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Resumo

Notamos que nenhuma solução é fornecida para o problema do sabor no contexto do Modelo Padrão

(SM) mas que este pode ser resolvido pela introdução de múltiplas simetrias modulares. Construı́mos

modelos para os sabores leptónicos baseados em duas simetrias modulares A4, que são quebradas

por um campo bi-tripleto para o subgrupo diagonal AD4 , resultando em uma simetria modular do sabor

efetiva com dois módulos. Utilizámos esses módulos como estabilizadores, que preservam simetrias

residuais distintas, permitindo-nos obter a mistura Tri-Maximal 2 (TM2) com um conteúdo de campos

mı́nimo, sem flavons a baixa energia, abaixo da quebra para um único A4. Também construı́mos mo-

delos baseados em duas simetrias modulares A5, que são quebradas por um bi-quintupleto (se os

neutrinos obtêm a sua massa através do operador de Weinberg) ou um campo bi-tripleto (se os neu-

trinos obtêm a sua massa através do tipo I do mecanismo de seesaw), para o subgrupo diagonal AD5 .

Para estes modelos, obtém-se uma mistura que preserva a segunda coluna da mistura do número de

ouro (GR), que denominamos GR2. Os melhores ajustes e gráficos para o decaimento beta sem neu-

trinos são obtidos para todos estes modelos. Percebeu-se que a ordenação normal (NO) das massas

dos neutrinos é a ordenação mais favorecida, sendo os modelos que resultam em GR2 mais favoráveis

do que aqueles que resultam em TM2. Para todos os ajustes para NO, as massas e ângulos de mistura

dos neutrinos, exceto θ12, são compatı́veis com os resultados experimentais a 1σ.

Palavras-chave: Problema do Sabor, Múltiplas Simetrias Modulares, Mistura Tti-Maximal 2,

Mistura do Número de Ouro, Massas e Ângulos de Mistura dos Neutrinos
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Abstract

We note that no solution is provided for the flavour problem in the context of the Standard Model (SM)

but that this can be solved by introducing multiple modular symmetries. We construct lepton flavour

models based on two A4 modular symmetries, which are broken by a bi-triplet field to the diagonal

subgroup AD4 , resulting in an effective modular flavour symmetry with two moduli. We employ these

moduli as stabilisers, that preserve distinct residual symmetries, enabling us to obtain Tri-Maximal 2

(TM2) mixing with a minimal field content, flavonless at the effective scale, below the breaking to the

single A4. We also construct models based on two A5 modular symmetries, which are broken by a

bi-quintuplet (if neutrinos get their mass through the Weinberg operator) or a bi-triplet field (if neutrinos

get their mass through the type I seesaw mechanism), to the diagonal subgroup AD5 . For these models,

a mixing that preserves the second column of the Golden Ratio (GR) mixing, which we called GR2, is

obtained. Best fit points and plots for the neutrinoless beta decay are obtained for all these models.

It was realised that the normal ordering (NO) of neutrino masses is the preferred ordering, being the

models that lead to GR2 more favourable than those that lead to TM2. For all the best fit values for NO,

the neutrino masses and mixing angles except θ12 are compatible with experimental results at the 1σ

confidence interval.

Keywords: Flavour Problem, Multiple Modular Symmetries, Tri-Maximal 2 Mixing, Golden Ratio

Mixing, Neutrino Masses and Mixing Angles
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Chapter 1

Introduction

The current model of particle physics is the Standard Model (SM) [1–3]. Until now, it has been

extremely compatible with experimental results. In this model, the fundamental constituents of matter

are quarks and leptons. There are three charged electron-like leptons, the electron, the muon, and

the tau, and three neutral leptons interacting only weakly, the neutrinos, which come in three flavours as

their charged partners. These are organised in triplets of flavour. The SM also describes the interactions

between these particles, which are mediated by bosons: the photon, for the electromagnetic interaction,

the W and Z bosons for the weak interaction, and the gluons, for the strong interaction.

This model was completed with the discovery of the Higgs boson in 2012 at the LHC [4, 5]. After

spontaneous symmetry breaking, when the Higgs field acquires a non zero vacuum expectation value

(VEV), the Yukawa terms give mass to the charged leptons. However, neutrinos remain massless in the

SM, which is in disagreement with experimental evidence.

Flavour symmetries, both discrete and continuous, have been extensively treated in the literature

as a way to solve the puzzling questions associated with flavour. Examples of discrete well-known

symmetries applied to flavour are A4, S4, A5 and ∆(27).

Theories that use modular symmetries, upgrading the Yukawa couplings to modular forms and in-

troducing similar transformations for the particle blocks, were also constructed. Models using multiple

S4 modular symmetries (one for the charged leptons, one or two for the neutrinos, each one with its

own modulus field, that treat the symmetry breaking from these multiple symmetry groups to a single

symmetry group at low energy) can be found at [6, 7]

Before the mixing angles were observed experimentally with more precision, a commonly used mix-

ing texture for the PMNS matrix was the Tri-BiMaximal mixing (TBM). This ansatz, ruled out since the

measurement of non-zero θ13 mixing angle, remains an appealing leading order solution with no free

parameters. Mixing schemes such as Tri-Maximal 1 (TM1) and Tri-Maximal 2 (TM2) preserve respec-

tively the first and second columns of tri-bimaximal mixing [8], and remain viable. For models that deal

with A4 symmetries I will be particularly interested in the tri-maximal 2 (TM2) mixing, which preserves

1



the second column of the tri-bimaximal mixing matrix:

UTM2
=


−

√
1
3 −

−
√

1
3 −

−
√

1
3 −

 . (1.1)

Another mixing I will be particularly interested, in this case with relation to models with A5, is the Golden

Ratio mixing. More specifically, I will be exclusively interested in models that preserve the second column

of the golden ratio mixing matrix:

UGR2
=


− 1√

2+φ
−

− φ√
4+2φ

−

− φ√
4+2φ

−

 , (1.2)

where φ is the golden ratio: φ = 1+
√

5
2 .

The objective of this dissertation now follows: I will use multiple modular symmetries, either two A4’s

or two A5’s, to construct a high energy theory which is then broken to a low energy model with a single

modular symmetry, whose moduli fields gain different VEV’s, leading to the realisation of different mass

textures in the charged lepton and neutrino sectors. It is then possible to obtain a realistic mixing matrix

and mass hierarchies, for example TM2 or GR2. These modular symmetries are thus able to generate

all masses and mixing parameters for the leptons, using a much smaller set of free parameters, almost

only using the VEV’s of the Higgs and the moduli fields. Additionally, it will be investigated, through the

introduction of driving fields, how the VEV’s of the fields that are responsible for the breaking from two

modular symmetries to a single one are created.

We will now conclude with a brief outline of the present thesis. In Chapter 2, we review the state of

the art of the field. We start by reviewing the leptonic sector of the SM model, how neutrino masses can

be generated and discuss how the flavour problem arises. We then introduce the concept of modular

symmetries, which can be used to solve the flavour problem, and how we can obtain a lagrangian

invariant under these symmetries. In Chapter 3, three models using two modular A4 symmetries are

introduced which are then broken to a single A4, one using the Weinberg operator and two the type I

seesaw mechanism. In Chapter 4, the same procedure is introduced for obtaining two models, one using

the Weinberg operator, the other the seesaw mechanism, invariant under two A5 modular symmetries

which are similarly broken to a single A5. In Chapter 5, we review the main conclusions and some

aspects of the present work possible to be improved in the future.
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Chapter 2

State of the Art

The present state of theoretical particle physics had their main development in the 30’s and 40’s with

the development of Quantum Field Theory (QFT) in the form of Quantum Electrodynamics (QED). In

connection with experiment, this framework lead to the establishment of the SM [3, 9, 10]. However,

there were still some problems that remained unsolved and lead to the investigation of extensions of this

model.

Supersymmetry first appeared in the context of string theory through the introduction of infinitesimal

transformations that interchange bosonic and fermionic fields [11, 12] but soon was worked into a form

using quantum field theory in four spacetime dimensions [13] (see [14, 15] and their bibliography for the

subsequent development). Given the present experimental knowledge, there is no support for this class

of models, that are today quite disfavoured in the sense of requiring the superpartners of the known

particles to be much heavier. But it was in connection with supersymmetry and string theory that a new

type of symmetries started to be applied to extended forms of the SM: modular symmetries. These,

similarly to simpler symmetries already used, proved to be a way of generating all the parameters in the

leptonic sector of the SM in agreement with experiment.

Flavour symmetries, both discrete and continuous, have been extensively employed in the literature

as a way to solve the puzzling questions associated with flavour. Examples of well-known discrete

symmetries applied to flavour are S3, A4, S4 and A5. More recently, these same symmetries are used in

flavour models as modular symmetries Γ2 ' S3 [16–20], Γ3 ' A4 [21–44], Γ4 ' S4 [6, 7, 45–51], and

Γ5 ' A5 [52, 53]. More recently Γ7 ' PSL(2,Z7) was studied [54] and [55] studied the mass sum rules

arising in these models.

As an example, a S4 flavour model featuring TM1 mixing [56] is constructed in an elegant manner

from three S4 modular symmetries [7]. This work presents a general mechanism of employing multiple

modular symmetries to construct a high energy theory which is then broken to a low energy model

with a single modular symmetry, which is also broken when these modulus fields gain different VEV’s

at fixed points of the modular symmetry (stabilisers). The preserved residual symmetries then lead to

the realisation of different mass textures in the charged lepton and neutrino sectors. These modular

symmetries are thus able to generate all masses and mixing parameters for the leptons, using a much

3



smaller set of free parameters than the present SM. In [6], a similar model that uses only two S4 modular

symmetries is presented.

In the following overview of the topic, I will start by reviewing the leptonic sector of the SM (Section

2.1). After that, some ways of generating neutrino masses will be introduced (Section 2.2), followed by

a brief section on lepton mixing (Section 2.3). Some interesting questions that remain unsolved, the so

called flavour problem, which is the primary motivation for the present work, are succinctly explained

in Section 2.4. It will be introduced afterwards one way of recreating realistic masses and mixing pa-

rameters: the addition of modular flavour symmetries (Section 2.5). These are the foundations of the

following chapters and their models. For part of this chapter, [57] will be followed.

2.1 The leptonic sector of the SM

In the SM, the strong, weak and electromagnetic interactions are mediated by spin-1 particles that

are connected to the local gauge symmetries SU(3)C×SU(2)L×U(1)Y , where C stands for colour, L for

left-handedness, and Y for hypercharge. This symmetry is spontaneously broken to SU(3)C × U(1)EM

where U(1)EM couples to the electromagnetic charge QEM = T3 + Y where T3 is the third component

of the isospin.

In the leptonic sector, one has three generations of charged leptons, that can be both left and right-

handed fermions, and three left-handed neutrinos. The left-handed particles are arranged in doublets of

SU(2)L:

LLl =

νl
l


L

(2.1)

and the other three charged leptons are singlets of SU(2)L. In the SM model, no right-handed neutrinos

are considered because neutrinos do not interact through other force than the weak force and the weak

bosons only couple to left-handed particles. Left-handed neutrinos are also known as active neutrinos

and right-handed neutrinos are know as sterile neutrinos, since they have no SM interactions.

The only possible interaction terms when imposing SU(2)L invariance for the charged currents (CC)

among neutrinos and their associated charged leptons and the neutral currents (NC) among neutrinos

are

−LCC =
g√
2

∑
l

νLlγ
µlLW

+
µ + h.c. (2.2)

−LNC =
g

2 cos θW

∑
l

νLlγ
µνLlZ

0
µ (2.3)

where g is the weak coupling constant and θW the Weinberg angle.

In the SM the fermions get their mass through a Yukawa term that couples the scalar Higgs field

doublet φ to a component of a SU(2)L doublet and a SU(2)L singlet through a Yukawa coupling Y . For

4



leptons, this term has the following form:

− LY ukawa,leptonic = Y lijLLiφERj + h.c.. (2.4)

After spontaneous symmetry breaking, when the Higgs acquires the VEV 〈φ〉 = 1/
√

2(0, v + h(x)),

the charged lepton masses are generated:

− LY ukawa,leptonic = lLim
l
ijERj + h.c., ml

ij = Y lij
v√
2
. (2.5)

The model only contains left-handed neutrinos thus no Yukawa mass terms can be constructed for

the neutrinos and these remain massless at the Lagrangian level.

A possible neutrino mass would arise from the bilinear LLLcL where LcL = CL
T

is the charged

conjugated field, C the charge conjugation matrix representing a charge conjugation operator. However,

this term is forbidden in the SM because it violates the total leptonic number by two units thus cannot

be induced by loop corrections, and also violates B − L thus cannot be induced by non-perturbative

corrections.

But it is a well established result that neutrinos oscillate between flavours. The first clue arose from

the discrepancy between theoretical models for the neutrinos produced at the Sun and the experimental

results of neutrino rates. This result was explained by the conversion of electron neutrinos into muon

and tau neutrinos due to a non-zero probability of measuring muon and tau neutrinos as a initial beam

of electron neutrinos propagates through space. This implies that neutrinos have different masses, so

at least two of them, although very light, have a mass, which is in disagreement with the SM. Hence the

need to go beyond the SM.

2.2 How do neutrinos get their mass?

We consider in this section how terms can be added to the SM to describe the neutrino masses.

2.2.1 Weinberg operator

One possible way of seeing the neutrino masses problem is to consider that new physics only ap-

pears above a scale ΛNP and that the SM is simply a effective low energy theory of a high energy theory.

In this case, one doesn’t have to worry about the renormalisability of the theory and terms with mass

dimension larger than 4, although suppressed by 1/Λdim−4
NP , are not forbidden. The least suppressed

term is the dimension 5 term:
Zνij

ΛNP
(LLiφ̃)(φ̃TLCLj) + h.c. (2.6)

where φ̃ = iτ2φ
∗. It gives rise, after spontaneous symmetry breaking, to the mass terms

− LMν
=
Zνij
2

v2

ΛNP
νLiν

c
Lj + h.c. (2.7)
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which is a Majorana mass term. The suppression points towards the lightness of the known neutrinos.

In fact, this model can be interpreted as the low energy limit of the see-saw model discussed in the

following section, where m heavy sterile neutrinos are added. In this model, the new physics scale ΛNP

is simply the mass scale of the heavy sterile neutrinos.

2.2.2 See-saw mechanism

Other possibility is to consider now the SM with the addition of m sterile neutrinos. Two possible

gauge invariant terms can be constructed:

− LMν
= MDijνsiνLj +

1

2
MNijνsiν

c
sj + h.c. (2.8)

where MD is a complex m× 3 matrix, MN a symmetric m×m matrix and νc = CνT is the charged con-

jugated neutrino field. The first term arises from the Yukawa terms for the neutrinos after spontaneous

symmetry breaking, while the second term is a Majorana term that violates leptonic number. This can

be rewritten as

− LMν
=

1

2
(νcL νs)

 0 MT
D

MD MN

νL
νcs

+ h.c. ≡ ~νcMν~ν + h.c.. (2.9)

Given that Mν is a (3 + m) × (3 + m) symmetric complex matrix, it is possible to diagonalize it by a

unitary V ν :

(V ν)TMνV
ν = diag(m1,m2, . . . ,m3+m). (2.10)

This induces a change of basis, from the interaction eigenstates to the mass eigenstates:

νmass = (V ν)†~ν. (2.11)

In terms of mass eigenstates, Eq.(2.9) can be rewritten as

−LMν
=

1

2

3+m∑
k=1

mk(νcmass,kνmass,k + νmass,kν
c
mass,k) =

1

2

3+m∑
k=1

mkνMkνMk (2.12)

where νMk = νmass,k + νcmass,k = (V ν†~ν)k + (V ν†~ν)ck. The νM states obey νM = νcM , thus they are Majo-

rana states. This means that one field is enough to describe both neutrino and antineutrino states. While

the Dirac fermions have four-component spinor representations where all components are independent,

the four-component Majorana spinors can be written in terms of a two-component Weyl spinor. For more

details on Dirac, Majorana and Weyl fermions, see e.g. [58]. When working with Dirac neutrinos instead,

one has simply to set MN = 0 in Eq.(2.9).

It is possible to get 3 light neutrinos νl and m heavy neutrinos N from the previous 3 + m neutrinos

if the mass eigenvalues of MN are much larger than the electroweak symmetry breaking scale v. This

can be written as

− LMν
=

1

2
νlM

lνl +
1

2
NMhN (2.13)
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where

M l ' −V Tl MT
DM

−1
N MDVl (2.14)

Mh ' V Th MNVh (2.15)

V ν '

(1− 1
2M

†
DM

∗−1
N M−1

N MD

)
Vl M†DM

∗−1
N Vh

−M−1
N MDVl

(
1− 1

2M
−1
N MDM

†
DM

∗−1
N

)
Vh

 (2.16)

where Vl and Vh are respectively 3 × 3 and m × m unitary matrices, M l is the mass matrix for light

neutrinos, Mh the mass matrix for heavy neutrinos and V ν the matrix in Eq.(2.10).

As wanted, the masses of the heavier states are proportional toMN and the lighter states toM2
DM

−1
N .

When the heavy neutrino masses increase, the almost massless neutrinos become lighter, hence the

name see-saw mechanism applied to this model.

2.3 Lepton mixing

Previously we proceeded to the diagonalization of the neutrino mass matrix (see Eqs.(2.10)-(2.11)).

To work only with mass eigenstates, the mass matrix for the charged leptons needs to be diagonalized

too.

In the interaction basis, the mass terms for the charged leptons that arise from the Yukawa terms are

− LMl
= (eIL µ

I
L τ

I
L)Ml


eIR

µIR

τ IR

+ h.c.. (2.17)

It is possible to diagonalize Ml using two 3× 3 unitary matrices V lL and V lR obtaining

V lLMlV
l
R = diag(me,mµ,mτ ) (2.18)

which implies that the mass eigenstates can be written as

lL = V l†L l
I
L and lR = V l†R l

I
R. (2.19)

This change from the interaction eigenstates to the mass eigenstates has consequences in the

charged current part of the Lagrangian (Eq.(2.2)), that is now

− LCC =
g√
2

∑
l

lLγ
µUνmassW

−
µ + h.c. (2.20)

where the 3× (3 +m) mixing matrix U was introduced. It is defined as

U = V l†L V
ν , (2.21)
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where in this product only the first three rows of V ν are considered.

Consider now the parametrization of this mixing matrix. Since the charged leptons are Dirac parti-

cles, three phases can be eliminated by field redefinitions. The same occurs for neutrinos if they are

Dirac particles: 3+m phases can be eliminated. However, this is not possible if neutrinos are Majorana

particles, in which case only one phase can be eliminated.

If there were only 3 Majorana neutrinos, the situation would be similar to what happens in the quark

sector, where the mixing is described by the Cabibbo–Kobayashi–Maskawa (CKM) matrix. In the leptonic

sector, the mixing matrix is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The parametrization

is then

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13



c12 s12 0

−s12 c12 0

0 0 1



eiη1 0 0

0 eiη2 0

0 0 1

 (2.22)

where cij ≡ cos θij and sij ≡ sin θij . Without loss of generality, one can take the angles θij ∈ [0, π/2]

and the phases δCP , ηi ∈ [0, 2π]. The parametrization for the PMNS matrix above has more two phases

than the CKM matrix, due to the Majorana nature of the neutrinos. If neutrinos are Dirac particles, the

number of phases is only one, as in the CKM matrix, and ηi can be eliminated.

Although the unitarity condition is not valid for the 3 light neutrinos mixing sub-matrix for a number of

neutrinos larger than 3 (we are only interested in this sub-matrix, not the complete mixing matrix), this

violation of unitarity is small and the same parametrization can be used in models using the see-saw

mechanism.

2.4 The flavour problem

However, even if we are able to modify slightly the SM to account for neutrino masses, we will still

have a lot of questions on flavour that remain unanswered. First of all, there is no reason for why there

are three families of quarks and leptons.

The mass hierarchies of the quarks and leptons also seem to encode new physics, with the down

type quarks and charged leptons having mass values of the same order of magnitude, while the up-type

quarks are much more hierarchical and the neutrinos are almost massless. But it is not only when we

compare mass hierarchies that flavour for leptons and quarks has a very different behaviour.

The most recent values for the leptonic sector mixing matrix, obtained from the global fit NuFit [59]

(other global fits for neutrino oscillation data are also available in the literature, e.g. [60]), is

VPMNS =


0.801→ 0.845 0.513→ 0.579 0.143→ 0.156

0.233→ 0.507 0.461→ 0.694 0.631→ 0.778

0.261→ 0.526 0.471→ 0.701 0.611→ 0.761

 (2.23)
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and the quark sector mixing matrix is [57]

VCKM =


0.97401± 0.00011 0.22650± 0.00048 0.00361+0.00011

−0.00009

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035

 . (2.24)

The differences are clear: the mixing between flavours is much larger in the leptonic sector while the

CKM matrix is almost diagonal. In fact, the PMNS mixing angles are much larger than the CKM mixing

angles apart from two of them that have the same order of magnitude.

Finally, the SM and slight modifications of it have another conceptual problem: why are there much

more parameters in the flavour sector than in the gauge (strong, weak and electromagnetic) sectors?

All these questions, that constitute the so called flavour problem, point towards the need for the

introduction of a fundamental flavour symmetry that accounts for this large collection of parameters

arising from the Higgs sector. This new symmetry could, from only a few parameters, generate all the

fermion masses and mixing parameters.

2.5 Modular symmetries - an introduction

This section provides the general definitions of the modular group and modular forms, and some

fundamental aspects of constructing a realistic model with multiple modular symmetries, as in [7]. In the

following chapters the modular groups Γ3 and Γ5 will be particularly covered and models that obey the

general requirements that are here introduced will be constructed.

2.5.1 Modular group and modular forms

The modular group Γ is the group of linear fractional transformations γ that act on the complex

modulus τ , for τ in the upper-half complex plane, i.e. Im(τ) > 0:

γ : τ → γτ =
aτ + b

cτ + d
, (2.25)

where a, b, c, d are integers and satisfy ad− bc = 1.

It is convenient to use 2× 2 matrices to represent the elements of Γ as

Γ =


a b

c d

 /{±1}, a, b, c, d ∈ Z, ad− bc = 1

 . (2.26)

Note that, since γ and −γ are the same modular transformation, the group Γ is isomorphic to

PSL(2,Z) = SL(2,Z)/Z2, where SL(2,Z) is the group of 2 × 2 matrices with integer entries and deter-

minant one.

The modular group has two generators, Sτ and Tτ , which satisfy S2
τ = (SτTτ )3 = 1. One possible
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choice for these generators is the following:

Sτ : τ → −1

τ
, Tτ : τ → τ + 1 (2.27)

and their corresponding representations are

Sτ =

 0 1

−1 0

 , Tτ =

1 1

0 1

 . (2.28)

It is possible to define subgroups Γ(N) of Γ modding out the entries of the representation matrices:

Γ(N) =


a b

c d

 ∈ PSL(2,Z),

a b

c d

 =

1 0

0 1

 (mod N)

 . (2.29)

Although the groups Γ(N) are discrete but infinite, the quotient groups ΓN = Γ/Γ(N) are finite, thus

being called finite modular groups. For N ≤ 5, these groups are isomorphic to well-known groups:

Γ2 ' S3, Γ3 ' A4, Γ4 ' S4, Γ5 ' A5. These finite modular groups can be obtained by imposing an

additional condition, TNτ = 1, which implies that τ = τ +N .

Modular forms of weight 2k and level N are holomorphic functions of τ that transform under Γ(N) in

the following way:

f(γτ) = (cτ + d)2kf(τ), γ =

a b

c d

 ∈ Γ(N), (2.30)

where k is a non-negative integer and N is natural (we are only interested in even weights). These

modular forms are invariant under Γ(N), up to the factor (cτ+d)2k, but they transform under the quotient

group ΓN .

Modular forms of weight 2k and level N span a linear space of finite dimension M2k(Γ(N)). It is

possible to choose a basis inM2k(Γ(N)) such that the transformation of the modular forms under ΓN is

described by a unitary representation ρ of ΓN :

fi(γτ) = (cτ + d)2kρ(γ)ijfj(τ), γ =

a b

c d

 ∈ ΓN . (2.31)

2.5.2 Models with a single modular symmetry

Considering an N = 1 supersymmetric model invariant under a finite modular symmetry, the action in

general takes the form

S =

∫
d4xd2θd2θ K(φi, φi; τ, τ) +

(∫
d4xd2θ W (φi; τ) + h.c.

)
. (2.32)
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Under ΓN the Kähler potential K transforms at most by a Kähler transformation and the superpotential

W stays invariant:

K(φi, φi; τ, τ)→ K(φi, φi; τ, τ) + f(φi; τ) + f(φi; τ) (2.33)

W (φi; τ)→W (φi; τ). (2.34)

The superpotential is in general a function of the modulus τ and superfields φi and can be expanded

as:

W (φi; τ) =
∑
n

∑
{i1,...,in}

∑
IY

(YIY φi1 ...φin)1. (2.35)

We want the superpotential to be invariant under ΓN . This is possible if we assume the couplings

YIY to be multiplet modular forms, and the superfields φi to transform as

φi(τ)→ φi(γτ) = (cτ + d)−2kiρIi(γ)φi(τ) (2.36)

YIY (τ)→ YIY (γτ) = (cτ + d)2kY ρIY (γ)YIY (τ), (2.37)

where −2ki is the modular weight of φi, Ii is the representation of φi, 2kY is the modular weight of

YIY , IY is the representation of YIY and ρIi(γ) and ρIY (γ) are the unitary representation matrices of

γ ∈ ΓN . For the superpotential to be invariant as wanted, the sum of the weights needs to equal zero,

i.e. kY = ki1 + . . .+ kin , and the multiplication of the representations IY × Ii1 × . . .× Iin has to contain

an invariant singlet.

2.5.3 Models with multiple modular symmetries

Consider a theory that has multiple modular symmetries, based on a series of M modular groups

Γ
1
, Γ

2
, . . ., Γ

M
, where the modulus field for each symmetry Γ

J
, J = 1, . . . ,M , is denoted as τJ . The

associated modular transformations take the form:

γJ : τJ → γJτJ =
aJτJ + bJ
cJτJ + dJ

. (2.38)

A series of finite modular groups ΓJNJ for J = 1, . . . ,M can be obtained by modding out an integer NJ as

done for only one modular group in the previous subsection and taking the quotient finite groups. Take

into account that NJ does not need to be identical to NJ′ for J 6= J ′.

Consider an N = 1 supersymmetric model invariant under multiple modular symmetries; the action in

general takes the form:

S =

∫
d4xd2θd2θ K(φi, φi; τ1, . . . , τM , τ1, . . . , τM ) +

(∫
d4xd2θ W (φi; τ1, . . . , τM ) + h.c.

)
. (2.39)

Under ΓJNJ for J = 1, . . . ,M the Kähler potential K transforms at most by a Kähler transformation
and the superpotential W stays invariant:

K(φi, φi; τ1, . . . , τM , τ1, . . . , τM ) → K(φi, φi; τ1, . . . , τM , τ1, . . . , τM ) + f(φi; τ1, . . . , τM ) + f(φi; τ1, . . . , τM ) (2.40)

11



W (φi; τ1, . . . , τM , τ1, . . . , τM ) →W (φi; τ1, . . . , τM , τ1, . . . , τM ). (2.41)

The superpotential is in general a function of the modulus τi and superfields φi and the expansion in

powers of the superfields takes the form

W (φi; τ1, . . . , τM ) =
∑
n

∑
{i1,...,in}

∑
(IY,1,...,IY,M )

(Y(IY,1,...,IY,M )φi1 . . . φin)1. (2.42)

For the superpotential to be invariant under any finite modular transformation γ1, . . . , γM in Γ1
N1
× Γ2

N2
×

. . . × ΓMNM , the couplings Y(IY,1,...,IY,M ) must be multiplet modular forms, and the superfields φi must

transform as

φi(τ1, . . . , τM )→ φi(γ1τ1, . . . , γMτM )

=
∏

J=1,...,M

(cJτJ + dJ)−2ki,J
⊗

J=1,...,M

ρIi,J (γJ) φi(τ1, . . . , τM ) (2.43)

Y(IY,1,...,IY,M )(τ1, . . . , τM )→ Y(IY,1,...,IY,M )(γ1τ1, . . . , γMτM )

=
∏

J=1,...,M

(cJτJ + dJ)2kY,J
⊗

J=1,...,M

ρIY,J (γJ) Y(IY,1,...,IY,M )(τ1, . . . , τM ). (2.44)

where −2ki,J is the modular weight of φi, Ii,J is the representation of φi, 2kY,J is the modular weight of

YIY,J , IY,J is the representation of YIY,J and ρIi,J (γ) and ρIY,J (γ) are the unitary representation matrices

of γJ with γJ ∈ ΓJNJ . As discussed previously, for the superpotential to be invariant, kY,J = ki1,J + . . .+

kin,J , and IY,J × Ii1,J × . . .× Iin,J must contain an invariant singlet, for J = 1, . . . ,M .
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Chapter 3

Two A4 Modular Symmetries for

Tri-Maximal 2 Mixing

In this chapter, we will use two A4 modular symmetries to build models that lead to the TM2 mixing,

similarly to the use of multiple S4 modular symmetries in [6, 7], where models that consider the symmetry

breaking from multiple modular symmetry groups to a single symmetry group at low energy have been

constructed in order to obtain the TM1 mixing. Although the current experimental evidence excludes

TBM mixing, TM1 and TM2 remain viable and appealing schemes for lepton mixings. Some of the work

here included was already presented at [61].

We note that [25] already employs a single A4 modular symmetry and two moduli in a model leading

to TM2 mixing, where neutrino masses arise through the effective Weinberg operator. In the models

constructed here, we will also start by using the Weinberg operator and afterwards we will use the type

I see-saw mechanism to generate the neutrino masses. The presence of two distinct moduli is justified

by starting with two A4 symmetries Al4 × Aν4 which are subsequently broken to the diagonal subgroup

AD4 . But before considering these matters more attentively, we should start by introducing the modular

A4 symmetry group.

3.1 Modular A4 symmetry and residual symmetries

In the following subsection, some main properties of the modular A4 symmetry group including the

modular forms of level 3 and its stabilisers will be presented. These stabilisers apply for the specific

case of A4 modular symmetries and, as well as the stabilisers for the modular groups from N = 2 to 5,

can be found in [62] (we note also that the stabilisers or fixed points for N = 3, 4 were presented in [63]).

The directions at the stabilisers can also be found in [25], although the factors for the modular forms

were corrected here.
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3.1.1 Modular A4 symmetry and modular forms of level 3

The group A4 is the group of even permutations of 4 objects and has 12 elements. It is generated by

two operators Sτ and Tτ obeying

S2
τ = (SτTτ )3 = T 3

τ = 1. (3.1)

This group has three singlets and one triplet as its irreducible representations and the multiplication

rules and other properties can be found in Appendix A.1. In the so-called complex basis (basis where

Tτ is diagonal), the triplet representations of the A4 generators are

ρ3(Sτ ) =
1

3


−1 2 2

2 −1 2

2 2 −1

 and ρ3(Tτ ) =


1 0 0

0 ω 0

0 0 ω2

 . ω = ei2π/3. (3.2)

The flavour models that are going to be built employ A4 as a modular symmetry group and the Yukawa

couplings are hence going to be modular forms. These are now going to be introduced.

The three linearly independent weight 2 modular forms of level 3, Y (2)
3 = (Y1, Y2, Y3), form a triplet

of A4 and can be expressed in terms of the Dedekind eta functions (see Appendix A.2). The modular

forms of higher weight can be generated starting from these modular forms of weight 2. For example,

the five linearly independent weight 4 modular forms decompose into a triplet 3 and two singlets 1 and

1′. Using the weight 2 modular forms, one obtains the weight 4 modular forms:

Y
(4)
3 =

2

3


Y 2

1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3

 (3.3)

and

Y
(4)
1 = Y 2

1 + 2Y2Y3, Y
(4)
1′ = Y 2

3 + 2Y1Y2. (3.4)

The singlet 1′′ vanishes because Y (2)
3 (τ) satisfy the constraint

Y
(4)
1′′ = Y 2

2 + 2Y1Y3 = 0. (3.5)

Note that here a factor 2/3 was included in the definition for Y (4)
3 in accordance with [25] although no

such factor is present in [21].

Furthermore, the modular forms of weight 6, whose linear space has dimension 7 and decomposes

into 2 triplets and 1 singlet, are [21]:

Y
(6)
31

=


Y 3

1 + 2Y1Y2Y3

Y 2
1 Y2 + 2Y 2

2 Y3

Y 2
1 Y3 + 2Y 2

3 Y2

 (3.6)
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Y
(6)
32

=


Y 3

3 + 2Y1Y2Y3

Y 2
3 Y1 + 2Y 2

1 Y2

Y 2
3 Y2 + 2Y 2

2 Y1

 (3.7)

and

Y
(6)
1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3, (3.8)

and the other triplet that we are able to construct vanishes:

Y
(6)
33

=


Y 3

2 + 2Y1Y2Y3

Y 2
2 Y3 + 2Y 2

3 Y1

Y 2
2 Y1 + 2Y 2

1 Y3

 = 0. (3.9)

The weight 8 modular forms, which were constructed similarly to the lower weight modular forms, will

be useful for the second model that uses the see-saw mechanism. Their linear space has dimension 9

and decompose into three singlets, the first of which is invariant:

Y
(8)
1 = Y 4

1 + 4Y 2
1 Y2Y3 + 4Y 2

2 Y
2
3 (3.10)

Y
(8)
1′ = 2Y 3

1 Y2 + 4Y1Y
2
2 Y3 + Y 2

1 Y
2
3 + 2Y2Y

3
3 (3.11)

Y
(8)
1′′ = Y 4

3 + 4Y1Y2Y
2
3 + 4Y 2

1 Y
2
2 (3.12)

and two triplets:

Y
(8)
31

=


Y 4

1 + Y 2
1 Y2Y3 − 2Y 2

2 Y
2
3

Y 2
1 Y

2
3 − Y 3

1 Y2 − 2Y1Y
2
2 Y3 + 2Y2Y

3
3

Y 2
1 Y

2
2 − Y 3

1 Y3 − 2Y1Y2Y
2
3 + 2Y 3

2 Y3

 (3.13)

Y
(8)
32

=


Y 4

1 + Y1Y
3
2 − 3Y 2

1 Y2Y3 + Y1Y
3
3

Y 4
2 + Y2Y

3
3 − 3Y1Y

2
2 Y3 + Y2Y

3
1

Y 4
3 + Y3Y

3
2 − 3Y1Y2Y

2
3 + Y3Y

3
1

 . (3.14)

These are all the modular forms that will prove necessary for the models using two modular A4

symmetries that will be discussed in two posterior sections.

3.1.2 Stabilisers and residual symmetries of modular A4

But first a really critical property shall be discussed: the stabilisers of the modular symmetry, which

play a crucial role in preserving residual symmetries. Given an element γ in the modular group A4, a

stabiliser τγ of γ corresponds to a fixed point in the upper half complex plane that transforms as γτγ = τγ .

Once the modular field acquires a VEV at this special point, 〈τ〉 = τγ , the modular symmetry is broken

but an Abelian residual modular symmetry generated by γ is preserved. Obviously, acting γ on the
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modular form at its stabiliser leaves the modular form invariant:

γ : YI(τγ)→ YI(γτγ) = YI(τγ), (3.15)

which implies that

ρI(γ)YI(τγ) = (cτγ + d)−2kYI(τγ). (3.16)

This means that, at the stabiliser, the modular form is an eigenvector of the representation matrix

ρ3(γ) for the given stabiliser that corresponds to the eigenvalue (cτγ + d)−2k, and thus the directions of

the modular forms at the stabilisers can be easily determined. Furthermore, since the representation

matrix is unitary, |cτγ + d| = 1.

The stabilisers for the A4 modular group are shown in Table 3.1 [62].

γ τγ

Tτ , T
2
τ i∞, 3

2 + i
2
√

3

SτTτ , T
2
τ Sτ 1, − 1

2 + i
√

3
2

TτSτTτ , SτTτSτ 0, 3
2 + i

√
3

2

TτSτ , SτT
2
τ −1, 1

2 + i
√

3
2

T 2
τ SτTτ −1 + i, 1

2 + i
2

Sτ i, 3
2 + i

2

TτSτT
2
τ 1 + i, − 1

2 + i
2

Table 3.1: Stabilisers for the A4 elements [62].

For the transformations Sτ , Tτ , SτTτ and TτSτ , the coefficients (cτγ + d)−2k are

(cτγ + d)−2k =



(−1)k γ = Sτ , τSτ1
= i or τSτ2

= 3
2 + i

2

1 γ = Tτ , τTτ1 = i∞

ω2k γ = Tτ , τTτ2
= 3

2 + i
2
√

3

ω2k γ = SτTτ , τSτTτ = ω

ω2k γ = TτSτ , τTτSτ = −ω2

. (3.17)

The directions of the modular forms of weight 2k = 2, 4, 6 and 8 for the stabilisers of these four

elements are shown in Table 3.2. Additionally, we include the factors for each modular form. Although

the directions for the modular forms of weight 2 and 4 had been previously introduced in [25], the factors

were corrected here for the weight 4 triplets. These factors are written in function of Y , which is defined

in general as the first component Y1 of Y (2)
3 , except for τTτ2

= 3
2 + i

2
√

3
, when we define it as the third

component Y3 of that triplet since the first component happens to vanish. For Y , the explicit definitions

for the weight 2 modular forms in terms of the Dedekind eta function, present in Appendix A.2, were

used. The values the modular form singlets of weight 4, 6 and 8 take at the stabilisers are additionally

included in Table 3.3.

The other two stabilisers for SτTτ and TτSτ were not considered in Tables 3.2 and 3.3 since the

modular forms approach infinity for these two values of the modulus field. Notice also that the two
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τγ
weight 2 weight 4 weight 6 weight 8

3 3 31 32 31 32

τSτTτ = − 1
2 + i

√
3

2 Y

 1

ω

− 1
2ω

2

 Y 2

 1

− 1
2ω

ω2

 0 − 9
8Y

3

 1

−2ω

−2ω2

 0 27
8 Y

4

 1

ω

− 1
2ω

2


τTτSτ = 1

2 + i
√

3
2 Y

 1

ω2

− 1
2ω

 Y 2

 1

− 1
2ω

2

ω

 0 − 9
8Y

3

 1

−2ω2

−2ω

 0 27
8 Y

4

 1

ω2

− 1
2ω


τSτ1

= i Y

 1

1−
√

3

−2 +
√

3

 (4− 2
√

3)Y 2

1

1

1

 (6
√

3− 9)Y 3

 1

1−
√

3

−2 +
√

3

 (21
√

3− 36)Y 3

 1

−2−
√

3

1 +
√

3

 (63
√

3− 108)Y 4

1

1

1

 0

τSτ2
= 3

2 + i
2 Y

 1

1 +
√

3

−2−
√

3

 (4 + 2
√

3)Y 2

1

1

1

 −(6
√

3 + 9)Y 3

 1

1 +
√

3

−2−
√

3

 −(21
√

3 + 36)Y 3

 1

−2 +
√

3

1−
√

3

 −(63
√

3 + 108)Y 4

1

1

1

 0

τTτ1 = i∞ Y

1

0

0

 2
3Y

2

1

0

0

 Y 3

1

0

0

 0 Y 4

1

0

0

 Y 4

1

0

0


τTτ2

= 3
2 + i

2
√

3
Y

0

0

1

 2
3Y

2

0

1

0

 0 Y 3

1

0

0

 0 Y 4

0

0

1



Table 3.2: Directions for the modular forms of weight 2, 4, 6 and 8 of level 3 for four A4 elements (Y in
Table 3.3).

τγ
weight 4 weight 6 weight 8

Y
1 1′ 1 1 1′ 1′′

τSτTτ = − 1
2 + i

√
3

2 0 9
4ωY

2 27
8 Y

3 0 0 81
16ω

2Y 4 0.94867 . . .

τTτSτ = 1
2 + i

√
3

2 0 9
4ω

2Y 2 27
8 Y

3 0 0 81
16ωY

4 0.94867 . . .

τSτ1
= i (6

√
3− 9)Y 2 −(6

√
3− 9)Y 2 0 (189− 108

√
3)Y 4 −(189− 108

√
3)Y 4 (189− 108

√
3)Y 4 1.02253 . . .

τSτ2
= 3

2 + i
2 −(6

√
3 + 9)Y 2 (6

√
3 + 9)Y 2 0 (189 + 108

√
3)Y 4 −(189 + 108

√
3)Y 4 (189 + 108

√
3)Y 4 0.54798 . . .

τTτ1
= i∞ Y 2 0 Y 3 Y 4 0 0 1

τTτ2 = 3
2 + i

2
√

3
0 Y 2 Y 3 0 0 Y 4 −4.26903 . . .

Table 3.3: Singlets for the modular forms of weight 4, 6 and 8 of level 3 for four A4 elements and factors
Y for each stabiliser.

stabilisers of Sτ and Tτ stabilise these two modular transformations but for different, although equivalent,

representations in terms of 2× 2 matrices, which means then different values for c and d. This explains

the different eigenvalues obtained for the two stabilisers of Tτ . However, in spite of the eigenvalues

being the same for both stabilisers of Sτ , the directions the modular forms take at these stabilisers of

Sτ are indeed different. In this case the difference comes from the existence of two eigenvectors for the

same eigenvalue, eigenvectors that are introduced in the example that follows.

For Sτ : τ → −1/τ , and using the stabiliser τSτ1 = i, which stabilises the modular transformation

represented by the 2× 2 matrix in Eq.(2.28), the expression for the modular form at the stabiliser is

ρ3(Sτ )Y
(2k)
3 (τSτ1

) = (−τSτ1
)−2kY

(2k)
3 (τSτ1

) = (−i)−2kY
(2k)
3 (τSτ1

) = (−1)kY
(2k)
3 (τSτ1

), (3.18)

and thus we obtain its directions from the eigenvectors of the representation matrix for Sτ (Eq.(3.2))

corresponding to the eigenvalue in the previous equation:

Y
(2k)
3 (τSτ1) = y

(2k)
τSτ1

,1


1

1

−2

+ y
(2k)
τSτ1

,2


0

−1

1

 , k = 1 (mod 2) (3.19)

Y
(2k)
3 (τSτ1) = y(2k)

τSτ1


1

1

1

 , k = 2 (mod 2). (3.20)
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For the lowest weights that appear in Table 3.2, y(2)
τSτ1

,1 = Y and y
(2)
τSτ1

,2 =
√

3Y , and from the

definitions of the modular forms of higher weight in terms of those of weight 2 we have that y(4)
τSτ1

=

(4− 2
√

3)Y 2 and the factors for the two triplets with weight 6 are obtained similarly.

3.2 Tri-bimaximal mixing and related mixings

We have already introduced the main aspects of the A4 modular group that are going to be useful in

the models were are going to construct in this chapter. But given that for these three models we want

to obtain the same mixing scheme, it seems wiser to start by introducing the TM2 mixing, which is the

mixing derived from the tri-bimaximal especially useful for models dealing with A4 symmetry groups. For

the tri-bimaximal matrix we use the definition:

UTBM =


√

2
3

√
1
3 0

−
√

1
6

√
1
3 −

√
1
2

−
√

1
6

√
1
3

√
1
2

 . (3.21)

As already mentioned, this matrix is incompatible with the known experimental results due to the non-

vanishing value for the angle θ13, which leads to the consideration of mixings that only preserve the first

or the second columns of this matrix, the TM1 and TM2 mixings, respectively, which can be written as

the TBM matrix times a rotation between the two columns that are not preserved.

For TM2, which is our mixing of interest, the matrix that diagonalizes Mν is U = UTBMUr, where Ur

is a rotation between the first and third columns. Using the parametrization

Ur =


cos θeiα1 0 sin θe−iα2

0 eiα3 0

− sin θeiα2 0 cos θe−iα1

 , (3.22)

we are then able to diagonalize Mν . Here, θ is the angle that governs the rotation and the three αi are

introduced such that the neutrino masses mi take real values.

The angles and phases from the standard parametrization of the PMNS matrix in [57] can be ex-

pressed in terms of the model parameters θ, α1 and α2 using the expressions between the parameters

and the PMNS matrix elements (these expressions are equivalent to the ones in [25])

sin2 θ13 = |Ue3|2 =
2 sin2 θ

3
(3.23)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

3− 2 sin2 θ
(3.24)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

1

2
+

√
3

2

sin 2θ

2 + cos 2θ
cos(α1 − α2) (3.25)

δ = − arg

(
Ue3Uτ1U

∗
e1U

∗
τ3

cos θ12 sin θ13 cos2 θ13 cos θ23
+ cos θ12 sin θ13 cos θ23

)
= arg

((
ei(α1−α2) sin2 θ − 3e−i(α1−α2) cos2 θ

)
sin 2θ

)
. (3.26)
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Using the 3σ C.L. range of sin2 θ13 for NO(IO), 0.02034(0.02053) → 0.02430(0.02436) [59], we obtain

the allowed range for sin θ:

0.1747(0.1755) . | sin θ| . 0.1909(0.1912), (3.27)

which implies also ranges for the other mixing angles (using that −1 ≤ cos(α1 − α2) ≤ 1):

0.3403(0.3403) . sin2 θ12 . 0.3416(0.3417) (3.28)

0.3891(0.3890) . sin2 θ23 . 0.6109(0.6110). (3.29)

The experimental 1σ region is within the interval found for sin2 θ23, which overlaps with the 3σ region

for this parameter, with our result extending below the lower 3σ limit for this parameter, 0.407(0.411)

for NO(IO), and not reaching its upper limit. The range of allowed values for sin2 θ12 is near the upper

allowed limit, which is a characteristic feature of the TM2 mixing, since the lowest value allowed for

sin2 θ12 is 1/3 as can be seen from Eq.(3.24).

We conclude that, in spite of the discrepancy found for sin2 θ12, this is still a mixing that is worth

considering.

3.3 Models with two modular A4 symmetries - using the Weinberg

operator

Now that the A4 modular symmetry and the TBM and related mixings were introduced, the models

that use this symmetry in order to get the TM2 mixing can now be described. We will start by construct-

ing one model where it is assumed that neutrinos get their mass through the Weinberg operator, and

afterwards we introduce two models where the see-saw mechanism is used. At high energies, these

models are based in two modular symmetries, Al4 and Aν4 , with modulus fields denoted by τl and τν ,

respectively. After the modulus fields acquire different VEV’s, different mass textures are realised in the

charged lepton and neutrino sectors, and thus the PMNS matrix will get the TM2 mixing form.

In this section we consider that neutrinos get their mass through the Weinberg operator, which is an

effective term of the type 1
ΛY L

2H2
u. The transformation properties of fields and Yukawa couplings can

be found in Table 3.4.

The Yukawa coefficients are modular forms and their weights were chosen in such a way that we

obtain the desired directions when the modular fields gain a VEV at a given stabiliser: Y l is then a

triplet of Al4 with weight +6 and Y3 is a triplet of Aν4 and trivial singlet of Aν4 with both weights +4 so

that they have the directions (1, 0, 0) and (1, 1, 1) at their stabilisers, respectively. We also considered

the non vanishing weight 4 modular forms that will couple to L2, Y1 and Y1′ , singlets 1 and 1′ under Al4,

respectively, and both singlets 1 under Aν4 .

The right-handed lepton fields ec, µc and τ c are singlets 1, 1′′ and 1′ of Al4, respectively, and trivial

singlets 1 of Aν4 , with weights 2kl = +4 and 2kν = −2. Similarly the lepton doublets L transform as a 3

19



Fields SU(2) Al4 Aν4 2kl 2kν

L 2 3 1 +2 +2

ec 2 1 1 +4 −2

µc 2 1′′ 1 +4 −2

τ c 2 1′ 1 +4 −2

Hu,d 2 1 1 0 0

Φ 1 3 3 0 0

Yukawas/Masses Al4 Aν4 2kl 2kν

Y l 3 1 +6 0

Y1 1 1 +4 +4

Y1′ 1′ 1 +4 +4

Y3 1 3 +4 +4

Table 3.4: Transformation properties of fields and Yukawa couplings for model using the Weinberg ope-
rator and two modular A4.

of Al4 and a 1 of Aν4 , with weights 2kl = 2kν = +2. These are the correct choices for the weights such

that the modular forms and fields in each term in the superpotential sum up to zero since the weight

for the fields is not 2k, which are the values that were introduced in this section, but −2k instead (recall

the transformation relations for the modular forms and the superfields, Eq.(2.44), and how the signs of

the exponents where the weights enter differ). Hd and Hu are the usual Higgs and an additional Higgs

doublet as required in supersymmetric models. A bi-triplet Φ, which is a triplet under both Al4 and Aν4 , is

introduced to describe the breaking from the two modular A4 groups to a single A4.

With the fields assigned in this manner, the superpotential for this model, which can be separated

into one part containing the mass terms for the charged leptons and the other the neutrino mass terms,

has the following form:

w = we + wν , (3.30)

we =
(
α(LY l(τl))1e

c + β(LY l(τl))1′µc + γ(LY l(τl))1′′τ c
)
Hd, (3.31)

wν =
1

Λ

(
(L2)1Y1(τl, τν) + (L2)1′′Y1′(τl, τν) +

1

Λ
(L2)3ΦY3(τl, τν)

)
H2
u, (3.32)

where only the symmetric decomposition contributes to (L2)3.

Al4 ×Aν4 → AD4 breaking

We discuss now how the symmetry breaking from two independent Al4 × Aν4 to a single AD4 is

achieved. We start by discussing the term 1/Λ2(L2)3ΦY3(τl, τν)H2
u. Considering the multiplication rules

for two triplets to get a trivial singlet, this term can be explicitly expanded as:

1

Λ2
(L2)3P23


Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

P23Y3(τl, τν)H2
u, (3.33)

where P23 is the matrix that permutes the second and third columns/rows:

P23 =


1 0 0

0 0 1

0 1 0

 . (3.34)
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If Φ acquires the VEV 〈Φ〉 = vΦP23 (see Appendix A.3 for more details), the symmetry Al4 × Aν4 is

broken but given that the same transformation γ can be performed in Al4 and Aν4 simultaneously, there

is still a single modular symmetry AD4 that is conserved (the diagonal subgroup). Under this symmetry,

a modular transformation takes the form

γ : (τl, τν)→ (γτl, γτν) =

(
aτl + b

cτl + d
,
aτν + b

cτν + d

)
, γ ∈ A4. (3.35)

Consequently, the term 1
Λ2 (L2)3ΦY3H

2
u gets the form vΦ

Λ2 ((L2)3Y3)1H
2
u, which is invariant under the

remaining symmetry. This term implies a mass matrix for the neutrinos when the Higgs doublet Hu

acquires a VEV.

Consequently, we obtain for wν (the we terms remain exactly the same):

wν =
1

Λ

(
(L2)1Y1(τl, τν) + (L2)1′′Y1′(τl, τν) +

vΦ

Λ
(L2)3Y3(τl, τν)

)
H2
u. (3.36)

AD4 breaking

The flavour structure after AD4 symmetry breaking now follows. We assume that the charged lepton

modular field τl acquires the VEV 〈τl〉 = τT = 3
2 + i

2
√

3
, which is a stabiliser of Tτ . At this stabiliser, a

residual modular ZT3 symmetry is preserved in the charged lepton sector. This implies that the modular

form Y l, which has weight +6, gets the direction

Y l(τl) ∝


1

0

0

 . (3.37)

This direction leads to a diagonal charged lepton mass matrix when the Higgs field Hd acquires a VEV

〈Hd〉 = (0, vd):

me =


α 0 0

0 β 0

0 0 γ

 . (3.38)

The masses for the charged leptons can be reproduced by adjusting the parameters α, β and γ. These

constants were redefined to include any factor associated with Y l(τT ) and vd.

For the other modular field τν , we want to find a VEV that leads to a mixing that preserves the

second column of the TBM mixing matrix. This occurs for 〈τν〉 = τS = i and 2kν = +4, and, in this

case, a residual modular ZS2 symmetry is preserved in the neutrino sector. According to Table 3.2, the

direction of Y3 at this stabiliser is going to be

Y3(τl, τν) ∝


1

1

1

 . (3.39)
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This implies the following structure for the neutrino mass matrix:

Mν = g1


1 0 0

0 0 1

0 1 0

+ g1′


0 0 1

0 1 0

1 0 0

+
g3
3


2 −1 −1

−1 2 −1

−1 −1 2

 , (3.40)

where g1, g1′ and g3 are arbitrary complex constants associated with the respective modular form con-

tribution. Similarly to what was done for α, β and γ, the factors 2v2
u/Λ and 2v2

uvΦ/Λ
2 and any factor

coming from the modular forms were also included inside these complex constants.

We want now to diagonalize Mν , such that UTMνU = Mνd = diag(m1,m2,m3), where mi are the

neutrino masses and U is an unitary matrix. In the present model, when we apply the tri-bimaximal

mixing matrix Eq.(3.21) to the neutrino mass matrix we obtain:

UTTBMMνUTBM =


a 0 c

0 a−b
2 +

√
3c 0

c 0 b

 (3.41)

where a = g3 + g1 − 1
2g1′ , b = g3 − g1 + 1

2g1′ and c =
√

3
2 g1′ . This matrix has only an element on the

second row and second column and four elements on the corners that form a 2 × 2 symmetric matrix

and so it can be fully diagonalized introducing a matrix Ur, which describes a rotation among the first

and third columns, and thus preserves the second column. The matrix that diagonalizes Mν is then

U = UTBMUr. This is precisely the TM2 mixing, and using Ur as defined in Eq.(3.22) we are then able

to diagonalize Mν .

It is also possible to start from the diagonal matrix Mνd and get UTTBMMνUTBM . We have then:

U∗rMνdU
†
r =


m1 cos2 θe−2iα1 +m3 sin2 θe2iα2 0 1

2 (−m1e
−i(α1+α2) +m3e

i(α1+α2)) sin 2θ

0 m2e
−2iα3 0

∗ 0 m1 sin2 θe−2iα2 +m3 cos2 θe2iα1

, (3.42)

where an asterisk was used to omit the non-vanishing off diagonal entry of this symmetric matrix. Com-

paring this with Eq.(3.41) we obtain that α3 = − 1
2 arg

(
a−b

2 +
√

3c
)

and, more importantly, we get a mass

sum rule for mi:

m2 =

∣∣∣∣a− b2
+
√

3c

∣∣∣∣
=
∣∣∣m1

2

(
e−2iα1 cos2 θ − e−2iα2 sin2 θ −

√
3e−i(α1+α2) sin 2θ

)
−m3

2

(
e2iα1 cos2 θ − e2iα2 sin2 θ −

√
3ei(α1−α2) sin 2θ

)∣∣∣ .
(3.43)

The sum rule Eq.(3.43) and Eqs.(3.23-3.26) are relations between the observables and the parame-

ters of the TM2 mixing, and hence provide what is needed to do a numerical minimisation using the χ2
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function:

χ2 =
∑
i

(
Pi({x})−BFi

σi

)2

, (3.44)

where Pi are the values provided by the considered model, BF the best fit value from NuFit [59] and σi

is also provided by NuFit, when averaging the upper and lower σ provided. For the fitting, six variables

were considered: the three mixing angles, the atmospheric and solar neutrino squared mass differences,

and the Dirac neutrino CP violation phase.

The fit parameters obtained for normal ordering (NO) and inverted ordering (IO) of neutrino masses

can be found in Table 3.5. The best fit values lie inside the 1σ range for all the observables except θ12, for

both orderings near the upper limit of the 3σ range, and θ23 for IO. Nonetheless, all the observables are

within their 3σ intervals. The best-fit occurs for normal ordering of neutrino masses with a χ2/6 = 1.57.

It is also possible to obtain the expected mββ for neutrinoless beta decay using the formula

mββ = |(Mν)(1,1)|

=
∣∣∣m1

6

(
5e−2iα1 cos2 θ − e−2iα2 sin2 θ −

√
3e−i(α1+α2) sin 2θ

)
−

−m3

6

(
e2iα1 cos2 θ − 5e2iα2 sin2 θ −

√
3ei(α1−α2) sin 2θ

)∣∣∣ .
(3.45)

Doing a numerical computation, the allowed regions of mlightest vs mββ of Figure 3.1 (for NO, mlightest =

m1 and, for IO, mlightest = m3) were obtained, using again as constraints the data from [59]. In both

figures it is also shown the current upper limit provided by KamLAND-Zen, mββ < 61 − 165 meV [64].

Results from PLANCK 2018 also constrain the sum of neutrino masses, although different constrains

can be obtained depending on the data considered (for more details, see [65]). In the figures are plotted

two shadowed regions, a very disfavoured region
∑
mi > 0.60 eV (considering the limit 95%C.L.,Planck

lensing+BAO+θMC) and a disfavoured region
∑
mi > 0.12 eV (considering the limit 95%C.L.,Planck

TT,TE,EE+lowE+lensing+BAO+θMC). These constraints on
∑
mi can be expressed as constraints on

mlightest using the best fit value for the squared mass differences: mlightest > 0.198 eV and mlightest >

0.030 eV for NO and mlightest > 0.196 eV and mlightest > 0.016 eV for IO, for the very disfavoured and

the disfavoured regions respectively. We conclude then that only the NO in Table 3.5 is outside the

disfavoured regions, although near.

For NO, there are some points compatible with the 1σ ranges of the observables other than θ12 (which

NO

Para.
χ2/6 θ α1 α2 m1 m3

1.57 10.51◦ -10.21◦ 33.17◦ 0.0227 eV 0.0550 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
31 mββ

35.72◦ 49.4◦ 8.56◦ 224◦ 7.42×10−5eV2 2.514×10−3eV2 0.0188 eV

IO

Para.
χ2/6 θ α1 α2 m3 m1

2.74 -10.57◦ 152.76◦ 48.71◦ 0.1095 eV 0.1201 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
32 mββ

35.73◦ 46.5◦ 8.62◦ 256◦ 7.42×10−5eV2 -2.497×10−3eV2 0.1146 eV

Table 3.5: Parameters (Para.) and observables (Obs.) for the best fit point for normal and inverted
orderings for model using the Weinberg operator and two modular A4.
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(a) Normal Ordering (b) Inverted Ordering

Figure 3.1: Predictions ofmlightest vsmββ for both orderings of neutrino masses compatible with 1σ (dark-
red, NO only, except θ12) and 3σ data from [59] for model using the Weinberg operator and two modular
A4. In both figures there were also included the current upper limit from KamLAND-Zen mββ < 61− 165
meV [64] and cosmological constraints from PLANCK 2018 (disfavoured region 0.12 eV <

∑
mi < 0.60

eV and very disfavoured region
∑
mi > 0.60 eV) [65].

is, as already said, always near the upper 3σ limit although below). These points were plotted with a

darker red colour. For IO, at least one of the other observables is incompatible with its 1σ region, as

happened for the best fit value, hence only the 3σ compatible points are shown for IO.

Only for normal mass orderings do we have points outside the disfavoured region. For IO, the mini-

mum values for the 3σ region are

(mlightest)
IO
min ≈ 0.018 eV (mββ)IO

min ≈ 0.050 eV. (3.46)

For NO, the compatible 3σ region covers all orders of magnitude, but the 1σ is limited from below:

(mlightest)
NO
min ≈ 0.008 eV (mββ)NO

min ≈ 0.001 eV. (3.47)

For this model that uses the Weinberg operator to generate the neutrino masses, NO is hence the

preferred mass ordering, although this means that smaller orders of magnitude for both m1 and mββ ,

which are harder to access experimentally, are still compatible with experimental values for this model.

3.4 Models with two modular A4 symmetries - using the see-saw

mechanism

In this section, we construct two models that consider that neutrinos get their mass through the type

I see-saw mechanism, using different weights for the fields and modular forms in each model. Again,

both models are based in two modular symmetries, Al4 and Aν4 , with modulus fields denoted by τl and

τν , that will acquire different VEV’s, leading to a TM2 mixing.
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3.4.1 Al
4 × Aν

4 → AD
4 breaking

First, we start by discussing how the symmetry breaking from two independent Al4 × Aν4 to a single

AD4 is achieved (this mechanism is shared by both models). The superfields considered for these models

are L, which is a doublet of SU(2)L containing the left-handed leptons and a triplet under Al4, νc, which

is a triplet under Aν4 containing the conjugate of the right-handed neutrino fields added to the Standard

Model, and Hu, an additional Higgs doublet as required in Supersymmetric models. A bi-triplet Φ, which

is a triplet under both Al4 and Aν4 , is introduced. Y ν represents the Yukawa couplings that in the case of

modular symmetries should be modular forms. One model considers a weight zero modular form (i.e. a

modular field independent constant), and the other a singlet and a triplet under Aν4 .

We consider that neutrinos get their mass through the type I see-saw mechanism and the term from

the superpotential that gives rise to a Dirac mass matrix is 1
ΛLΦY ννcHu. This term is an effective term

that can arise from renormalizable interactions of the fields shown with heavy messengers (not shown

explicitly - a possibility for the messenger is an electroweak neutral field). Considering the multiplication

rules for two triplets to get a trivial singlet, the term 1
ΛLΦY ννcHu can be explicitly expanded as:

1

Λ
(L1, L2, L3)P23


Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

P23Y
ν(τν)⊗


νc1

νc2

νc3

Hu, (3.48)

where Y ν ⊗ νc is the product between Y ν and νc that gives a triplet of Aν4 , and P23 is the matrix that

permutes the second and third columns/rows:

P23 =


1 0 0

0 0 1

0 1 0

 . (3.49)

If Φ acquires the VEV 〈Φ〉 = vΦP23 (see Appendix A.3 for more details), the symmetry Al4 × Aν4 is

broken but given that the same transformation γ can be performed in Al4 and Aν4 simultaneously, there

is still a single modular symmetry AD4 , the diagonal subgroup, that is conserved. The term 1
ΛLΦY ννcHu

gets the form vΦ

Λ (LY ννc)1Hu, which implies a Dirac matrix term for the neutrinos when the Higgs doublet

Hu acquires a VEV.

3.4.2 Model 1

The first model we consider is a model were the Yukawa coupling Y ν is simply a constant. The

transformation properties of fields, Yukawa couplings and masses for this model are in Table 3.6.

The Yukawa coefficients Y l for the charged leptons are a modular form which transforms as a triplet

of Al4 with weight 2kl = +6, whereas Y ν is simply a modulus independent constant, a modular form of

weight 0. For the right-handed neutrino masses we consider three modular forms transforming under

Aν4 : M1 as a trivial singlet 1, M1′ as a singlet 1′ and M3 as a triplet 3, all with weights 2kν = +4. Again,
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Fields SU(2) Al4 Aν4 2kl 2kν

L 2 3 1 0 −2

ec 1 1 1 +6 +2

µc 1 1′′ 1 +6 +2

τ c 1 1′ 1 +6 +2

νc 1 1 3 0 +2

Hu,d 2 1 1 0 0

Φ 1 3 3 0 0

Yukawas/Masses Al4 Aν4 2kl 2kν

Y l 3 1 +6 0

Y ν 1 1 0 0

M1 1 1 0 +4

M1′ 1 1′ 0 +4

M3 1 3 0 +4

Table 3.6: Transformation properties of fields, Yukawa couplings and masses for the right-handed neu-
trinos for model 1 using the see-saw mechanism and two modular A4.

the weights were chosen in such a way that the modular forms acquire the desired directions as we

show below.

The right-handed electron, muon and tau fields are respectively singlets 1, 1′′ and 1′ of Al4 and trivial

singlets 1 of Aν4 , with weights 2kl = +6 and 2kν = +2. The lepton doublets L are arranged as a triplet

of Al4 and a singlet of Aν4 , with weights 2kl = 0 and 2kν = −2. In this model, the three right-handed

neutrinos introduced form a triplet of Aν4 with weight 2kν = +2. These are the correct choices for the

weights such that the modular forms and fields in each term sum up to zero since the weight for the

fields is not +2k but −2k instead (see Eq.(2.44) and how the signs of the exponents where the weights

enter differ).

Note that, in spite of the charged leptons only having non-trivial singlet transformations under Al4

and the right-handed neutrinos only under Aν4 (which justifies the nomenclature used), the respective

weights introduce non-trivial transformations under both modular symmetries for these fields.

With the fields assigned in this manner, the superpotential for this model, which can be separated

into one part containing the mass terms for the charged leptons and the other the neutrino mass terms,

has the following form:

w = we + wν , (3.50)

we =
(
α(LY l(τl))1e

c + β(LY l(τl))1′µc + γ(LY l(τl))1′′τ c
)
Hd, (3.51)

wν =
Y ν

Λ
LΦνcHu +

1

2
M1(τν)(νcνc)1 +

1

2
M1′(τν)(νcνc)1′′ +

1

2
M3(τν)(νcνc)3. (3.52)

The bi-triplet Φ will then acquire a VEV and the two modular symmetries are broken to a single AD4 ,

as presented in Section 3.4.1, getting for wν (the we terms remain exactly the same):

wν = yD(Lνc)1Hu +
1

2
M1(τν)(νcνc)1 +

1

2
M1′(τν)(νcνc)1′′ +

1

2
M3(τν)(νcνc)3, (3.53)

where yD = Y νvΦ/Λ.

AD4 breaking

We consider now the flavour structure after AD4 symmetry breaking. As for the model using the

Weinberg operator, we assume that the charged lepton modular field τl acquires the VEV 〈τl〉 = τT =

26



3
2 + i

2
√

3
, which is a stabiliser of Tτ , which implies that a residual modular ZT3 symmetry is preserved in

the charged lepton sector. At this stabiliser, the modular form Y l, will then acquire the direction

Y l(τl) ∝


1

0

0

 (3.54)

This direction leads to a diagonal charged lepton mass matrix when the Higgs field Hd acquires a VEV

〈Hd〉 = (0, vd):

me =


α 0 0

0 β 0

0 0 γ

 . (3.55)

The masses for the charged leptons can be reproduced by adjusting the parameters α, β and γ. These

constants were redefined to include the constant associated with Y l(τl) and vd.

For the other modular field τν , since we want to obtain the trimaximal mixing TM2, which preserves

the second column of the tri-bimaximal mixing matrix, the modular form M3 should acquire the direction

M3(τν) ∝


1

1

1

 , (3.56)

which occurs for the VEV 〈τν〉 = τS = i, and thus it should have an even kν , as happens for 2kν = +4. In

this case, a residual modular ZS2 symmetry is preserved in the neutrino sector. This implies the following

structure for the right-handed neutrino mass matrix:

MR = c1


1 0 0

0 0 1

0 1 0

+ c1′


0 0 1

0 1 0

1 0 0

+
c3
3


2 −1 −1

−1 2 −1

−1 −1 2

 , (3.57)

where c1, c1′ , c3 are complex constants associated with the respective modular form.

The Dirac mass matrix that relates the right-handed and active neutrinos after the Higgs field Hu

acquires a VEV 〈Hu〉 = (0, vu) is simply

MD = yDvuP23. (3.58)

Consequently, the active neutrino mass matrix for the see-saw mechanism gets the form

Mν = −MDM
−1
R MT

D = −y2
Dv

2
uP23M

−1
R P23. (3.59)

We want now to diagonalize Mν , such that UTMνU = Mνd = diag(m1,m2,m3), where mi are the

neutrino masses and U is an unitary matrix. It is also true that UTMνU = −UTMDM
−1
R MT

DU = Mνd .

So MT
DU also diagonalizes the matrix M−1

R and thus V = M†DU
∗ diagonalizes MR such that V TMRV =
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MRd = diag(M1,M2,M3) where Mi = −y
2
Dv

2
u

mi
. Conversely, U = M∗DV

∗ when V diagonalizes MR.

In the present model, when we apply the tri-bimaximal matrix in Eq.(3.21) to the heavy neutrino mass

matrix, we obtain:

UTTBMMRUTBM =


a 0 c

0 a−b
2 +

√
3c 0

c 0 b

 , (3.60)

where a = c3 + c1 − 1
2c1′ , b = c3 − c1 + 1

2c1′ and c =
√

3
2 c1′ . This matrix has only an element on the

second row and second column and four elements on the corners that form a 2 × 2 symmetric matrix

and so can be put into block diagonal form by permuting the first and second columns and rows. Thus,

the full matrix can be fully diagonalized adding a matrix Vr that introduces a rotation among the first

and third columns. This rotation preserves the second column so MR is diagonalized by a TM2 mixing

matrix, since this mixing matrix can be written as the product of the TBM mixing matrix and a rotation

on the first and third columns. For the present model, MD is only a permutation, so we have that, being

V = UTBMVr the matrix that diagonalizes MR, the matrix that diagonalizes Mν is U = P23UTBMVr,

which can also be written as UTBMUr, where Ur is a rotation between the first and third columns. Using

for Ur the parametrization given by Eq.(3.22), which implies that

Vr =


cos θe−iα1 0 sin θeiα2

0 e−iα3 0

sin θe−iα2 0 − cos θeiα1

 , (3.61)

we are then able to diagonalize both Mν and MR. Here, θ is the angle that governs the rotation and the

three αi are introduced such that Mi are purely real values.

It is also possible to start from the diagonal matrix MRd and get UTTBMMRUTBM . We have that

V ∗r MRdV
†
r =


M1 cos2 θe2iα1 +M3 sin2 θe−2iα2 0 1

2 (M1e
i(α1+α2) −M3e

−i(α1+α2)) sin 2θ

0 M2e
2iα3 0

∗ 0 M1 sin2 θe2iα2 +M3 cos2 θe−2iα1

, (3.62)

and comparing with Eq.(3.60) we obtain that α3 = 1
2 arg

(
a−b

2 +
√

3c
)

and, more importantly, we get a

mass sum rule for Mi that can also be expressed in terms of the active neutrino masses mi:

1

m2
= − 1

y2
Dv

2
u

∣∣∣∣a− b2
+
√

3c

∣∣∣∣
=

∣∣∣∣ 1

2m1

(
e2iα1 cos2 θ − e2iα2 sin2 θ +

√
3ei(α1+α2) sin 2θ

)
−

− 1

2m3

(
e−2iα1 cos2 θ − e−2iα2 sin2 θ +

√
3e−i(α1+α2) sin 2θ

)∣∣∣∣ .
(3.63)

This sum rule has obvious similarities with the sum rule for the model using the Weinberg operator,

Eq.(3.43), which comes from the fact that MR in this model, given by Eq.(3.57), and Mν in the previous

model, given by Eq.(3.40), have the same structure. Similarly to what can be found in [55], we can write
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these sum rules as

mη
2 = f1(ηθ, ηα1, ηα2, ηα3) mη

1 + f3(ηθ, ηα1, ηα2, ηα3) mη
3 (3.64)

where

f1(θ, α1, α2, α3) =
1

2

(
e−2iα1 cos2 θ − e−2iα2 sin2 θ −

√
3e−i(α1+α2) sin 2θ

)
e2iα3 (3.65)

f3(θ, α1, α2, α3) = −1

2

(
e2iα1 cos2 θ − e2iα2 sin2 θ −

√
3ei(α1+α2) sin 2θ

)
e2iα3 . (3.66)

With these definitions, we can say that for the model where we use the Weinberg operator, we choose

for the exponent η = +1 and thus

m2 = f1(θ, α1, α2, α3) m1 + f3(θ, α1, α2, α3) m3. (3.67)

However, for the model using the see-saw mechanism, since the matrix that diagonalizes the matrix

that has the same structure as Mν in the model using the Weinberg operator is not Ur but Vr instead,

apart from having η = −1 in the exponent, we will also have to exchange all the signs of the angles and

complex phases. We will have then for the sum rule:

1

m2
= f1(−θ,−α1,−α2,−α3)

1

m1
+ f3(−θ,−α1,−α2,−α3)

1

m3
. (3.68)

The sum rule Eq.(3.63) and Eqs.(3.23-3.26) provide relations between the observables and the pa-

rameters of the TM2 mixing, and so we are able to do a numerical minimisation using the χ2 function

Eq.(3.44). For the fitting, the three mixing angles, the atmospheric and solar neutrino squared mass

differences and the Dirac neutrino CP violation phase were considered.

The fit parameters obtained for NO and IO of neutrino masses can be found in Table 3.7. The best fit

values lie inside the 1σ range for all the observables except θ12, as is characteristic of the TM2 mixing,

and δ for IO. Nonetheless, all the observables are within their 3σ intervals. The best-fit occurs for normal

ordering of neutrino masses with a χ2/6 = 1.57.

NO

Para.
χ2/6 θ α1 α2 m1 m3

1.57 10.51◦ -67.60◦ -24.26◦ 0.0141 eV 0.0521 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
31 mββ

35.72◦ 49.4◦ 8.56◦ 224◦ 7.42×10−5eV2 2.514×10−3eV2 0.0131 eV

IO

Para.
χ2/6 θ α1 α2 m1 m3

2.04 10.56◦ -95.56◦ -38.93◦ 0.0546 eV 0.0236 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
32 mββ

35.73◦ 48.4◦ 8.61◦ 237◦ 7.42×10−5eV2 -2.496×10−3eV2 0.0174 eV

Table 3.7: Parameters (Para.) and observables (Obs.) for the best fit point for normal and inverted
orderings for model 1 using the see-saw mechanism and two modular A4.
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(a) Normal Ordering (b) Inverted Ordering

Figure 3.2: Predictions of mlightest vs mββ for both orderings of neutrino masses compatible with 1σ
(dark-red, NO only, except θ12) and 3σ data from [59] for model 1 using the see-saw mechanism and two
modular A4. In both figures were also included the current upper limit from KamLAND-Zen and PLANCK
2018 as in Figure 3.1.

It is also possible to obtain the expected mββ for neutrinoless beta decay using the formula

mββ =
∣∣(Mν)(1,1)

∣∣ = y2
Dv

2
u

∣∣(M−1
R )(1,1)

∣∣
=

1

3

∣∣2m1e
−2iα1 cos2 θ +m2e

−2iα3 + 2m3e
2iα2 sin2 θ

∣∣ , (3.69)

where m2 is given by Eq.(3.63). Doing a numerical computation, the allowed regions of mlightest vs

mββ of Figure 3.2 (for NO, mlightest = m1 and for IO, mlightest = m3) were obtained, using again as

constraints the data from [59]. In both figures it is also shown the current upper limit provided by

KamLAND-Zen, mββ < 61 − 165 meV [64]. In both figures are also plotted two shadowed regions

that take into account experimental results from PLANCK 2018 [65]. These constrain the sum of neu-

trino masses and consequently the mass of the lightest neutrino. These regions were previously dis-

cussed in Section 3.3: a very disfavoured region mlightest > 0.198 eV for NO and mlightest > 0.196 eV

for IO (for which the limit 95%C.L.,Planck lensing+BAO+θMC was considered) and a disfavoured re-

gion mlightest > 0.030 eV for NO and mlightest > 0.016 eV for IO (for which the limit 95%C.L.,Planck

TT,TE,EE+lowE+lensing+BAO+θMC was considered). We conclude then that only the fit for NO in

Table 3.7 is outside the disfavoured region.

For NO, the points compatible with the 1σ ranges of the observables other than θ12 were plotted with

a darker red color. For IO, at least one of the other observables is incompatible with its 1σ region, hence

only the 3σ compatible points are shown. Both mass orderings have points outside the disfavoured

region, although the non-disfavoured region for IO is smaller. The minimum values considering the 3σ

ranges are

(mlightest)
NO
min ≈ 0.002 eV (mββ)NO

min ≈ 0.003 eV

(mlightest)
IO
min ≈ 0.011 eV (mββ)IO

min ≈ 0.015 eV, (3.70)
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and the the 1σ region for NO is limited by

(mlightest)
NO
min ≈ 0.006 eV (mββ)NO

min ≈ 0.007 eV (3.71)

Thus, for this first model using the see-saw mechanism, NO is the preferred mass ordering.

3.4.3 Model 2

It should be noted that it is possible to use other weights for the modular forms and still obtain a model

with TM2 mixing. One example is a model where we substitute the fixed constant Y ν of the previous

model by a triplet modular form under Aν4 . However, in this case, the obtained matrix for the interactions

between left and right-handed neutrinos would have a null eigenvalue associated with the eigenvector

we want to preserve in TM2, which would lead to a massless effective neutrino corresponding to the

second column of the PMNS. Therefore we need to further introduce an additional term for the model

to be viable, or equivalently we should somehow keep the term from the previous model but taking into

account that the weights in each term must always sum to zero.

The transformation properties of fields, Yukawa couplings and masses are shown in Table 3.8. The

weights for the Al4 symmetry remain the same as in the previous model given that the content of that

symmetry was not changed, only of Aν4 , and as such just the Aν4 weights will be introduced below.

Fields SU(2) Al4 Aν4 2kl 2kν

L 2 3 1 0 0

ec 1 1 1 +6 0

µc 1 1′′ 1 +6 0

τ c 1 1′ 1 +6 0

νc 1 1 3 0 +4

Hu,d 2 1 1 0 0

Φ 1 3 3 0 0

Yukawas/Masses Al4 Aν4 2kl 2kν

Y l 3 1 +6 0

Y ν1 1 1 0 +4

Y ν3 1 3 0 +4

M1 1 1 0 +8

M1′ 1 1′ 0 +8

M1′′ 1 1′′ 0 +8

M3 1 3 0 +8

Table 3.8: Transformation properties of fields, Yukawa couplings and masses for the right-handed neu-
trinos for model 2 using the see-saw mechanism and two modular A4.

The Yukawa coefficients Y l(τl) remain the same. However, Y ν1 (τν) is now a singlet under both

symmetries with weights 2kl = 0, 2kν = +4, and Y ν3 (τν), a triplet under Aν4 with weight 2kν = +4,

is introduced. It is then possible to assign a null value to 2kν for the right-handed charged leptons

ec, µc, τ c and the lepton doublets L, which means that, conversely to what happened for model 1, no

factors dependent on τν appear in the transformation relations for these superfields. That is to say that

the leptons only transform under Al4 and the right-handed neutrinos only under Aν4 , with no addition of

(cτν + d)−2kν factors for the charged leptons as happened for model 1.

However, it should be pointed out that, even for model 1, it is possible to substitute the modular form

of weight 0 by a singlet modular form of weight 4, thus changing the transformation properties under

Aν4 , given that different weights are now attributed. In fact, if we consider model 2 without adding the

triplet Y ν3 , using the same weights, we obtain then the same mass matrices and mixing scheme as in
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model 1, although now no τl dependent factor would appear in the transformation rule for Y ν1 and the

transformation relations for the leptons would look simpler too.

As already said, for the right-handed charged leptons ec, µc, τ c and the lepton doublets L, the weights

are now 2kν = 0 and consequently, for the three right-handed neutrinos νc, the weight is 2kν = +4

instead. This implies that the right-handed neutrino masses M1, M1′ , M1′′ and M3 will have now

2kν = +8. As before, these weights are chosen in such a way that the modular forms acquire the

desired directions as we will see.

Again, neutrino masses can be generated through the type I see-saw mechanism, and, with the

choices previously described, the superpotential has the following form:

w = we + wν , (3.72)

we =
(
α(LY l(τl))1e

c + β(LY l(τl))1′µc + γ(LY l(τl))1′′τ c
)
Hd, (3.73)

wν =
1

Λ
LΦY ν1 (τν)νcHu +

1

Λ
LΦY ν3 (τν)νcHu+

+
1

2
M1(τν)(νcνc)1 +

1

2
M1′(τν)(νcνc)1′′ +

1

2
M1′′(τν)(νcνc)1′ +

1

2
M3(τν)(νcνc)3. (3.74)

The bi-triplet Φ will then acquire a VEV as before and the two modular symmetries are broken to a

single one as discussed in Section 3.4.1. As seen previously, wν gets the form:

wν =
vΦ

Λ
(LY ν1 (τν)νc + LY ν3 (τν)νc)1Hu+

+
1

2
M1(τν)(νcνc)1 +

1

2
M1′(τν)(νcνc)1′′ +

1

2
M1′′(τν)(νcνc)1′ +

1

2
M3(τν)(νcνc)3, (3.75)

and we does not change.

AD4 breaking

The flavour structure after AD4 breaking is now going to be covered. We assume that the modular

field τl acquires the VEV 〈τl〉 = τT = 3
2 + i

2
√

3
, stabiliser of Tτ , as in the previous model. A residual

modular ZT3 symmetry is preserved in the charged lepton sector and, when the Higgs field Hd acquires

a VEV, the Y l direction leads to a diagonal charged lepton mass matrix as in Eq.(3.55), and the masses

for the charged leptons can be reproduced by adjusting the parameters α, β and γ as before.

For the other modular field τν , a residual ZS2 symmetry is conserved, given that, as seen previously,

the modulus should acquire the VEV 〈τν〉 = τS = i for M3 to have the direction (1, 1, 1), and thus M3

must have an even kν , as happens for 2kν = +8. Although in general we would have to consider instead

of the mass triplet M3 two triplets M31
and M32

arising from each triplet of weight 8 in Eqs.(3.13-3.14),

in this case, given that the second weight 8 triplet vanishes at this stabiliser, we only have to consider

the first weight 8 triplet. From Table 3.3 one knows also that none of the three singlets of weight 8

(Eqs.(3.10-3.12)) vanishes at this stabiliser, which accounts for the existence of M1, M1′ and M1′′ . This
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implies the following structure for the right-handed neutrino mass matrix:

MR = c1


1 0 0

0 0 1

0 1 0

+ c1′


0 0 1

0 1 0

1 0 0

+ c1′′


0 1 0

1 0 0

0 0 1

+
c3
3


2 −1 −1

−1 2 −1

−1 −1 2

 , (3.76)

where c1, c1′ , c1′′ , c3 are complex constants associated with the respective modular forms. The VEV the

modulus field τν acquires will also imply a direction (1, 1, 1) for Y ν3 (τν).

The term (LY ν3 (τν)νc)1 will lead to two independent contributions, one when we multiply two of the

triplets to get a symmetric triplet and then obtain a singlet by multiplying with the third triplet, and the

other when we consider in the first step the antisymmetric contribution instead. In order to obtain the

Dirac mass matrix, the Y ν1 term is added to these two terms, all with different multiplicative constants,

and we thus obtain g1Y
ν
1 (τν)(Lνc)1 + g2((LY ν3 (τν))3Sν

c)1 + g3((LY ν3 (τν))3Aν
c)1, where the complex

constants gi already account for the constants associated with the modular forms. The Dirac mass matrix

that relates the right-handed and active neutrinos after the Higgs field Hu acquires a VEV 〈Hu〉 = (0, vu)

will then be

MD = yDvug1




1 0 0

0 0 1

0 1 0

+
h2

3


2 −1 −1

−1 2 −1

−1 −1 2

+
h3

2


0 −1 1

1 0 −1

−1 1 0


 , (3.77)

where hi = gi/g1 (g1 was chosen for the denominator given that, for the model to hold, it can not be

taken to zero, as stated in the beginning of this section). Again, the active neutrino mass matrix for the

see-saw mechanism is obtained through the following formula:

Mν = −MDM
−1
R MT

D . (3.78)

The expressions for the entries of the neutrino mass matrix are much more complicated in this case

since the Dirac mass matrix is not a permutation matrix as before. Nevertheless, the see-saw mass

matrix is diagonalized by the TM2 mixing matrix and again the PMNS matrix corresponds to the TM2

mixing.

Doing a similar derivation to what was done for the first model, the mass sum rule for this model is

1

m2
=

∣∣∣∣ 1

8m1

(
e2iα1

(
4h2

2 + 12h2h3 − 3h2
3 + 8h2 + 12h3 + 4

)
cos2 θ−

− e2iα2
(
4h2

2 + 12h2h3 − 3h2
3 − 8h2 − 12h3 + 4

)
sin2 θ−

−
√

3ei(α1+α2)
(
4h2

2 − 4h2h3 − 3h2
3 − 4

)
sin 2θ

)
−

− 1

8m3

(
e−2iα1

(
4h2

2 + 12h2h3 − 3h2
3 − 8h2 − 12h3 + 4

)
cos2 θ−

− e−2iα2
(
4h2

2 + 12h2h3 − 3h2
3 + 8h2 + 12h3 + 4

)
sin2 θ−

−
√

3e−i(α1+α2)
(
4h2

2 − 4h2h3 − 3h2
3 − 4

)
sin 2θ

)
− 3M1′′

∣∣∣,

(3.79)

33



Note that when the extra parameters introduced in model 2 vanish, h2 = h3 = M1′′ = 0, the sum rule for

model 1, Eq.(3.63), is recovered.

Using this new sum rule with extra parameters, the best fit values shown in Table 3.9 were obtained.

For NO, all the observables except θ12 are compatible with their 1σ ranges. For IO, δ is also outside its

1σ region, as happened for model 1, even though all of the observables are still within their 3σ ranges.

As for model 1, NO provides the best fit, with χ2/6 = 1.57, which is the same value found for model 1

using the see-saw mechanism and also for the model using the Weinberg operator. This is not surprising

given the contribution to the χ2 is coming not from the masses, but from the mixing angles, and all these

models give TM2 mixing.

NO

Para.
χ2/6 θ α1 α2 h2 h3 M1′′ m1 m3

1.57 10.51◦ 102.16◦ 145.49◦ −1.052− 0.375i 0.788 + 0.114i 2.099 + 2.675i 0.0131 eV 0.0518 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
31 mββ

35.72◦ 49.4◦ 8.56◦ 224◦ 7.42×10−5eV2 2.514×10−3eV2 0.0106 eV

IO

Para.
χ2/6 θ α1 α2 h2 h3 M1′′ m1 m3

2.03 -10.56◦ -6.17◦ -131.13◦ 0.767− 0.825i −0.419 + 0.283i 1.855− 0.727i 0.0929 eV 0.0788 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
32 mββ

35.73◦ 48.5◦ 8.60◦ 236◦ 7.42×10−5eV2 -2.498×10−3eV2 0.0397 eV

Table 3.9: Parameters (Para.) and observables (Obs.) for the best fit point for normal and inverted
orderings for model 2 using the see-saw mechanism and two modular A4.

(a) Normal Ordering (b) Inverted Ordering

Figure 3.3: Predictions of mlightest vs mββ for both orderings of neutrino masses compatible with 1σ
(dark-red, NO only, except θ12) and 3σ data from [59] for model 2 using the see-saw mechanism and two
modular A4. In both figures were also included the current upper limit from KamLAND-Zen and PLANCK
2018 as in Figure 3.1.

Furthermore, using Eq.(3.69) with m2 given by Eq.(3.79), the allowed regions of mlightest vs mββ ,

shown in Figure 3.3 (as before, for NO, mlightest = m1 and for IO, mlightest = m3) were obtained. The ex-

perimental constrains that were already discussed in Section 3.3 are also included. As before, there are

some points (with a darker red color) in the NO figure compatible with the 1σ ranges for the observables

other than θ12. For IO again no 1σ compatible points are shown, given that all points are outside the 1σ

range for at least one of the other observables, as occurred for the best fit values.

However, these 1σ points for NO do not form a characteristic structure as happened for model 1 but

are dispersed within the other points that have at least an observable other than θ12 outside its 1σ region.
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For the fits shown in Table 3.9, only NO is outside the disfavoured region. From what has been written,

it is inferred that, similarly to what happened for model 1, NO is once more the preferred mass ordering.

This second model is much less restrictive, and thus predictive, than the first one, since mlightest cov-

ers all orders of magnitude and almost all the available region for mlightest vs mββ and, more importantly,

the minimum value for mββ also approaches zero. More specifically, model 1 is simply a special case

of model 2 when we neglect all the extra parameters that where introduced in model 2 due to the new

terms that appear when we assign a higher weight to the modular forms Y ν .

35



36



Chapter 4

Two A5 Modular Symmetries for

Golden Ratio 2 Mixing

In this chapter, we construct two models that use two A5 modular symmetries in order to obtain

the golden ratio mixing plus a rotation among the first and the third columns, one using the Weinberg

operator and the other the see-saw mechanism to generate the neutrino masses. At high energies,

the model is based in two modular symmetries, Al5 and Aν5 , with modulus fields denoted by τl and τν ,

respectively. After the modulus fields acquire different VEV’s, different mass textures are realised in the

charged lepton and neutrino sectors. We will start by introducing some properties of the A5 modular

symmetry group. Subsequently, the various possibilities of a golden ratio mixing and a rotation among

two of its columns are investigated and concluded that only a rotation between the first and third column

is compatible with the 3σ confidence interval. Only then will these two models be introduced.

We note once again that [52] already employs a single A5 modular symmetry and two moduli in

models using the Weinberg operator to generate the neutrino masses. The model that uses some fixed

points of the modular fields lead to the same mixing we are going to discuss here, although that is not

explicit in [52].

4.1 Modular A5 symmetry and residual symmetries

In the following subsection the A5 symmetry group is introduced including some of its main properties

as the modular forms of level 5 and its stabilisers, which apply for the specific case of A5 modular

symmetries and, as well as the stabilisers for the modular groups from N = 2 to 5, can be found in [62].

4.1.1 Modular A5 symmetry and modular forms of level 5

The group A5 is the group of even permutations of 5 objects and has 60 elements. It is generated by

two operators Sτ and Tτ obeying

S2
τ = (SτTτ )3 = T 5

τ = 1. (4.1)
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This group has one singlet 1, two triplets 3 and 3′, one quadruplet 4 and one quintuplet 5 as its

irreducible representations. The irreducible representations of the generators and the multiplication

rules for the irreducible representations can be found in Appendix B.1.

Similarly to what was done for Γ3 ∼ A4, the Yukawa couplings in a theory that is invariant under a

Γ5 ∼ A5 symmetry are also going to be modular forms, but in this case of level 5. The eleven linearly

independent weight 2 modular forms of level 5 form a quintuplet Y (2)
5 = (Y1, Y2, Y3, Y4, Y5) of A5, a triplet

3 Y
(2)
3 = (Y6, Y7, Y8) and a triplet 3′ Y (2)

3′ = (Y9, Y10, Y11). These modular functions can be expressed in

terms of the third theta function (see Appendix B.2 for more details). The modular forms of higher weight

are generated starting from these eleven modular forms of weight 2.

The space of the weight 4 modular forms of level 5 has dimension 21 and decomposes into a singlet

1, one triplet 3, one triplet 3′, a quadruplet 4 and two quintuplets 5. Using the weight 2 modular forms,

one obtains the following expressions for the weight 4 modular forms [52]:

Y
(4)
1 = Y 2

1 + 2Y3Y4 + 2Y2Y5, (4.2)

Y
(4)
3 =


−2Y1Y6 +

√
3Y5Y7 +

√
3Y2Y8

√
3Y2Y6 + Y1Y7 −

√
6Y3Y8

√
3Y5Y6 −

√
6Y4Y7 + Y1Y8

 , (4.3)

Y
(4)
3′ =


√

3Y1Y6 + Y5Y7 + Y2Y8

Y3Y6 −
√

2Y2Y7 −
√

2Y4Y8

Y4Y6 −
√

2Y3Y7 −
√

2Y5Y8

 , (4.4)

Y
(4)
4 =


2Y 2

4 +
√

6Y1Y2 − Y3Y5

2Y 2
2 +
√

6Y1Y3 − Y4Y5

2Y 2
5 − Y2Y3 +

√
6Y1Y4

2Y 2
3 − Y2Y4 +

√
6Y1Y5

 , (4.5)

Y
(4)
51

=



√
2Y 2

1 +
√

2Y3Y4 − 2
√

2Y2Y5
√

3Y 2
4 − 2

√
2Y1Y2

√
2Y1Y3 + 2

√
3Y4Y5

2
√

3Y2Y3 +
√

2Y1Y4
√

3Y 2
3 − 2

√
2Y1Y5


, (4.6)

Y
(4)
52

=



√
3Y5Y7 −

√
3Y2Y8

−Y2Y6 −
√

3Y1Y7 −
√

2Y3Y8

−2Y3Y6 −
√

2Y2Y7

2Y4Y6 +
√

2Y5Y8

Y5Y6 +
√

2Y4Y7 +
√

3Y1Y8


. (4.7)

Furthermore, the modular forms of weight 6, whose linear space has dimension 31 and decomposes

into one singlet 1, two triplets 3, two triplets 3′, two quadruplet 4 and two quintuplets 5, are the following
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according to [52]:

Y
(6)
1 = 3

√
3
(
Y2Y

2
3 + Y 2

4 Y5

)
+
√

2Y1

(
Y 2

1 + 3Y3Y4 − 6Y2Y5

)
, (4.8)

Y
(6)
31

=
(
Y 2

1 + 2Y3Y4 + 2Y2Y5

)

Y6

Y7

Y8

 , (4.9)

Y
(6)
32

=


(
Y5Y6 −

√
2Y4Y7

)
Y7 +

(√
2Y3Y8 − Y2Y6

)
Y8(√

3Y1Y6 − Y5Y7

)
Y7 −

√
2Y3Y6Y8 +

(
Y 2

6 − Y7Y8

)
Y2(

Y2Y8 −
√

3Y1Y6

)
Y8 +

√
2Y4Y6Y7 −

(
Y 2

6 − Y7Y8

)
Y5

 , (4.10)

Y
(6)
3′

1
=
(
Y 2

1 + 2Y3Y4 + 2Y2Y5

)

Y9

Y10

Y11

 , (4.11)

Y
(6)
3′

2
=


(
Y4Y6 −

√
2Y3Y7 −

√
2Y5Y8

)
Y10 −

(
Y3Y6 −

√
2Y2Y7 −

√
2Y4Y8

)
Y11(

Y3Y6 −
√

2Y2Y7 −
√

2Y4Y8

)
Y9 −

(√
3Y1Y6 + Y5Y7 + Y2Y8

)
Y10(√

3Y1Y6 + Y5Y7 + Y2Y8

)
Y11 −

(
Y4Y6 −

√
2Y3Y7 −

√
2Y5Y8

)
Y9

 , (4.12)

Y
(6)
41

=



√
2
(√

6Y3Y8 −
√

3Y2Y6 − Y1Y7

)
Y9 −

(√
3Y5Y6 −

√
6Y4Y7 + Y1Y8

)
Y10(√

3Y5Y6 −
√

6Y4Y7 + Y1Y8

)
Y11 +

√
2
(√

3Y5Y7 − 2Y1Y6 +
√

3Y2Y8

)
Y10(√

3Y2Y6 + Y1Y7 −
√

6Y3Y8

)
Y10 +

√
2
(√

3Y5Y7 − 2Y1Y6 +
√

3Y2Y8

)
Y11

√
2
(√

6Y4Y7 −
√

3Y5Y6 − Y1Y8

)
Y9 −

(√
3Y2Y6 + Y1Y7 −

√
6Y3Y8

)
Y11

 , (4.13)

Y
(6)
42

=



√
2
(√

3Y1Y6 + Y5Y7

)
Y7 +

(
Y3Y6 −

√
2Y4Y8

)
Y8

√
2
(√

2Y2Y7 − Y3Y6

)
Y6 +

(
Y4Y6 +

√
2Y3Y7 +

√
2Y5Y8

)
Y8

√
2
(√

2Y5Y8 − Y4Y6

)
Y6 +

(
Y3Y6 +

√
2Y2Y7 +

√
2Y4Y8

)
Y7

√
2
(√

3Y1Y6 + Y2Y8

)
Y8 +

(
Y4Y6 −

√
2Y3Y7

)
Y7

 , (4.14)

Y
(6)
51

=
(
Y 2

1 + 2Y3Y4 + 2Y2Y5

)


Y1

Y2

Y3

Y4

Y5


, (4.15)

Y
(6)
52

=



√
3
(√

3Y1Y6 + Y5Y7 + Y2Y8

)
Y6(

Y5Y7 +
√

3Y1Y6

)
Y7 +

(
3Y2Y7 + 2Y4Y8 −

√
2Y3Y6

)
Y8(

Y3Y6 −
√

2Y2Y7

)
Y6 + 2

(
Y5Y8 + Y3Y7 −

√
2Y4Y6

)
Y8(

Y4Y6 −
√

2Y5Y8

)
Y6 + 2

(
Y2Y7 + Y4Y8 −

√
2Y3Y6

)
Y7(

Y2Y8 +
√

3Y1Y6

)
Y8 +

(
3Y5Y8 + 2Y3Y7 −

√
2Y4Y6

)
Y7


. (4.16)

4.1.2 Stabilisers and residual symmetries of modular A5

As explained in Section 3.1.2, stabilisers of the symmetry play a crucial role in residual symmetries.

Given an element γ in the modular group A5, a stabiliser of γ corresponds to a fixed point in the upper

39



half complex plane that transforms as γτγ = τγ . Once the modular field acquires a VEV at this special

point, 〈τ〉 = τγ , the modular symmetry is broken but an Abelian residual modular symmetry generated by

γ is preserved. Obviously, acting γ on the modular form at its stabiliser leaves the modular form invariant,

which implies that, at the stabiliser, the modular form is an eigenvector of the representation matrix ρI(γ)

for the given stabiliser that corresponds to the eigenvalue (cτγ + d)−2k, and thus the directions of the

modular forms at the stabilisers can be easily determined (see Eq.(3.16)).

The stabilisers for the A5 modular group are shown in Table 4.1 and can be found in [62].

γ τγ

Tτ , T
2
τ , T

3
τ , T

4
τ i∞ , 8

5

Sτ i , − 70
29 + i

29

TτSτ , TτSτTτSτ
1
2 + i

√
3

2 , − 37
26 + i

26
√

3

SτTτ , SτTτSτTτ − 1
2 + i

√
3

2 , 91
38 + i

√
3

38

Table 4.1: Stabilisers for some of the A5 elements [62].

For the transformations Sτ , Tτ , SτTτ and TτSτ , the coefficients (cτγ + d)−2k are

(cτγ + d)−2k =

 (−1)k τSτ1 = i

1 τTτ1
= i∞

. (4.17)

The directions of the modular forms of weight 2k = 2 and 4 for the stabilisers of the generators S

and T are shown in Table 4.2. Additionally, we include the factors for each modular form. These factors

are written in function of Y , which is defined in general as the first component Y1 of Y (2)
5 . For Y , the

definitions for the weight 2 modular forms present in Appendix B.2 were used. The value the modular

form singlet of weight 4 takes at the stabilisers is also included.

4.2 Golden ratio mixing and related mixings

The golden ratio (GR) mixing is a mixing associated in previous works with models based in the A5

symmetry, and this is not different for models using multiple modular A5. The mixing matrix that we will

use is

UGR =


φ√
2+φ

1√
2+φ

0

− 1√
4+2φ

φ√
4+2φ

1/
√

2

− 1√
4+2φ

φ√
4+2φ

−1/
√

2

 , (4.18)

where φ = 1+
√

5
2 . This mixing has the same problem as the TBM mixing: it is incompatible with the

experimental results for θ13, and thus we want to work with models that preserve only the first or the

second columns of the GR mixing matrix, that can be written as the GR matrix times a rotation between

the other two columns.

For a model where the second column is preserved, the matrix that diagonalizes Mν is U = UGRUr,
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τγ τSτ1
= i τTτ1

= i∞

5 Y



1
−1−

√
7−4φ√
6

−1−
√

18−11φ√
6

−1+
√

18−11φ√
6

−1+
√

7−4φ√
6


Y



1

0

0

0

0



weight 2 3 Y


√

58−31φ
15

−9+8φ+
√

27−4φ√
30

9−8φ+
√

27−4φ√
30

 √
3
5Y


1

0

0



3′ Y


−
√

3+4φ
15

7−4φ+
√

2+φ√
30

−7+4φ+
√

2+φ√
30

 −
√

3
5Y


1

0

0


1 15

√
5−25
6 Y 2 Y 2

3 −
√

100−40
√

5
3 Y 2


1

−
√

3−
√

5
2

−
√

3−
√

5
2

 −2
√

3
5Y

2


1

0

0



3′
√

125−55
√

5
2 Y 2


1√

3+
√

5
2√

3+
√

5
2

 3√
5
Y 2


1

0

0



weight 4
4 Y 2

12


25− 15

√
5− 5

√
10− 2

√
5

25− 15
√

5 + 5
√

130− 58
√

5

25− 15
√

5− 5
√

130− 58
√

5

25− 15
√

5 + 5
√

10− 2
√

5

 0

51 Y 2



1
6

√
15
√

5 + 35

−11
√

5+2
√

250−110
√

5+35

4
√

3

−
−7
√

5+2
√

5(5−2
√

5)+15

2
√

3√
5
3

(
5− 2

√
5
)

+
√

5
6

(
47− 21

√
5
)

−11
√

5−2
√

250−110
√

5+35

4
√

3


√

2Y 2



1

0

0

0

0



52 Y 2



− 7−
√

45√
3

− 1
3

√
−173

√
5 + 8

√
10− 2

√
5 + 407

2
3

√
−61
√

5 + 4
√

1930− 862
√

5 + 143

− 2
3

√
−61
√

5− 4
√

1930− 862
√

5 + 143

− 1
3

√
−173

√
5− 8

√
10− 2

√
5 + 407


0

Y 2.594 . . . i
√

2
3πi

Table 4.2: Directions for the modular forms of weight 2 and 4 of level 5 for the A5 generators.

where Ur is a rotation between the first and third columns. Using the parametrisation

Ur =


cos θeiα1 0 sin θe−iα2

0 eiα3 0

− sin θeiα2 0 cos θe−iα1

 , (4.19)
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we are then able to diagonalize Mν . Here, θ is the angle that governs the rotation and the three αi are

introduced such that mi are purely real values.

The angles and phases from the standard parametrisation of the PMNS matrix in [57] can be ex-

pressed in terms of the model parameters θ, α1 and α2 using the expressions between the parameters

and the PMNS matrix elements:

sin2 θ13 = |Ue3|2 =
5 +
√

5

10
sin2 θ (4.20)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

3−
√

5

4−
√

5 + cos 2θ
(4.21)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

4−
√

5 + cos 2θ − 2
√

5− 2
√

5 sin 2θ cos(α1 − α2)

8− 2
√

5 + 2 cos 2θ
(4.22)

δ = − arg

(
Ue3Uτ1U

∗
e1U

∗
τ3

cos θ12 sin θ13 cos2 θ13 cos θ23
+ cos θ12 sin θ13 cos θ23

)
= arg

(
sin 2θ

(
5 +
√

5

2
e−i(α1−α2) cos2 θ − ei(α1−α2) sin2 θ

))
. (4.23)

Using the 3σ C.L. range of sin2 θ13 for NO(IO), 0.02034(0.02053) → 0.02430(0.02436) [59], we obtain

the allowed range for sin θ:

0.1677(0.1684) . | sin θ| . 0.1833(0.1835), (4.24)

which implies also ranges for the other mixing angles (using that −1 ≤ cos(α1 − α2) ≤ 1):

0.2821(0.2822) . sin2 θ12 . 0.2833(0.2833) (4.25)

0.4029(0.4028) . sin2 θ23 . 0.5971(0.5972). (4.26)

The 1σ NuFit region is within the interval found for sin2 θ23, which overlaps with the 3σ region for this

parameter, with our result extending below 0.407(0.411) for NO(IO) and not reaching its upper limit. The

range of allowed values for sin2 θ12 is near the lowest limit of the 1σ region although outside.

For a model where the first column is preserved instead, the rotation matrix Ur between the second

and third columns can be parametrised as:

Ur =


eiα3 0 0

0 cos θeiα1 sin θe−iα2

0 − sin θeiα2 cos θe−iα1

 , (4.27)

Again, θ is the angle that governs the rotation and the three αi are introduced such that the three neutrino

masses mi have purely real values.

For this model, the expressions for the angles and phases from the standard parametrisation of the

PMNS matrix in [57] in terms of the model parameters θ, α1 and α2 are

sin2 θ13 = |Ue3|2 =
5−
√

5

10
sin2 θ (4.28)
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sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

2 cos2 θ

4 +
√

5 + cos 2θ
(4.29)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

4 +
√

5 + cos 2θ + 2
√

5 + 2
√

5 sin 2θ cos(α1 − α2)

8 + 2
√

5 + 2 cos 2θ
(4.30)

δ = − arg

(
Ue3Uτ1U

∗
e1U

∗
τ3

cos θ12 sin θ13 cos2 θ13 cos θ23
+ cos θ12 sin θ13 cos θ23

)
= arg

(
sin 2θ

(
5−
√

5

2
e−i(α1−α2) cos2 θ − ei(α1−α2) sin2 θ

))
. (4.31)

Using the 3σ C.L. range of sin2 θ13 for NO(IO), 0.02034(0.02053) → 0.02430(0.02436) [59], we obtain

the allowed range for sin θ:

0.2713(0.2725) . | sin θ| . 0.2965(0.2969), (4.32)

which implies also ranges for the other mixing angles (using that −1 ≤ cos(α1 − α2) ≤ 1):

0.2584(0.2583) . sin2 θ12 . 0.2614(0.2612) (4.33)

0.2531(0.2528) . sin2 θ23 . 0.7469(0.7472). (4.34)

We conclude that the range of allowed values for sin2 θ12 is outside the 3σ region and thus the class of

models that preserve the first column of the golden ratio mixing matrix, which we call GR1 mixing, are

disfavoured by experiment.

Consequently, in the following we are only interested in models that preserve the second column of

the golden ratio mixing, which we call GR2, although, as pointed out previously, even for these models

sin2 θ12 is outside the experimental 1σ interval.

4.3 Models with two modular A5 symmetries - using the Weinberg

operator

Now that the A5 modular symmetry and the mixing derived from the GR mixing were introduced, the

models that use this symmetry in order to get what we called the GR2 mixing can now be described.

We will start by constructing one model where it is assumed that neutrinos get their mass through the

Weinberg operator, and afterwards another model where the see-saw mechanism is used is introduced.

At high energies, these models are based in two modular symmetries, Al5 and Aν5 , with modulus fields

denoted by τl and τν , respectively. After the modulus fields acquire different VEV’s, different mass

textures are realised in the charged lepton and neutrino sectors, in such a way that the GR2 mixing is

recovered for the PMNS.

In this section we consider that neutrinos get their mass through an effective term of the type
1
ΛY L

2H2
u. The transformation properties of fields and Yukawa couplings can be found in Table 4.3.

All the Yukawa coefficients Y l and Y ν are modular forms of weight 4. The right-handed lepton fields

Ec are arranged as a triplet 3 or 3(′) of Al5 and singlets 1 of Aν5 , with weights 2kl = +4 and 2kν = −2.
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Fields SU(2) Al5 Aν5 2kl 2kν

L 2 3(′) 1 0 +2

Ec 2 3(′) 1 +4 −2

Hu,d 2 1 1 0 0

Φ 1 5 5 0 0

Yukawas/Masses Al5 Aν5 2kl 2kν

Y l1 1 1 +4 0

Y l
3(′) 3(′) 1 +4 0

Y l5 5 1 +4 0

Y ν1 1 1 0 +4

Y ν51
1 5 0 +4

Y ν52
1 5 0 +4

Table 4.3: Transformation properties of fields and Yukawa couplings for model using the Weinberg ope-
rator and two modular A5.

Similarly the lepton doublets L transform as a 3(′) of Al5 and a 1 of Aν5 , with weights 2kl = 0 and

2kν = +2. These are the correct choices for the weights such that the modular forms and fields in each

term sum up to zero since the weight for the fields is not 2k, which are the values that were introduced

in this section, but −2k instead. Hd and Hu are the usual Higgs and an additional Higgs doublet as

required in supersymmetric models. A bi-quintuplet Φ, which is a quintuplet under both Al5 and Aν5 , is

introduced.

The multiplication of two triplets has the decomposition 3(′) ⊗ 3(′) = 1 ⊕ 3(′) ⊕ 5, where the 3(′)

component is antisymmetric. This means that L2 only decomposes as 1 ⊗ 5, and so it must combine

with a singlet or quintuplet. This implies that we have only to consider the contributions from Y ν1 , Y ν51

and Y ν52
, each associated with a different complex constant gi. For Y ν , we only consider the contribution

from 51 since the other weight 4 52 will vanish at the chosen stabiliser for τν as is shown below.

With the fields assigned in this manner, the superpotential for this model, which can be separated

into one part containing the mass terms for the charged leptons and the other the neutrino mass terms,

has the following form:

w = we + wν , (4.35)

we =
(
α1Y

l
1(τl)(LE

c)1 + α2Y
l
3(′)(τl)(LE

c)3(′) + α3Y
l
5(τl)(LE

c)5
)
Hd, (4.36)

wν =
1

Λ
L2

[
Y ν1 (τν) +

1

Λ
Φ
(
Y ν51

(τν) + Y ν52
(τν)

)]
H2
u. (4.37)

Al5 ×Aν5 → AD5 breaking

Considering the multiplication rules for two quintuplets to get a trivial singlet, the term 1
Λ2L

2ΦY νH2
u

can be explicitly expanded as:
1

Λ2
(L2)T5PπΦPπY

ν
5 (τν)H2

u, (4.38)

where Pπ is the matrix that describes the permutation

π =

1 2 3 4 5

1 5 4 3 2

 , (4.39)
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which is explicitly

Pπ =



1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0


. (4.40)

If Φ acquires the VEV 〈Φ〉 = vΦPπ (see Appendix B.3 for more details), the term in Eq.(4.38)

vΦ

Λ2
(L2)T5PπY

ν
5 (τν)H2

u, (4.41)

which implies that wν gets the form (the we terms remain exactly the same):

wν =
1

Λ

[
(L2)1Y

ν
1 (τν) +

vΦ

Λ

(
(L2)5Y

ν
51

(τν) + (L2)5Y
ν
52

(τν)
)
1

]
H2
u. (4.42)

This means that the symmetry Al5 × Aν5 is broken but given that the same transformation γ can be

performed in Al5 and Aν5 simultaneously and being the terms in the superpotential above all left invariant

by such a transformation, there is still a single modular symmetry AD5 , the diagonal subgroup, that is

conserved.

The superpotential above implies a neutrino mass matrix. Expanding Y ν51
and Y ν52

in terms of the

weight 2 modular functions gives the results already derived in [52]. If the triplets L, Ec and νc are

triplets 3, which we will simply write as ρL ∼ 3, the neutrino mass matrix after the Higgs field acquires

the VEV 〈Hu〉 = (0, vu) gets the form:

M3
ν = g1(Y 2

1 + 2Y3Y4 + 2Y2Y5)


1 0 0

0 0 1

0 1 0



+ g51


Y5Y7 − Y2Y8 − 1

2Y5Y6 − 1√
2
Y4Y7 −

√
3

2 Y1Y8
1
2Y2Y6 + 1√

2
Y3Y8 +

√
3

2 Y1Y7

∗ Y5Y8 +
√

2Y4Y6 − 1
2Y5Y7 + 1

2Y2Y8

∗ ∗ −Y2Y7 −
√

2Y3Y6



+ g52


Y 2

1 + Y3Y4 − 2Y2Y5 − 3
2
√

2
Y 2

3 +
√

3Y1Y5 − 3
2
√

2
Y 2

4 +
√

3Y1Y2

∗ 3Y2Y3 +
√

3
2Y1Y4 − 1

2Y
2
1 − 1

2Y3Y4 + Y2Y5

∗ ∗ 3Y4Y5 +
√

3
2Y1Y3

 , (4.43)

where asterisks were used to omit the off diagonal entries of symmetric matrices and g1, g51
and g52

are arbitrary complex constants associated with the respective modular form contribution. The factors

2v2
u/Λ and 2v2

uvΦ/Λ
2 are included inside these constants.

If the triplets L, Ec and νc are triplets 3′ instead, which can be equivalently expressed as ρL ∼ 3′,
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one obtains:

M3′

ν = g1(Y 2
1 + 2Y3Y4 + 2Y2Y5)


1 0 0

0 0 1

0 1 0



+ g51


Y5Y7 − Y2Y8 −Y4Y6 − 1√

2
Y5Y8 Y3Y6 + 1√

2
Y2Y7

∗ −Y3Y8 − 1√
2
Y2Y6 −

√
3
2Y1Y7 − 1

2Y5Y7 + 1
2Y2Y8

∗ ∗ Y4Y7 + 1√
2
Y5Y6 +

√
3
2Y1Y8



+ g52


Y 2

1 + Y3Y4 − 2Y2Y5 − 3√
2
Y2Y3 −

√
3

2 Y1Y4 − 3√
2
Y4Y5 −

√
3

2 Y1Y3

∗ 3
2Y

2
4 −
√

6Y1Y2 − 1
2Y

2
1 − 1

2Y3Y4 + Y2Y5

∗ ∗ 3
2Y

2
3 −
√

6Y1Y5

 , (4.44)

where again g1, g51 and g52 are arbitrary complex constants associated with the respective modular

form contribution that absorbed the factors 2v2
u/Λ and 2v2

uvΦ/Λ
2.

AD5 breaking

The flavour structure after AD5 symmetry breaking will now be covered. We assume that the charged

lepton modular field τl acquires the VEV 〈τl〉 = τT = i∞. This is a stabiliser of Tτ which means that a

residual modular ZT5 symmetry is preserved in the charged lepton sector. The directions the modular

forms take at this stabiliser are in Table 4.2. These directions lead to an almost diagonal charged lepton

mass matrix when the Higgs field Hd acquires a VEV 〈Hd〉 = (0, vd):

me = vdα1


1 + 2α3

α1
0 0

0 0 1− α2

α1
− α3

α1

0 1 + α2

α1
− α3

α1
0

 . (4.45)

The masses for the charged leptons can be reproduced by adjusting the parameters αi. These constants

were redefined to include the constant associated with Y l(τl). This matrix can be diagonalized by

multiplying on the left and right by PL and PR (PTLmePR = med ) by taking PL as the identity matrix and

PR = P23. Consequently, the PMNS matrix is simply the matrix that diagonalizes the mass matrix for the

neutrinos. These considerations are valid whether we choose the triplets in the model to be 3 or 3′.

For the other modular field τν , we want to find a VEV that leads to a mixing that preserves the second

column of the GR mixing matrix. This occurs for 〈τν〉 = τS = i and for Y ν with weight 4 (see Table 4.2

for the directions the modular forms get at this stabiliser). In this case, a residual modular ZS2 symmetry

is preserved in the neutrino sector.

If ρL ∼ 3, this implies the following structure for the neutrino mass matrix:

M3
ν = g1


1 0 0

0 0 1

0 1 0


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+ g51


1 −

√
241
8

+ 13
√
5−

√
1525 + 682

√
5 −

√
241
8

+ 13
√
5 +

√
1525 + 682

√
5

∗ −3− 2
√
5 +

√
50 + 22

√
5 − 1

2

∗ ∗ −3− 2
√
5−

√
50 + 22

√
5



+ g52


1 − 3

2

√
949
2
− 212

√
5− 2

√
103445− 46262

√
5 − 3

2

√
949
2
− 212

√
5 + 2

√
103445− 46262

√
5

∗ 3
2

(
18− 8

√
5 +

√
130− 58

√
5
)

− 1
2

∗ ∗ 3
2

(
18− 8

√
5−

√
130− 58

√
5
)



≈


g1 + g51 + g52 −1.99176g51 − 0.578608g52 −10.6968g51 − 1.30628g52

∗ 2.48746g51 + 0.999728g52 g1 − 1
2
g51 − 1

2
g52

∗ ∗ −17.4317g51 − 0.665359g52

 (4.46)

where g1, g51
and g52

were redefined to include factors coming from the modular forms Y ν1 , Y ν51
and Y ν52

.

We want now to diagonalize Mν , such that UTMνU = Mνd = diag(m1,m2,m3), where mi are the

neutrino masses and U is an unitary matrix. When we apply the golden ratio mixing matrix Eq.(4.18) to

the neutrino mass matrix for triplets 3 one obtains:

UTGRM
3
ν UGR =


1
10

((
7
√

5 + 5
)
a+

(
7
√

5− 5
)
b+ 16

√
5c
)

0 0

0 a c

0 c b

 (4.47)

where a = g1 − 13
√

5+25
4 g51

+ 27
√

5−65
4 g52

, b = −2g1 − 4
√

5+5
2 g51

+ 55−24
√

5
2 g52

and c =
(
3
√

5 + 5
)
g51

+
3(7
√

5−15)
2 g52

.

This implies that the PMNS is simply the Golden Ratio matrix times a rotation among the second

and third columns, conserving only its first column. We have already discussed the compatibility of the

GR1 mixing and experimental values in Section 4.2, where it has already been seen that this mixing is

incompatible with the 3σ confidence interval for θ12. For this reason, we will not further develop the case

ρL ∼ 3.

We now turn our attention to M3′

ν . For ρL ∼ 3′, we have the following structure for the neutrino mass

matrix:

M3′
ν = g1


1 0 0

0 0 1

0 1 0



+ g51


1 −

√
79
2
+ 17
√
5−

√
2770 + 1238

√
5

√
79
2
+ 17
√
5 +

√
2770 + 1238

√
5

∗ 9
2
+ 2
√
5 + 2

√
5 + 2

√
5 − 1

2

∗ ∗ 9
2
+ 2
√
5− 2

√
5 + 2

√
5



+ g52


1 − 3

2

√
387− 173

√
5 + 2

√
41810− 18698

√
5 3

2

√
387− 173

√
5− 2

√
41810− 18698

√
5

∗ − 51
2
+ 12
√
5 + 3

√
85− 38

√
5 − 1

2

∗ ∗ − 51
2
+ 12
√
5− 3

√
85− 38

√
5



≈


g1 + g51 + g52 −1.75890g51 − 0.706914g52 12.3261g51 + 0.47048g52

∗ 15.1275g51 + 1.84736g52 g1 + 0.5g51 + 0.5g52

∗ ∗ 2.81677g51 + 0.818275g52

 (4.48)
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where once again g1, g51
and g52

were redefined to include the factors coming from the modular forms

Y ν1 , Y ν51
and Y ν52

.

When we apply the golden ratio mixing matrix Eq.(4.18) to the neutrino mass matrix for triplets 3′ we

obtain:

UTGRM
3′

ν UGR =


a 0 c

0 1
10

((
5−
√

5
)
a−

(
5 +
√

5
)
b− 8

√
5c
)

0

c 0 b

 , (4.49)

where a = g1− 5+
√

5
2 g51

+ 39
√

5−85
2 g52

, b = −g1+
(
5 + 2

√
5
)
g51

+
(
12
√

5− 25
)
g52

and c = −
(
5 + 3

√
5
)
g51

− 3
2

(
7
√

5− 15
)
g52 . This matrix has only an element on the second row and second column and four

elements on the corners that form a 2 × 2 symmetric matrix and so it can be fully diagonalized by

introducing a matrix Ur that describes a rotation among the first and third columns. The matrix that

diagonalizes Mν is then U = UGRUr, where Ur is given by Eq.(4.19). We are then able to diagonalize

Mν and the lepton mixing obeys a GR2 mixing.

It is also possible to start from the diagonal matrix Mνd and get UTGRMνUGR. We have that:

U∗rMνdU
†
r =


m1e

−2iα1 cos2 θ +m3e
2iα2 sin2 θ 0 1

2 (−m1e
−i(α1+α2) +m3e

i(α1+α2)) sin 2θ

0 m2e
−2iα3 0

∗ 0 m1e
−2iα2 sin2 θ +m3e

2iα1 cos2 θ

, (4.50)

and comparing with (4.49) we obtain that α3 = − 1
2 arg

((
5−
√

5
)
a−

(
5 +
√

5
)
b− 8

√
5c
)

and, more

importantly, we get a mass sum rule for mi:

m2 =
∣∣∣ 1

10

((
5−
√

5
)
a−

(
5 +
√

5
)
b− 8

√
5c
) ∣∣∣

=
1

10

∣∣∣m1

((
5−
√

5
)
e−2iα1 cos2 θ −

(
5 +
√

5
)
e−2iα2 sin2 θ + 4

√
5e−i(α1+α2) sin 2θ

)
− (4.51)

−m3

((
5 +
√

5
)
e2iα1 cos2 θ −

(
5−
√

5
)
e2iα2 sin2 θ + 4

√
5ei(α1+α2) sin 2θ

) ∣∣∣.
The sum rule (4.51) and (4.20-4.23) give us relations between the observables and the parameters

of the GR2 mixing, and hence we can do a numerical minimisation using the χ2 function:

χ2 =
∑
i

(
Pi({x})−BFi

σi

)2

, (4.52)

where Pi are the values provided by the considered model, BF the best fit value from NuFit [59] and

σi is also provided by NuFit, when averaging the upper and lower σ provided. For the fitting, the three

mixing angles, the atmospheric and solar neutrino squared mass differences and the Dirac neutrino CP

violation phase were considered.

The fit parameters obtained for normal ordering (NO) and inverted ordering (IO) of neutrino masses

can be found in Table 4.4. The best fit values lie inside the 1σ range for all the observables except θ12,

for both orderings near the lower limit of the 1σ range, and θ23 for IO. Nonetheless, all the observables

are within their 3σ intervals. The best-fit occurs for NO with a χ2/6 = 0.55.
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NO

Para.
χ2/6 θ α1 α2 m1 m3

0.55 -10.09◦ -12.97◦ 24.16◦ 0.0372 eV 0.0624 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
31 mββ

32.12◦ 49.3◦ 8.57◦ 218◦ 7.42×10−5eV2 2.514×10−3eV2 0.0276 eV

IO

Para.
χ2/6 θ α1 α2 m1 m3

1.80 10.16◦ -24.53◦ -130.52◦ 0.1209 eV 0.1104 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
32 mββ

32.12◦ 46.5◦ 8.63◦ 254◦ 7.42×10−5eV2 -2.497×10−3eV2 0.1091 eV

Table 4.4: Parameters (Para.) and observables (Obs.) for the best fit point for normal and inverted
orderings for model using the Weinberg operator and two modular A5.

(a) Normal Ordering (b) Inverted Ordering

Figure 4.1: Predictions of mlightest vs mββ for both orderings of neutrino masses compatible with 3σ data
from [59] for model using the Weinberg operator and two modularA5. For NO, the points having χ2/6 < 1
were plotted in dark-red. In both figures were also included the current upper limit from KamLAND-Zen
and PLANCK 2018 as in Figure 3.1.

It is also possible to obtain the expected mββ for neutrinoless beta decay using the formula

mββ = |(Mν)(1,1)|

=

∣∣∣∣∣5 +
√

5

10
m1e

−2iα1 cos2 θ +
2m2e

−2iα3

5 +
√

5
+

5 +
√

5

10
m3e

2iα2 sin2 θ

∣∣∣∣∣ , (4.53)

where m2 is given by Eq.(4.51). Doing a numerical computation, the allowed regions of mlightest vs mββ

of Figure 4.1 (for NO, mlightest = m1 and for IO, mlightest = m3) were obtained, using again as constraints

the data from [59]. The experimental constrains that were already discussed in Section 3.3, and arise

from experimental results provided by KamLAND-Zen [64] and PLANCK 2018 [65]), are also included.

We conclude then that both fits in Table 4.4 are in the disfavoured region.

For NO, the points that have χ2/6 < 1 were plotted with a darker red colour. Only for normal mass

orderings do we have points outside the disfavoured region. The minimum values considering the 3σ

ranges are

(mlightest)
NO
min ≈ 0.015 eV (mββ)NO

min ≈ 0.008 eV
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(mlightest)
IO
min ≈ 0.025 eV (mββ)IO

min ≈ 0.052 eV, (4.54)

and the minimum values for the points that have χ2/6 < 1 are

(mlightest)
NO
min ≈ 0.017 eV (mββ)NO

min ≈ 0.009 eV. (4.55)

Taking these considerations into account, we conclude that NO is once again the preferred mass order-

ing.

4.4 Models with two modular A5 symmetries - using the see-saw

mechanism

In this section it is assumed that neutrinos get their mass through the type I see-saw mechanism, the

effective term from the superpotential that gives rise to a Dirac mass matrix being of the form 1
ΛLY

ννcHu.

Again, at high energies this model is based in two modular symmetries, Al5 and Aν5 , with modulus fields

denoted by τl and τν , that will acquire different VEV’s, leading to a GR2 mixing.

We will assume that the Yukawa coupling Y ν is simply a constant. The transformation properties of

fields, Yukawa couplings and masses for this model are shown in Table 4.5.

Fields SU(2) Al5 Aν5 2kl 2kν

L 2 3(′) 1 0 −2

Ec 2 3(′) 1 +4 +2

νc 2 1 3(′) 0 +2

Hu,d 2 1 1 0 0

Φ 1 3(′) 3(′) 0 0

Yukawas/Masses Al5 Aν5 2kl 2kν

Y l1 1 1 +4 0

Y l
3(′) 3(′) 1 +4 0

Y l5 5 1 +4 0

Y ν 1 1 0 0

M1 1 1 0 +4

M51
1 5 0 +4

M52
1 5 0 +4

Table 4.5: Transformation properties of fields, Yukawa couplings and masses for the right-handed neu-
trinos for model using the see-saw mechanism and two modular A5.

The Yukawa coefficients for the charged leptons are a modular form which transforms as a triplet 3(′)

of Al5 with weight 2kl = +4, whereas Y ν is simply a modulus independent constant, a modular form of

weight 0. For the right-handed neutrino masses we consider three modular forms transforming under

Aν5 : M1 as a singlet, and M51 and M52 as two quintuplets, all with weights 2kν = +4. The weights were

chosen in such a way that the modular forms acquire the desired directions as we show below.

The right-handed charged leptons are arranged in a triplet 3(′) of Al5 and trivial singlet 1 of Aν5 , with

weights 2kl = +4 and 2kν = +2. The lepton doublets L are arranged as a triplet 3(′) of Al5 and a singlet

of Aν5 , with weights 2kl = 0 and 2kν = −2. In this model, the three right-handed neutrinos that were

introduced also form a triplet 3(′) of Aν5 with weight 2kν = +2. These are the correct choices for the

weights such that the modular forms and fields in each term sum up to zero since the weight for the

fields is not +2k, which are the values that were introduced in this section, but −2k instead.

50



Note once again that, in spite of the charged leptons only having non-trivial singlet transformations

under Al5 and the right-handed neutrinos only under Aν5 (which justifies the nomenclature used), the

respective weights introduce non-trivial factors in the transformations under both modular symmetries

for these fields.

With the fields assigned in this manner, the superpotential for this model, which can be separated

into one part containing the mass terms for the charged leptons and the other the neutrino mass terms,

has the following form:

w = we + wν , (4.56)

we =
(
α1Y

l
1(τl)(LE

c)1 + α2Y
l
3(′)(τl)(LE

c)3(′) + α3Y
l
5(τl)(LE

c)5
)
Hd, (4.57)

wν =
Y ν

Λ
LΦνcHu +

1

2
M1(τν)(νcνc)1 +

1

2
(M51(τν) +M52(τν)) (νcνc)5. (4.58)

From this superpotential, we can obtain the mass matrix for the right-handed neutrinos. As for the

models discussed in the previous section, using he Weinberg operator, we expand the weight 4 triplets

M51
and M52

in terms of the weight 2 modular functions Y1, Y8. If ρL ∼ 3′, the mass matrix for the

right-handed neutrinos after the Higgs field acquires the VEV 〈Hu〉 = (0, vu) gets the form:

M3′

R = c1(Y 2
1 + 2Y3Y4 + 2Y2Y5)


1 0 0

0 0 1

0 1 0



+ c51


Y5Y7 − Y2Y8 −Y4Y6 − 1√

2
Y5Y8 Y3Y6 + 1√

2
Y2Y7

∗ −Y3Y8 − 1√
2
Y2Y6 −

√
3
2Y1Y7 − 1

2Y5Y7 + 1
2Y2Y8

∗ ∗ Y4Y7 + 1√
2
Y5Y6 +

√
3
2Y1Y8



+ c52


Y 2

1 + Y3Y4 − 2Y2Y5 − 3√
2
Y2Y3 −

√
3

2 Y1Y4 − 3√
2
Y4Y5 −

√
3

2 Y1Y3

∗ 3
2Y

2
4 −
√

6Y1Y2 − 1
2Y

2
1 − 1

2Y3Y4 + Y2Y5

∗ ∗ 3
2Y

2
3 −
√

6Y1Y5

 . (4.59)

where asterisks were used to omit the off diagonal entries of symmetric matrices and where c1, c51

and c52
are arbitrary complex constants associated with the respective modular form contribution. We

have redefined the constants associated with the quintuplets in order to have simpler factors for the first

column first row entry in the matrix above. This matrixM3′

R has the same structure asM3′

ν for the models

using the Weinberg operator instead, and the same is also valid for M3
R and M3

ν .

Al5 ×Aν5 → AD5 breaking

Considering the multiplication rules for two triplets to get a trivial singlet, the term Y ν

Λ LΦνcHu can be

explicitly expanded as:
Y ν

Λ
LTP23ΦP23ν

cH2
u, (4.60)
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where the superscript T as usual stands for the transpose of a vector and P23 is the matrix that describes

the permutation of the second and third columns or rows:

P23 =


1 0 0

0 0 1

0 1 0

 . (4.61)

If Φ acquires the VEV 〈Φ〉 = vΦP23 (see Appendix B.4 for more details), the term in Eq.(4.60)

Y νvΦ

Λ
LTP23ν

cHu, (4.62)

which is precisely the contraction rule from two triplets 3 or two triplets 3′ to a singlet. This implies that

wν gets the form (the we terms remain exactly the same):

wν = yD (Lνc)1Hu +
1

2
M1(τν)(νcνc)1 +

1

2
(M51(τν) +M52(τν)) (νcνc)5, (4.63)

where yD = Y νvΦ/Λ. This means that the symmetry Al5 × Aν5 is broken but given that the same

transformation γ can be performed in Al5 and Aν5 simultaneously and being the term in the superpotential

above left invariant by such a transformation, the diagonal subgroup AD5 is conserved.

AD5 breaking

The flavour structure after AD5 symmetry breaking now follows. As for the models using the Weinberg

operator, we assume that the charged lepton modular field τl acquires the VEV 〈τl〉 = τT = i∞, which

is a stabiliser of Tτ and thus a residual modular ZT5 symmetry is preserved in the charged lepton sector.

The directions the modular forms take at this stabiliser are in Table 4.2 and lead to an almost diagonal

charged lepton mass matrix as in Eq.(4.45). The masses for the charged leptons can be reproduced

by adjusting the parameters αi and the mass matrix for the charged leptons can be diagonalized by

multiplying on the left by the identity matrix and on the right by P23 and thus the PMNS matrix is simply

the matrix that diagonalizes the mass matrix for the neutrinos.

For the other modular field τν , we want to find a VEV that leads to a mixing that preserves the

second column of the golden ratio GR mixing matrix. Again, this occurs for ρL ∼ 3′, when the modular

field acquires the VEV 〈τν〉 = τS = i and kν is even (the simplest case is 2kν = +4). In this case,

a residual modular ZS2 symmetry is preserved in the neutrino sector (see Table 4.2 for the directions

at this stabiliser). This implies the following structure for the neutrino mass matrix for the right-handed

neutrinos:

M3′
R = c1


1 0 0

0 0 1

0 1 0


52



+ c51


1 −

√
79
2
+ 17
√
5−

√
2770 + 1238

√
5

√
79
2
+ 17
√
5 +

√
2770 + 1238

√
5

∗ 9
2
+ 2
√
5 + 2

√
5 + 2

√
5 − 1

2

∗ ∗ 9
2
+ 2
√
5− 2

√
5 + 2

√
5



+ c52


1 − 3

2

√
387− 173

√
5 + 2

√
41810− 18698

√
5 3

2

√
387− 173

√
5− 2

√
41810− 18698

√
5

∗ − 51
2
+ 12
√
5 + 3

√
85− 38

√
5 − 1

2

∗ ∗ − 51
2
+ 12
√
5− 3

√
85− 38

√
5



≈


c1 + c51 + g52 −1.75890c51 − 0.706914c52 12.3261c51 + 0.47048c52

∗ 15.1275c51 + 1.84736c52 c1 + 0.5c51 + 0.5c52

∗ ∗ 2.81677c51 + 0.818275c52

 (4.64)

where c1, c51 and c52 were redefined to include the factors coming from the modular forms M1, M51 and

M52
.

For this model the VEV the field τν acquires has no implication on the term that generates the Dirac

mass matrix that relates the right-handed and active neutrinos. This matrix after the Higgs field Hu

acquires a VEV 〈Hu〉 = (0, vu) is simply

MD = yDvuP23. (4.65)

Consequently, the active neutrino mass matrix for the see-saw mechanism gets the form

Mν = −MDM
−1
R MT

D = −y2
Dv

2
uP23M

−1
R P23. (4.66)

We want now to diagonalize Mν , such that UTMνU = Mνd = diag(m1,m2,m3), where mi are

the neutrino masses and U is an unitary matrix. As derived in Section 3.4.2, it is also true that

UTMνU = −UTMDM
−1
R MT

DU = Mνd . So MT
DU also diagonalizes the matrix M−1

R and thus V = M†DU
∗

diagonalizes MR such that V TMRV = MRd = diag(M1,M2,M3) where Mi = −y
2
Dv

2
u

mi
. Conversely,

U = M∗DV
∗ when V diagonalizes MR.

In the present model, when we apply the golden ratio matrix in Eq.(4.18) to the heavy neutrino mass

matrix, we obtain:

UTGRMRUGR =


a 0 c

0 1
10

((
5−
√

5
)
a−

(
5 +
√

5
)
b− 8

√
5c
)

0

c 0 b

 , (4.67)

where where a = g1 − 5+
√

5
2 g51

+ 39
√

5−85
2 g52

, b = −g1 +
(
5 + 2

√
5
)
g51

+
(
12
√

5− 25
)
g52

and c =

−
(
5 + 3

√
5
)
g51
− 3

2

(
7
√

5− 15
)
g52

. This matrix can be fully diagonalized adding a matrix Vr that in-

troduces a rotation among the first and third columns. This rotation preserves the second column so

MR is diagonalized by a matrix that has the second column of the GR mixing matrix. For the present

model, MD is only a permutation, so we have that, being V = UGRVr the matrix that diagonalizes MR,

the matrix that diagonalizes Mν is U = P23UGRVr, which can also be written as UGRUr, where Ur is a

rotation between the first and third columns. If we define Ur as in Eq.(4.19), the definition for the matrix
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Vr is going to be

Vr =


cos θe−iα1 0 sin θeiα2

0 e−iα3 0

sin θe−iα2 0 − cos θeiα1

 , (4.68)

where θ is the angle that governs the rotation and the three αi are introduced such that Mi, and mi too,

are purely real values. We are then able to diagonalize both Mν and MR.

It is also possible to start from the diagonal matrix MRd and get UTGRMRUGR. We have that

V ∗r MRdV
†
r =


M1 cos2 θe2iα1 +M3 sin2 θe−2iα2 0 1

2 (M1e
i(α1+α2) −M3e

−i(α1+α2)) sin 2θ

0 M2e
2iα3 0

∗ 0 M1 sin2 θe2iα2 +M3 cos2 θe−2iα1

, (4.69)

and comparing with Eq.(4.67) we obtain that α3 = 1
2 arg

(
1
10

((
5−
√

5
)
a−

(
5 +
√

5
)
b− 8

√
5c
))

and,

more importantly, we get a mass sum rule for Mi that can also be expressed in terms of the active

neutrino masses mi:

1

m2
= − 1

y2
Dv

2
u

∣∣∣ 1

10

((
5−
√

5
)
a−

(
5 +
√

5
)
b− 8

√
5c
) ∣∣∣

=
1

10

∣∣∣ 1

m1

((
5−
√

5
)
e2iα1 cos2 θ −

(
5 +
√

5
)
e2iα2 sin2 θ − 4

√
5ei(α1+α2) sin 2θ

)
− (4.70)

− 1

m3

((
5 +
√

5
)
e−2iα1 cos2 θ −

(
5−
√

5
)
e−2iα2 sin2 θ − 4

√
5e−i(α1+α2) sin 2θ

) ∣∣∣.
For the models constructed in the previous chapter with two A4 modular symmetries, we found that

the model using the Weinberg operator and the first model using the see-saw mechanism could be

expressed in a simpler sum rule. This occurred because the matrices Mν using the Weinberg operator

and MR using the see-saw mechanism had the same structure. Since the same is valid for the models

constructed in this chapter with two A5 modular symmetries, we can easily see that the sum rule can be

expressed similarly as in [55] as

mη
2 = f1(ηθ, ηα1, ηα2, ηα3) mη

1 + f3(ηθ, ηα1, ηα2, ηα3) mη
3 (4.71)

where

f1(θ, α1, α2, α3) =
1

10

((
5−
√

5
)
e−2iα1 cos2 θ −

(
5 +
√

5
)
e−2iα2 sin2 θ + 4

√
5e−i(α1+α2) sin 2θ

)
e2iα3

(4.72)

f3(θ, α1, α2, α3) = − 1

10

((
5 +
√

5
)
e2iα1 cos2 θ −

(
5−
√

5
)
e2iα2 sin2 θ + 4

√
5ei(α1+α2) sin 2θ

)
e2iα3 .

(4.73)

With these definitions, for the model using the Weinberg operator to generate the neutrino masses,

we choose for the exponent η = +1 and thus:

m2 = f1(θ, α1, α2, α3) m1 + f3(θ, α1, α2, α3) m3. (4.74)
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and we recover Eq.(4.51). For the model using the see-saw mechanism, we chose η = −1 for the

exponent, and since there is that difference between in Ur and Vr already discussed in Section 3.4.2, in

this case we will also have to exchange all the signs of the angles and complex phases. We will have

then for the model using the see-saw mechanism:

1

m2
= f1(−θ,−α1,−α2,−α3)

1

m1
+ f3(−θ,−α1,−α2,−α3)

1

m3
, (4.75)

which recovers Eq.(4.70).

Before considering how well experimental results agree with these models, we stop here to consider

briefly the case ρL ∼ 3 for the present model using the see-saw mechanism. We would obtain for MR

the same structure as Mν in the previous model, which was diagonalized by the GR mixing matrix times

a rotation among the second and third columns. This implies that, for the simple model using the see-

saw mechanism we are now considering, where MD is simply a permutation, the mixing obtained for

ρL ∼ 3 using the see-saw mechanism will also be GR1, which, as stated in Section 4.2, is incompatible

with the experimental 3σ confidence interval for θ12. For this reason, we will not develop more the case

ρL ∼ 3.

We turn now to the agreement between the model using ρL ∼ 3′ and experiment. We can use the

sum rule Eq.(4.70) and Eqs.(4.20-4.23), which are relations between the observables and the parame-

ters of the GR2 mixing, to do a numerical minimisation using the χ2 function, Eq.(4.52). For the fitting,

the three mixing angles, the atmospheric and solar neutrino squared mass differences and the Dirac

neutrino CP violation phase were considered.

The fit parameters obtained for NO and IO of neutrino masses can be found in Table 4.6. For NO, the

best fit values lie inside the 1σ range for all the observables except θ12, for both orderings near the lower

limit of the 1σ range. For IO, θ23 and δ also lie outside the 1σ confidence intervals. Nonetheless, all the

observables are within their 3σ intervals. The best-fit occurs for normal ordering of neutrino masses with

a χ2/6 = 0.55.

It is also possible to obtain the expected mββ for neutrinoless beta decay using Eq.(4.53), but now

using Eq.(4.70) for m2. Doing a numerical computation, the allowed regions of mlightest vs mββ of Figure

4.2 (for NO, mlightest = m1 and for IO, mlightest = m3) were obtained, using again as constraints the data

from [59]. The experimental constrains that were already discussed in Section 3.3 are also included.

NO

Para.
χ2/6 θ α1 α2 m1 m3

0.55 -10.09◦ -102.67◦ -68.40◦ 0.0045 eV 0.0503 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
31 mββ

32.12◦ 49.4◦ 8.57◦ 215◦ 7.42×10−5eV2 2.514×10−3eV2 0.0068 eV

IO

Para.
χ2/6 θ α1 α2 m1 m3

1.58 10.14◦ -181.33◦ 68.58◦ 0.0687 eV 0.0480 eV

Obs.
θ12 θ23 θ13 δ ∆m2

21 ∆m2
32 mββ

32.12◦ 46.8◦ 8.61◦ 250◦ 7.42×10−5eV2 -2.497×10−3eV2 0.0335 eV

Table 4.6: Parameters (Para.) and observables (Obs.) for the best fit point for normal and inverted
orderings for model using the see-saw mechanism and two modular A5.
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(a) Normal Ordering (b) Inverted Ordering

Figure 4.2: Predictions of mlightest vs mββ for both orderings of neutrino masses compatible with 3σ data
from [59] for model using the see-saw mechanism and two modular A5. For NO, the points with χ2/6 < 1
were plotted in dark-red. In both figures were also included the current upper limit from KamLAND-Zen
and PLANCK 2018 as in Figure 3.1.

We conclude then that only the fit for NO in Table 4.6 is outside the disfavoured region.

For NO, the points that are compatible with the 1σ ranges of the observables other than θ12 (which

is, as already said, always near the lower 1σ limit although outside), which are inside a larger group

containing the points that have χ2/6 < 1. These points were plotted with a darker red colour. For IO,

at least one of the other observables is outside its 1σ region, hence only the 3σ compatible region is

plotted for IO. As happened for the model using the Weinberg operator, only for normal ordering do we

have points outside the disfavoured region. The minimum values considering the 3σ ranges are

(mlightest)
NO
min ≈ 0.0004 eV (mββ)NO

min ≈ 0.0008 eV

(mlightest)
IO
min ≈ 0.019 eV (mββ)IO

min ≈ 0.023 eV, (4.76)

and the minimum values for the points that have χ2/6 < 1 are

(mlightest)
NO
min ≈ 0.004 eV (mββ)NO

min ≈ 0.005 eV. (4.77)

We conclude that, when using the see-saw mechanism, NO is once again the preferred mass order-

ing, although, when comparing the present model with the model using the Weinberg operator discussed

in Section 4.3 the mββ vs mlightest region extends to lower orders of magnitude.
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Chapter 5

Conclusions

In this work, we employed the framework of multiple modular symmetries to build models with minimal

field content that are able to reproduce viable mixings. For the models using twoA4 modular symmetries,

the tri-maximal 2 mixing was obtained, and, for the models using two A5 modular symmetries, a variation

of the golden ratio mixing where only the second column is preserved, which was called GR2, was

obtained instead.

We described how the multiple A4 and A5 modular symmetries can be broken to a single symmetry

group and showed possible assignments of fields and weights under these two modular symmetries

leading to the desired mixing scheme. Three explicit models for A4 and two for A5 were built (with

different weights and using the Weinberg operator or the seesaw mechanism to generate the neutrino

masses) and shown to be predictive and to reproduce the observed mixing angles and mass differences

with good fits.

Neutrinoless double beta decay is expected, with the inverted ordering possibility almost entirely

disfavoured by cosmological observations and less compatible with the 1σ best fit intervals for the ex-

perimental observables than the normal ordering of neutrino masses. This occurs for all the models,

independent of the mechanism that generates the masses. Furthermore, the χ2 values obtained for

all the models, which depended mainly on the sin2 θ12 deviation from the best fit point, favour the GR2

mixing scheme more than the TM2 mixing.

It should be noted that this work is possible to be continued and will be continued. First of all, in

October 2021, new results from NuFit were published at http://www.nu-fit.org/ which seems to

mean that the connection between our results and the results from this global fit needs to be updated.

The results differ more significantly from the July 2020 data in the best fit points for sin2 θ23 and sin2 θ13,

and also on their 3σ range, but these are still not much significant differences. Thus, we expect that

no noticeable changes seem to apply. Nevertheless, it would be a good idea to update the analysis

considering these more recent confidence intervals, which can be easily done.

Secondly, for the bi-quintuplet Φ for the models using A5, the vacuum alignments are still being

studied and should be improved in the near future. All the solutions were not obtained fully for the

alignment of the bi-quintuplet, and for the bi-triplet, no equations that can be fully solved were obtained
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so far. We conclude that more driving fields of different nature need to be added to the present model to

account for the Φ VEV when using A5.

In conclusion, the models shown in this dissertation maintain their valid results and prove to be in

agreement with experiment, and so, despite the present incompleteness of the A5 alignments in its

present version, this thesis is a useful addendum to the field of modular field symmetries.
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Appendix A

Modular A4 Symmetry Group

A.1 A4 multiplication rules

The group A4 is the group of even permutations of four objects and is the symmetry group of the

tetrahedron, see e.g. [25]. It has 12 elements and two generators, S and T:

S2 = (ST )3 = T 3 = 1. (A.1)

A4 has four conjugacy classes: C1 = {e}, C2 = {T, ST, TS, STS}, C3 = {T 2, ST 2, T 2S, TST},

C4 = {S, T 2ST, TST 2} [21].

This group has four irreducible representations: an invariant singlet 1, two non-invariant singlets 1′

and 1′′, and a triplet 3. The representations for the generators are in Table A.1. The three dimensional

representation is not determined uniquely but up to an unitary transformation, representing a change of

basis. Two possible basis are the complex basis, in which T is diagonal, and the real basis, in which S

is diagonal.

1 1′ 1′′ 3 - complex basis - ρ 3 - real basis - ρ̃

S 1 1 1 1
3


−1 2 2

2 −1 2

2 2 −1




1 0 0

0 −1 0

0 0 −1


T 1 ω ω2


1 0 0

0 ω 0

0 0 ω2




0 1 0

0 0 1

1 0 0


Table A.1: Representation for the two generators of A4, where ω = ei2π/3 = −1/2 + i

√
3/2.

To transform from one basis to the other, we use

ρ̃3(γ) = Uωρ3(γ)U†ω, (A.2)
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where the change of basis matrix is

Uω =
1√
3


1 1 1

1 ω2 ω

1 ω ω2

 (A.3)

and obeys U†ω = UωP23.

The product of two triplets decomposes as 1 + 1′+ 1′′+ 3S + 3A where 3S(A) denotes the symmetric

(antisymmetric) combination. In the complex basis, this decomposition is [25]
a1

a2

a3


3

⊗


b1

b2

b3


3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′ ⊕ (a2b2 + a3b1 + a1b3)1′′

⊕ 1

3


2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a3b1 − a1b3


3S

⊕ 1

2


a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3


3A

, (A.4)

and in the real basis it is [21]
a1

a2

a3


3

⊗


b1

b2

b3


3

= (a1b1 + a2b2 + a3b3)1 ⊕ (a1b1 + ω2a2b2 + ωa3b3)1′ ⊕ (a1b1 + ωa2b2 + ω2a3b3)1′′

⊕


a2b3 + a3b2

a3b1 + a1b3

a1b2 + a2b1


3S

⊕


a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


3A

. (A.5)

Finally, the multiplication rules for the singlets are

1⊗ 1 = 1, 1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′, 1′ ⊗ 1′′ = 1. (A.6)

A.2 Modular forms of weight 2 for A4

The three linearly independent weight 2 modular forms of level 3 Y (2)
1,2,3 form a triplet of A4. In [21],

these modular forms were expressed in terms of the Dedekind eta functions

η(τ) = q1/24
∞∏
n=1

(1− qn), q = ei2πτ . (A.7)

The triplet modular forms Y (2)
1,2,3 can then be expressed as

Y
(2)
1 (τ) =

i

2π

[
η′( τ3 )

η( τ3 )
+
η′( τ+1

3 )

η( τ+1
3 )

+
η′( τ+2

3 )

η( τ+2
3 )
− 27

η′(3τ)

η(3τ)

]
(A.8)
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Y
(2)
2 (τ) = − i

π

[
η′( τ3 )

η( τ3 )
+ ω2 η

′( τ+1
3 )

η( τ+1
3 )

+ ω
η′( τ+2

3 )

η( τ+2
3 )

]
(A.9)

Y
(2)
3 (τ) = − i

π

[
η′( τ3 )

η( τ3 )
+ ω

η′( τ+1
3 )

η( τ+1
3 )

+ ω2 η
′( τ+2

3 )

η( τ+2
3 )

]
. (A.10)

A.3 Vacuum alignments for bi-triplet Φ in A4

In this Appendix we consider how to align the VEV of the bi-triplet Φ. Following from [7] where such

an alignment was obtained in the context of S4, we add two driving fields, with the properties present in

Table A.2.

Fields Al4 Aν4 2kl 2kν

χlν 3 3 0 0
χl 3 1 0 0

Table A.2: Transformation properties of the fields responsible for the vacuum alignment of the bi-triplet
Φ for the models with two modular A4.

The superpotential responsible for the vacuum alignment that will be minimized with relation to the

driving fields is

w = ΦΦχlν +MΦχlν + ΦΦχl. (A.11)

Care should be taken given that we are here dealing with A4 groups, rather than S4. The main

differences are the presence of the anti-symmetric triplet 3A in the contraction of 3 × 3 (in S4 it is a

different inequivalent 3′), and that S4 has a doublet (which decomposes into the two non-trivial singlets

of A4).

As the alignment superpotential above features only contractions into the trivial singlet of A4 and

ΦΦ contractions (where Φ appears twice), the equations are analogous to those in the S4 case and in

general the solutions of these equations are the same as for the S4 case, presented in [7]. Still, the

new contraction in A4 that gives a antisymmetric triplet introduces a small difference. When considering

the term ΦΦχl, we contract ΦΦ into a singlet of Aν4 and a triplet of Al4 and thus the only non-vanishing

contribution is the symmetric triplet of Aν4 that is finally combined with χl into a singlet of Aν4 . Here, no

difference appears with relation to S4. However, for the term ΦΦχνl, we are now contracting ΦΦ into

triplets of both symmetries, which means that we will have to consider separately when we contract ΦΦ

into both symmetric triplets of Al4 and Aν4 , and antisymmetric triplets of Al4 and Aν4 . The other possibility,

i.e. considering simultaneously a symmetric triplet under one symmetry and a antisymmetric triplet

under the other, always vanishes.

It is simpler to solve the relations that arise from the minimisation of this superpotential working in

the real basis. In fact, the multiplication of two triplets in the real basis can be simply expressed by a

Levi-Civita tensor. From Eq.(A.11), we have that

(a⊗ b)3Si = |εijk|ajbk (A.12)

(a⊗ b)3Ai = εijkajbk (A.13)
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We get the constraints:

∑
j,k=1,2,3

∑
β,γ=1,2,3

(gS |εijk||εαβγ |+ gAεijkεαβγ)(Φ̃)jβ(Φ̃)kγ +M(Φ̃)iα = 0 for i = 1, 2, 3, α = 1, 2, 3 (A.14)

∑
j,k=1,2,3

∑
α=1,2,3

|εijk|(Φ̃)jα(Φ̃)kα = 0 for i = 1, 2, 3. (A.15)

where gA and gS are constants that account for the combination of both indices of ΦΦ symmetrically and

anti-symmetrically. The solutions for general values of gS and gA, with gA 6= gS can be written as 3 × 3

unitary matrices.

〈Φ̃〉 = vΦ




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 −1 0

0 0 −1

 ,


−1 0 0

0 −1 0

0 0 1

 ,


−1 0 0

0 1 0

0 0 −1

 ,


0 0 1

1 0 0

0 1 0

 ,


0 0 −1

−1 0 0

0 1 0

 ,


0 0 −1

1 0 0

0 −1 0

 ,


0 0 1

−1 0 0

0 −1 0

 ,


0 1 0

0 0 1

1 0 0

 ,


0 1 0

0 0 −1

−1 0 0

 ,


0 −1 0

0 0 1

−1 0 0

 ,


0 −1 0

0 0 −1

1 0 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 −1

0 −1 0

1 0 0

 ,


0 0 −1

0 1 0

−1 0 0

 ,


0 0 1

0 −1 0

−1 0 0

 ,


0 1 0

1 0 0

0 0 1

 ,


0 1 0

−1 0 0

0 0 −1

 ,


0 −1 0

1 0 0

0 0 −1

 ,


0 −1 0

−1 0 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


1 0 0

0 0 −1

0 −1 0

 ,


−1 0 0

0 0 1

0 −1 0

 ,


−1 0 0

0 0 −1

0 1 0


 .

where vΦ is a constant that depends on gA, gS and M . These are precisely the representations of the

elements of S4 in the real basis, ρ̃3(γ), γ ∈ S4, half of which correspond also to representations of A4 in

the real basis. Returning to the complex basis used in the main text, we find simply that

〈Φ〉 = vΦρ3(γ)P23, γ ∈ S4. (A.16)

However, in the specific case that gA = gS , only half of these 24 solutions are valid solutions, more

precisely the first twelve solutions in Eq.(A.16), which are the A4 elements in the real basis, and thus,

gA = gS : 〈Φ〉 = vΦρ3(γ)P23, γ ∈ A4. (A.17)
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In the main text we have used as VEV the identity in the real basis, δiα, first solution in Eq.(A.16),

which in the complex basis becomes 〈Φ〉 = vΦP23. This specific VEV leads to the recovering of the

usual multiplication of two triplets to give a singlet. In the following we will show that it is still possible to

construct an invariant term under the single A4 symmetry that remains after the symmetry breaking of

the two independent symmetries when choosing one of the other eleven VEV’s.

We choose then one of the twelve VEV’s 〈Φ〉 = vΦρ3(γ1)P23, γ1 ∈ A4. We consider that the fields

transform under the single A4 as

Ec → (c2τl + d2)−2klEc (c2τν + d2)−2kνEcρ(γ2)Ec (A.18)

L→ (c2τν + d2)−2kνLρ(γ2)L (A.19)

νc → (c2τν + d2)−2kννcρ(γ−1
1 γ2γ1)νc (A.20)

Y l → (c2τl + d2)2kl
Y lρ(γ2)Y l (A.21)

Y ν1 → (c2τν + d2)
2kνY ν1 Y ν1 (A.22)

Y ν3 → (c2τν + d2)
2kνY ν3 ρ(γ−1

1 γ2γ1)Y ν3 (A.23)

M1 → (c2τν + d2)2kνM1M1 (A.24)

M1′ → (c2τν + d2)
2kνM

1′ ρ(γ2)M1′ (A.25)

M1′′ → (c2τν + d2)
2kνM

1′′ ρ(γ2)M1′′ (A.26)

M3 → (c2τν + d2)2kνM3ρ(γ−1
1 γ2γ1)M3 (A.27)

where Ec stands for ec, νc and τ c. For the singlets, it was taken into account that ρ(γ−1
1 γ2γ1) = ρ(γ2).

We require here that the triplets νc, Y ν3 and M3, instead of transforming under γ2 ∈ A4, transform under

the conjugate element of γ2, which belongs to A4 if γ1 also belongs to A4. Obviously for the other twelve

solutions that belong to S4 but not to A4 this is not verified.

The transformation rules for νc, Y ν3 and M3 are equivalent to the following ones:

[ρ(γ1)νc]→ (c2τν + d2)−2kννcρ(γ2) [ρ(γ1)νc] (A.28)

[ρ(γ1)Y ν3 ]→ (c2τν + d2)
2kνY ν3 ρ(γ2) [ρ(γ1)Y ν3 ] (A.29)

[ρ(γ1)M3]→ (c2τν + d2)2kνM3ρ(γ2) [ρ(γ1)M3] (A.30)

which implies that, with a suitable redefinition of νc, Y ν3 and M3, we recover the single A4 subgroup

under which all the terms after Φ gains a VEV are invariant. In conclusion, we found that, in general, half

of the values the VEV of Φ can have (12 in 24) lead to the same results discussed in the main text and

nothing new is left to be said about these other 11 solutions, and interestingly these twelve equivalent

solutions are the only possible values for the VEV when gA = gS .

Here we dealt with the specific case of the seesaw mechanism used for the two models in Section

3.4. For the Weinberg operator in Section 3.3 the same conclusions are valid: there is no difference in

using the other eleven VEV’s for Φ. In fact, the reasoning is even simpler in this case since fewer fields

are used.

69



70



Appendix B

Modular A5 Symmetry Group

B.1 A5 multiplication rules

The group A5 is the group of even permutations of five objects and is the symmetry group of the

icosahedron and its dual solid the dodecahedron. It has 60 elements and two generators, S and T:

S2 = (ST )3 = T 5 = 1. (B.1)

A5 has five conjugacy classes:

C1 = {e} (B.2)

C2 = {T 3ST 2ST, ST 2ST 3, ST 2ST 2ST, ST 3ST, T 3ST 3, T 2ST 2, TS, TSTS, ST 3STS, T 2ST 2ST,

STST 3, T 3ST, ST 3ST 2, T 3ST 2S, T 3STS, TST 3, ST, STST, TST 3ST, ST 2ST 2S} (B.3)

C3 = {STST 2, T 2ST 3STS, ST 3ST 2S, T 2ST 3, S, ST 3ST 2ST, ST 2ST 3ST, T 2ST 3ST 2,

STST 3ST 2, TST 2S, ST 2ST 3ST 2, ST 2ST, T 3ST 2, T 2STS, TST 3ST 2S} (B.4)

C4 = {T, T 4, TST, STS, STST 2S, TST 2, T 3S, ST 2, T 2S, ST 3, ST 2STS, T 2ST} (B.5)

C5 = {T 2, T 3, ST 2S, TST 2ST, STST 3ST 2S, TST 3ST 2, STST 3ST,

ST 2ST 2, T 2ST 2S, TST 3STS, T 2ST 3ST, ST 2ST 3STS} (B.6)

This group has five irreducible representations: an invariant singlet 1, two triplets 3 and 3′, a quadruplet

4 and a quintuplet 5. The representations for the generators are in Table B.1.

The product of two irreps decomposes in the following way:

3⊗ 3 = 1⊕ 3⊕ 5 (B.7)

3⊗ 3′ = 4⊕ 5 (B.8)

3⊗ 4 = 3′ ⊕ 4⊕ 5 (B.9)

3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5 (B.10)
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S T

1 1 1

3 1√
5


1 −

√
2 −

√
2

−
√

2 −φ 1/φ

−
√

2 1/φ −φ




1 0 0

0 ζ 0

0 0 ζ4


3′ 1√

5


−1

√
2

√
2

√
2 −1/φ φ
√

2 φ −1/φ




1 0 0

0 ζ2 0

0 0 ζ3



4 1√
5


1 1/φ φ −1

1/φ −1 1 φ

φ 1 −1 1/φ

−1 φ 1/φ 1



ζ 0 0 0

0 ζ2 0 0

0 0 ζ3 0

0 0 0 ζ4



5 1√
5



−1
√

6
√

6
√

6
√

6
√

6 1/φ2 −2φ 2/φ φ2

√
6 −2φ φ2 1/φ2 2/φ
√

6 2/φ 1/φ2 φ2 2φ
√

6 φ2 2/φ −2φ 1/φ2





1 0 0 0 0

0 ζ 0 0 0

0 0 ζ2 0 0

0 0 0 ζ3 0

0 0 0 0 ζ4


Table B.1: Representation for the two generators of A5, where φ = 1+

√
5

2 and ζ = e2πi/5.

3′ ⊗ 3′ = 1⊕ 3′ ⊕ 5 (B.11)

3′ ⊗ 4 = 3⊕ 4⊕ 5 (B.12)

3′ ⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5 (B.13)

4⊗ 4 = 1⊕ 3⊕ 3′ ⊕ 4⊕ 5 (B.14)

4⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 51 ⊕ 52 (B.15)

5⊗ 5 = 1⊕ 3⊕ 3′ ⊕ 41 ⊕ 42 ⊕ 51 ⊕ 52 (B.16)

The factors considered for the representation in Table B.1 lead to the following decomposition, with the

Clebsch-Gordan coefficients in [52]:


a1

a2

a3


3

⊗


b1

b2

b3


3

= (a1b1 + a2b3 + a3b2)1 ⊕


a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3


3

⊕



2a1b1 − a2b3 − a3b2

−
√

3a1b2 −
√

3a2b1
√

6a2b2
√

6a3b3

−
√

3a1b3 −
√

3a3b1


5

(B.17)


a1

a2

a3


3′

⊗


b1

b2

b3


3′

= (a1b1 + a2b3 + a3b2)1 ⊕


a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3


3′

⊕



2a1b1 − a2b3 − a3b2
√

6a3b3

−
√

3a1b2 −
√

3a2b1

−
√

3a1b3 −
√

3a3b1
√

6a2b2


5

(B.18)
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
a1

a2

a3


3

⊗


b1

b2

b3


3′

=



√
2a2b1 + a3b2

−
√

2a1b2 − a3b3

−
√

2a1b3 − a2b2
√

2a3b1 + a2b3


4

⊕



√
3a1b1

a2b1 +
√

2a3b2

a1b2 −
√

2a3b3

a1b3 −
√

2a2b2

a3b1 +
√

2a2b3


5

(B.19)


a1

a2

a3


3

⊗


b1

b2

b3

b4


4

=


−
√

2a2b4 −
√

2a3b1
√

2a1b2 − a2b1 + a3b3
√

2a1b3 − a3b4 + a2b2


3′

⊕


a1b1 −

√
2a3b2

−a1b2 −
√

2a2b1

a1b3 +
√

2a3b4

−a1b4 +
√

2a2b3


4

⊕

⊕



√
6a2b4 −

√
6a3b1

2
√

2a1b1 + 2a3b2

−
√

2a1b2 + a2b1 + 3a3b3
√

2a1b3 − a3b4 − 3a2b2

−2
√

2a1b4 − 2a2b3


5

(B.20)


a1

a2

a3


3′

⊗


b1

b2

b3

b4


4

=


−
√

2a2b3 −
√

2a3b2
√

2a1b1 + a2b4 − a3b3
√

2a1b4 + a3b1 − a2b2


3

⊕


a1b1 +

√
2a3b3

a1b2 −
√

2a3b4

−a1b3 +
√

2a2b1

−a1b4 −
√

2a2b2


4

⊕

⊕



√
6a2b3 −

√
6a3b2

√
2a1b1 − 3a2b4 − a3b3

2
√

2a1b2 + 2a3b4

−2
√

2a1b3 − 2a2b1

−
√

2a1b4 + 3a3b1 + a2b2


5

(B.21)


a1

a2

a3


3

⊗



b1

b2

b3

b4

b5


5

=


−2a1b1 +

√
3a2b5 +

√
3a3b2

√
3a1b2 + a2b1 −

√
6a3b3

√
3a1b5 + a3b1 −

√
6a2b4


3

⊕


√

3a1b1 + a2b5 + a3b2

a1b3 −
√

2a2b2 −
√

2a3b4

a1b4 −
√

2a2b3 −
√

2a3b5


3′

⊕

⊕


2
√

2a1b2 −
√

6a2b1 + a3b3

−
√

2a1b3 + 2a2b2 − 3a3b4
√

2a1b4 − 2a2b5 + 3a2b3

−2
√

2a1b5 +
√

6a3b1 − a2b4


4

⊕



√
3a2b5 −

√
3a3b2

−a1b2 −
√

3a2b1 −
√

2a3b3

−2a1b3 −
√

2a2b2

2a1b4 +
√

2a3b5

a1b5 +
√

3a3b1 +
√

2a2b4


5

(B.22)
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
a1

a2

a3


3′

⊗



b1

b2

b3

b4

b5


5

=


√

3a1b1 + a2b4 + a3b3

a1b2 −
√

2a2b5 −
√

2a3b4

a1b5 −
√

2a2b3 −
√

2a3b2


3

⊕


−2a1b1 +

√
3a2b4 +

√
3a3b3

√
3a1b3 + a2b1 −

√
6a3b5

√
3a1b4 + a3b1 −

√
6a2b2


3′

⊕

⊕



√
2a1b2 − 2a3b4 + 3a2b5

2
√

2a1b3 −
√

6a2b1 + a3b5

−2
√

2a1b4 +
√

6a3b1 − a2b2

−
√

2a1b5 + 2a2b3 − 3a3b2


4

⊕



√
3a2b4 −

√
3a3b3

2a1b2 +
√

2a3b4

−a1b3 −
√

3a2b1 −
√

2a3b5

a1b4 +
√

3a3b1 +
√

2a2b2

−2a1b5 −
√

2a2b3


5

(B.23)


a1

a2

a3

a4


4

⊗


b1

b2

b3

b4


4

= (a1b4 + a2b3 + a3b2 + a4b1)1 ⊕


a2b3 − a3b2 + a4b1 − a1b4
√

2a2b4 −
√

2a4b2
√

2a1b3 −
√

2a3b1


3

⊕

⊕


a2b3 − a3b2 + a1b4 − a4b1
√

2a3b4 −
√

2a4b3
√

2a1b2 −
√

2a2b1


3

⊕


a3b3 + a2b4 + a4b2

a1b1 + a3b4 + a4b3

a4b4 + a1b2 + a2b1

a2b2 + a1b3 + a3b1


4

⊕

⊕



√
3a1b4 +

√
3a4b1 −

√
3a2b3 −

√
3a3b2

2
√

2a3b3 −
√

2a2b4 −
√

2a4b2

−2
√

2a1b1 +
√

2a3b4 +
√

2a4b3

−2
√

2a4b4 +
√

2a1b2 −
√

2a2b1

2
√

2a2b2 −
√

2a1b3 −
√

2a3b1


5

(B.24)


a1

a2

a3

a4


4

⊗



b1

b2

b3

b4

b5


5

=


2
√

2a1b5 − 2
√

2a4b2 +
√

2a3b3 −
√

2a2b4

3a3b4 + 2a2b5 − a4b3 −
√

6a1b1

−3a2b3 − 2a3b2 + a1b4 +
√

6a4b1


3

⊕

⊕


2
√

2a2b4 − 2
√

2a3b3 +
√

2a1b5 −
√

2a4b2

3a1b2 + 2a4b4 − a3b5 −
√

6a2b1

−3a4b5 − 2a1b3 + a2b2 +
√

6a3b1


3′

⊕

⊕



√
3a1b1 −

√
2a2b5 +

√
2a3b4 − 2

√
2a4b3

−
√

2a1b2 −
√

3a2b1 + 2
√

2a3b5 +
√

2a4b4
√

2a1b3 + 2
√

2a2b2 −
√

3a3b1 −
√

2a4b5

−2
√

2a1b4 +
√

2a2b3 −
√

2a3b2 +
√

3a4b1


4

⊕
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⊕



√
2a1b5 −

√
2a2b4 −

√
2a3b3 +

√
2a4b2

−
√

2a1b1 −
√

3a3b4 −
√

3a4b3
√

3a1b2 +
√

2a2b1 +
√

3a3b5
√

3a2b2 +
√

2a3b1 +
√

3a4b5

−
√

3a1b4 −
√

3a2b3 −
√

2a4b1


51

⊕

⊕



2a1b5 + 4a2b4 + 4a3b3 + 2a4b2

4a1b1 + 2
√

6a2b5

−
√

6a1b2 + 2a2b1 −
√

6a3b5 + 2
√

6a4b4

2
√

6a1b3 −
√

6a2b2 + 2a3b1 −
√

6a4b5

2
√

6a3b2 + 4a4b1


52

(B.25)



a1

a2

a3

a4

a5


5

⊗



b1

b2

b3

b4

b5


5

= (a1b1 + a2b5 + a5b2 + a3b4 + a4b3)1⊕

⊕


a2b5 − a5b2 + 2a3b4 − 2a4b3

√
3a2b1 −

√
3a1b2 +

√
2a3b5 −

√
2a5b3

√
3a1b5 −

√
3a5b1 +

√
2a2b4 −

√
2a2b4


3

⊕

⊕


a4b3 − a3b4 + 2a2b5 − 2a5b2

√
3a1b3 −

√
3a3b1 +

√
2a4b5 −

√
2a5b4

√
3a4b1 −

√
3a1b4 +

√
2a2b3 −

√
2a3b4


3′

⊕

⊕


4
√

3a4b4 + 3
√

2a1b2 + 3
√

2a2b1 −
√

3a3b5 −
√

3a5b3

4
√

3a2b2 + 3
√

2a1b3 + 3
√

2a3b1 −
√

3a4b5 −
√

3a5b4

4
√

3a5b5 + 3
√

2a1b4 + 3
√

2a4b1 −
√

3a3b2 −
√

3a2b3

4
√

3a3b3 + 3
√

2a1b5 + 3
√

2a5b1 −
√

3a2b4 −
√

3a4b2


41

⊕

⊕



√
2a1b2 −

√
2a2b1 +

√
3a3b5 −

√
3a5b3

√
2a3b1 −

√
2a1b3 +

√
3a4b5 −

√
3a5b4

√
2a4b1 −

√
2a1b4 +

√
3a3b2 −

√
3a2b3

√
2a1b5 −

√
2a5b1 +

√
3a4b2 −

√
3a2b4


42

⊕

⊕



2a1b1 + a2b5 + a5b2 − 2a3b4 − 2a4b3

a1b2 + a2b1 +
√

6a3b5 +
√

6a5b3
√

6a2b2 − 2a1b3 − 2a3b1
√

6a5b5 − 2a1b4 − 2a4b1

a1b5 + a5b1 +
√

6a2b4 +
√

6a4b2


51

⊕
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⊕



2a1b1 + a3b4 + a4b3 − 2a2b5 − 2a5b2
√

6a4b4 − 2a1b2 − 2a2b1

a1b3 + a3b1 +
√

6a4b5 +
√

6a5b4

a1b4 + a4b1 +
√

6a2b3 +
√

6a3b2
√

6a3b3 − 2a1b5 − 2a5b1


52

(B.26)

B.2 Modular forms of weight 2 for A5

The linear space of modular forms of level N = 5 and weight 2 has dimension 11. These modular

functions are arranged into two triplets 3 and 3′ and a quintuplet 5 of Γ5. Modular forms of higher weight

can be constructed from polynomials of these eleven modular functions.

The weight 2 modular functions can be expressed as linear combinations of logarithmic derivatives

of some functions αi,j(τ), closed under the action of A5, and these can be in terms of the theta function

θ3(z(τ), t(τ)):

θ3(z, t) =
∑
k∈Z

qk
2

e2πikz = 1 + 2
∑
k∈N

qk
2

cos(2πkz) , q = eπit (B.27)

The seed functions αi,j(τ) are explicitly:

α1,−1(τ) ≡ θ3

(
τ + 1

2
, 5τ

)
,

α1,0(τ) ≡ θ3

(
τ + 9

10
,
τ

5

)
,

α1,1(τ) ≡ θ3

(
τ

10
,
τ + 1

5

)
,

α1,2(τ) ≡ θ3

(
τ + 1

10
,
τ + 2

5

)
,

α1,3(τ) ≡ θ3

(
τ + 2

10
,
τ + 3

5

)
,

α1,4(τ) ≡ θ3

(
τ + 3

10
,
τ + 4

5

)
,

α2,−1(τ) ≡ e2πiτ/5θ3

(
3τ + 1

2
, 5τ

)
,

α2,0(τ) ≡ θ3

(
τ + 7

10
,
τ

5

)
,

α2,1(τ) ≡ θ3

(
τ + 8

10
,
τ + 1

5

)
,

α2,2(τ) ≡ θ3

(
τ + 9

10
,
τ + 2

5

)
,

α2,3(τ) ≡ θ3

(
τ

10
,
τ + 3

5

)
,

α2,4(τ) ≡ θ3

(
τ + 1

10
,
τ + 4

5

)
.

(B.28)

The linear combination of the logarithmic derivatives of these functions,

Y (c1,−1, . . . , c1,4; c2,−1, . . . , c2,4|τ) ≡
∑
i,j

ci,j
d

dτ
logαi,j(τ), with

∑
i,j

ci,j = 0, (B.29)

span the linear space of the modular forms of level N = 5 and weight 2. These are then divided into the

multiplets:

Y5(τ) =



Y1(τ)

Y2(τ)

Y3(τ)

Y4(τ)

Y5(τ)


≡



− 1√
6
Y (−5, 1, 1, 1, 1, 1;−5, 1, 1, 1, 1, 1|τ)

Y (0, 1, ζ4, ζ3, ζ2, ζ; 0, 1, ζ4, ζ3, ζ2, ζ|τ)

Y (0, 1, ζ3, ζ, ζ4, ζ2; 0, 1, ζ3, ζ, ζ4, ζ2|τ)

Y (0, 1, ζ2, ζ4, ζ, ζ3; 0, 1, ζ2, ζ4, ζ, ζ3|τ)

Y (0, 1, ζ, ζ2, ζ3, ζ4; 0, 1, ζ, ζ2, ζ3, ζ4|τ)


, (B.30)
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Y3(τ) =


Y6(τ)

Y7(τ)

Y8(τ)

 ≡


1√
2
Y
(
−
√

5,−1,−1,−1,−1,−1;
√

5, 1, 1, 1, 1, 1
∣∣τ)

Y (0, 1, ζ4, ζ3, ζ2, ζ; 0,−1,−ζ4,−ζ3,−ζ2,−ζ|τ)

Y (0, 1, ζ, ζ2, ζ3, ζ4; 0,−1,−ζ,−ζ2,−ζ3,−ζ4|τ)

 , (B.31)

Y3′(τ) =


Y9(τ)

Y10(τ)

Y11(τ)

 ≡


1√
2
Y
(√

5,−1,−1,−1,−1,−1;−
√

5, 1, 1, 1, 1, 1
∣∣τ)

Y (0, 1, ζ3, ζ, ζ4, ζ2; 0,−1,−ζ3,−ζ,−ζ4,−ζ2|τ)

Y (0, 1, ζ2, ζ4, ζ, ζ3; 0,−1,−ζ2,−ζ4,−ζ,−ζ3|τ)

 , (B.32)

where ζ = e2πi/5.

B.3 Vacuum alignments for bi-quintuplet Φ in A5

In this Appendix we consider how to align the VEV of the bi-quintuplet Φ. Following from [7] and

A.3 where an alignment was obtained in the context of S4 and A4, we add two driving fields, with the

properties present in Table B.2.

Fields Al5 Aν5 2kl 2kν

χlν 5 5 0 0
χl 5 1 0 0

Table B.2: Transformation properties of the fields responsible for the vacuum alignment of the bi-
quintuplet Φ for the models with two modular A5.

The superpotential responsible for the vacuum alignment that will be minimised with relation to the

driving fields is

w = ΦΦχlν +MΦχlν + ΦΦχl. (B.33)

With this field content, we are only interested in contractions of quintuplets to give quintuplets or singlets.

Minimising this superpotential in order to the driving fields leads us to the constraints:

∑
j,k=1,...,5

∑
β,γ=1,...,5

(
P

(5⊗5)51

ijk + cP
(5⊗5)52

ijk

)(
P

(5⊗5)51

αβγ + cP
(5⊗5)52

αβγ

)
(Φ)jβ(Φ)kγ +M(Φ)iα = 0, (B.34)

for i = 1, . . . , 5, α = 1, . . . , 5∑
j,k=1,...,5

∑
α,β=1,...,5

P
(5⊗5)1
αβ

(
P

(5⊗5)51

ijk + cP
(5⊗5)52

ijk

)
(Φ)jα(Φ)kβ = 0 for i = 1, . . . , 5. (B.35)

where 5× 5 matrices that describe the multiplication rules in Section B.1 were introduced:

P (5⊗5)1 =



1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0


(B.36)
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P (5⊗5)51 =





2 0 0 0 0

0 0 0 0 1

0 0 0 −2 0

0 0 −2 0 0

0 1 0 0 0


,



0 1 0 0 0

1 0 0 0 0

0 0 0 0
√

6

0 0 0 0 0

0 0
√

6 0 0


,



0 0 −2 0 0

0
√

6 0 0 0

−2 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,



0 0 0 −2 0

0 0 0 0 0

0 0 0 0 0

−2 0 0 0 0

0 0 0 0
√

6


,



0 0 0 0 1

0 0 0
√

6 0

0 0 0 0 0

0
√

6 0 0 0

1 0 0 0 0




(B.37)

P (5⊗5)52 =





2 0 0 0 0

0 0 0 0 −2

0 0 0 1 0

0 0 1 0 0

0 −2 0 0 0


,



0 −2 0 0 0

−2 0 0 0 0

0 0 0 0 0

0 0 0
√

6 0

0 0 0 0 0


,



0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0
√

6

0 0 0
√

6 0


,



0 0 0 1 0

0 0
√

6 0 0

0
√

6 0 0 0

1 0 0 0 0

0 0 0 0 0


,



0 0 0 0 −2

0 0 0 0 0

0 0
√

6 0 0

0 0 0 0 0

−2 0 0 0 0




(B.38)

It can be easily verified that

〈Φ〉 = vΦ



1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0


, (B.39)

which is the VEV used in the main text for Φ, obeys the constraints Eq.(B.35). This is one of the elements

of the A5 in the five dimensional representation. In fact, all the representations of the elements of A5

are solutions of these constraints. Note that we only verified that these solve the equations, we did not

solve fully these equations. This is the matter of a still ongoing study.

B.4 Vacuum alignments for bi-triplet Φ in A5

In this Appendix we consider how to align the VEV of the bi-triplet Φ for the model using the seesaw

mechanism to generate the neutrino masses. In this symmetry group, conversely to what happened in

A4, there is no symmetry contraction of two triplets to another triplet, the contraction of two triplets to a
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triplet is by definition antisymmetric. This reasoning is valid either for 3 and 3′, since their multiplication

rules only differ in the quintuplet decomposition. We conclude then that in A4 we had both triplets (as we

saw in Section A.3), in S4 only the symmetric contribution appeared and for A5 only the antisymmetric

one appears.

This means that adding a driving field like χl in Section A.3 does not provide additional constraints

since Φ will not couple to χl in a term like ΦΦχl. Thus, we will try to add only one driving field, with the

properties present in Table B.3. We state again that is not important if the L, Ec and νc are triplets 3 or

3′ and thus if Φ is a bi-triplet 3 or 3′ given that the contraction rules 3× 3→ 3 and 3′ × 3′ → 3′ are the

same, and the same happens for 3× 3→ 1 and 3′ × 3′ → 1.

Fields Al5 Aν5 2kl 2kν

χlν 3(′) 3(′) 0 0

Table B.3: Transformation properties of the fields responsible for the vacuum alignment of the bi-triplet
Φ for the models with two modular A5.

The superpotential responsible for the vacuum alignment that will be minimized with relation to the

driving field is

w = ΦΦχlν +MΦχlν . (B.40)

From Eq.(B.40) and working in the complex basis, in which T is diagonal, we are then able to derive

the constraints:

∑
j,k=1,2,3

∑
β,γ=1,2,3

εijkεαβγ(Φ)jβ(Φ)kγ +M(Φ)iα = 0 for i = 1, 2, 3, α = 1, 2, 3. (B.41)

This system of equations is not fully determined but substituting we conclude that P23, the vacuum used

in the main text for 〈Φ〉 is indeed one possible solution. This specific VEV leads to the recovering of

the usual multiplication of two triplets to give a singlet. As for the alignment in Section B.3, and in this

case even more so, a more complete discussion of this alignment will be considered in the future and is

beyond the scope of this thesis.
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