget-

restricted hardware.

Given the positive results, proper pruning after the initial training could be seen as a second stage

of the BERT pre-training process in the future. To compare these beneficial improvements in accuracy,

and the eventual speedup in inference time, we will be applying iterative magnitude pruning (IMP) [28]

on our proposed model training experiments.

3.4 Energy Consumption and Carbon Footprint

With larger and better performing models, comes greater resource expenditure. While most NLP

models from a decade ago could be properly trained on end-user laptops and other common hardware,

training a state-of-the-art model nowadays requires dedicated hardware with several GPUs or TPUs,

even if the goal is just to fine-tune an already existing pre-trained model. With this in mind, and consid-

ering that properly training and validating a model requires many executions to experiment with different

architectures and hyperparameter configurations, the energy consumption is an important (but often

forgotten) evaluation detail when training a model. Reporting this detail would allow for cost-benefit

analysis between different models, especially when the model is meant to be retrained for downstream

usage, such as fine-tuning for a new NLP task.

The amount of energy consumed by a model during the entire training process is not only important

in terms of monetary cost, but also due to the effect it has on the environment. The European Envi-

ronment Agency has reported that, on average, for every kilowatt produced per hour, the equivalent of

275g of CO2 is released to the environment as greenhouse gases [31]. However, since the most popular

cloud compute service – Amazon Web Services – is hosted in the United States, it is more reason-

able to consider the value reported by the U.S. Environmental Protection Agency (EPA) as the average

greenhouse gas emission for model energy consumption: 947lbs per megawatt-hour [32], or 430g per

kilowatt-hour. Considering that data centers spend a substantial amount of energy maintaining servers
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Consumption CO2e (kg)
Air travel, 1 person, NY↔SF 900
Human life, avg, 1 year 5,000
American life, avg, 1 year 16,400
Car, avg incl. fuel, 1 lifetime 57,153

Training one model (GPU)
NLP pipeline (parsing, SRL) 18

w/ tuning & experiments 35,592
Transformer (big) 87

w/ neural arch. search 284,019

Table 3.3: Common CO2 emissions from regular human activity, compared against the training of com-
mon NLP models. Source: [10] (converted from lbs to kg)

up and running, and taking in consideration the impact of greenhouse gas emission on the environment,

reporting energy consumption is an ever-increasing necessity for any trained models nowadays.

Reporting the power consumption of a model can be done by measuring the overall energy expendi-

ture during training and calculating as follows:

pt =
1.59t · (pc + pr + g · pg)

1000
(3.7)

where pc is the average power draw (in watts) from all CPU sockets during training, pr is the average

power draw from all DRAM (main memory) sockets, pg is the average power draw from a GPU during

training, and g is the number of GPUs used during training. The estimate power consumption of a

model during training is estimated as the combined power draw of CPU, DRAM and GPUs, multiplied by

both the number of hours t spent training the model and the Power Usage Effectiveness (PUE) constant,

which accounts for the additional energy required for the infrastructure (for data centers, this value mostly

accounts for cooling). We consider a PUE coefficient of 1.59, which is the 2020 global average for data

centers [33].

To estimate the amount of CO2 emitted by the model (in kg), we use the value reported by the U.S.

EPA depicted above:

CO2e = 0.430 · pt (3.8)

We will be reporting the energy consumption for every model we train, as well as the estimated CO2

emissions (using the European constant), not only to compare the power usage of an average model

against a compressed model, but also as an effort to contribute to the awareness of the environmental

footprint of deep learning in NLP.

3.5 Summary

Comparing the final evaluation metric scores against the results of a baseline or state-of-the-art is

often not a realistic depiction of the performance of the model; paper authors should always report

every experiment detail, such as hyperparameter values and time spent training. Additionally, expected
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validation performance is a technique that displays the performance of a model based on the results

obtained for every training variation, such as different evaluation runs, training time or hyperparameter

searches; this expected value better represents the performance of a model, instead of simply showing

the best value obtained by the model.

Model compression in NLP has been previously studied, with promising results. On the topic of

quantization, Q8BERT was developed by applying quantization-aware training to BERT and quantizing

over 99% of the weights present in the model, obtaining a model that is 4× smaller, with a loss of accu-

racy of less than 1%. For knowledge distillation, DistilBERT was created as a general-purpose distilled

version of BERT, managing to lose only 3% of the accuracy of the original model, while achieving a 40%

size reduction and faster inference time on both common training hardware (60% speed improvement)

and low-end hardware (71% speed improvement). Regarding pruning, research conducted on the Lot-

tery Ticket Hypothesis applied to BERT found that, for certain downstream NLP tasks, models could be

pruned to a sparsity as high as 90% before fine-tuning without losing accuracy, and a more moderate

70% sparsity could universally maintain or even improve accuracy for all tasks (a total of 11 tasks were

tested).

Complementing the model evaluation techniques, by obtaining the average power draw of the model

during training, the amount of CO2 emitted by the model (were it to be trained in a data center) can

be estimated, thus obtaining a valuable metric to determine the environmental footprint of the model,

something often overlooked but very detrimental to the environment.
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Chapter 4

Experiments

In this chapter, we describe our approach to evaluate the effects of model compression, and detail

our experiments on applying the compression techniques described to different NLP tasks.

4.1 Training Setup

In order to study model compression and its effect on current language models, we picked three

fundamental and widely used tasks in NLP:

• Text classification (in particular, sentiment analysis);

• Sequence labeling (specifically, named entity recognition);

• Sentence generation (in this case, dialog-driven generation).

Across every model trained, we used the PyTorch framework [34]. For the models themselves, we

picked BERTBASE (L=12, H=768, A=12, 110M parameters, 440MB size) [2] as the pre-trained base

model to accomplish the sentiment analysis1 and named entity recognition2 NLP tasks, and GPT-2Small

(L=12, H=768, A=12, 117M parameters, 650MB size) [3] for conversation-driven sentence generation3.

For each task, we planned on performing the following model compression techniques:

• Baseline: To obtain the baseline from which we can compare the compressed models, we will

fine-tune the pre-trained model for the task at hand.

• Distillation: To be able to distill knowledge, we will create a small student model using only the

first k Transformer layers from the pre-trained model (BERTk). Afterwards, the previously fine-

tuned uncompressed model (used as baseline) will act as the teacher model and perform Patient

Knowledge Distillation (PKD) (briefly explained in Section 2.1).

• Pruning: Following the Lottery Ticket Hypothesis shown in Section 3.3, we will be pruning the

pre-trained model directly by gradually applying iterative magnitude pruning, and then continue
1https://github.com/Uziskull/lightning-text-classification
2https://github.com/Uziskull/BERT-NER
3https://github.com/Uziskull/lightning-convai
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training to recover pruning accuracy losses; from here, the model can be fine-tuned according to

the desired task.

• Quantization: To perform model quantization, we will use quantization-aware training (detailed in

Section 3.2.1) during fine-tuning of the pre-trained model for the given task.

• Quantization + Pruning: Taking advantage of the compatibility between both compression tech-

niques (as mentioned in Section 2.3), we will be using quantization-aware training on the previously

pruned model during fine-tuning of the task.

Due to the large amount of training permutations necessary, we approached our testing plan from an

iterative standpoint, focusing on applying a given compression technique to every task before moving on

to another technique.

4.1.1 Datasets

To train the language models fine-tuned on the sentiment analysis task, we used the IMDB review

dataset [35] – a group of positive and negative IMDB movie reviews. For the named entity recognition

task, we made use of the CoNLL-2003 dataset [36] – a collection of phrases where every word has a

corresponding part-of-speech tag, syntactic tag and named entity tag.

Sentiment: positive

Review: One of the other reviewers has mentioned

that after watching just 1 Oz episode you’ll

be hooked. The...

Listing 4.1: Excerpt and sentiment in a review from the IMDB dataset.

Word POS Tag Syntactic Tag Entity Tag

U.N. NNP I-NP I-ORG

official NN I-NP O

Ekeus NNP I-NP I-PER

heads VBZ I-VP O

for IN I-PP O

Baghdad NNP I-NP I-LOC

. . O O

Listing 4.2: Word tag examples from the CoNLL-2003 dataset, displayed in columns with labeling above.

To train and fine-tune the GPT-2 based conversational model on the task of sentence generation,

we used the Persona-Chat dataset [37], which is a crowd-sourced collection of over 160 thousand

utterances between pairs of personas:
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I love the beach.

My dad has a car dealership.

I just got my nails done.

I am on a diet now.

Horses are my favorite animal.

Listing 4.3: Example personas from the Persona-Chat dataset.

Additionally, to prune both BERT and GPT-2 based models, we need to pre-train the models on the

NLP tasks of masked language modeling and causal language modeling, respectively; we made use of

the WikiText corpus [38], a bundle of several million tokens extracted from verified articles on Wikipedia:

= Super Mario Land =

Super Mario Land is a 1989 side @-@ scrolling

platform video game , the first in the Super Mario

Land series , developed and published by Nintendo

as a launch title for their Game Boy handheld

game console .

Listing 4.4: Excerpt from an article in the WikiText-2 dataset.

4.1.2 Evaluation

We followed a quantitative approach to evaluation, focusing on comparing the original models to

their compressed counterparts. Following a set of guidelines for best practices [26], while also mea-

suring some compression-related details, we reported the following details for every model trained and

evaluated:

• A description of the computing infrastructure used during training;

• The average runtime for each approach;

• Details of train/validation/test splits;

• Corresponding validation performance for each reported test result;

• A link to the implemented code;

• The response time of the model during execution;

• The size of the model.
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NLP Tasks GPU Data Splits
(train/dev/test)

Train
Epochs

Batch Size
(train/test)

Learning
Rate

Sentiment
Analysis

GeForce GTX
1080 Ti (11GB) 50/25/25 5 8/8 {3.0e-05, 1.0e-04,

3.0e-04, 5.0e-05}
Named Entity
Recognition

GeForce GTX
TITAN X (12GB) 70/15/15 5 32/8 {3.0e-05, 1.0e-04,

3.0e-04, 5.0e-05}
Sentence

Generation
GeForce GTX

1080 Ti (11GB) 99/0.5/0.5 3 2/1 {6.25e-05, 5.0e-05,
1.0e-04}

Table 4.1: General training details for every task, including hardware and hyperparameter configurations.
All settings remained the same across every model trained in said task, whether compressed or not.

To measure the performance of each model, we made use of conventional accuracy metrics commonly

used for evaluating both BERT and GPT-2 based models. For sentence generation, we used BLEU,

TER4, BERTScore, and Hits@1/5/10. For sentiment analysis and named entity recognition, we calcu-

lated accuracy, precision, recall and F1 score.

These values were measured using validation data obtained during model testing, and presented

via expected validation performance [26] of the model as a function of computational budget. By ob-

taining our results via this technique and subsequently presenting them on graphs, a better comparison

between the original models and their compressed versions can be established, as accuracy values will

be compared in relation to the computational budget provided.

Additionally, we used heuristics related to energy consumption and environmental footprint [10] to

compare the budget required to train a model against its compressed alternative. For every model

trained, the average GPU power draw was obtained to calculate the power consumption of the model,

which will then be used to estimate the amount of CO2 produced (as explained in Section 3.4). While it

is not the only component consuming energy, we will only be focusing on the GPU power draw as it is

the main power funnel when training a model.

4.2 Testing Details

In order to properly compare the model compression techniques, we set up a controlled testing

environment by maintaining the same testing hardware and hyperparameters across models for the

same tasks. Every model was trained on a cloud computing environment, using a dedicated GPU for

the duration of the training process; all of these testing configurations are presented in Table 4.1.

To train each model, a script was used to load and start the training session. The framework used

to train the models accurately took note of the evaluation details, such as the time it took to train and

evaluate each model and the metrics measured during inference. Additionally, to measure the average

GPU power draw for every model trained, the script ran a constant query to the NVIDIA System Man-

agement Interface (nvidia-smi5) in parallel to the model training itself, which gathered and registered

4Unlike the other metrics shown here, a lower TER score is preferable to a higher score.
5https://developer.nvidia.com/nvidia-system-management-interface
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Figure 4.1: Experiment results from fine-tuning the task-specific models, to be used as baseline com-
parisons for the compressed models.

the current power draw of the GPU being used, with an interval of 5 seconds; those values were then

used to calculate the overall average power draw.

Before delving into any experiments using model compression, we began our testing by fine-tuning

every model with no compression technique applied, such that we could use the results as a baseline

comparison for the compressed models. Each model was trained using the same hyperparameters,

while only varying the learning rate. In order to keep testing coherency, we made every run deterministic

by setting a fixed seed for randomness, which prevented variations in weight initialization and data order

across runs; this was done to ensure that, throughout our whole experiment, the number of variable

details within our control was reduced to just the different learning rates and the different compression

techniques applied, such that the results obtained could be more focused on the model compression

itself. This decision to constrain hyperparameter search meant that our fine-tuned models did not obtain

the best results reported by the authors of the different models, however this was outside the scope of our

work since our focus was set on the effects of compression techniques regarding the model performance,

regardless of the ranking of the model. The results obtained from fine-tuning the models on their given

tasks are displayed in Figure 4.1 (the complete evaluation metrics are displayed in Appendix A).
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NLP Tasks
Pre-trained Teacher PKD Student

Base Model Weight Initialization Base Model Weight Initialization

Sentiment
Analysis BERT12

(12 layers, 440MB) Pre-trained weights BERT6

(6 layers, 270MB)
6 first layers of

pre-trained weightsNamed Entity
Recognition
Sentence

Generation
GPT-212

(12 layers, 650MB) Pre-trained weights GPT-26

(6 layers, 480MB)
6 first layers of

pre-trained weights

Table 4.2: Student models created for patient knowledge distillation and their initialization weights, com-
pared to the models used for the tasks.

4.3 Knowledge Distillation

Unlike the other compression techniques used in this work, knowledge distillation cannot be directly

applied on a pre-trained model to generate a new, compressed model. Instead, the compression factor

comes from the usage of a smaller student model, and the distillation process serves as a tool to transfer

information from the trained teacher model to the student model. As such, to compress each task-

specific model, we designated the fine-tuned baseline model as the teacher and created a smaller

version of the model to be used as the student; following the authors of the paper regarding PKD [16],

the network architecture of the smaller model is identical to the base model used for the task, but

the number of hidden layers was cut in half and only some of the pre-trained weights were used for

initialization (the differences between the teacher and student models are outlined in Table 4.2).

For both the sentiment analysis and named entity recognition tasks (the ones that made use of the

base BERT model), to transfer the knowledge from the teacher model to the target student model using

PKD, we took the entire training dataset used for the student model (which in our experiments is the

same as the one used for fine-tuning the baseline model) and ran it through the teacher model; for every

element in the training data, the fine-tuned model processed the input and returned the values resulting

from the output layer, as well as the values within the intermediate model layers. Every set of these

values was then saved as extra knowledge, and was integrated with the training dataset of the student

model such that, when training the student, the training loss of the model got calculated based on the

regular fine-tuning loss, the distillation loss over the predictions of the teacher model, and the mean-

square loss of the intermediate layer values. Since the teacher model has 12 layers while the student

model only has half of those, we had to pick the set of intermediate layers to distill from (denoted as Ipt);

we followed the PKD-Skip strategy [16] and made use of the layers Ipt = {2, 4, 6, 8, 10}, which together

with the output layer of the teacher model resulted in the 6 layers that made up the student model. The

set Ipt was the same used throughout every model we applied PKD to. The performance of the student

model and the comparison with the baseline model is displayed in Section 5.1.

We were unable to perform the same teacher knowledge gathering for the sentence generation task

(the one that made use of the base GPT-2 model), since the resulting dataset with extra knowledge was

too large to be able to be loaded during student training; this occurred due to Persona-Chat [37], the
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IMP
Parameters

Batch
Size

MLM Loss
Probability

Block
Size

Learning
Rate

Noise
Rate

Adam
ε

Pruning
Step GPU

BERT 4 15% 512
5.0e-5 0.01 1.0e-8 10% GeForce GTX

TITAN XGPT-2 1 N/A 1024

Table 4.3: Training details used for training over the pre-trained models, using iterative magnitude prun-
ing.

WikiText
Comparison
(on BERT)

IMP to 70% sparsity, with 10% magnitude
pruning step every Y iteration

Y = 5000 Y = 10000 Y = 15000
Accuracy Perplexity Accuracy Perplexity Accuracy Perplexity

WikiText-2 59.5332 9.0276 59.755 9.6268 59.4877 10.5135
WikiText-103 61.8877 7.147 63.7721 6.2961 64.4464 5.8791

Table 4.4: Comparison between WikiText-2 and WikiText-103 when used to train a pre-trained BERT
model while applying iterative magnitude pruning.

dataset used for fine-tuning this task, being much bigger than the datasets used to train the BERT based

models. To get around this issue, we forwent the knowledge gathering before training the student model,

and calculated the necessary intermediate and final values of the teacher model on-the-fly instead; we

loaded both models at the same time on the setup of every run, and during the main training loop the

input was firstly fed to the teacher model to get the necessary resulting values, which were then used for

the loss calculation of the student model. As detailed before, the same set of intermediate layers Ipt was

used for this training. Although the end result is the same as gathering the extra information beforehand,

loading two models at the same time had its drawbacks, which we discuss in greater detail in Section

5.1 along with the results of the PKD student compared to the baseline model.

4.4 Pruning

To prune every task-specific model, we first took the pre-trained base model for each task and trained

it further while applying IMP [28], which prunes the attention heads of the model over several training

epochs. IMP is applied as follows: during model training, every time a certain number of training itera-

tions complete, the weights of the model are pruned by a specific incremental percentage; the weights

are then reset to their original values, and the training continues, up until the total sparsity of the model

reaches the defined goal; all of these values (the number of iterations, the prune step and the desired

final sparsity) are defined beforehand. The original code supplied by the paper authors only worked for

BERT models, thus some changes were made to the code to also accept and prune GPT-2. All the

parameters used for IMP training are displayed in Table 4.3.

As previously mentioned, we decided to use the WikiText [38] corpus for the required extra training

on the pre-trained base models since it contains large amounts of curated text from Wikipedia, which is

ideal for masked language modeling (the task on which BERT is trained) and causal language modeling
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Figure 4.2: Experiment results for BERT models after applying iterative magnitude pruning to 70%
sparsity, by pruning 10% of the weights every Y training steps. The models were trained on the WikiText-
103 dataset. The accuracy and perplexity of the base BERT model is displayed for comparison.

(the task on which GPT-2 is trained). There are two WikiText corpora available for usage – WikiText-2

and WikiText-103 – which contain 2 million tokens and 103 million tokens, respectively. To understand

which of these corpora would result in a better performing model, we conducted a small comparison

between both on a pre-trained BERT : we applied IMP to 70% sparsity with a 10% pruning step every

Y iterations, varying between three different numbers of iterations. The results (detailed in Table 4.4)

show that models trained and pruned using the WikiText-103 corpus always obtained higher accuracy

and lower perplexity scores, so we decided to use that corpus for the remainder of the models trained

during IMP.

With the corpus picked, we began applying IMP to the pre-trained BERT model. According to the

experiments done by the paper authors (as detailed in Figure 3.1), a BERT model trained on masked

language modeling with 70% sparsity can be transferred to other downstream tasks and achieve the

same performance (or in some cases even outperform said task), compared to pruning the downstream

task directly. Given this, we decided to prune BERT to 70% sparsity with a 10% pruning step every Y

iterations, varying the number of iterations to find which model would display better results overall; the

results obtained from training, along with other evaluation metrics, can be seen in Figure 4.2. Interpreting

these results, it is important to note that the main reason for the difference in accuracy and perplexity

between the pruned models and the base BERT model is the training data in use: BERT was pre-

trained using both BookCorpus [39] and the English Wikipedia, while our models were trained with only

an excerpt of the full English Wikipedia corpus (WikiText-103). Therefore, although both models are

trained towards the same masked language modeling task, comparing these values is erroneous and a

proper comparison between results should only be done between the fine-tuned version of the models,

28



15

17

19

21

23

25

27

29

31

X = 10% X = 20% X = 30% X = 40% X = 50% X = 60% X = 70%

P
e

rp
le

x
it
y

Y = 10000

Y = 15000

Y = 20000

Base GPT2

(a) Perplexity

IMP Model Training Time (s) Power Spent (W/h) CO2 Emitted (kg)
Y=10000 11690 695,08 0,30
Y=15000 17542 1056,06 0,46
Y=20000 23381 1419,01 0,62

(b) Training time, power usage and estimated CO2 emissions (for 30% sparsity)

Figure 4.3: Experiment results for GPT-2 models after applying iterative magnitude pruning to X%
sparsity, by pruning 10% of the weights every Y training steps. The models were trained on the WikiText-
103 dataset. The perplexity of the base GPT-2 model is displayed for comparison.

since the same dataset will be used.

The research conducted on the paper applied IMP solely to BERT based models, and did not focus

on any other transformer models. This meant that the universality of task transferal observed at 70%

sparsity for BERT could not be directly inferred to the GPT-2 model, since that would be a baseless

assumption. As such, we decided to conduct some extra testing to observe what the ideal sparsity for

the model should be, in order to achieve a proper size reduction while keeping the model performance

as unaffected as possible. To test this, we began applying IMP to the pre-trained GPT-2 model using

the WikiText-103 corpus, pruning the model to X% sparsity with a 10% pruning step every Y iterations,

varying both the number of iterations and the sparsity itself (between 10% and 70%); the relevant results

are displayed in Figure 4.3 (the complete test results are displayed in Appendix A).

As with the BERT models, the difference in perplexity seen between the base GPT-2 model and the

pruned ones is mainly due to a different dataset being used to apply IMP. More importantly, a trend can

be seen throughout all of the different sparsity percentage models: the resulting perplexity is lowered

until the model becomes 30% sparse, then it steadily begins to rise as the sparsity grows. We attribute

this behavior to the number of weights that get pruned and become unused within the model, which
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gradually make the model less knowledgeable in regards to predicting the following masked token. Ad-

ditionally, since a higher level of sparsity requires more training time performing IMP, the perplexity also

increases due to the model getting used to the dataset and over-fitting the training data. Following this

line of thought, we chose 30% sparsity as a valid sparsity percentage for pruning GPT-2, and focused on

comparing the results from the different training iterations used when performing IMP at that sparsity.

With both base models successfully pruned, we had to pick the best models in order to fine-tune

them. The accuracy reported on the results of each pruned model refers to the tasks of masked language

modeling in BERT based models and causal language modeling in GPT-2 based models, which are

both different tasks from the final ones the models are going to be fine-tuned in. We decided to use the

perplexity metric to decide which model was better, since it is an evaluation method intrinsic to the model

itself and does not directly evaluate the task at hand; this resulted in the two chosen models being BERT

pruned to 70% sparsity with a 10% pruning step every 15000 iterations, and GPT-2 pruned to 30% sparsity

with a 10% pruning step every 20000 iterations. These models were then fine-tuned in the same manner

as the baseline models; the results and the comparison between the pruned and baseline models are

displayed in Section 5.2.

4.5 Quantization

Given the positive results of previously quantized models (such as the one detailed in Section 3.2.1),

our initial approach to apply and study quantization was to make usage of quantization-aware training.

This also aligned with our goal of studying easy-to-use compression techniques, since QAT is made

available as a simple set of functions within the PyTorch framework. However, when we began exper-

imenting with applying QAT to BERT and GPT-2 models, despite the models being able to be trained

with this compression setup and properly simulating the effects of quantization, the technique always

failed at the final steps of creating the model; at the time of writing, PyTorch does not directly support

applying QAT to models that require embedding layers, thus ruling out QAT on Transformer architecture

models such as BERT and GPT-2. While solutions to this problem exist, all of them require fundamental

changes to the architecture of the model, which in turn make QAT a non-versatile compression tech-

nique to apply and place it outside of the scope of this work; with this in mind, we decided to study an

easy-to-use quantization technique instead, Dynamic Quantization (DQ).

To quantize every model, we applied DQ to the fine-tuned models used as baseline. Being a post-

training quantization technique, DQ requires no modification to the training setup nor additional training

time, so the compression process was very straightforward; we loaded the fine-tuned models, applied

DQ to quantize the weights of the models to 8-bit (using the QNNPACK 6 backend) and evaluated them.

The resulting performance of every model, as well as the comparison with the baseline, are displayed in

Section 5.3.

Although DQ was a simple compression technique to apply, we had to perform some changes in

order to use it on the GPT-2 based model. The quantization backend used by DQ only supports a select

6https://github.com/pytorch/QNNPACK
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few common neural network layers, such as the Linear layer (which applies a linear transformation to

the incoming data) used by BERT ; however, GPT-2 based models make use of the Conv1D layer (which

applies a one-dimensional convolution over the incoming data), which is not supported by the backend.

In order to be able to quantize GPT-2, every Conv1D layer had to be swapped with Linear layers after

loading the model; despite being a change in the framework of the model, this was done on-the-fly

before quantizing the model with very low loading time penalty and can be considered an extra step in

applying DQ. While this change allowed for GPT-2 models to be quantized, it had some negative effects

on the performance of those models, which we discuss in greater detail in Section 5.3.

Additionally, to evaluate the performance of compressed models on low-end hardware, we ran both

the baseline and the quantized models on a Raspberry Pi 4, a compact and modular single-board

computer designed for portability and flexibility of use (the model we used has 4GB of RAM), to compare

the inference time between the executed models, as well as between the models ran on the Raspberry

Pi CPU versus the ones ran on the cloud computing environment with the dedicated GPU. The resulting

comparison is detailed over in Section 5.3.

4.6 Quantization + Pruning

To test the combined effects of quantization and pruning, we applied DQ to the models previously

pruned via IMP and evaluated the resulting models. As discussed before, due to the nature of DQ,

applying it to pruned models was a simple task, although the same workaround had to be done for the

pruned GPT-2 model. Furthermore, the quantized and pruned models were also ran on the Raspberry

Pi to compare inference times; all of these results are displayed in Section 5.4.

4.7 Summary

We evaluated three different tasks – sentiment analysis, named entity recognition and dialog-driven

sentence generation – against three different model compression techniques – patient knowledge dis-

tillation (PKD), iterative magnitude pruning (IMP) and dynamic quantization (DQ) (additionally, we also

evaluated the combination of pruning and quantization) – and reported every detail regarding the testing

environment used.

For PKD, we ran the training dataset through the teacher model and gathered the results for the

intermediate model layers, which were then used to train the student model, thus achieving distillation of

knowledge. This was not possible to do for the sentence generation task due to the size of the dataset; to

get around this, the teacher model was loaded at the same time as the student model during its training,

and the results were calculated on-the-fly.

For IMP, we experimented with the pruning of the pre-trained model, applying 70% sparsity to BERT

models with varying training steps per pruning. Since the original paper referred to BERT models only, to

prune the GPT-2 models we experimented with different sparsity values and concluded that 30% sparsity

was the ideal value.
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For quantization, we initially experimented with applying quantization-aware training, but found out

that PyTorch does not support this quantization method on models that require embedding layers, which

is the case for Transformer-based models like BERT and GPT-2. Therefore, we decided to experiment

and evaluate models quantized with DQ, which was directly applied to the previously fine-tuned base-

lines without requiring any extra training whatsoever. DQ was also applied to the pruned models after

fine-tuning them, to study the effects of combining both compression techniques.
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Chapter 5

Results

In this chapter, we review the results of the experiments described in Chapter 4 and establish com-

parisons to the baseline models in terms of performance and resource usage metrics.

The results shown focus on the most relevant metrics for each model (accuracy and F1 score for

BERT models, and BLEU and TER for GPT-2 models); the full results of the recorded metrics can be

seen in the Appendix Table A.1. Unless specified otherwise, the training time and power spent refer to

the full model training process, the inference time refers to the time the model took to perform an entire

run over the evaluation dataset (according to the training details in Section 4.2), and the estimated CO2

emissions refer to all the runs performed for that task.

5.1 Knowledge Distillation

Overall, knowledge distillation had an outstanding result on BERT based models. For the sentiment

analysis task (displayed in Figure 5.1), none of the recorded metrics for the distilled model degraded

more than 1% compared to the fine-tuned baseline: the model got an accuracy of 0.931 and a F1 score

of 0.929, which is only 0.76% worse than the accuracy of the baseline model (0.938) and 0.82% worse

than the F1 score of the baseline model (0.937). For the named entity recognition task (shown in Figure

5.2), the distilled model obtained an accuracy of 0.985 – just 0.27% worse than the accuracy of 0.988

observed in the baseline model – and a F1 score of 0.928, faring 1.38% worse compared to the F1 score

of the baseline model (0.941). In both task results (but more noticeable in the named entity recogni-

tion task) we can see that the performance ranges between the compressed model and the baseline

overlap, and, for the highest scoring learning rates used in training, the model results get very close to

the expected performance of the baseline model; this implies that a well-trained distilled model using

proper hyperparameter optimizations could outperform the original uncompressed model, although this

verification is outside the scope of this work. The small size of these distilled models (270MB, 39%

smaller than the original baseline model) resulted in overall shorter training times, which consequently

lowered the power spent and the resulting calculated CO2 emissions. This also influenced the inference

times, with the distilled model fine-tuned on the task of sentiment analysis achieving an outstanding 79%
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(c) Model size, average training/inference time and power usage, and estimated CO2 emissions across all runs

Figure 5.1: Experiment results for distilled models fine-tuned in sentiment analysis.
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Figure 5.2: Experiment results for distilled models fine-tuned in named entity recognition.
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(c) Model size, average training/inference time and power usage, and estimated CO2 emissions across all runs

Figure 5.3: Experiment results for distilled models fine-tuned in sentence generation.
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improvement over the baseline model, and the named entity recognition model achieving 21% faster

inference times.

For the GPT-2 based models fine-tuned in sentence generation (displayed in Figure 5.3), knowledge

distillation proved to be the worst performing model compression technique, with the distilled model

achieving a BLEU score of 1.975 – a loss of 16.37% compared to the baseline score of 2.362 – and

a TER score of 1.035, a slight increase of 1.86% over the baseline score of 1.016; this drop in model

quality was felt throughout all evaluation metrics, which can be seen in the Appendix Table A.1. Similarly

to the other tasks, the distilled sentence generation model ended up with a size 26% smaller than the

baseline model, which directly affected the lowering of the inference time by a sizable 54% compared to

the baseline. However, due to the workaround used to perform PKD (discussed in detail in Section 4.3),

there were effectively two different models loaded and executed during training, which greatly extended

the training time by 52%; this had a directly proportional impact on the power spent and, consequently,

on the estimated CO2 emissions.

We mostly attribute the large result deterioration of the models fine-tuned in sentence generation to

the architecture of the small student model. Considering the observed results we conclude that, for a

complex1 model such as GPT-2, a compact version of the same model with only 6 layers does not have

enough model parameters to properly learn all the information it needs from the teacher model; however,

we believe that the same student model architecture with some more layers (or even a different model

architecture altogether) could better learn from the teacher model, such that a proper trade-off between

quality and size can still be achieved.

5.2 Pruning

Observing the results, we can see an overall decrease in model performance metrics compared to

the baseline model. For the sentiment analysis task (displayed in Figure 5.4), the models pruned using

IMP obtained an accuracy of 0.874 and a F1 score of 0.883, which is 6.90% and 5.71% worse than the

scores obtained by the baseline, respectively; for the named entity recognition task (displayed in Figure

5.5), the difference is smaller but still negative, with an accuracy of 0.981 (0.68% worse than the baseline)

and a F1 score of 0.907 (3.53% worse than the baseline). Additionally, the results for both tasks show

no major difference from the baseline models in regards to training time, inference time, and the power

spent training and calculated CO2 emissions thereof.

Interestingly, IMP provided a noticeable improvement for the models fine-tuned on the sentence

generation task (shown in Figure 5.6), obtaining a BLEU score of 2.682 – a substantial 13.56% increase

over the baseline – and a TER score of 1.024, a small increase of 0.78% compared to the baseline.

Additionally, the training and inference times for the pruned model are 4% and 9% smaller than the

ones reported for the baseline, respectively; we attribute this difference in timing to the more efficient

computation of the complex convolution layers present in GPT-2 models, given that 30% of the weights

1While both BERT and GPT-2 fundamentally have the same Transformer-based architecture [1], GPT-2 uses more complex
”decoder” blocks on its layers while BERT uses the simpler ”encoder” blocks, hence our classification of complex model.
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(c) Model size, average training/inference time and power usage, and estimated CO2 emissions across all runs

Figure 5.4: Experiment results for pruned models fine-tuned in sentiment analysis.
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(c) Model size, average training/inference time and power usage, and estimated CO2 emissions across all runs

Figure 5.5: Experiment results for pruned models fine-tuned in named entity recognition.
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Spent (W/h)

Total CO2

Emitted (kg)
Baseline 650 101286 3072.52 6009.83 7.88

IMP 650 97124 2795.51 5786.84 7.59
(c) Model size, average training/inference time and power usage, and estimated CO2 emissions across all runs

Figure 5.6: Experiment results for pruned models fine-tuned in sentence generation.
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Model Size (MB)
Avg. Inference Time

per single example (s) Accuracy F1
CPU GPU

Baseline 440 10.000 0.003 0.938 0.937
DQ 175 4.850 0.286 0.934 0.927

Table 5.1: Experiment results for quantized models fine-tuned in sentiment analysis.

Model Size (MB)
Avg. Inference Time

per single example (s) Accuracy F1
CPU GPU

Baseline 440 5.373 0.014 0.988 0.941
DQ 175 2.155 0.170 0.979 0.894

Table 5.2: Experiment results for quantized models fine-tuned in named entity recognition.

Model Size (MB)
Avg. Inference Time

per single example (s) BLEU TER
CPU GPU

Baseline 650 885.912 3.073 2.362 1.016
DQ 280 326.905 54.526 2.076 1.016

Table 5.3: Experiment results for quantized models fine-tuned in sentence generation.

are set to zero. The lower training time also has the side effect of lowering the amount of power spent

during training and, consequently, the estimated CO2 emissions.

The removal of 30% of the smaller weights within the model led to several improvements on the

sentence generation task model. We attribute this gain to the now-removed weights causing less inter-

ference on further calculations regarding their respective weight matrices, while not removing too many

weights so as not to take a larger hit on model quality; we believe that complex models, like those based

on GPT-2, have larger numbers of these noisy weights, thus taking better advantage of pruning tech-

niques. However, despite displaying these improvements and only slightly worsening the performance

of the remaining models, this model compression technique ultimately failed the main goal of reducing

model size; this is due to the problem with representing sparse matrices (briefly discussed in Section

2.2). With only 70% of the weights pruned in BERT based models (and an even lower 30% for GPT-2

based ones), no method of sparse matrix representation would allow for a smaller sized weight storage

with no additional detrimental computational overhead [25]; additionally, PyTorch currently offers no way

of saving or loading weights as sparse matrices, so we had to store the pruned models with the same

representation as the fine-tuned models, thus saving no model size whatsoever. Nevertheless, we con-

clude that, despite not saving space in practice, magnitude pruning is an effective way of compressing a

model while maintaining (and even improving) the quality and performance of the model.
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5.3 Quantization

As previously mentioned in Section 4.5, unlike the other compression techniques we experimented

with, DQ is applied post-training; therefore, we cannot analyze the expected validation performance

development over the training epochs, nor is there any training time or power usage to compare against.

Observing the final results, we can see minor quality degradation on the BERT based models: for the

task of sentiment analysis (displayed in Table 5.1), DQ scored 0.934 in accuracy and 0.927 in F1 score,

only 0.51% and 1.00% worse than the respective scores for the baseline model; for the task of named

entity recognition (shown in Table 5.2), DQ slightly worsened the accuracy by 0.91% compared to the

baseline by obtaining a score of 0.979, and got a F1 score of 0.894, 5.00% worse than the baseline score.

Regarding the sentence generation task, the results (displayed in Table 5.3) show that, compared to

the baseline, the quantized fine-tuned model severely worsened its BLEU score by 12.10% with a value

of 2.076, while obtaining a TER score of 1.016, a very narrow improvement of 0.01% over the baseline. As

previously explained in Section 4.5, this large drop in model quality can be attributed to the architectural

change made on-the-fly to be able to apply DQ to GPT-2 based models; the one-dimensional convolution

operations performed over data, present in the layers of the original architecture, are drastically different

from the linear transformation operations performed by the replaced layers, which lead to different results

from the ones the model was originally trained to obtain. We believe this negative outcome can be

reduced if the model architecture is changed before training and quantizing, preferably with a pre-training

quantization technique; we were unable to experiment with QAT, and as such leave this hypothesis as

future work in this area.

While all quantized models showed significant model size reduction, with the BERT based models

being compressed to 175MB (60% of the original model size) and the GPT-2 based models ending up

with a size of 280MB (57% of the starting size), this is only reflected in the size loaded in memory; there

is no current way of saving or directly loading a quantized model in PyTorch. The model still has to be

stored as a non-quantized floating-point model, which is then loaded and quantized after loading, and

only then can the quantized integer weights be loaded.

The major improvement with quantized models, however, is their performance in CPU-optimized

hardware. Comparing both the baseline and DQ models when ran on the Raspberry Pi, operations

within the model layers using integer weights prove to be much faster, with the sentiment analysis task

executing queries 51.50% faster, the named entity recognition task showing 59.89% lower latency, and

the sentence generation task performing 63.10% faster compared to the baseline models. However, it is

worth noticing that modern GPUs can still perform integer-based operations and end up running CPU-

optimized models faster than a regular CPU [9]; therefore, despite the latency improvement in a CPU

environment, quantized models executed on a GPU still outperform their counterparts ran on a CPU: the

sentiment analysis task runs 94.10% faster on GPU, the named entity recognition task executes 92.11%

faster and the sentence generation task takes 83.32% less time. Lastly, since GPUs are optimized to

perform operations on floating-point weights, the time taken by the GPU to execute operations on integer

values is directly responsible for DQ models to show exponentially higher latency values: quantized
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Model Size (MB)
Avg. Inference Time

per single example (s) Accuracy F1
CPU GPU

Baseline 440 10.431 0.003 0.938 0.937
IMP+DQ 175 5.155 0.286 0.883 0.881

Table 5.4: Experiment results for pruned & quantized models fine-tuned in sentiment analysis.

Model Size (MB)
Avg. Inference Time

per single example (s) Accuracy F1
CPU GPU

Baseline 440 4.870 0.014 0.988 0.941
IMP+DQ 175 1.917 0.171 0.956 0.775

Table 5.5: Experiment results for pruned & quantized models fine-tuned in named entity recognition.

Model Size (MB)
Avg. Inference Time

per single example (s) BLEU TER
CPU GPU

Baseline 650 868.929 3.073 2.362 1.016
IMP+DQ 280 348.607 54.467 2.373 1.009

Table 5.6: Experiment results for pruned & quantized models fine-tuned in sentence generation.

models run 98.95% slower for the sentiment analysis task, 91.76% slower for the named entity recognition

task, and 94.36% slower for the sentence generation task. From these results, we can conclude that

quantization is a valuable compression method to apply on models deployed on low-end CPU-optimized

hardware, but its usage is highly detrimental on hardware environments that make use of GPUs.

5.4 Quantization + Pruning

By quantizing the previously pruned models, we obtained a better insight into the effects of quan-

tization on language models. Much like the conclusions we inferred from the results of the quantized

models, applying DQ on models pruned with IMP resulted in a smaller model size and faster inference

times when executed on CPU, leading to further reinforcement of our findings regarding performance

on low-end hardware. However, compared to the aforementioned quantization results, we can observe

an interesting effect on the model quality depending on the results previously obtained from the pruned

models for every NLP task. For sentiment analysis, a task that previously showed a sizable decrease in

quality when pruned but displayed only minor quality setbacks when quantized, the results from applying

both DQ and IMP (shown in Table 5.4) show a degradation of 5.88% on accuracy and 5.92% on F1 score

compared to the baseline, with scores of 0.883 and 0.881 respectively; while still a negative outcome,

the accuracy value is better than the one obtained by the solely pruned model, and the F1 score only

slightly worsened compared to the pruned value. On the task of named entity recognition, one that

showed considerable quality deterioration from both IMP and DQ, the mixture of both (presented in Ta-

ble 5.5) resulted in far worse results than either of the techniques on their own, with an accuracy of 0.956
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(3.19% worse than the baseline) and a F1 score of 0.775 (17.66% worse than the baseline). However, for

the models fine-tuned in the task of sentence generation, quantization seems to have mostly nullified the

major improvements to the model quality provided by IMP: the quantized and pruned model obtained a

BLEU score of 2.373 and a TER score of 1.009 – 0.50% better and 0.68% lower than the baseline results,

respectively – showing that, while not as significant as the boost in quality from solely pruning the model,

quantizing the pruned model still outperformed the baseline results, and managed to improve the TER

score of the model compared to the pruned score.

With a minor overall improvement to the pruned sentiment analysis task, a major decline in quality

in the pruned named entity recognition task, and a lower-than-expected degradation on the sentence

generation task, we conclude that, while the performance of the model on CPU is always improved,

quantizing an already compressed model has significant but inconsistent effects on the quality of the

model, and must ultimately be judged on a case-by-case study across tasks to verify if the quality does

not severely degrade.

5.5 Environmental Footprint

To properly compare the footprint of our models, we took the average power spent by the GPU to

train each model in a specific task, and calculated the estimated CO2 the models would emit were they

to be trained in a data center, as shown in Section 3.4. It is important to note that the high CO2 emissions

observed by the authors in the paper [10] are due to their models being trained using several distributed

GPUs; we will instead be comparing the compressed models against our fine-tuned baselines.

Unlike the other evaluation metrics, we calculated the CO2 emissions considering the total energy

cost of training each model, including every model run performed for all learning rates; in the case of

IMP, this cost also accounts for the pre-training necessary to prune models. This was done to further

resemble a real training procedure for a language model, which usually includes several runs worth of

hyperparameter search.

Overall, different model compression techniques have different effects on the CO2 emissions across

fine-tuning each model. Observing the results shown in Table 5.8, we can see that quantization is

the best compression technique in terms of energy expenditure due to DQ being applied post-training,

requiring no extra model training time. Knowledge distillation proved to be very effective in reducing

CO2 emissions, with a 48.7% reduction over the baseline in the task of sentiment analysis and a 18.2%

reduction on the named entity recognition task; however, as previously mentioned in Section 4.3, the

workaround used to apply PKD to GPT-2 based models meant that the teacher model was executed at

the same time as the student model, resulting in an increase of CO2 emissions by 54.6%.

Regarding the pruning compression technique, the estimated CO2 emissions produced by fine-tuning

the models were very similar to the baseline values. However, when adding the cost of pruning the base

models using IMP, the resulting emissions became much worse, with large increases of 223% and 342%

over the sentiment analysis and named entity recognition task, and a smaller increase of 4% over the

sentence generation. This is due to the IMP process requiring extra training time to prune the models,
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IMP CO2

Emissions
All trained

models Best model

BERT 4.250 1.413
GPT-2 3.267 0.620

Table 5.7: Estimated CO2 emissions (in kg) for all models trained during IMP.

Baseline PKD
IMP

DQ‡
Fine-tune Full†

Sentiment
Analysis 0.633 0.325 0.633 2.046 0

Named Entity
Recognition 0.412 0.337 0.411 1.824 0

Sentence
Generation 7.883 12.186 7.591 8.211 0

†Values include CO2 emissions from previous model training during IMP
‡DQ is a post-training quantization method, and therefore has no additional power usage

Table 5.8: Comparison between estimated CO2 emissions (in kg) for baseline and compressed models
(singular compression techniques only).

which translates to a greater amount of energy spent; in the case of BERT based models, the increase is

much higher due to the time taken to apply IMP to 70% sparsity compared to the time taken to fine-tune

the models, while GPT-2 based models take relatively less time to prune up to 30% sparsity.

It is worth noting that, taking in consideration the estimated CO2 emissions for testing all the dif-

ferent training step variations in applying IMP (shown in Table 5.7), this compression technique ends

up becoming very influential on the ecological footprint of the model, especially when considering that

the emissions would be even greater in a real training procedure where several more runs would be

made to cover a wider hyperparameter search. We conclude that, energy-wise, pruning is only a good

model compression option when the target model does not require a high level of sparsity to improve its

performance, such as the case of GPT-2 based models.

5.6 Summary

Knowledge distillation proved to be the best compression technique for BERT based models, espe-

cially for the named entity recognition task, by creating a smaller and faster model while only slightly

lowering model quality; however, it proved to be very detrimental to GPT-2 based models used for the

sentence generation task.

Pruning showed no major improvements in the inference time of the BERT based models, obtained

worse results than the baseline and provided no size reduction due to the inability to store and load

sparse models. However, for the GPT-2 based models, pruning was the best compression technique,

offering a slight reduction in training and inference time while significantly increasing the model quality.

Quantization only slightly lowered the model quality for BERT based models, especially for the sen-

timent analysis task; it was also effective in reducing model size, and showed faster inference times

than the baseline when ran on a Raspberry Pi 4, a low-end CPU-optimized hardware; however, the
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inference speedup times are only worthwhile if the model is to be deployed on such a hardware, since

the inference time becomes much slower compared to the baseline when ran on a GPU environment.

It severely worsened the model quality for the sentence generation task, which can be attributed to the

on-the-fly architectural change required to quantize GPT-2 based models on PyTorch. Furthermore, the

application of quantization on a pruned model proved to be beneficial on some tasks, such as sentence

generation (which had outstanding results when pruned but very low results when only quantized) or

sentiment analysis (which had low scores for pruned models but good results for quantized models), but

showed no major improvements compared to any of the individual compression methods, leading to the

conclusion that quantization can be applied on top of other compression techniques to take advantage

of the benefits of quantized models, but the results show that it should only be done on a case-by-case

basis (or if the quantized benefits outweigh the overall score reduction).

Regarding the environmental footprint, compression techniques that use no extra training time (such

as dynamic quantization) or that generate smaller models which require less time to train (such as knowl-

edge distillation) are preferable, since training time is directly linked to the estimated CO2 emissions of

a model. Pruning proved to be the worst performing compression technique due to the large amount

of pre-training required to sparsify the model before fine-tuning; additionally, the workaround required

to apply knowledge distillation to the sentence generation task meant that the model training was much

longer, resulting in higher power expenditure that lead to higher estimated CO2 emissions.

A summarized version of the comparisons between the resulting metrics can be seen in the Appendix

Table A.1.
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Chapter 6

Conclusions and Future Work

This work contributed to the study of model compression in NLP, by experimenting several common

model compression techniques and drawing conclusions in regards to the trade-off between perfor-

mance and computational resource usage. We present our achievements in Section 6.1 and possible

directions regarding future work in Section 6.2.

While large NLP models keep obtaining state-of-the-art results, we believe model compression can

compete with these results while simultaneously making the most out of the model at hand. Further

exploring model compression solutions can bring major advantages to the deployment of NLP models,

not only for low-end hardware and mobile devices which are present all around us nowadays, but also for

environments that require low latency usage or restricted resource expenditure. We also believe model

compression solutions are a viable solution for the ever-increasing problem of large models requiring

large amounts of energy consumption, the huge monetary costs attached to it, and the worrisome con-

sequence of the carbon footprint produced by it.

6.1 Achievements

When we began this work, we sought to evaluate several common model compression techniques

in order to pick the one with best results, keeping in mind the ease of use and trade-offs between

performance and computational resource usage. We found that different model compression techniques

have different effects based on the architecture of the target model, as well as the NLP task it is fine-

tuned on.

Regarding the trade-off in model performance and computational resources required, we conclude

that knowledge distillation is the best compression choice for BERT based models such as the ones

used for sentiment analysis and named entity recognition, having a very low reduction in model evalu-

ation metrics while achieving a major speed-up in inference time and good model size reduction. For

GPT-2 based models, such as the one used for sentence generation, we conclude that pruning has the

better effect on the quality of the model, with sizable improvement over the evaluation metrics and a

faster inference time, though the effective size of the model remains the same as the original uncom-
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Figure 6.1: A simplified flowchart guide on how to best compress a NLP model, based on our findings.

pressed model.

We were unable to study the effects of quantization-aware training on language models. Neverthe-

less, we conclude that post-training quantization is ideal for models meant to be deployed in low-end

hardware with no GPU; while overall degrading the quality of the model, quantization is effective at

compressing the size of a model down to a fraction of the size of the original, and can be applied after

other compression techniques to make use of the improvements these may bring to the model, with the

downside of lowering or even negating these improvements.

Furthermore, we conclude that the usage of model compression techniques that require extra training

besides fine-tuning are noticeably detrimental to the ecological footprint of the model, and compression

techniques that reduce the complexity and size of the model before training (or that require no additional

training, in the case of post-training compression) should always be preferred.

Based on our results, we outlined a general flowchart (displayed in Figure 6.1) that can be followed

to effectively compress a language model while maintaining a good balance between the model quality

and performance, and the computational resources needed to store, run and further train the model.

We want to stress that this flowchart is made from the preliminary conclusions we drew from our study,

and in order to accurately streamline what compression techniques should be picked for models in

general, more research and experiments would have to be done in regards to the model compression

techniques applied, the language models and NLP tasks used, the training and testing environments,

among others; nevertheless, we believe this flowchart to be a broad enough guide to follow. Lastly, we

want to underline that, ultimately, the best way to compress any given language model is to test several

compression techniques and combinations thereof, since results vary from model to model and task to

task.

6.2 Future Work

Although this work contributed to the study of the impact of model compression techniques in NLP,

there are several important paths along this line of work that would benefit from better research. For
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knowledge distillation, an avenue of research worth broadening would be the study of different stu-

dent model architectures, not only comparing the resulting model quality but also its versatility regard-

ing different teacher model architectures and complexities, different NLP tasks, and different distillation

techniques. Regarding quantization, there is some work to be done on evaluating and comparing dif-

ferent quantization schemes against different NLP tasks and when applied in conjunction with other

compression techniques; such schemes can range from less-compressed alternatives such as 16-bit

quantization, to more extreme quantization solutions such as GOBO [40], Q-BERT [41], or even Binary-

BERT [42], which quantize models to 3-bit, 2-bit and 1-bit – weight binarization – respectively. We briefly

covered the combination of different compression techniques in this work, which leads into another in-

teresting study direction to pursue; although we believe not all possible permutations between model

compression techniques are fruitful, there is some interest in evaluating the best combinations given the

varied results obtained from our experiments.

On a final note, we would like to bring more focus to the usefulness of model compression as the

complexity of NLP models keeps increasing; it may even be reaching cost-related roadblocks, in which

case compression becomes even more important. There are still several compression features missing,

undeveloped or roughly integrated into popular neural network frameworks like PyTorch due to their

categorization as experimental features, even though there are many years of work related to this field

of study. Some missing features include the saving and loading of sparse and quantized models, or the

full implementation of well-developed and tested compression techniques such as quantization-aware

training. With these features in place, the study and application of model compression could be further

streamlined, resulting in wider appeal and usage across deployed language models as an extra step in

fine-tuning.
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Appendix A

Compression Results

This appendix contains the results of the remaining model metrics we evaluated for every model, as

well as a result summary for all of the metrics regarding compressed models.
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Figure A.2: Additional fine-tuned results for the sentiment analysis task. Complementary to Figure 4.1.

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

1 2 3 4 5

P
re

c
is

io
n

Epoch

Finetune

(a) Precision

0,84

0,86

0,88

0,9

0,92

0,94

0,96

1 2 3 4 5

R
e

c
a

ll

Epoch

Finetune

(b) Recall

0,84

0,86

0,88

0,9

0,92

0,94

0,96

1 2 3 4 5

F
1

Epoch

Finetune

(c) F1

Figure A.3: Additional fine-tuned results for the named entity recognition task. Complementary to Figure
4.1.
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Figure A.4: Additional fine-tuned results for the sentence generation task. Complementary to Figure 4.1.
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Figure A.5: Additional experiment results for pruned models fine-tuned in sentiment analysis. Comple-
mentary to Figure 5.4.
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Figure A.6: Additional experiment results for pruned models fine-tuned in named entity recognition.
Complementary to Figure 5.5.
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Figure A.7: Additional experiment results for pruned models fine-tuned in sentence generation. Com-
plementary to Figure 5.6.
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Figure A.8: Additional experiment results for distilled models fine-tuned in sentiment analysis. Comple-
mentary to Figure 5.1.
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Figure A.9: Additional experiment results for distilled models fine-tuned in named entity recognition.
Complementary to Figure 5.2.
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Figure A.10: Additional experiment results for distilled models fine-tuned in sentence generation. Com-
plementary to Figure 5.3. Note that, due to the large difference between results, the Hits@1/5/10 metrics
are displayed with two separate value axis.
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Task Metrics Baseline Knowledge
Distillation Pruning Quantization Quantization

+ Pruning

S
en

tim
en

t
A

na
ly

si
s Accuracy 0.938 0.931 (↓ 0.76%) 0.874 (↓ 6.90%) 0.934 (↓ 0.51%) 0.883 (↓ 5.88%)

F1 0.937 0.929 (↓ 0.82%) 0.883 (↓ 5.71%) 0.927 (↓ 1.00%) 0.881 (↓ 5.92%)
Precision 0.951 0.946 (↓ 0.56%) 0.856 (↓ 10.06%) 0.965 (↑ 1.40%) 0.900 (↓ 5.38%)

Recall 0.936 0.928 (↓ 0.85%) 0.933 (↓ 0.25%) 0.908 (↓ 2.94%) 0.884 (↓ 5.51%)

N
am

ed
E

nt
ity

R
ec

og
ni

tio
n Accuracy 0.988 0.985 (↓ 0.27%) 0.981 (↓ 0.68%) 0.979 (↓ 0.91%) 0.956 (↓ 3.19%)

F1 0.941 0.928 (↓ 1.38%) 0.907 (↓ 3.53%) 0.894 (↓ 5.00%) 0.775 (↓ 17.66%)
Precision 0.936 0.922 (↓ 1.54%) 0.903 (↓ 3.54%) 0.890 (↓ 4.99%) 0.798 (↓ 14.78%)

Recall 0.945 0.934 (↓ 1.21%) 0.912 (↓ 3.53%) 0.898 (↓ 4.96%) 0.768 (↓ 18.72%)

S
en

te
nc

e
G

en
er

at
io

n

BLEU 2.362 1.975 (↓ 16.37%) 2.682 (↑ 13.56%) 2.076 (↓ 12.10%) 2.373 (↑ 0.50%)
TER 1.016 1.035 (↑ 1.86%) 1.024 (↑ 0.78%) 1.016 (↓ 0.01%) 1.009 (↓ 0.68%)

BERTScore 0.852 0.849 (↓ 0.28%) 0.854 (↑ 0.24%) 0.849 (↓ 0.24%) 0.852 (↑ 0.00%)
Hits@1 0.817 0.024 (↓ 97.10%) 0.812 (↓ 0.60%) 0.809 (↓ 0.96%) 0.803 (↓ 1.72%)
Hits@5 0.977 0.140 (↓ 85.67%) 0.976 (↓ 0.10%) 0.974 (↓ 0.30%) 0.973 (↓ 0.39%)

Hits@10 0.996 0.356 (↓ 64.24%) 0.996 (↓ 0.01%) 0.995 (↓ 0.10%) 0.995 (↓ 0.07%)

Table A.1: Comparison between the results of all model compression techniques, and the variance
percentage compared to the baseline results. The arrows represent whether the variance is positive
or negative. Filled cells signify the best scores between the compression techniques, and bold cells
signify that the score obtained for that compression technique is better than or equal to the baseline
score.
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