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Abstract

We note that no solution is provided for the flavour problem in the context of the Standard Model
(SM) but that this can be solved by introducing multiple modular symmetries. We construct lepton
flavour models based on two A4 modular symmetries, which are broken to the diagonal subgroup
AD4 , resulting in an effective modular flavour symmetry with two moduli. We employ these moduli
as stabilisers, that preserve distinct residual symmetries, enabling us to obtain Tri-Maximal 2 (TM2)
mixing with a minimal field content, flavonless at the effective scale, below the breaking to the single
A4. We also construct models based on two A5 modular symmetries, where a mixing that preserves
the second column of the Golden Ratio (GR) mixing, which we called GR2, is obtained. Best fit points
and plots for the neutrinoless beta decay are obtained for all these models. It was realised that the
normal ordering (NO) of neutrino masses is the preferred ordering, being the models that lead to GR2

more favourable than those that lead to TM2. For all the best fit values for NO, the neutrino masses
and mixing angles except θ12 are compatible with experimental results at the 1σ confidence interval.
Keywords: Flavour Problem, Multiple Modular Symmetries, Tri-Maximal 2 Mixing, Golden Ratio
Mixing, Neutrino Masses and Angles

1. Introduction

The current model of particle physics is the Stan-
dard Model (SM) [1, 2]. Until now, it has been
extremely compatible with experimental results. In
this model, the fundamental constituents of matter
are quarks and leptons while the strong, weak and
electromagnetic interactions are mediated by spin-1
particles that are connected to the local gauge sym-
metries SU(3)C×SU(2)L×U(1)Y , where C stands
for colour, L for left-handedness, and Y for hyper-
charge. This symmetry is spontaneously broken to
SU(3)C × U(1)EM where U(1)EM couples to the
electromagnetic charge QEM = T3 + Y where T3 is
the third component of the isospin.

In the leptonic sector, one has three generations
of charged leptons, that can be both left and right-
handed fermions, and three left-handed neutrinos.
The left-handed particles are arranged in doublets
of SU(2)L and the other three charged leptons are
singlets of SU(2)L. In the SM model, no right-
handed neutrinos are considered because neutri-
nos do not interact through other forces than the
weak force and the weak bosons only couple to left-
handed particles. Left-handed neutrinos are also
known as active neutrinos and right-handed neutri-
nos are know as sterile neutrinos, since they have
no SM interactions.

In the SM the fermions get their mass through
a Yukawa term that couples the scalar Higgs field
doublet φ to a component of a SU(2)L doublet and
a SU(2)L singlet through a Yukawa coupling. After

spontaneous symmetry breaking, when the Higgs
acquires the VEV 〈φ〉 = 1/

√
2(0, v + h(x)), the

charged lepton masses are generated. The model
only contains left-handed neutrinos thus no Yukawa
mass terms can be constructed for the neutrinos and
these remain massless at the Lagrangian level.

But it is a well established result that neutrinos
oscillate between flavours. The first clue arose from
the discrepancy between theoretical models for the
neutrinos produced at the Sun and the experimen-
tal results of neutrino rates. This result was ex-
plained by the conversion of electron neutrinos into
muon and tau neutrinos due to a non-zero probabil-
ity of measuring muon and tau neutrinos as a ini-
tial beam of electron neutrinos propagates through
space. This implies that neutrinos have different
masses, so at least two of them, although very light,
have a mass, which is in disagreement with the SM.
Hence the need to go beyond the SM.

The objective of the present work was to use mul-
tiple modular symmetries, either two A4’s or two
A5’s, to construct a high energy theory which is
then broken to a low energy model with a single
modular symmetry, whose moduli fields gain dif-
ferent VEV’s, leading to the realisation of different
mass textures in the charged lepton and neutrino
sectors. It is then possible to obtain a realistic mix-
ing matrix and mass hierarchies. These modular
symmetries are thus able to generate all masses and
mixing parameters for the leptons, using a much
smaller set of free parameters, almost only using
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the VEV’s of the Higgs and the moduli fields. Ad-
ditionally, it will be investigated, through the in-
troduction of driving fields, how the VEV’s of the
fields that are responsible for the breaking from two
modular symmetries to a single one are created.

We will now conclude with a brief outline of the
present work. In Section 2 we start by reviewing
how can neutrino masses by generated and discuss
what is the flavour problem. In Section 3, we in-
troduce the concept of modular symmetries, which
can be used to solve the flavour problem, and how
we can obtain a lagrangian invariant under these
symmetries. In Section 4 we review the main re-
sults for the models obtained when two A4 modu-
lar symmetries are introduced and in Section 5 for
the models invariant under two A5 modular sym-
metries instead. In Section 6 we review the main
conclusions and some aspects of the present work
possible to be improved in the future.

2. State of the Art
First we should consider how we can introduce
terms in the SM to describe the neutrino masses.
One possible way of seeing the neutrino masses
problem is to consider that new physics only ap-
pears above a scale ΛNP and that the SM is simply
a effective low energy theory of a high energy the-
ory. In this case, one doesn’t have to worry about
the renormalisability of the theory and terms with
mass dimension larger than 4, although suppressed,
are not forbidden. The least suppressed term that
can generate neutrino masses, known as the Wein-
berg operator, is the dimension 5 term:

Zνij
ΛNP

(LLiφ̃)(φ̃TLCLj) + h.c. (1)

where φ̃ = iτ2φ
∗.

Other possibility is to consider now the SM with
the addition of m sterile neutrinos. Two possible
gauge invariant terms can be constructed:

−LMν = MDijνsiνLj +
1

2
MNijνsiν

c
sj + h.c. (2)

where MD is a complex m× 3 matrix, MN a sym-
metric m×m matrix and νc = CνT is the charged
conjugated neutrino field. The first term arises from
the Yukawa terms for the neutrinos after sponta-
neous symmetry breaking, while the second term is
a Majorana term that violates leptonic number.

It is possible to get 3 light neutrinos νl and m
heavy neutrinos N from the previous 3 +m neutri-
nos if the mass eigenvalues of MN are much larger
than the electroweak symmetry breaking scale v.
The masses of the heavier states will be propor-
tional to MN and the lighter states to M2

DM
−1
N .

When the heavy neutrino masses increase, the al-
most massless neutrinos become lighter, hence the

name see-saw mechanism applied to this model.
Other interesting property is that the lighter neu-
trinos are almost left-handed and the heavy ones
almost right-handed.

To work only with mass eigenstates, the mass ma-
trix for the charged leptons and the neutrino mass
matrix need both to be diagonalized. This change
from the interaction eigenstates to the mass eigen-
states has consequences in the charged current part
of the Lagrangian, introducing a mixing matrix be-
tween the mass states of the leptons, similar to the
mixing matrix between quarks. In the leptonic sec-
tor, the mixing matrix is known as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix.

However, even if we are able to modify slightly
the SM to account for neutrino masses, we will still
have a lot of questions on flavour that remain unan-
swered. First of all, there is no reason for why there
are three families of quarks and leptons.

The mass hierarchies of the quarks and leptons
also seem to encode new physics, with the down
type quarks and charged leptons having mass values
of the same order of magnitude, while the up-type
quarks are much more hierarchical and the neutri-
nos are almost massless. But it is not only when we
compare mass hierarchies that flavour for leptons
and quarks has a very different behaviour. The mix-
ing between flavours is much larger in the leptonic
sector while the CKM matrix is almost diagonal. In
fact, the PMNS mixing angles are much larger or
have the same order of magnitude than the CKM
mixing angles.

Finally, the SM and slight modifications of it have
another conceptual problem: why are there much
more parameters in the flavour sector than in the
gauge (strong, weak and electromagnetic) sectors?

All these questions, that constitute the so called
flavour problem, point towards the need for the in-
troduction of a fundamental flavour symmetry that
accounts for this large collection of parameters aris-
ing from the Higgs sector. This new symmetry
could, from only a few parameters, generate all the
fermion masses and mixing parameters.

Flavour symmetries, both discrete and continu-
ous, have been extensively employed in the litera-
ture as a way to solve the puzzling questions associ-
ated with flavour. Examples of well-known discrete
symmetries applied to flavour are S3, A4, S4 and
A5. More recently, these same symmetries are used
in flavour models as modular symmetries Γ2 ' S3,
Γ3 ' A4, Γ4 ' S4 and Γ5 ' A5. More recently [3]
studied the mass sum rules arising in these models.

Models using multiple S4 modular symmetries
can be found at [4, 5]. In these, a general mech-
anism of employing multiple modular symmetries
to construct a high energy theory which is then
broken to a low energy model with a single mod-
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ular symmetry when their modulus fields gain dif-
ferent VEV’s at fixed points of the modular sym-
metry (stabilisers). The preserved residual symme-
tries then lead to the realisation of different mass
textures in the charged lepton and neutrino sectors
in modular flavour models without flavons. These
modular symmetries are thus able to generate all
masses and mixing parameters for the leptons, us-
ing a much smaller set of free parameters. The
same procedure might be applied to other modu-
lar symmetries, which is precisely what is behind
the present work.

3. Modular Symmetries - an Introduction
This section provides the general definitions of the
modular group and modular forms, and some fun-
damental aspects of constructing a realistic model
with multiple modular symmetries.

3.1. Modular group and modular forms
The modular group Γ is the group of linear frac-
tional transformations γ that act on the complex
modulus τ , for τ in the upper-half complex plane,
i.e. Im(τ) > 0:

γ : τ → γτ =
aτ + b

cτ + d
, (3)

where a, b, c, d are integers and satisfy ad− bc = 1.
It is convenient to use 2×2 matrices to represent

the elements of Γ as

Γ =

{(
a b
c d

)
/{±1}, a, b, c, d ∈ Z, ad− bc = 1

}
.

(4)
Note that, since γ and −γ are the same mod-

ular transformation, the group Γ is isomorphic to
PSL(2,Z) = SL(2,Z)/Z2, where SL(2,Z) is the
group of 2× 2 matrices with integer entries and de-
terminant one.

The modular group has two generators, Sτ and
Tτ , which satisfy S2

τ = (SτTτ )3 = 1. One possible
choice for these generators is the following:

Sτ : τ → −1

τ
, Tτ : τ → τ + 1 (5)

and their corresponding representations are

Sτ =

(
0 1
−1 0

)
, Tτ =

(
1 1
0 1

)
. (6)

It is possible to define subgroups Γ(N) of Γ mod-
ding out the entries of the representation matrices.
Although the groups Γ(N) are discrete but infinite,
the quotient groups ΓN = Γ/Γ(N) are finite, thus
being called finite modular groups. For N ≤ 5,
these groups are isomorphic to well-known groups:
Γ2 ' S3, Γ3 ' A4, Γ4 ' S4, Γ5 ' A5. These finite
modular groups can be obtained by imposing an

additional condition, TNτ = 1, which implies that
τ = τ +N .

Modular forms of weight 2k and level N are holo-
morphic functions of τ that transform under Γ(N)
in the following way:

f(γτ) = (cτ +d)2kf(τ), γ =

(
a b
c d

)
∈ Γ(N), (7)

where k is a non-negative integer and N is natu-
ral (we are only interested in even weights). These
modular forms are invariant under Γ(N), up to the
factor (cτ+d)2k, but they transform under the quo-
tient group ΓN .

Modular forms of weight 2k and level N span a
linear space of finite dimension M2k(Γ(N)). It is
possible to choose a basis in M2k(Γ(N)) such that
the transformation of the modular forms under ΓN
is described by a unitary representation ρ of ΓN :

fi(γτ) = (cτ + d)2kρ(γ)ijfj(τ), γ ∈ ΓN . (8)

3.2. Models with multiple modular symmetries
Consider a theory that has multiple modular sym-

metries, based on a series of M modular groups Γ
1
,

Γ
2
, . . ., Γ

M
, where the modulus field for each sym-

metry Γ
J

, J = 1, . . . ,M , is denoted as τJ . The
associated modular transformations take the form:

γJ : τJ → γJτJ =
aJτJ + bJ
cJτJ + dJ

. (9)

A series of finite modular groups ΓJNJ for J =
1, . . . ,M can be obtained by modding out an inte-
ger NJ and taking the quotient finite groups. Take
into account that NJ does not need to be identical
to NJ′ for J 6= J ′.

Consider an N = 1 supersymmetric model invari-
ant under multiple modular symmetries; the action
in general takes the form:

S =

∫
d4xd2θd2θ K(φi, φi; τ1, . . . , τM , τ1, . . . , τM )+

+

(∫
d4xd2θ W (φi; τ1, . . . , τM ) + h.c.

)
. (10)

Under ΓJNJ for J = 1, . . . ,M the Kähler potential
K transforms at most by a Kähler transformation
and the superpotential W stays invariant. The su-
perpotential can be expanded in general in powers
of the superfields φi. For the superpotential to be
invariant under any finite modular transformation
γ1, . . . , γM in Γ1

N1
×Γ2

N2
× . . .×ΓMNM , the couplings

Y(IY,1,...,IY,M ) must be multiplet modular forms, and
the superfields φi must transform as in Eqs.(11)-
(12) where −2ki,J is the modular weight of φi, Ii,J
is the representation of φi, 2kY,J is the modular
weight of YIY,J , IY,J is the representation of YIY,J
and ρIi,J (γ) and ρIY,J (γ) are the unitary represen-
tation matrices of γJ with γJ ∈ ΓJNJ . As discussed
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previously, for the superpotential to be invariant,
the sum of the weights for each modular symmetry
needs to equal zero, i.e. kY,J = ki1,J + . . . + kin,J ,

and and the multiplication of the representations
ρIY,J × ρi1,J × . . .× ρin,J must contain an invariant
singlet, for J = 1, . . . ,M .

φi(τ1, . . . , τM )→ φi(γ1τ1, . . . , γMτM )

=
∏

J=1,...,M

(cJτJ + dJ)−2ki,J
⊗

J=1,...,M

ρIi,J (γJ) φi(τ1, . . . , τM ) (11)

Y(IY,1,...,IY,M )(τ1, . . . , τM )→ Y(IY,1,...,IY,M )(γ1τ1, . . . , γMτM )

=
∏

J=1,...,M

(cJτJ + dJ)2kY,J
⊗

J=1,...,M

ρIY,J (γJ) Y(IY,1,...,IY,M )(τ1, . . . , τM ). (12)

3.3. Stabilisers of the Modular Symmetry
The stabilisers of the modular symmetry play a cru-
cial role in preserving residual symmetries. Given
an element γ in the modular group ΓN , a stabiliser
τγ of γ corresponds to a fixed point in the upper half
complex plane that transforms as γτγ = τγ . Once
the modular field acquires a VEV at this special
point, 〈τ〉 = τγ , the modular symmetry is broken
but an Abelian residual modular symmetry gener-
ated by γ is preserved. Obviously, acting γ on the
modular form at its stabiliser leaves the modular
form invariant, which implies that

ρI(γ)YI(τγ) = (cτγ + d)−2kYI(τγ). (13)

This means that, at the stabiliser, the modular
form is an eigenvector of the representation matrix
ρI(γ) for the given stabiliser that corresponds to
the eigenvalue (cτγ +d)−2k, and thus the directions
of the modular forms at the stabilisers can be easily
determined. Furthermore, since the representation
matrix is unitary, |cτγ + d| = 1.

4. Two A4 modular symmetries for Tri-
Maximal 2 mixing

Two A4 modular symmetries were used to build
models that lead to the TM2 mixing, similarly to
the use of multiple S4 modular symmetries in [4, 5],
where models that consider the symmetry breaking
from multiple modular symmetry groups to a sin-
gle symmetry group at low energy have been con-
structed in order to obtain the TM1 mixing. Al-
though the TBM mixing form is incompatible with
experimental results due to the non-vanishing value
for the angle θ13, mixings that only preserve the
first or the second columns of the matrix for the
TBM mixing, the TM1 and TM2 mixings respec-
tively [6], remain viable and appealing schemes for
lepton mixings. Their matrices can be described
as the TBM matrix times a rotation among the
columns that are nor preserved. I will be partic-
ularly interested in the tri-maximal 2 (TM2) mix-
ing, which preserves the second column of the tri-

bimaximal mixing matrix: (
√

1
3 ,
√

1
3 ,
√

1
3 ).

We note that [7] already employs a single A4

modular symmetry and two moduli in a model lead-
ing to TM2 mixing, where neutrino masses arise
through the effective Weinberg operator (WO). In
the models constructed here, we also start by using
the WO and afterwards we used the type I seesaw
(SS) mechanism to generate the neutrino masses
(part of the work here included was already pre-
sented at [8]). Here, the presence of two distinct
moduli is justified by starting with two A4 symme-
tries Al4×Aν4 which are subsequently broken to the
diagonal subgroup AD4 .

For TM2, our mixing of interest for A4, using the
3σ C.L. range of sin θ13 [9], we obtain the allowed
ranges on the other neutrino mixings angles:

0.3403(0.3403) . sin2 θ12 . 0.3416(0.3417) (14)

0.3891(0.3890) . sin2 θ23 . 0.6109(0.6110). (15)

The experimental 1σ region is within the interval
found here for sin2 θ23, which overlaps with the 3σ
region for this parameter, with our result extend-
ing below the lower 3σ limit for this parameter,
0.407(0.411) for NO(IO), and not reaching its up-
per limit. The range of allowed values for sin2 θ12

is near the upper allowed limit, which is a charac-
teristic feature of the TM2 mixing, since the lowest
value allowed for sin2 θ12 is 1/3. We conclude that,
in spite of the discrepancy found for sin2 θ12, this is
still a mixing that is worth considering.

4.1. Modular A4 symmetry and residual symme-
tries

The group A4 is the group of even permutations of
4 objects and has 12 elements. It is generated by
two operators Sτ and Tτ obeying

S2
τ = (SτTτ )3 = T 3

τ = 1. (16)

This group has three singlets and one triplet as
its irreducible representations. The flavour models
that are going to be built employ A4 as a mod-
ular symmetry group and the Yukawa couplings
are hence going to be modular forms. These are
now going to be introduced. The three linearly
independent weight 2 modular forms of level 3,

Y
(2)
3 = (Y1, Y2, Y3), form a triplet of A4 and can be
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expressed in terms of the Dedekind eta functions.
The modular forms of higher weight are generated
starting from these modular forms of weight 2.

4.2. Models with two modular A4 symmetries
We started by constructing one model where it is
assumed that neutrinos get their mass through the
WO (an effective term of the type 1

ΛY L
2H2

u), and
afterwards another model where the SS mechanism
is used (the effective term from the superpotential
that gives rise to a Dirac mass matrix being of the
form 1

ΛLY
ννcHu). At high energies, these mod-

els are based in two modular symmetries, Al4 and
Aν4 , with modulus fields denoted by τl and τν , re-
spectively, which are then broken to the diagonal
subgroup AD4 . After the modulus fields acquire dif-
ferent VEV’s, different mass textures are realised in
the charged lepton and neutrino sectors, in such a
way that the PMNS gets the TM2 form.

The superpotential for these models can be sep-
arated into one part containing the mass terms for
the charged leptons, we, and the other the neutrino
mass terms, wν : w = we+wν . For all three models,
we is

we =
(
α(LY l(τl))1e

c+

+ β(LY l(τl))1′µc+

+ γ(LY l(τl))1′′τ c
)
Hd, (17)

where L is a triplet containing the leptonic left-
handed doublets, ec, µc and τ c are singlets repre-
senting the right-handed charged leptons and α, β
and γ are arbitrary complex constants.

These models will obviously differ in their neu-
trino terms. For the WO model,

wν =
1

Λ

(
(L2)1Y1(τl, τν)+

+ (L2)1′′Y1′(τl, τν)+

+
1

Λ
(L2)3ΦY3(τl, τν)

)
H2
u, (18)

while that for the first SS model,

wν =
Y ν

Λ
LΦνcHu +

1

2
M1(τν)(νcνc)1+

+
1

2
M1′(τν)(νcνc)1′′ +

1

2
M3(τν)(νcνc)3, (19)

where the Yukawa coupling Y ν is simply a constant,
and for the second SS model,

wν =
1

Λ
LΦY ν1 (τν)νcHu +

1

Λ
LΦY ν3 (τν)νcHu+

+
1

2
M1(τν)(νcνc)1 +

1

2
M1′(τν)(νcνc)1′′+

+
1

2
M1′′(τν)(νcνc)1′ +

1

2
M3(τν)(νcνc)3. (20)

For all the three models that were constructed,
the breaking from two modular symmetries Al4 and
Aν4 to a single AD4 is achieved when the bi-triplet Φ
that couples L2 in the WO model, or L and νc in
the SS to a triplet modular form of Aν4 , acquires the
VEV 〈Φ〉 = vΦP23. This happens because, given
that the same transformation γ can be performed
in Al4 and Aν4 simultaneously, there is still a single
modular symmetry, the diagonal subgroup AD4 that
is conserved.

Now, we must consider the symmetry breaking
of this AD4 . We assume that the charged lepton
modular field τl acquires the VEV 〈τl〉 = τT = 3

2 +
i

2
√

3
, which is a stabiliser of Tτ . At this stabiliser,

a residual modular ZT3 symmetry is preserved in
the charged lepton sector. This implies that the
modular form Y l, which has weight +6, gets the
direction (1, 0, 0). This direction leads to a diagonal
charged lepton mass matrix when the Higgs field Hd

acquires a VEV 〈Hd〉 = (0, vd). The masses for the
charged leptons can be reproduced by adjusting the
parameters α, β and γ.

For the other modular field τν , if it acquires the
VEV 〈τν〉 = τS = i, a residual modular ZS2 symme-
try is preserved in the neutrino sector. The direc-
tion of Y for WO model or Y ν for second SS model,
and M3 for both SS models at this stabiliser is going
to be (1, 1, 1).

We obtain a mass sum rule for the neutrino
masses. For the WO model and the first SS model,
this sum rule can be written as:

mη
2 = f1(ηθ, ηα1, ηα2, ηα3) mη

1+

+ f3(ηθ, ηα1, ηα2, ηα3) mη
3 (21)

where

f1(θ, α1, α2, α3) =
1

2
e2iα3

(
e−2iα1 cos2 θ−

− e−2iα2 sin2 θ −
√

3e−i(α1+α2) sin 2θ
)

(22)

f3(θ, α1, α2, α3) = −1

2
e2iα3

(
e2iα1 cos2 θ−

− e2iα2 sin2 θ −
√

3ei(α1+α2) sin 2θ
)
. (23)

With these definitions, we can say that for the
model where we use the WO, we choose η = +1,
and choosing η = −1 we will obtain the sum rule
for the first SS model.

For the second SS model, the sum rule is more
complicated given that additional parameters arise
from the consideration of an additional triplet mod-
ular form Y ν3 and a singlet M1′′ for the right-handed
neutrinos:
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1

m2
=

∣∣∣∣−3M1′′ +
1

8m1

(
e2iα1

(
4h2

2 + 12h2h3 − 3h2
3 + 8h2 + 12h3 + 4

)
cos2 θ−

− e2iα2
(
4h2

2 + 12h2h3 − 3h2
3 − 8h2 − 12h3 + 4

)
sin2 θ −

√
3ei(α1+α2)

(
4h2

2 − 4h2h3 − 3h2
3 − 4

)
sin 2θ

)
− 1

8m3

(
e−2iα1

(
4h2

2 + 12h2h3 − 3h2
3 − 8h2 − 12h3 + 4

)
cos2 θ−

− e−2iα2
(
4h2

2 + 12h2h3 − 3h2
3 + 8h2 + 12h3 + 4

)
sin2 θ −

√
3e−i(α1+α2)

(
4h2

2 − 4h2h3 − 3h2
3 − 4

)
sin 2θ

)∣∣∣,
(24)

where M1′′ and hi are arbitrary complex constants.
Note that when these extra parameters vanish, h2 =
h3 = M1′′ = 0, the sum rule for model 1 is recov-
ered.

These sum rules and the equations that relate
the model parameters with the neutrino mixing pa-
rameters provide what is needed to do a numerical
minimisation using the χ2 function:

χ2 =
∑
i

(
Pi({x})−BFi

σi

)2

, (25)

where Pi are the values provided by the considered
model, BF the best fit value from NuFit [9] and σi
is also provided by NuFit, when averaging the upper
and lower σ provided. For the fitting, six variables
were considered: the three mixing angles, the atmo-
spheric and solar neutrino squared mass differences,
and the Dirac neutrino CP violation phase.

For all the models, all of the best fit points (bfp)
are within their 3σ ranges for both orderings. In
fact, for NO, all the observables except θ12, near
the upper limit of the 3σ range, are compatible with
their 1σ ranges. For IO, additionally to θ12, θ23, for
the WO model, and δ, for the SS models, are also
outside their 1σ region. For all three models, NO
provides the best fit, with χ2/6 = 1.57, which is
the same value for all the three models. This is
not surprising given the contribution to the χ2 is
coming not from the masses, but from the mixing
angles, and both models give TM2 mixing.

It is also possible to obtain the expected mββ

for neutrinoless beta decay doing a numerical
computation. The allowed regions of mlightest vs
mββ of Figure 1 (for NO, mlightest = m1 and,
for IO, mlightest = m3) were obtained, using
again as constraints the data from [9]. In both
figures it is also shown the current upper limit
provided by KamLAND-Zen, mββ < 61− 165 meV
[10]. Results from PLANCK 2018 also constrain
the sum of neutrino masses, although different
constrains can be obtained depending on the data
considered (for more details, see [11]). In the
figures are plotted two shadowed regions, a very
disfavoured region

∑
mi > 0.60 eV (considering

the limit 95%C.L.,Planck lensing+BAO+θMC)
and a disfavoured region

∑
mi > 0.12

eV (considering the limit 95%C.L.,Planck
TT,TE,EE+lowE+lensing+BAO+θMC).

For NO, there are some points compatible with
the 1σ ranges of the observables other than θ12.

These points were plotted with a darker red colour.
For IO, at least one of the other observables is in-
compatible with its 1σ region, as happened for the
bfp, hence only the 3σ compatible points are shown
for IO.

We conclude then that only the bfp’s for NO for
the three models that were constructed are outside
the disfavoured region. For the WO model, only
for normal mass ordering do we have points outside
the disfavoured region. For the first SS model, both
mass orderings have points outside the disfavoured
region, although the non-disfavoured region for IO
is smaller. For the second SS model, the 1σ points
for NO do not form a characteristic structure as
happened for model 1 but are dispersed within the
other points that have at least an observable other
than θ12 outside its 1σ region.

However, the second SS model is much less re-
strictive than the first one, since mlightest covers all
orders of magnitude and almost all the available
region for mlightest vs mββ and, more importantly,
the minimum value for mββ also approaches zero.
More specifically, model 1 is simply a special case of
model 2 when we neglect all the extra parameters
that where introduced in model 2 due to the new
terms that appear when we assign a higher weight
to the modular forms Y ν .

From what has been written, it is inferred that
NO is hence the preferred mass ordering, although
this means that smaller orders of magnitude for
both m1 and mββ , which are harder to access ex-
perimentally, are still compatible with experimental
values.

5. Two A5 modular symmetries for Golden
Ratio 2 Mixing

We constructed also two models that use two A5

modular symmetries in order to obtain the golden
ratio mixing plus a rotation among the first and
the third columns. We note once again that [12]
already employs a single A5 modular symmetry and
two moduli in models using the Weinberg operator
to generate the neutrino masses. The model that
uses some fixed points of the modular fields lead
to the same mixing we are going to discuss here,
although that is not explicit in [12].

The golden ratio (GR) mixing is a mixing asso-
ciated in previous works with models based in the
A5 symmetry, and this is not different for models
using multiple modular A5. This mixing has the
same problem as the TBM mixing: it is incompati-
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(a) Normal Ordering for WO model (b) Inverted Ordering for WO model

(c) Normal Ordering for first SS model (d) Inverted Ordering for first SS model

(e) Normal Ordering for second SS model (f) Inverted Ordering for second SS model

Figure 1: Predictions of mlightest vs mββ for both orderings of neutrino masses for models using two A4

modular symmetries.

ble with the experimental results for θ13, and thus
we want to work with models that preserve only the
first or the second columns of the GR mixing ma-
trix, that can be written as the GR matrix times a
rotation between the other two columns.

For a model where the second column of the GR
mixing, ( 1√

2+φ
, φ√

4+2φ
, φ√

4+2φ
), being φ the golden

ratio: φ = 1+
√

5
2 , is preserved, we can use the

3σ C.L. range of sin2 θ13 [9] to obtain the allowed
ranges for the other mixing angles. We obtain that
the 1σ NuFit region is within the interval found

for sin2 θ23, which overlaps with the 3σ region for
this parameter, with our result extending below
0.407(0.411) for NO(IO) and not reaching its up-
per limit. The range of allowed values for sin2 θ12

is near the lowest limit of the 1σ region although
outside.

For a model where the first column is preserved
instead, we conclude that the range of allowed val-
ues for sin2 θ12 is outside the 3σ region and thus the
class of models that preserve the first column of the
golden ratio mixing matrix, which we call GR1 mix-
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ing, are disfavoured by experiment. Consequently,
we were only interested in models that preserve the
second column of the golden ratio mixing, which we
call GR2, although, as pointed out previously, even
for these models sin2 θ12 is outside the experimental
1σ interval.

5.1. Modular A5 symmetry and residual symme-
tries

The group A5 is the group of even permutations of
5 objects and has 60 elements. It is generated by
two operators Sτ and Tτ obeying

S2
τ = (SτTτ )3 = T 5

τ = 1. (26)

This group has one singlet 1, two triplets 3 and
3′, one quadruplet 4 and one quintuplet 5 as its
irreducible representations.

Similarly to what was done for Γ3 ∼ A4, the
Yukawa couplings in a theory that is invariant under
a Γ5 ∼ A5 symmetry are also going to be modular
forms, but in this case of level 5. The eleven lin-
early independent weight 2 modular forms of level

5 form a quintuplet Y
(2)
5 = (Y1, Y2, Y3, Y4, Y5) of

A5, a triplet 3 Y
(2)
3 = (Y6, Y7, Y8) and a triplet 3′

Y
(2)
3′ = (Y9, Y10, Y11). These modular functions can

be expressed in terms of the third theta function
and the modular forms of higher weight are gener-
ated starting from these eleven modular forms of
weight 2.

5.2. Models with two modular A5 symmetries
We constructed one model where it is assumed that
neutrinos get their mass through the WO and af-
terwards another model where the SS mechanism is
used. At high energies, these models are based in
two modular symmetries, Al5 and Aν5 , with modulus
fields denoted by τl and τν , respectively. These will
be broken to the diagonal subgroup AD5 , and, after
the modulus fields acquire different VEV’s, differ-
ent mass textures are realised in the charged lepton
and neutrino sectors, in such a way that the GR2

mixing is recovered for the PMNS.
The superpotential for these models can be sep-

arated into w = we + wν . For both models, we
is

we =
(
α1Y

l
1(τl)(LE

c)1+

+ α2Y
l
3(′)(τl)(LE

c)3(′)+

+ α3Y
l
5(τl)(LE

c)5

)
Hd, (27)

where L and Ec are triplets containing the leptonic
left-handed doublets and right-handed charged lep-
tons and αi are arbitrary complex constants.

These models will obviously differ in their neu-
trino terms. For the WO model,

wν =
1

Λ
L2 [Y ν1 (τν) + Φ (Y ν51

(τν) + Y ν52
(τν))]H2

u, (28)

while for the SS model,

wν =
Y ν

Λ
LΦνcHu +

1

2
M1(τν)(νcνc)1+

+
1

2
(M51

(τν) +M52
(τν)) (νcνc)5, (29)

where the Yukawa coupling Y ν is simply a constant.
For the WO model, a bi-quintuplet Φ, which is a

quintuplet under both Al5 and Aν5 , was introduced
to mediate the breaking from two A5 to a single
one, while for the SS model a bi-triplet Φ was used
instead. For the WO model, if Φ acquires the VEV
〈Φ〉 = vΦP(25)(34) the symmetry Al5 × Aν5 is broken
but the diagonal subgroup AD5 is still conserved.
The same considerations are valid for the SS model
if Φ acquires the VEV 〈Φ〉 = vΦP23.

The flavour structure after AD5 symmetry break-
ing now follows. We assume that the charged lepton
modular field τl acquires the VEV 〈τl〉 = τT = i∞,
which means that a residual modular ZT5 symmetry
is preserved in the charged lepton sector. This VEV
leads to an almost diagonal charged lepton mass
matrix when the Higgs field Hd acquires a VEV
〈Hd〉 = (0, vd). The masses for the charged leptons
can be reproduced by adjusting the parameters αi,
and the mass matrix for the charged leptons can be
diagonalized by multiplying on the left by the iden-
tity matrix and on the right by P23 and thus the
PMNS matrix is simply the matrix that diagonal-
izes the mass matrix for the neutrinos. These con-
siderations are valid whether we choose the triplets
in both models to be 3 or 3′.

For the other modular field τν , if ρL ∼ 3′, when
the modular field acquires the VEV 〈τν〉 = τS = i
and kν is even, a residual modular ZS2 symmetry
is preserved in the neutrino sector and he PMNS
matrix gets the GR2 form.

The sum rules for these models can be put in a
simpler expression:

mη
2 = f1(ηθ, ηα1, ηα2, ηα3) mη

1+

+ f3(ηθ, ηα1, ηα2, ηα3) mη
3 (30)

where

f1(θ, α1, α2, α3) =
1

10
e2iα3

((
5−
√

5
)
e−2iα1 cos2 θ−

−
(

5 +
√

5
)
e−2iα2 sin2 θ + 4

√
5e−i(α1+α2) sin 2θ

)
(31)

f3(θ, α1, α2, α3) = − 1

10
e2iα3

((
5 +
√

5
)
e2iα1 cos2 θ−

−
(

5−
√

5
)
e2iα2 sin2 θ + 4

√
5ei(α1+α2) sin 2θ

)
. (32)

With these definitions, for the WO model we choose
η = +1 and for the SS model we chose η = −1, and
both the sum rules are recovered.

We turn now to the agreement between the mod-
els using ρL ∼ 3′ and experiment. Using these
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sum rules and the equations that relate the neu-
trino mixing parameters and the parameters of the
GR2 mixing, we can do a numerical minimisation
using the χ2 function Eq.(25).

For all models and orderings, all the bfp’s are
within their 3σ ranges. For NO, all the observables
except θ12, near the lower limit of the 1σ range,
are compatible with their 1σ ranges. For IO, ad-
ditionally to θ12, θ23, for the WO model, and θ23

and δ, for the SS model, are also outside its 1σ re-
gion. NO provides the best fit for all models, with
χ2/6 = 0.55, which is the same value for both mod-
els. This is not surprising given the contribution to
the χ2 is coming from the mixing angles, and both
models give GR2 mixing.

Doing a numerical computation, the allowed re-
gions of mlightest vs mββ fou neutrinoless beta decay
of Figure 2 were obtained. For the WO model, we
conclude then that both the bfp’s are in the dis-
favoured region, and for the SS model, only the bfp
for NO is outside the disfavoured region.

For NO, there are some points compatible with
the 1σ ranges of the observables other than θ12

(which is, as already said, always near the lower 1σ
limit although outside), which are inside a larger
group containing the points that have χ2/6 < 1.
These points were plotted with a darker red colour.
For IO, at least one of the other observables is in-
compatible with its 1σ region, hence only the 3σ
compatible points are shown for IO. For both mod-
els, only for normal mass orderings do we have
points outside the disfavoured region.

Taking also into account the inferior limits of
the darker red region, we conclude that NO is
once again the preferred mass ordering, although,
when comparing the SS model with the WO model,
smaller values of mββ , which are harder to access
experimentally, are compatible with the available
experimental results.

6. Conclusions

In this work, we employed the framework of multi-
ple modular symmetries to build models with min-
imal field content that are able to reproduce vi-
able mixings. For the models using two A4 mod-
ular symmetries, the tri-maximal 2 mixing was ob-
tained, and, for the models using two A5 modular
symmetries, a variation of the golden ratio mixing
where only the second column is preserved, which
was called GR2, was obtained instead.

We described how the multiple A4 and A5 modu-
lar symmetries can be broken to a single symmetry
group and showed possible assignments of fields and
weights under these two modular symmetries lead-
ing to the desired mixing scheme. Three explicit
models for A4 and two for A5 were built (with differ-
ent weights and using the Weinberg operator or the

seesaw mechanism to generate the neutrino masses)
and shown to be predictive and to reproduce the
observed mixing angles and mass differences with
good fits.

Neutrinoless double beta decay is expected, with
the inverted ordering possibility almost entirely dis-
favoured by cosmological observations and less com-
patible with the 1σ best fit intervals for the ex-
perimental observables than the normal ordering of
neutrino masses. This occurs for all the models,
independent of the mechanism that generates the
masses. Furthermore, the χ2 values obtained for all
the models, which depended mainly on the sin2 θ12

deviation from the best fit point, favour the GR2

mixing scheme more than the TM2 mixing.

It should be noted that this work is possible to be
continued and will be continued. First of all, in Oc-
tober 2021, new results from NuFit were published
at http://www.nu-fit.org/ which seems to mean
that the connection between our results and the re-
sults from this global fit needs to be updated. The
results differ more significantly from the July 2020
data in the best fit points for sin2 θ23 and sin2 θ13,
and also on their 3σ range, but these are still not
much significant differences. Thus, we expect that
no noticeable changes seem to apply. Neverthe-
less, it would be a good idea to update the analysis
considering these more recent confidence intervals,
which can be easily done.

Secondly, for the bi-quintuplet Φ for the mod-
els using A5, the vacuum alignments are still be-
ing studied and should be improved in the near fu-
ture. All the solutions were not obtained fully for
the alignment of the bi-quintuplet, and for the bi-
triplet, no equations that can be fully solved were
obtained so far. We conclude that more driving
fields of different nature need to be added to the
present model to account for the Φ VEV when us-
ing A5.

In conclusion, the models that were constructed
during this dissertation maintain their valid results
and prove to be in agreement with experiment, and
so, despite the present incompleteness of the A5

alignments in its present version, this work is a use-
ful addendum to the field of modular field symme-
tries.
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(a) Normal Ordering for WO model (b) Inverted Ordering for WO model

(c) Normal Ordering for SS model (d) Inverted Ordering for SS model

Figure 2: Predictions of mlightest vs mββ for both ordering of neutrino masses for models using two A5

modular symmetries.
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