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Resumo

A presente dissertação aborda a problemática da deteção de formas de onda maliciosas (EWFs)

em sinais AltBOC, utilizados, nomeadamente, na constelação Galileo. Estes sinais são projetados com

o objetivo de permitir uma estimação da posição com grande precisão. Como tal, qualquer distorção

que possa afetar negativamente o sinal de GNSS tem de ser caracterizada. Com o surgimento de

novos sinais de GNSS, vem a necessidade de definir novos modelos de ameaça (TM). A abordagem

neste trabalho passa por replicar para os sinais AltBOC o modelo 2OS da ICAO desenvolvido para os

sinais de GPS L1 C/A. Dada a complexidade do sinal AltBOC, o recetor pode optar por processar todo

o sinal AltBOC, apenas uma das suas sub-bandas ou ambas as sub-bandas de forma independente. É

apresentada a computação dos modelos de ameaça para cada uma destas opções de processamento

do sinal. Adicionalmente, são descritos várias métricas e testes baseados na arquitetura de multicorre-

ladores. Estes testes são, posteriormente, utilizados para realizar monitorização de qualidade do sinal

(SQM) com o objetivo de detetar distorções no mesmo. Por fim, foram realizadas várias simulações

com o objetivo de testar o desempenho da monitorização de sinal utilizando cada uma das opções

de processamento. Os resultados demonstraram que processar todo o sinal AltBOC apresenta um

resultado substancialmente superior às outras opções. Verificou-se também que processando ambas

as sub-bandas separadamente se obtém resultados ligeiramente superiores aos do processamento de

uma única banda.

Palavras-chave: EWF, Modulação AltBOC, SQM, GNSS, TM
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Abstract

This dissertation addresses the problematic of Evil Waveforms (EWFs) detection for AltBOC signals,

which are used namely in the constellation Galileo. These signals are designed to enable high precision

position estimates. Thus, any signal distortions that can affect the GNSS signal in an hazardous way

needs to be characterized. With the emergence of new GNSS signals, comes the need to define new

threat models (TMs). The approach in this work is to replicate for the AltBOC signal the 2OS ICAO threat

model developed for the GPS L1 C/A. Given the complexity of the AltBOC signal, the receiver can either

process the entire AltBOC signal, one sub-band or both sub-bands separately. The computation of the

threat models for each processing option is presented. Additionally, several metrics and tests based

on a multicorrelator architecture are described. These tests are, subsequently, used to perform signal

quality monitoring (SQM) in order to detect signal distortions. Several simulations were conducted to

test the performance of monitoring the signal distortions using each one of the processing options. Sim-

ulation results showed that processing the whole AltBOC signal heavily outperforms the other options.

Processing both sub-bands separately was seen to be slightly superior to the processing of only one

sub-band.

Keywords: EWF, AltBOC modulation, SQM, GNSS, TM
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Chapter 1

Introduction

This chapter is an introduction to the present dissertation, on the research topic ”Evil Waveform

Detection in GNSS AltBOC Signals”. The motivation behind the presented topic is addressed in section

1.1. Section 1.2 states the proposed objectives of this work while section 1.3 outlines the dissertation’s

structure.

1.1 Motivation

Global Navigation Satellite Systems (GNSS) play an important role on the world economy as well as

on our everyday life. There are several systems in operation, such as the GPS (American), the Galileo

(European Union), the Beidou (China) and the Glonass (Russia) [1, 2]. Their use can range from civil

to military applications. Among these applications is civil aviation that requires a very high quality of

service for the most demanding phases of flight [3]. Another important use that has been a case of

study in the past years are autonomous vehicles (see for instance [4–6]. Both these applications have

in common rigid requirements to ensure safety. In order to meet these requirements, any source of

potential degradation has to be accounted for.

Ionospheric, tropospheric errors, multipathing, group delay errors, noise and intentional (spoofing

and jamming) and non-intentional interference are some of the most common sources of degradation of

the signal. These effects have been thoroughly studied and are usually taken account for in the receivers

[1, 2].

However, there are other sources of degradation, namely, distortions in the signal caused by a satel-

lite payload failure. These type of distortions are called Evil WaveForms (EWFs). The first occurrence of

an EWF failure on a GPS satellite was in 1993 on space vehicle 19 (SV19). It was noted that differential

position accuracies without SV19 were less than 50 cm, while using SV19 degraded to anywhere from

2 to 8 meters [7]. Since then, there have been some other minor signal deformation events [8].

Several threat models were proposed to explain the SV19 event. The preferred threat model was

”2nd - order Step” (2OS). Not only is this model able to explain the SV19 failure but also generates

causal waveforms making it more plausible for future failure modes of the satellite signal generating

1



hardware [9]. This model can be subdivided into three classes of failure modes: digital (threat model

A, TM-A), analog (threat model B, TM-B) and combination of both of them (threat model C, TM-C). This

proposition has been adopted by ICAO for the GPS/GLONASS C/A code signal [10]. Ever since, many

other articles have been published on this subject, more specifically, on the extension of this model to

the new modernized GNSS signals [11–15].

In order to detect these distortions, signal quality monitoring (SQM) architectures have been devel-

oped. The initial research on EWFs detection was performed by Phelts in [16] where a multicorrelator

technique to detect GPS C/A EWFs is presented. This technique consists of using several correlator

outputs to create metrics. These metrics are then compared with their nominal value in order to create

tests. Over the last few years, there has been several work published on signal quality monitoring for

new modernized GNSS signals [6, 17–19]. Most of this work is based on the multicorrelator technique.

Due to the complexity of the AltBOC modulation, the formulation of the 2OS model for this signal is a

challenging task. In fact, as far as the author is aware, there isn’t any work published on this subject. In

general, the receiver designer can choose among 3 options for processing the AltBOC signal: (i) process

the entire AltBOC signal as a wideband 8-phase signal; (ii) process both sub-bands, but separately; (iii)

process only one of the sub-bands [2]. This dissertation provides a comparative performance analysis

between the use of each processing option for SQM of EWFs.

1.2 Objectives

The main objective of this work is the performance comparison between the SQM using each pro-

cessing option. For that matter, it is necessary to first extend the 2OS model presented in the literature

for the AltBOC signal.

The objectives of this work are now enumerated:

• Gain insight into the AltBOC modulation

• Extend the 2OS model for the AltBOC modulation

• Implement a SQM architecture using the multicorrelator technique

• Devise several simulation scenarios to study the performance of the SQM architecture

• Compare the results obtained with the three processing options

1.3 Thesis Outline

This document consists of 7 chapters and 5 appendices.

• Chapter 2 provides a theoretical background on the Galileo E5 AltBOC signal, addressing how it

was derived from the BOC modulation and listing the characteristics of the signal mainly obtained

from the official Interface Control Document (ICD) [20].
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• Chapter 3 introduces the different receiver architectures for processing the AltBOC signal.

• Chapter 4 contains the extension of the 2OS model for the AltBOC signal. The analytical compu-

tation of the correlation expressions for each threat model is presented.

• In chapter 5 the SQM techniques used to detect the anomalous signals are presented. A statistical

analysis of the employed metrics and tests is developed.

• In chapter 6 the metrics and tests introduced in chapter 5 are tested to detect the presence of the

signal distortions described in chapter 4.

• Finally, in chapter 7, the conclusions drawn from this work are reported, alongside some sugges-

tions for future work.

• Appendix A computes the cross-correlation between two rectangular pulses; appendix B presents

an extension of the error model of chapter 4 for threat model TM-A1; appendix C addresses the

method with which we can generate vectors of correlated noise; appendix D provides an in-depth

statistical analysis of the tests presented in chapter 5; appendix E develops a halt criterion to

compute the required number of Monte Carlo runs to obtain a desired confidence interval.
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Chapter 2

Galileo E5 AltBOC Signal

In this chapter, we will define and characterize the AltBOC(15,10) modulation used in Galileo E5 and

Beidou B2 bands, which will be used in the threat models and the signal quality monitoring architectures

developed in this work. The AltBOC(15,10) modulation was first suggested in 2000. At that time, the

Galileo signal plan was being discussed and there was the need to transmit 2 independent signals in two

close bands using an unique High Power Amplifier (HPA). In fact, since each signal would be composed

of a pilot and a data channel, a 4-code AltBOC would have been needed. A 4 code AltLOC was studied

at the time but ended up not being used because its envelope was not constant. It is really important

that a modulation has constant envelope so that the HPA can be used at saturation (leading to an higher

efficiency). Later on, in 2001, CNES discovered that a 4 code constant AltBOC signal is possible and

this is the AltBOC that was proposed for the E5a and E5b bands [21].

Nowadays, this modulation is used both in the Galileo E5 signal and BeiDou B2 signal [2]. In this

dissertation, the Galileo E5 signal is explored due to larger amount of information available.

There are some advantages in using AltBOC over other modulations [22]. Firstly, it greatly simplifies

the baseband generator of the satellite since it uses only a wideband modulator for the entire E5 band

instead of two separate QPSK modulators for E5a and E5b. Besides that, it permits to use the amplifier

in the saturation region (due to the AltBOC constant envelope) which makes it much more efficient. Fur-

thermore, it allows for an optimization of the receiver architecture because the receiver can demodulate

simultaneously the navigation data in E5a and E5b sidebands. Finally, it has been shown in [23] that

wideband signals perform better in the presence of noise and multipath than narrow band signals.

Section 2.1 introduces the BOC modulation that serves as a baseline to AltBOC. Section 2.2 de-

fines the Standard AltBOC modulation while section 2.3 presents the AltBOC modulation used in E5

signal. Section 2.4 presents an equivalent signal representation. Finally, section 2.5 determines the

autocorrelation function (ACF) and power spectral density (PSD) of the E5 AltBOC signal.
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2.1 BOC modulation

An accurate definition of AltBOC modulation was given in [24]: ”An Alternative-BOC signal is a BOC-

like signal having different PRN codes in the lower and upper main split lobes. Alternative-BOCs allow

one signal service per lobe”. Therefore, in order to understand AltBOC, one needs to study BOC first.

Consider s(t) as a combination of the binary data message d(t), with symbol period Td, and the chips

of the PRN code c(t), with a chip period Tc (Td > Tc), as follows

s(t) = d(t)c(t) (2.1)

with d(t),c(t) ∈ {−1, 1}.

The BOC(m,n) modulated signal is obtained by multiplying s(t) by a rectangular subcarrier. This

rectangular subcarrier can be obtained by computing the signal of a sinusoidal function with frequency

fs = m× 1.023 MHz:

sc(t) = sign{sin(2πfst)} (2.2)

with the function sign{x} given by

sign{x} =


−1, x < 0

0, x = 0

+1, x > 0

(2.3)

A period of the subcarrier is illustrated in Fig. 2.1. The subcarrier frequency is usually equal or

greater than the chip rate, fc = 1
Tc

= n× 1.023 MHz. We can define the BOC ratio as

k =
2m

n
(2.4)

This parameter represents the number of half periods of the subcarrier that fit in a code chip and is

of great importance when analyzing this modulation (see [25]).

Figure 2.1: Subcarrier function for BOC modulation.
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In Fig. 2.1 we have assumed a BOC phase θBOC = 0. Typically, it is assumed that if no phasing is

indicated explicitly, it is a sine-phased BOC. Likewise, there is also the cosine-phased BOC, indicated

by BOCc, for θBOC = π/2 [2].

The ACF of a BOC(m,n) signal is [26]

RBOC(m,n)(τ) = ΛTc/k(τ) +

k−1∑
p=1

(−1)p
(
1− p

k

)
ΛTc/k

(
|τ | − p

Tc

k

)
(2.5)

The corresponding PSD can be obtained computing the Fourier Transform of Eq. 2.5 and is as

follows [26]

GBOC(m,n)(f) = Tcsinc
2(fTc) tan

2

(
πfTc

k

)
(2.6)

A comparison between the PSD of the signal s(t) before and after the BOC(1,1) modulation is rep-

resented in Fig. 2.2. It is shown that the modulation splits the spectrum into two symmetrical parts.

Furthermore, there is no power at the central frequency and the main lobes are shifted to the subcarrier

frequency, ±fs. This means that with a proper choice of the BOC parameters it is possible to achieve

sufficient spectral separation to allow multiple signals to share the same band with minimal loss and

interference [22].

Figure 2.2: PSD of s(t), before (above) and after (below) the BOC Modulation.

2.2 Standard AltBOC modulation

The idea behind the Standard AltBOC is to perform the same operation as in the BOC modulation

but using complex rectangular subcarriers instead. To understand this concept, it is important to first

introduce the Complex-BOC modulation.
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Considering the same baseband signal in Eq. 2.1, the Complex-BOC modulation can be obtained

by multiplying it by the following complex subcarrier:

sc(t) = sign{cos(2πfst)}+ jsign{sin(2πfst)} (2.7)

This subcarrier has a similar performance to the complex exponential, exp(j2πfst) = cos(2πfst) +

j sin(2πfst). However, their power spectrum is slightly different. While the spectrum of the complex ex-

ponential is a delta function centered at fs, the subcarrier sc(t) has infinite harmonics (see, for instance,

[25]).

A representation of the power spectrum before and after the modulation is applied is shown in Fig.

2.3. Notice how the baseband signal s(t) is frequency shifted to the frequency fs. Furthermore, there

is also a second lobe that appears at −3fs due to the harmonics of the subcarrier. However, this

second lobe has much lower amplitude than the main peak, thus, being neglectable. As stated before,

besides the lobe at −3fs there are other higher frequency harmonics that, for the sake of simplicity,

were not represented. It can be concluded that, while the BOC modulation splits the spectrum into two

symmetrical parts centered at ±fs, Complex-BOC shifts the power spectrum by fs. Even though it was

only represented a shift to a higher frequency, the same could be done for a lower frequency taking

instead the conjugate of the subcarrier, sc∗(t).

Figure 2.3: PSD of s(t), before (above) and after (below) the Complex-BOC Modulation.

This technique is used by Standard AltBOC to transmit four channels (E5a-I, E5a-Q, E5b-I, E5b-Q)

in two separate sidebands (E5a and E5b). Each sideband contains two channels that are allocated

in the in-phase channel (E5a-I/E5b-I) and in the quadrature channel (E5a-Q/E5b-Q). The binary signal

components for each channel are [20]:
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eE5a−I = d1c1

eE5a−Q = c2

eE5b−I = d2c3

eE5b−Q = c4

(2.8)

The quantities eE5a−I ∈ {−1,+1} and eE5b−I ∈ {−1,+1} are data sequences plus independent

code while eE5a−Q ∈ {−1,+1} and eE5b−Q ∈ {−1,+1} are independent code (dataless) sequences.

The Standard AltBOC can be obtained combining the signal components of Eq. 2.8 as follows:

sStandard−AltBOC(t) = [eE5a−I + jeE5a−Q]sc
∗(t) + [eE5b−I + jeE5b−Q]sc(t) (2.9)

Similarly to what was seen for the Complex-BOC, the Standard AltBOC modulation shifts the E5a

components to a lower frequency and the E5b components to a higher one. This modulation can be

written in terms of the equivalent expression [24]:

sStandard−AltBOC(t) = Ak exp(jk(t)π/4) (2.10)

where

Ak =


0 if k(t) = 0

2
√
2 if k(t) is odd

4 if k(t) is even

, k(t) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} (2.11)

The corresponding scattered plot is presented in Fig. 2.4 for m = 15 and n = 10. It can be seen

that this modulation doesn’t have a constant envelope. This is a problem for satellite communications

because amplifiers need to work in the saturation level to obtain the best efficiency and minimum distor-

tions. If the signal does not have constant envelope, this is not possible.

Figure 2.4: Scattered plots for Standard AltBOC with m = 15 and n = 10 [24].
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2.3 E5 AltBOC(15,10)

The modulation adopted for the Galileo E5 signal is a modified version of the Standard AltBOC, with

some changes in order to obtain a constant envelope. This modulation uses the same notation as BOC.

It is denoted AltBOC(15,10) as it uses a fs = 15× 1.023 MHz and fc = 10× 1.023 MHz.

The E5 complex baseband signal is generated according to Fig. 2.5. As we can see, only the in-

phase components have data bits in their composition, the quadrature components are only used as

pilot codes.

Figure 2.5: Modulation Scheme for the E5 Signal [20].

It is composed by four signal components that are generated according to:

• eE5a−I from the F/NAV navigation data stream DE5a−I modulated with the ranging code CE5a−I

• eE5a−Q (pilot component) from the ranging code CE5a−Q

• eE5b−I from the I/NAV navigation data stream DE5b−I modulated with the ranging code CE5b−I

• eE5b−Q (pilot component) from the ranging code CE5b−Q

The F/NAV type of message is used in the OS (Open Service) while I/NAV is employed in the OS

and CS (commercial service). The analytical expression for each one of the components is

eE5a−I =

+∞∑
i=−∞

[
cE5a−I,|i|LE5a−I

dE5a−I,[i]DCE5a−I
ΠTc

(t− iTc)
]

eE5a−Q =

+∞∑
i=−∞

[
cE5a−Q,|i|LE5a−Q

ΠTc
(t− iTc)

]
eE5b−I =

+∞∑
i=−∞

[
cE5b−I,|i|LE5b−I

dE5b−I,[i]DCE5b−I
ΠTc

(t− iTc)
]

eE5a−I =

+∞∑
i=−∞

[
cE5b−Q,|i|LE5b−Q

ΠTc
(t− iTc)

]
(2.12)

where the rectangle function is defined as:
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ΠL(t) =

1, 0 ≤ t ≤ L

0, otherwise

(2.13)

The wideband E5 signal is generated with the AltBOC modulation and can be represented with the

following expression [20]

sE5(t) =
1

2
√
2
(eE5a−I + jeE5a−Q) [scE5−S(t)− jscE5−S(t− Ts/4)]

1

2
√
2
(eE5b−I + jeE5b−Q) [scE5−S(t) + jscE5−S(t− Ts/4)]

1

2
√
2
(eE5a−I + jeE5a−Q) [scE5−P (t)− jscE5−P (t− Ts/4)]

1

2
√
2
(eE5b−I + jeE5b−Q) [scE5−P (t) + jscE5−P (t− Ts/4)]

(2.14)

The dashed signal components in Eq. 2.14 represent the product signals and are used to make the

envelope of the signal constant [22]. They are defined as:

eE5a−I = eE5a−QeE5b−IeE5b−Q

eE5a−Q = eE5a−IeE5b−IeE5b−Q

eE5b−I = eE5b−QeE5a−IeE5a−Q

eE5b−Q = eE5b−IeE5a−IeE5a−Q

(2.15)

The subcarriers scE5−S(t) and scE5−P (t) are the four-level single and product subcarriers, respec-

tively, and are represented by:

scE5−S(t) =

+∞∑
i=−∞

AS|i|8ΠTs,E5/8(t− iTs/8)

scE5−P (t) =

+∞∑
i=−∞

AP|i|8ΠTs,E5/8(t− iTs/8)

(2.16)

Each subcarrier has a frequency fs = 1.5fc = 15.345 MHz (15 × 1.023 MHz) and the ASi and APi

coefficients are given in table 2.1.

Table 2.1: AltBOC subcarrier Coefficients [20].

Eq. 2.16 with coefficients given by table 2.1 results in the subdivided leveled sinusoidal kind of wave

shown in Fig. 2.6. From the comparison of subcarrier functions for single and product signals, the
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relative power in the product signals is roughly 15% [27].

Figure 2.6: One Period of the Two subcarrier Functions Involved in AltBOC Modulation [20].

2.4 Equivalent Modulation Type

The rather complex modulation scheme in Eq. 2.14 can also be described as an 8-PSK signal defined

by Eq. 2.17. This representation allows to generate the signal using a simple Look-Up Table (LUT) for

phase assignments and greatly reduce the hardware complexity [22]. The corresponding phase states

are illustrated in Fig. 2.7

sE5(t) = exp
(
j
π

4
k(t)

)
with k ∈ {1, 2, 3, 4, 5, 6, 7, 8} (2.17)

Figure 2.7: 8-PSK Phase-State Diagram of E5 AltBOC Signal [20].

The relation of the 8 phase states to the 16 different possible states of [eE5a−I ; eE5b−I ;eE5a−Q;

eE5b−Q] depends also on time. Therefore, time is partitioned first in subcarrier intervals Ts and further

sub-divided in 8 equal sub-periods. The index iTs
of the actual sub-period is given by Eq. 2.18 and

determines which relation between input quadruple and phase states has to be used.

iTs = integer part

[
8

Ts
(t modulo Ts)

]
with iTs ∈ {0, 1, 2, 3, 4, 5, 6, 7} (2.18)

The dependency of phase-states from input-quadruples and time is given in table 2.2. The table
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is composed of 128 (8 × 16) different entries which means that a 8 × 16 LUT could be used to greatly

simplify the hardware and computational burden of generating the E5 signal.

Table 2.2: Look-up Table for AltBOC Phase States [20].

2.5 Autocorrelation Function and Power Spectral Density

When dealing with GNSS signals, two very important characteristics are the autocorrelation function

and the power spectrum, since they determine the navigation performance of a signal [25].

2.5.1 Autocorrelation Function

The normalized ACF for the E5 AltBOC signal can be analytically calculated as [26]:

RAltBOC(15,10)(τ) = ΛTc/6(τ)−
2

3
ΛTc/6

(
|τ | − Tc

3

)
+

1

3
ΛTc/6

(
|τ | − 2Tc

3

)
− 1

24
ΛTc/12

(
|τ | − Tc

12

)
− 1

24
ΛTc/12

(
|τ | − 3Tc

12

)
+

1

24
ΛTc/12

(
|τ | − 5Tc

12

)
+

1

24
ΛTc/12

(
|τ | − 7Tc

12

)
− 1

24
ΛTc/12

(
|τ | − 9Tc

12

)
− 1

24
ΛTc/12

(
|τ | − 11Tc

12

)
(2.19)

where Tc is the chip duration
(

1
10∗1.023∗106

)
, τ is the delay and Λ is the triangle function defined as

ΛL(t) =

1− |t|
L , |t| < L

0, otherwise

(2.20)

Fig. 2.8 represents the autocorrelation function of the Galileo E5 AltBOC signal. It can be seen that

the ACF of the AltBOC presents a narrow correlation peak. However, it also presents secondary peaks

with considerable amplitude (roughly 70% of the power of the main peak). These secondary peaks can
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become a problem because they can lead to false lock in the acquisition and tracking stages, resulting

in wrong values of time delay (see, for instance [22]).

Figure 2.8: AltBOC(15,10) autocorrelation function.

2.5.2 Power Spectral Density

The normalized PSD represents the signal in the frequency domain. The AltBOC PSD can be ob-

tained by computing the Fourier Transform of the ACF expression given by Eq. 2.19, yielding [26]:

GAltBOC(15,10)(f) =
Tc cos

2(πfTc)

72 cos
(

πfTc

3

)
4sinc2

(
fTc

6

)
cos
(

πfTc

3

) − sinc2
(
fTc

12

)
cos

(
πfTc

6

) (2.21)

The resulting graph for the normalised PSD is shown in Fig. 2.9.

Figure 2.9: AltBOC(15,10) PSD.
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Chapter 3

AltBOC Receiver Architectures

Due to the complexity of the AltBOC signal, the receiver designer can choose among three options

for processing the signal [2, 22, 28]:

• Process entire E5 signal as a wideband 8-phase signal;

• Process both E5a and E5b, but separately;

• Process only the E5a or the E5b component;

Processing the entire E5 signal has the advantage of accessing all the signal power including use

of the widest bandwidth GNSS signal with opportunities to minimize interference, multipath and reduce

code tracking errors. The typical front-end filter bandwidth for a receiver that processes the whole

signal is 51.15MHz [25]. However, there are some drawbacks as well. The use of a large fractional

bandwidth, typically defined as the null-to-null bandwidth divided by the center frequency, implies the

risk of significantly different Doppler effects over the signal bandwidth, potentially limiting integration

times if significant satellite-to-receiver dynamics is expected. Dispersive effects due to the ionosphere

[29] and the receiver front-end hardware may also present a problem. Furthermore, a high sampling rate

is associated to the use of a wide bandwidth receiver which tends to increase the power consumption of

the front-end and the digital processing blocks [2]. Initial synchronization (code and Doppler acquisition)

of the entire wideband signal may also represent a problem due to its complexity. Thus, signal processing

at the receiver is usually done using sideband processing because of the narrow correlation function that

arises with wideband processing [2].

Coherently processing each E5a and E5b signal separately and combining the measurements in a

single receiver channel is a compromise both in terms of benefits and implementation burden, while still

making use of the entire signal. On the other hand, processing only the E5a or E5b signal reduces the

implementation to that of a BPSK(10) signal but neglects more than half the signal power.

Taking these options into account, three different receiver architectures are proposed in [22]:

• coherent dual band receiver, based on the combined AltBOC correlation of E5a and E5b (entire

signal). This receiver achieves the best performance, but is more complex than the others;
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• single band receiver, based on a BPSK(10) demodulator for processing only the E5a or E5b

component. This arrangement could be used in simple low-cost receivers, with high precision;

• separate dual band receiver, with non-coherent reception of E5a and E5b bands. It works with

two separate BPSK(10) demodulators and offer slightly better performance than the previous one.

In the following sections these receiver architectures are presented in detail.

3.1 Coherent dual band receiver

The coherent dual band receiver is the one that can achieve the best performance. This receiver

takes advantage of the coherence between the two E5 sidebands. The block diagram of this receiver

architecture is presented in Fig. 3.1. Each correlation operation is implemented with a complex correlator

block that uses the the two pilot codes (cE5a−Q and cE5b−Q) and the subcarrier with correct timing

(scE5−S) and its delayed version (scoffE5−S = scE5−S(t − Ts/4)) to construct the signal local replica. A

detailed explanation of each one of the blocks can be found in [22].

Figure 3.1: Coherent dual band receiver block diagram [22].

The early and late arms of the DLL perform a complex correlation between the incoming baseband

signal and the pilot signal replica generated in the receiver.
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Assuming correct synchronization of the receiver (PLL and DLL correctly locked) and neglecting the

noise, the distortions and other propagation effects, the incoming baseband signal can be given by Eq.

2.14.

However, it was seen in [30] that for a front-end filter with bandwidth BRF ≤ 92.07MHz, the product

subcarrier is eliminated. Given that the typical bandwidth is BRF = 51.15MHz, the signal in Eq. 2.14 can

be well approximated by:

sE5(t) ≈
1

2
√
2
(eE5a−I + jeE5a−Q) [scE5−S(t)− jscE5−S(t− Ts/4)]

+
1

2
√
2
(eE5b−I + jeE5b−Q) [scE5−S(t) + jscE5−S(t− Ts/4)]

(3.1)

The pilot signal replica generated in the receiver is described as

sE5p(t) =
1

2
√
2
jeE5a−Q [scE5−S(t)− jscE5−S(t− Ts/4)]

+
1

2
√
2
jeE5b−Q [scE5−S(t) + jscE5−S(t− Ts/4)]

(3.2)

Define now the cross-correlation function (CCF) operator as

Rxy(τ) =< x(t)y∗(t− τ) >=
1

T

∫ T

0

x(t)y∗(t− τ)dt (3.3)

with T denoting the correlation interval. The output of the complex correlation computed in the DLL

is, mathematically defined as

Rssp(τ) =
1

T

∫ T

0

sE5(t)s
∗
E5p(t− τ)dt (3.4)

where T >> Tc.

The quantities eE5a−I(t), eE5a−Q(t), eE5a−Q(t) and eE5a−Q(t) are independent code sequences.

That is, E{eE5a−I(t)eE5a−Q(t)} = 0, E{eE5a−I(t)eE5b−I(t)} = 0, etc. Furthermore, E{|eE5a−I(t)|2} = 1,

E{|eE5a−Q(t)|2} = 1, etc. Thus, Eq. 3.4 can be written as

Rssp(τ) =
1

4Tc

∫ Tc

|τ |
scE5−S(t)scE5−S(t− τ)dt

+
1

4Tc

∫ Tc

|τ |
scE5−S(t− Ts/4)scE5−S(t− Ts/4− τ)dt

(3.5)

A method to compute this CCF that takes advantage of the fact that the subcarriers are a sum of

rectangle functions is described in [26]. First, consider the CCF as the sum of partial CCFs, as follows

Rssp(τ) =

2∑
j=1

Rj(τ) (3.6)
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where

R1(τ) =
1

4Tc

∫ Tc

|τ |
scE5−S(t)scE5−S(t− τ)dt (3.7)

R2(τ) =
1

4Tc

∫ Tc

|τ |
scE5−S(t− Ts/4)scE5−S(t− Ts/4− τ)dt (3.8)

Taking Eq. 2.16 into account, the subcarrier can be written as a sum of rectangle functions leading

to

R1(τ) =
1

4Tc

12∑
i=1

12∑
k=1

AS|i|8AS|k|8

∫ Tc

|τ |
ΠTs

(t− iTs/8)ΠTs
(t− kTs/8− |τ |)dt (3.9)

It is shown that in the interval lTc/12 ≤ |τ | ≤ (l + 1)Tc/12, l = 0, ..., 11, the integrals in the previous

expression are given by

∫ Tc

|τ |
ΠTs

(t− iTs/8)ΠTs
(t− kTs/8− |τ |)dt =


(l + 1)Ts/8− |τ |, i = l + 1, ..., 12, k = i− l

|τ | − lTs/8, i = l + 2, ..., 12, k = i− l − 1

0, otherwise

(3.10)

Using this result, we obtain for the partial CCFs Rj(τ) in the interval lTc/12 ≤ |τ | ≤ (l+1)Tc/12, with

l = 0, ..., 10:

R1(τ)

R2(τ)

 =

(
l + 1

12
− |τ |

Tc

) 12∑
i=l+1

 AS|i|8AS|i−l|8

AS|i−2|8AS|i−2−l|8

+

(
|τ |
Tc

− l

12

) 12∑
i=l+2

 AS|i|8AS|i−l−1|8

AS|i−2|8AS|i−3−l|8

 (3.11)

For 11Tc/12 ≤ |τ | ≤ Tc we have

R1(τ)

R2(τ)

 =

(
1− |τ |

Tc

) 12∑
i=l+1

 AS|1|8AS|12|8

AS|−2|8AS|10|8

 (3.12)

Equations 3.11, 3.12 show that the CCF is picewise linear. Thus, can be expressed as

Rssp(τ) = αl + βl
|τ |
Tc

, l = 0, ..., 11 (3.13)

with the parameters αl and βl indicated in table 3.1.

Table 3.1: Parameters αl and βl for the AltBOC(15,10) pilot ACF.

l 0 1 2 3 4 5 6 7 8 9 10 11

αl
1189
2786

535
967

569
1257 − 51

985 − 2123
2955 − 620

587 − 1189
1576

34
3363

781
1154

1189
1576

552
2195 − 1138

3771

βl − 609
338 − 2327

701 − 1138
419 − 2633

3771
4909
3771

1240
587

1189
788

357
1801 − 1444

1801 − 1138
1257 − 1138

3771
1138
3771
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The CCF can also be described in terms of a sum of triangle functions. In each interval lTc/12 ≤

|τ | ≤ (l + 1)Tc/12, the ACF is given by the sum of the triangles BmΛTc/6(|τ | −mTc/3), m = 0, 1, 2 and

CnΛTc/12(|τ | − nTc/6 − Tc/12), n = 0, ..., 5 with the weights Bm and Cn computed from Eq. 3.13. The

result is

Rssp(τ) =

2∑
m=0

BmΛTc/6

(
|τ | − mTc

3

)
+

5∑
n=0

CnΛTc/12

(
|τ | − (2n+ 1)Tc

12

)
(3.14)

with

Bm =
1393

3264

[
1 − 2

3
1
3

]
(3.15)

Cn =
[

235
3716 − 265

3152 − 180
5329

228
4175

89
20627 − 276

10975

]
(3.16)

Notice how, despite both signals being complex, the correlation result in Eq. 3.14 is real. A hardware

implementation model for the complex correlator block diagram is described in [22] and presented in

Fig. 3.2 where all the correlation components were expanded and simplified. If the signal is undistorted

and correctly tracked by the PLL and the DLL, the quadrature component, defined as cQ in Fig. 3.2, is

equal to zero. This component can be used, for instance, to detect tracking errors such as the presence

of ionospheric error.

Figure 3.2: Complex Correlator block diagram [22].

Fig. 3.3 displays the ACF function for the AltBOC(15,10) pilot signal (Eq. 3.14) and the ACF for the

complete AltBOC(15,10) signal (Eq. 2.19) for comparison. It can be seen that the pilot signal ACF is less

sharper than the complete signal ACF (leading to worse performance). This has to do with the fact that

the product subcarrier was filtered out. Furthermore, it can also be seen that more than half the power

is being neglected (only 42% is used). Once more, this is a result of filtering the product subcarrier, that
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recall, was approximately 15% of the signal power.

Figure 3.3: AltBOC(15,10) pilot signal autocorrelation function.

The PSD can be found by computing the fourier transform of Eq. 3.14 yielding

Gssp(f) =
B0Tc

6
sinc2 (fTc/6) +

2∑
m=1

BmTc

3
sinc2 (fTc/6) cos

(
2πf

mTc

3

)

+

5∑
n=0

CnTc

6
sinc2 (fTc/12) cos

(
2πf

(2n+ 1)Tc

12

) (3.17)

3.2 Single band receiver

The single band receiver architecture is the simplest receiver model. It works using only one side-

band (for example E5a) that is translated from its center frequency to the baseband, process known as

Side-band Translation (SBT) [28]. Thus, the demodulation of the signal is performed tracking the center

frequency of the sideband (1176.45MHz, for E5a band and 1207.14MHz, for E5b band) as shown in Fig.

3.4. The received signal is down-converted and then low-pass filtered. The typical front-end bandwidth

for the E5a or E5b signal is 20.46MHz [25].

A block diagram for this type of receiver is presented in Fig. 3.5.

At the output of the PLL in Fig. 3.5 the signal is split into its in-phase and quadrature components.

Assuming correct synchronization of the receiver (PLL and DLL correctly locked) and neglecting the

noise, the distortions and other propagation effects, the unity normalized components can be given by

sE5a−I(t) = eE5a−I(t) (3.18)

sE5a−Q(t) = eE5a−Q(t) (3.19)

These signals are obtained by filtering only a sub-band of the AltBOC signal as depicted in Fig. 3.4.

The quadrature component is then used in the DLL to track the pilot signal. Tracking only the pilot

signal allows for larger correlation times. If it was necessary to track also the data channels, their data
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Figure 3.4: Signal bandwidth selection for a single band receiver using sub-band E5a [22].

Figure 3.5: Signal band receiver block diagram [22].

bits would have to be wiped off [22].

The CCF between the quadrature component of the incoming signal and the pilot signal replica can

be computed by

21



Rssp(τ) =
1

T

∫ T

0

sE5a−Q(t)sp(t− τ)dt

=
1

T

∫ T

0

sE5a−Q(t)sE5a−Q(t− τ)dt

=
1

T

∫ T

0

eE5a−Q(t)eE5a−Q(t− τ)dt

(3.20)

But, eE5a−Q(t) is an independent code sequence such that E{|eE5a−Q(t)|2} = 1. Thus

Rssp(τ) =
1

Tc

∫ Tc

|τ |
dt = 1− |τ |

Tc
= ΛTc

(τ) (3.21)

Notice how the CCF obtained is equal to the one of the BPSK(10) signal. In [31] it is stated that using

this SBT technique, there is a power sharing of 21%, i.e., only 21% of the whole E5 signal is used for

tracking. Normalizing the power to the power of E5 signal we get

Rssp(τ) ≈ 0.21ΛTc
(τ) (3.22)

The PSD can be found by taking the Fourier transform of Eq. 3.22 yielding

Gssp(f) ≈ 0.21Tcsinc
2(fTc) (3.23)

3.3 Separate dual band receiver

The separate dual band receiver allows the processing of both the sidebands individually. It is an

extension of the single band receiver obtained by duplicating all the hardware after the radio-frequency

front-end. The block diagram of this receiver architecture is presented in Fig. 3.6.

Figure 3.6: Separate dual band receiver block diagram [22].

The main advantage of this receiver is the possibility to correct the ionospheric error as two sub-

bands with different subcarrier frequency are tracked simultaneously.
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Chapter 4

Threat Models

Threat Models are based on modeling possible phenomena occurring at the satellite level in faulty

conditions, inducing distortions on the GNSS Signals. The analysis of threat models was motivated by

the occurrence of the SV19 event. In March 1993, a pseudorange bias between C/A and P(Y) code

measurements of approximately 4 m was observed with SV19 during aircraft experiments. Follow on

experiments noted that the differential position accuracy without SV19 were less than 50 cm [7]. After

the SV19 discovery, considerable effort was made to explain and model this anomaly.

These investigations led to the identification of three primary correlation function deformations: asym-

metry, dead zones and false peaks [16]. The underlying reason for this is that correlation function distor-

tions can be mapped into DLL, and thus pseudoranges biases. In 1999 the 2OS model was proposed for

the GPS L1 C/A, model which was capable of generating all the correlation distortions aforementioned

[9]. This model consists in three classes of failure modes: digital (threat model A, TM-A), analog (threat

model B, TM-B) and combination of both of them (threat model C, TM-C).This proposition has been

adopted by ICAO for the GPS/GLONASS C/A code signal [10].

With the emergence of new and modernized GNSS signals, comes the need to define new TMs. The

strategy presented in the literature has been to adapt the distortion models characterized by TM-A, TM-

B and TM-C to new signals. For instance, threat models for Galileo E1C and Galileo E5a were defined

in [12]. In [13], the same threat models were extended to account for BOC and CBOC modulations.

In this chapter we develop the threat models for the AltBOC modulation. As it was seen previously,

there are three processing options when it comes to the AltBOC signal. When processing either one

(single band receiver model) or both sub-bands independently (separate dual band receiver model), it

was seen that the CCF used in tracking is equal to the one of the BPSK(10) signal one, given by Eq.

3.22. On the other hand, when processing the whole AltBOC signal (coherent dual band receiver), the

CCF considered in tracking is the AltBOC(15,10) pilot correlation function given by Eq. 3.14. Therefore,

in this chapter were developed threat models both for the BPSK(10) and AltBOC(15,10) signals in order

to cover these three types of processing options. It is important to note that, in this work, the distortion

models used for the single band and separate dual band receiver models were applied directly to the

BPSK(10) modulation, which is a simplification. In reality, the distortions would happen at the satellite
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payload, hence, in the AltBOC(15,10) modulation. This distorted signal would then be processed as a

BPSK(10).

In section 4.1 the correlation functions’ expressions for the Threat Model A (TM-A) are computed.

This threat model can be subdivided into two different models, TM-A1 and TM-A2, that are covered

in section 4.1.1 and 4.1.2, respectively. Section 4.2 presents the expressions for the Threat Model B

(TM-B). Finally, section 4.3 develops the threat model C (TM-C) that, once more, is subdivided into two

models, TM-C1 and TM-C2, that are covered in section 4.3.1 and 4.3.2, respectively.

4.1 Threat Model A

Threat Model A consists of the normal code signal except that all the positive chips have a falling

edge that leads or lags relative to the correct end-time for that chip. This threat model is associated with

a failure in the navigation data unit (NDU), the digital partition of a GNSS satellite [10].

4.1.1 Threat Model TM-A1

This threat model corresponds a lead/lag (∆) on every falling transitions after modulation by the code

signal.

In this section will be studied two different signals, BPSK(10) and AltBOC(15,10). As stated previ-

ously, the BPSK(10) signal formulation can be employed when processing one or both sub-bands using

either a single band or separate dual band receiver, respectively. On the other hand, when processing

the whole E5 signal (coherent dual band receiver), we need to consider the AltBOC(15,10) signal.

4.1.1.1 BPSK(10) signal

Typical waveforms for TM-A1 with BPSK(10) signals are represented in Fig. 4.1.

Figure 4.1: Typical waveform for TM-A1 with BPSK(10) signal and |∆| < Tc/2.

Let s(t) be the undistorted BPSK(10) signal. The distorted signal can be formulated as [13]
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s̃(t) = s(t) + ϵ(t) (4.1)

where the error signal, ϵ(t) is

ϵ(t) =
1

2
[s (t−∆)− s (t)][1 + sign{s (t−∆)− s (t)}] (4.2)

where the function sign{x} is given by Eq. 2.3 .

There are two sub-bands to be considered, E5a and E5b, with similar properties. Both of them yield

the same correlation functions. Therefore, for simplicity, we will only consider the sub-band E5a. The

receiver’s locally generated signal, sp(t), is, in this case, described by Eq. 3.19. The receiver’s locally

generated signal only contains the pilot signal in order to avoid data bit transitions, allowing for larger

correlation times.

Multiplying the error model in Eq. 4.2 by the delayed version of the pilot signal yields

ϵ(t)sp(t− τ) =
1

2
[s (t−∆)− s (t)][1 + sign{s (t−∆)− s (t)}]sp(t− τ)

=
1

2
[s (t−∆)− s (t)]sp(t− τ) +

1

2
|s (t−∆)− s (t) |sp(t− τ)

(4.3)

By time averaging Eq. 4.3 we obtain

Rϵsp(τ) =< ϵ(t)sp(t− τ) >=
1

2
[Rssp(τ −∆)−Rssp(τ)] +

1

2
< |s (t−∆)− s (t) |sp(t− τ) > (4.4)

with Rssp(τ) equal to the CCF given by Eq. 3.22.

Notice that Eq. 4.4 is well defined apart from the last term that can be further simplified.

< |s (t−∆)− s (t) |sp(t− τ) > =< [s (t−∆)− s (t)]sp(t− τ)× prob{s (t−∆)− s (t) > 0}

− [s (t−∆)− s (t)]sp(t− τ)× prob{s (t−∆)− s (t) < 0} >
(4.5)

However, for practical codes where every symbol has a similar probability of occurrence, it can be

seen that prob{s (t−∆)− s (t) > 0} ≈ prob{s (t−∆)− s (t) < 0} which leads to

< |s (t−∆)− s (t) |sp(t− τ) >≈ 0 (4.6)

Thus, Eq. 4.4 can be simplified to Rϵsp(τ) = 1
2 [Rssp(τ − ∆) − Rssp(τ)] and the crosscorrelation of

s̃(t) and sp(t) is

Rs̃sp(τ) =< s̃(t)sp(t− τ) >=< [s(t) + ϵ(t)]sp(t− τ)] >

= Rssp(τ) +Rϵsp(τ) =
1

2
[Rssp(τ) +Rssp(τ −∆)]

(4.7)
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Consider now the effect of lowpass filtering the distorted signal s̃(t). This is particularly useful as

every GNSS receiver possesses a front-end filter, as shown in Fig. 3.5 and Fig. 3.6 for a single band and

separate dual band receiver, respectively. It is proven in [13] that the crosscorrelation function between

the filtered distorted signal and the local replica is given by the inverse Fourier transform of the cross-

spectrum times the frequency response of the lowpass filter. Let RA(τ) be the filtered crosscorrelation

function, we have that

RA(τ) = F−1{Gs̃sp(f)H(f)}

=

∫ +∞

−∞
Gs̃sp(f)H(f) exp(j2πfτ)df

(4.8)

where Gs̃sp is the cross-spectrum given by the Fourier transform of the crosscorrelation function in

Eq. 4.7.

For an ideal rectangular filter of bandwidth B with unity gain and group delay τ0, i.e.

H(f) = Π2B(f) exp(−j2πfτ0) (4.9)

Eq. 4.8 can be simplified to

RA(τ) =

∫ +B

−B

Gs̃sp(f) exp(j2πf(τ − τ0))df (4.10)

Doing τ ′ = τ − τ0 results

RA(τ
′) =

∫ +B

−B

Gs̃sp(f) exp(j2πfτ
′)df (4.11)

Even though this expression is an approximation due to the assumption of an ideal rectangular filter,

it was proven in [13] to be a good approximation to the response of a 6th order Butterworth filter. This

filter has special interest because it is often employed in GNSS receivers [3].

Doing the Fourier transform of Eq. 4.7

Gs̃sp(f) = F{Rs̃sp(τ)} =
1

2
Gssp(f)[1 + exp(−j2πf∆)] (4.12)

Using Eq. 3.23 we obtain

Gs̃sp(f) = 0.105Tcsinc
2(fTc)[1 + exp(−j2πf∆)] (4.13)

Replacing this expression in Eq. 4.11 we get

RA(τ
′) = 0.105Tc

∫ +B

−B

sinc2(fTc) exp(j2πfτ
′)df +0.105Tc

∫ +B

−B

sinc2(fTc) exp(j2πf(τ
′ −∆))df (4.14)

Doing fTc = x and ∆/Tc = D
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RA(τ
′) = 0.105

∫ +BTc

−BTc

sinc2(x) cos

(
2πf

τ ′

Tc
x

)
dx

+ 0.105

∫ +BTc

−BTc

sinc2(x) cos

[
2πf

(
τ ′

Tc
−D

)
x

]
dx

(4.15)

Fig. 4.2 shows the normalized CCF for TM-A1 with a BPSK(10) signal and different delays. In the

figure only positive values of ∆ are represented because the effects of negative values are simply to

advancing the correlation function rather than delaying it.

Figure 4.2: Normalized crosscorrelations RA(τ) for BTc = 1. TM-A1. Modulation: BPSK(10).

4.1.1.2 AltBOC(15,10) signal

Typical waveforms for TM-A1 with real/imaginary part of AltBOC(15,10) signals is represented in Fig.

4.3.

Note that the AltBOC(15,10) is a complex signal, hence, in Fig. 4.3 there is only represented what a

typical waveform of the real/imaginary part would look like and not the whole signal.

The distorted signal is given by Eq. 4.1, where this time the error signal, ϵ(t) is

ϵ (t) =
1

2
ℜ{s (t−∆)− s (t)}[1 + sign{ℜ{s (t−∆)− s (t)}}]

+
j

2
ℑ{s (t−∆)− s (t)}[1 + sign{ℑ{s (t−∆)− s (t)}}]

(4.16)

or
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Figure 4.3: Typical waveform for TM-A1 with real/imaginary part of AltBOC(15,10) signal and |∆| <
Tc/12.

ϵ (t) =
1

2
ℜ{s (t−∆)− s (t)}+ 1

2
|ℜ{s (t−∆)− s (t)}|

+
j

2
ℑ{s (t−∆)− s (t)}+ j

2
|ℑ{s (t−∆)− s (t)}|

=
1

2
[s (t−∆)− s (t)] +

1

2
|ℜ{s (t−∆)− s (t)}|

+
j

2
|ℑ{s (t−∆)− s (t)}|

(4.17)

with ℜ{x} denoting the real part of x and ℑ{x} the imaginary part and the function sign{x} given by

Eq. 2.3.

The error model in Eq. 4.16 is the extension of the model presented in Eq. 4.2 for the case of a

complex signal.

For the case of a coherent dual band receiver, the incoming signal is complex correlated with a

replica of the pilot signal. Multiplying the error model in Eq. 4.16 by the delayed version of the conjugate

of the pilot signal we have that

ϵ (t) s∗p (t− τ) =
1

2
ℜ{s (t−∆)− s (t)}s∗p (t− τ) +

1

2
|ℜ{s (t−∆)− s (t)}|s∗p (t− τ)

+
j

2
ℑ{s (t−∆)− s (t)}s∗p (t− τ) +

j

2
|ℑ{s (t−∆)− s (t)}|s∗p (t− τ)

=
1

2
[s (t−∆)− s (t)]s∗p (t− τ) +

1

2
|ℜ{s (t−∆)− s (t)}|s∗p (t− τ)

j

2
|ℑ{s (t−∆)− s (t)}|s∗p (t− τ)

(4.18)

By time averaging Eq. 4.18 we obtain
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Rϵsp(τ) =< ϵ (t) s∗p (t− τ) >=
1

2
[Rssp(τ −∆)−Rssp(τ)] +

1

2
< |ℜ{s (t−∆)− s (t)}|s∗p (t− τ) >

j

2
< |ℑ{s (t−∆)− s (t)}|s∗p (t− τ) >

(4.19)

Note that Eq. 4.19 is well defined apart from the last two terms that can be further simplified.

< |ℜ{s (t−∆)− s (t)}|s∗p (t− τ) > =< [ℜ{s (t−∆)− s (t)}]s∗p (t− τ)× prob{ℜ{s (t−∆)− s (t)} > 0}

− [ℜ{s (t−∆)− s (t)}]s∗p (t− τ)× prob{ℜ{s (t−∆)− s (t)} < 0} >

(4.20)

However, for practical codes where every symbol has a similar probability of occurrence, it can be

seen that prob{ℜ{s (t−∆)− s (t)} > 0} ≈ prob{ℜ{s (t−∆)− s (t)} > 0} which leads to

< |ℜ{s (t−∆)− s (t)}|s∗p (t− τ) >= 0 (4.21)

Similarly, it can be obtained that

< |ℑ{s (t−∆)− s (t)}|s∗p (t− τ) >= 0 (4.22)

Thus, Eq. 4.19 can be simplified to Rϵsp(τ) =
1
2 [Rssp(τ −∆) − Rssp(τ)] and the crosscorrelation of

s̃(t) and sp(t) is

Rs̃sp(τ) =< s̃(t)s∗p(t− τ) >=< [s(t) + ϵ(t)]s∗p(t− τ)] >

= Rssp(τ) +Rϵsp(τ) =
1

2
[Rssp(τ) +Rssp(τ −∆)]

(4.23)

This is the same expression obtained for the BPSK(10) signal apart from the fact that Rssp(τ) is now

given by the AltBOC(15,10) pilot autocorrelation expression in Eq. 3.14.

Consider, once again, the effect of lowpass filtering the distorted signal s̃(t), as shown in Fig. 3.1

for a typical coherent dual band receiver. For an ideal rectangular filter, it was seen previously that the

filtered crosscorrelation function is given by Eq. 4.11 with the cross-spectrum defined in Eq. 4.12.

Using Eq. 3.17 in Eq. 4.12 yields

Gs̃sp(f) =
1

2

[
B0Tc

6
sinc2 (fTc/6) +

2∑
m=1

BmTc

3
sinc2 (fTc/6) cos

(
2πf

mTc

3

)

+

5∑
n=0

CnTc

6
sinc2 (fTc/12) cos

(
2πf

(2n+ 1)Tc

12

)]
[1 + exp(−j2πf∆)]

(4.24)

Replacing this expression in Eq. 4.11 we get
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RA (τ ′) =
1

2

∫ +B

−B

B0Tc

6
sinc2 (fTc/6) exp (j2πfτ

′) df +
1

2

∫ +B

−B

B0Tc

6
sinc2 (fTc/6) exp (j2πf (τ ′ −∆)) df

+
1

2

∫ +B

−B

2∑
m=1

BmTc

3
sinc2 (fTc/6) cos

(
2πf

mTc

3

)
exp (j2πfτ ′) df

+
1

2

∫ +B

−B

2∑
m=1

BmTc

3
sinc2 (fTc/6) cos

(
2πf

mTc

3

)
exp (j2πf (τ ′ −∆)) df

+
1

2

∫ +B

−B

5∑
n=0

CnTc

6
sinc2 (fTc/12) cos

(
2πf

(2n+ 1)Tc

12

)
exp (j2πfτ ′) df

+
1

2

∫ +B

−B

5∑
n=0

CnTc

6
sinc2 (fTc/12) cos

(
2πf

(2n+ 1)Tc

12

)
exp (j2πf (τ ′ −∆)) df

(4.25)

Doing fTc = x and ∆/Tc = D

RA (τ ′) =
B0

12

∫ +BTc

−BTc

sinc2
(x
6

)
cos

(
2π

τ ′

Tc
x

)
dx+

B0

12

∫ +BTc

−BTc

sinc2
(x
6

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

+

2∑
m=1

Bm

6

∫ +BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

τ ′

Tc
x

)
dx

+

2∑
m=1

Bm

6

∫ +BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

+

5∑
n=0

Cn

12

∫ +BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

τ ′

Tc
x

)
dx

+

5∑
n=0

Cn

12

∫ +BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

(4.26)

Eq. 4.26 represents the crosscorrelation function between a TM-A1 distorted AltBOC(15,10) signal

with its pilot signal.

However, the mathematical error model presented in Eq. 4.16 is only coherent with the physical

model of a lead/lag on every falling transition for |∆| < Tc/12 which was seen to not be sufficient to test

the SQM techniques. Hence, there was the need to develop a model that would be suitable for larger

leads/lags. Therefore, herein is proposed an algorithm, developed in Appendix B, that consists in adding

new terms to extend the model up to |∆| < Tc/6.

Employing this new model, we have that the crosscorrelation for |∆| < Tc/6 can be rewritten as (Eq.

B.8)
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RA (τ ′) =
B0

12

∫ +BTc

−BTc

sinc2
(x
6

)
cos

(
2π

τ ′

Tc
x

)
dx+

B0

12

∫ +BTc

−BTc

sinc2
(x
6

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

+

2∑
m=1

Bm

6

∫ +BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

τ ′

Tc
x

)
dx

+

2∑
m=1

Bm

6

∫ +BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

+

5∑
n=0

Cn

12

∫ +BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

τ ′

Tc
x

)
dx

+

5∑
n=0

Cn

12

∫ +BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
df

+

13∑
n=−11

∫ +BTc

−BTc

γn

[
1

24
+

D1

2

]2
sinc2

(
x

[
1

24
+

D1

2

])
cos

(
2π

[
τ ′

Tc
− 1

12

(
n− 1

2
+ 6D1

)]
x

)
dx

−
13∑

n=−11

∫ +BTc

−BTc

γn

[
1

24
− D1

2

]2
sinc2

(
x

[
1

24
− D1

2

])
cos

(
2π

[
τ ′

Tc
− 1

12

(
n− 1

2
+ 6D1

)]
x

)
dx

(4.27)

where

D1 =

D − 1/12, 1/12 < D ≤ 1/6

0, otherwise

(4.28)

The coefficients γn are given in table B.1. Notice that for D < 1/12, Eq. 4.27 is equal to Eq. 4.26.

Fig. 4.4 shows the normalized crosscorrelation function for TM-A1 with AltBOC(15,10) signal and

different delays.

Figure 4.4: Normalized crosscorrelations RA(τ) for BTc = 2.5. TM-A1. Modulation: AltBOC(15,10).
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4.1.2 Threat Model TM-A2

This threat model corresponds to a lead/lag (∆s) on every falling transition in the subcarriers before

modulation by the code signal. It corresponds to the digital distortion 2 described in [3].

In this subsection we will only consider the AltBOC(15,10) signal as it is the only one that possesses

subcarriers.

4.1.2.1 AltBOC(15,10) signal

In the AltBOC(15,10) modulation there are 2 subcarriers, the single subcarrier , scE5−S(t), and the

product subcarrier, scE5−P (t). For the threat model TM-A2, we will only consider an anomaly on the

single subcarrier since most of the energy of the product subcarrier is filtered by the receivers’ front-end.

Therefore, if by any chance, there was a distortion in the product subcarrier, that distortion would be

filtered out. Hence, the subscript ”s” on the variable ∆s.

The waveform for TM-A2 of the single subcarrier is represented in Fig. 4.5. Two code periods are

depicted to show the signal’s dependence on time.

Figure 4.5: Typical waveforms for TM-A2 of the single subcarrier for |∆s| < Tc/12.

The distorted single subcarrier can be given by

s̃cE5−S (t) = scE5−S (t) + ϵs (t) (4.29)

with

ϵs (t) =
1

2
[scE5−S (t−∆s)− scE5−S (t)] [1 + sign{scE5−S (t−∆s)− scE5−S (t)}] (4.30)

Due to the lack of information about the payload and for simplicity, it is assumed that if there was a
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problem, both scE5−S (t) and scE5−S (t− Ts/4) would be affected similarly. This assumption relies on

the premise that both these signals are generated dependently.

The distorted AltBOC(15,10) signal can, neglecting the product components, be defined as

s̃ (t) ≈ 1

2
√
2
[eE5a−I(t) + jeE5a−Q(t)][s̃cE5−S(t)− js̃cE5−S(t− Ts/4)]

+
1

2
√
2
[eE5b−I(t) + jeE5b−Q(t)][s̃cE5−S(t) + js̃cE5−S(t− Ts/4)]

=
1

2
√
2
[eE5a−I(t) + jeE5a−Q(t)][scE5−S(t) + ϵs(t)− j(scE5−S(t− Ts/4) + ϵs(t− Ts/4))]

+
1

2
√
2
[eE5b−I(t) + jeE5b−Q(t)][scE5−S(t) + ϵs(t) + j(scE5−S(t− Ts/4) + ϵs(t− Ts/4))

(4.31)

Multiplying the incoming signal described in Eq. 4.31 by the conjugate of the delayed pilot signal we

obtain

s̃(t)s∗p(t− τ) = s(t)s∗p(t− τ) +
1

2
√
2
[eE5a−I(t) + jeE5a−Q(t)][ϵs(t)− j + ϵs(t− Ts/4)]s

∗
p(t− τ)

+
1

2
√
2
[eE5b−I(t) + jeE5b−Q(t)][ϵs(t) + j + ϵs(t− Ts/4)]s

∗
p(t− τ)

(4.32)

By time averaging

Rs̃sp(τ) =< s̃(t)s∗p(t− τ) >

= Rssp(τ)+ <
1

2
√
2
[eE5a−I(t) + jeE5a−Q(t)][ϵs(t)− jϵs(t− Ts/4)]s

∗
p(t− τ) >

+ <
1

2
√
2
[eE5b−I(t) + jeE5b−Q(t)][ϵs(t) + jϵs(t− Ts/4)]s

∗
p(t− τ) >

(4.33)

There are two terms from Eq. 4.33 that are still not well defined. Knowing that all 4 codes are

independent to each other and using Eq. 3.2 for the local replica, we can obtain

<
1

2
√
2
[eE5a−I(t) + jeE5a−Q(t)][ϵs(t)− jϵs(t− Ts/4)]s

∗
p(t− τ) >

=
1

8
< eE5a−Q(t)eE5a−Q(t− τ)[ϵs(t)− jϵs(t− Ts/4)][scE5−S(t− τ) + jscE5−S(t− Ts/4− τ)] >

=
1

8
< eE5a−Q(t)eE5a−Q(t− τ)[ϵs(t)scE5−S(t− τ) + ϵs(t− Ts/4)scE5−S(t− Ts/4− τ)] >

+
j

8
< eE5a−Q(t)eE5a−Q(t− τ)[ϵs(t)scE5−S(t− Ts/4− τ)− ϵs(t− Ts/4)scE5−S(t− τ)] >

≈
[
1

8
< ϵs(t)scE5−S(t− τ) + ϵs(t− Ts/4)scE5−S(t− Ts/4− τ) >

+
j

8
< ϵs(t)scE5−S(t− Ts/4− τ)− ϵs(t− Ts/4)scE5−S(t− τ) >

]
ΛTc

(τ)

(4.34)

We can do the same analysis for the second term and obtain
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<
1

2
√
2
[eE5b−I(t) + jeE5b−Q(t)][ϵs(t) + jϵs(t− Ts/4)]s

∗
p(t− τ) >

≈
[
1

8
< ϵs(t)scE5−S(t− τ) + ϵs(t− Ts/4)scE5−S(t− Ts/4− τ) >

+
j

8
< −ϵs(t)scE5−S(t− Ts/4− τ) + ϵs(t− Ts/4)scE5−S(t− τ) >

]
ΛTc

(τ)

(4.35)

Note how the real parts of Eq. 4.34 and Eq. 4.35 are equal to each other while the imaginary parts

are symmetric, and therefore, will cancel out when summed. Thus, we only need to compute the real

part. Considering, first, the term with dependency on the in phase subcarrier

< ϵs(t)scE5−S(t− τ) >

= <
1

2
[scE5−S (t−∆s)− scE5−S (t)] [1 + sign{scE5−S (t−∆s)− scE5−S (t)}] scE5−S (t− τ) >

=
1

2
< (scE5−S (t−∆s)− scE5−S (t)) scE5−S (t− τ) >

+
1

2
< |scE5−S (t−∆s)− scE5−S (t)| scE5−S (t− τ) >

(4.36)

Taking a closer look at the second term, we get

< |scE5−S (t−∆s)− scE5−S (t)| scE5−S (t− τ) >

= < [scE5−S (t−∆s)− scE5−S (t)] scE5−S (t− τ)× prob{scE5−S (t−∆s)− scE5−S (t) > 0}

− [scE5−S (t−∆s)− scE5−S (t)] scE5−S (t− τ)× prob{scE5−S (t−∆s)− scE5−S (t) < 0} >

(4.37)

Analysing Fig. 4.5 we come to the conclusion that the single subcarrier can have two distinct

waveforms which are symmetric to each other. Particularly, in the second graph we can see that

scE5−S(t − ∆s) − scE5−S(t) = −(scE5−S(t − Tc − ∆s) − scE5−S(t − Tc)) for 0 ≤ t ≤ Tc. Thus, we

can conclude that prob{scE5−S (t−∆s) − scE5−S (t) > 0} = prob{scE5−S (t−∆s) − scE5−S (t) < 0}

and therefore, Eq. 4.37 is equal to 0.

As for the first term of Eq. 4.36, we will consider an approximation. In [30], it is demonstrated that for

a mild amount of filtering, the inphase and quadrature single subcarriers are well approximated by

scE5−S(t) ≈
4

π
cos(2πfst) (4.38)

scE5−S(t− Ts/4) ≈
4

π
sin(2πfst) (4.39)

Using these approximations in Eq. 4.36 we obtain
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< ϵs(t)scE5−S(t− τ) > ≈ 4

π2
< (cos(2πfs(t−∆s))− cos(2πfst)) cos(2πfs(t− τ)) >

=
4

π2
[cos(2πfs(τ −∆s))− cos(2πfsτ)]

(4.40)

This analysis can also be conducted for the term with dependency on the quadrature subcarrier

yielding

< ϵs(t− Ts/4)scE5−S(t− Ts/4− τ) > ≈ 4

π2
< (sin(2πfs(t−∆s))− sin(2πfst)) sin(2πfs(t− τ)) >

=
4

π2
[cos(2πfs(τ −∆s))− cos(2πfsτ)]

(4.41)

Substituting these results in Eq. 4.33 we obtain

Rs̃sp(τ) ≈ Rssp(τ) + 2 ∗ 1

8
< ϵs(t)scE5−S(t− τ) + ϵs(t− Ts/4)scE5−S(t− Ts/4− τ) > ΛTc

(τ)

= Rssp(τ) +
2

π2
[cos(2πfs(τ −∆s))− cos(2πfsτ)]ΛTc

(τ)

(4.42)

As seen previously, for typical receivers, the incoming distorted signal will suffer some low-pass

filtering in the receiver’s front-end. The crosscorrelation after said filtering is given by Eq. 4.11 where

there is a dependency on the cross-power spectrum, Gs̃sp(f). Thus, we need to compute it.

Gs̃sp(f) = F{Rs̃sp(τ)} = Gssp(τ) +
2

π2
F{[cos(2πfs(τ −∆s))− cos(2πfsτ)]ΛTc

(τ)} (4.43)

But

F{cos(2πfsτ)ΛTc
(τ)} = F{cos(2πfsτ)} ∗ F{ΛTc

(τ)}

=
1

2
[δ(f − fs) + δ(f + fs)] ∗ Tcsinc

2(fTc)

=
Tc

2

[
sinc2[Tc(f − fs)] + sinc2[Tc(f + fs)]

] (4.44)

F{cos(2πfs(τ −∆s))ΛTc
(τ)} = F{cos(2πfsτ − 2πfs∆s)} ∗ F{ΛTc

(τ)}

=
1

2
[exp(−j2πfs∆s)δ(f − fs) + exp(j2πfs∆s)δ(f + fs)] ∗ Tcsinc

2(fTc)

=
Tc

2

[
exp(−j2πfs∆s)sinc

2[Tc(f − fs)] + exp(j2πfs∆s)sinc
2[Tc(f + fs)]

]
(4.45)

35



yielding

Gs̃sp(f) = Gssp(τ) +
Tc

π2

{
sinc2(Tc(f − fs))[exp(−j2πfs∆s)− 1] + sinc2(Tc(f + fs))[exp(j2πfs∆s)− 1]

}
(4.46)

Replacing this result in Eq. 4.11 we get

RA(τ
′) =

∫ +B

−B

Gssp(f) exp(j2πfτ
′)df

+
Tc

π2

∫ +B

−B

sinc2(Tc(f − fs))[exp(−j2πfs∆s)− 1] exp(j2πfτ ′)df

+
Tc

π2

∫ +B

−B

sinc2(Tc(f + fs))[exp(j2πfs∆s)− 1] exp(j2πfτ ′)df

(4.47)

Doing fTc = x and ∆/Tc = D and using Eq. 3.14

RA (τ ′) =
B0

6

∫ +BTc

−BTc

sinc2
(x
6

)
cos

(
2π

τ ′

Tc
x

)
dx

+

2∑
m=1

Bm

3

∫ +BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

τ ′

Tc
x

)
df

+

5∑
n=0

Cn

6

∫ +BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

τ ′

Tc
x

)
df

+
1

π2

∫ +BTc

−BTc

sinc2(x− k)

[
cos[2π(x

τ

Tc
− kDs)]− cos(2π

τ

Tc
x)

]
df

+
1

π2

∫ +BTc

−BTc

sinc2(x+ k)

[
cos[2π(x

τ

Tc
+ kDs)]− cos(2π

τ

Tc
x)

]
df

(4.48)

where k = fs
fc

= 1.5.

Fig. 4.6 shows the normalized crosscorrelation function for TM-A2 with AltBOC(15,10) signal and

different delays.

4.2 Threat Model B

Threat Model B introduces amplitude modulation and models degradations in the analog subsection

of the GNSS satellite. More specifically, it consists of the output from a second order system when the

code modulated baseband signal is the input. The TM-B assumes that the degraded satellite subsystem

can be described as a linear system dominated by a pair of complex conjugate poles. These poles are

located at σ± j2πfd, where σ is the damping factor in Mnepers/second and fd is the resonant frequency

in MHz [16].

In [3] is shown that the transfer function of the second order low-pass filter can be given by
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Figure 4.6: Normalized crosscorrelations RA(τ) for BTc = 2.5. TM-A2. Modulation: AltBOC(15,10).

H̃(ω) =
ω2
n

ω2
n − ω2 + j2ξωnω

(4.49)

or doing Ω = ω/ωn

H̃(Ω) =
1

1− Ω2 + j2ξΩ
=

exp(−j arctan 2ξΩ
1−Ω2 )√

(1− Ω2)2 + 4ξ2Ω2
(4.50)

The natural frequency of the second order filter is given by

ωn =
√
σ2 + ω2

d (4.51)

and the normalized damping factor

ξ =
σ

ωn
(4.52)

The filter response to the step function for fd = 10.5MHz and different values of σ is shown in Fig.

4.7, illustrating the typical distortion that is introduced.

The cross-correlation function between the incoming distorted signal, s̃(t), and the pilot signal replica

can be written as

RA(τ
′) =

∫ +B

−B

Gssp(f) exp(j2πfτ
′)H̃(f)df

=

∫ +B

−B

Gssp(f) exp(j2πfτ
′)
exp(−j arctan 2ξΩ

1−Ω2 )√
(1− Ω2)2 + 4ξ2Ω2

df

(4.53)

or

37



Figure 4.7: Filter response to the step function for fd = 10.5MHz [13].

RA(τ
′) =

∫ +B

−B

(1− Ω2)Gssp(f)

(1− Ω2)2 + 4ξ2Ω2
cos(2πfτ ′ − arctan

2ξΩ

1− Ω2
)df (4.54)

But [13]

cos(arctan
2ξΩ

1− Ω2
) =

1− Ω2√
(1− Ω2)2 + 4ξ2Ω2

(4.55)

sin(arctan
2ξΩ

1− Ω2
) =

2ξΩ√
(1− Ω2)2 + 4ξ2Ω2

(4.56)

yielding

RA(τ
′) =

∫ +B

−B

(1− Ω2)Gssp(f)

(1− Ω2)2 + 4ξ2Ω2
cos (2πfτ ′) df

+ 2ξ

∫ +B

−B

ΩGssp(f)

(1− Ω2)2 + 4ξ2Ω2
sin (2πfτ ′) df

(4.57)

4.2.1 BPSK(10) signal

Replacing the expression in Eq. 3.23 for the cross-spectrum in Eq. 4.57 and doing µ = ωnTc

2π ,

ρ = 2πB
ωn

, x = Ω, D = ∆/Tc we obtain

RA(τ
′) = 2µ

∫ ρ

0

(1− x2)Q1(µ, ξ, x) cos

(
2πµ

τ ′

Tc
x

)
df

+ 4µξ

∫ ρ

0

xQ1(µ, ξ, x) sin

(
2πµ

τ ′

Tc
x

)
df

(4.58)
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with

Q1 (µ, ξ, x) =
0.21sinc2(µx)

(1− x2)
2
+ 4ξ2x2

(4.59)

Fig. 4.8 shows the normalized cross-correlation function for TM-B with BPSK(10) signal.

Figure 4.8: Normalized cross-correlations RA(τ) for BTc = 1. TM-B. Modulation: BPSK(10).

4.2.2 AltBOC(15,10) signal

Replacing the expression in Eq. 3.17 for the cross-spectrum in Eq. 4.57 and doing µ = ωnTc

2π ,

ρ = 2πB
ωn

, x = Ω, D = ∆/Tc we obtain

RA(τ
′) = 2µ

∫ ρ

0

(1− x2)Q1(µ, ξ, x) cos

(
2πµ

τ ′

Tc
x

)
df

+ 4µξ

∫ ρ

0

xQ1(µ, ξ, x) sin

(
2πµ

τ ′

Tc
x

)
df

(4.60)

with

Q2 (µ, ξ, x) =
1

(1− x2)
2
+ 4ξ2x2

[
B0

6
sinc2 (µx/6) +

2∑
m=1

Bm

3
sinc2 (µx/6) cos

(
2πµx

m

3

)
+

5∑
n=0

Cn

6
sinc2 (µx/12) cos

(
2πµx

2n+ 1

12

)] (4.61)

Fig. 4.9 shows the normalized cross-correlation function for TM-B with AltBOC(15,10) signal.
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Figure 4.9: Normalized cross-correlations RA(τ) for BTc = 2.5. TM-B. Modulation: AltBOC(15,10).

4.3 Threat Model C

Threat Model C introduces both lead/lag and amplitude modulation. Specifically, it consists of outputs

from a second order system when modulated baseband signal suffers from lead or lag. This waveform

is a combination of TM-A and TM-B effects [10]. Thus the main difference between the expressions

obtained in the case of TM-A and those to be derived for TM-C is that, Eq. 4.8 is now replaced by

RA(τ) = F−1{Gs̃sp(f)H(f)H̃(f)}

=

∫ +∞

−∞
Gs̃sp(f)H(f)H̃(f) exp(j2πfτ)df

(4.62)

where H(f) stands for the channel filter (due essentially to the receiver’s front-end filtering effect)

and H̃(f), given by Eq. 4.49, is due to the degradation introduced in the analog section of the satellite

[13].

Assuming, once again, an ideal rectangular filter of bandwidth B and group delay τ0 for the channel

filter, Eq. 4.62 can be simplified to

RA(τ
′) =

∫ +B

−B

Gs̃sp(f)H̃(f) exp(j2πfτ ′)df (4.63)

4.3.1 Threat Model C1

Considering the TM-A1 model presented in section 4.1.1 we have that Gs̃sp(f) can be given by Eq.

4.12. Replacing this result in Eq. 4.63 we obtain
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RA(τ) =
1

2

∫ +B

−B

Gssp(f)H̃(f) exp(j2πfτ ′)df +
1

2

∫ +B

−B

Gssp(f)H̃(f) exp(j2πf(τ ′ −∆))df (4.64)

and using Eq. 4.50

RA(τ
′) =

∫ +B

0

(1− Ω2)Gssp(f)

(1− Ω2)2 + 4ξ2Ω2
cos (2πfτ ′) df

+ 2ξ

∫ +B

0

ΩGssp(f)

(1− Ω2)2 + 4ξ2Ω2
sin (2πfτ ′) df

+

∫ +B

0

(1− Ω2)Gssp(f)

(1− Ω2)2 + 4ξ2Ω2
cos (2πf(τ ′ −∆)) df

+ 2ξ

∫ +B

0

ΩGssp(f)

(1− Ω2)2 + 4ξ2Ω2
sin (2πf(τ ′ −∆)) df

(4.65)

4.3.1.1 BPSK(10) signal

For the case of a BPSK(10) signal, the power spectrum is given by Eq. 3.23. Replacing this result in

Eq. 4.65 yields

RA (τ ′) = µ

∫ ρ

0

(
1− x2

)
Q1 (µ, ξ, x) cos

(
2πµ

τ ′

Tc
x

)
dx

+ 2µξ

∫ ρ

0

xQ1 (µ, ξ, x) sin

(
2πµ

τ ′

Tc
x

)
dx

+ µ

∫ ρ

0

(
1− x2

)
Q1 (µ, ξ, x) cos

[
2πµ

(
τ ′

Tc
−D

)
x

]
dx

+ 2µξ

∫ ρ

0

xQ1 (µ, ξ, x) sin

[
2πµ

(
τ ′

Tc
−D

)
x

]
dx

(4.66)

with µ = ωnTc

2π , ρ = 2πB
ωn

, x = Ω, D = ∆/Tc and Q1 (µ, ξ, x) defined in Eq. 4.59.

Fig. 4.10 shows the normalized crosscorrelation function for TM-C1 with BPSK(10) signal.

4.3.1.2 AltBOC(15,10) signal

Considering, instead, an AltBOC(15,10) signal with the power spectrum in Eq. 3.17 we obtain

RA (τ ′) = µ

∫ ρ

0

(
1− x2

)
Q2 (µ, ξ, x) cos

(
2πµ

τ ′

Tc
x

)
dx

+ 2µξ

∫ ρ

0

xQ2 (µ, ξ, x) sin

(
2πµ

τ ′

Tc
x

)
dx

+ µ

∫ ρ

0

(
1− x2

)
Q2 (µ, ξ, x) cos

[
2πµ

(
τ ′

Tc
−D

)
x

]
dx

+ 2µξ

∫ ρ

0

xQ2 (µ, ξ, x) sin

[
2πµ

(
τ ′

Tc
−D

)
x

]
dx

(4.67)

with Q2 (µ, ξ, x) defined in Eq. 4.61.
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Figure 4.10: Normalized crosscorrelations RA(τ) for BTc = 1. TM-C1. Modulation: BPSK(10).

It is important to note that the formula presented in Eq. 4.67 is only valid for |∆| < Tc/12. The same

analysis could be conducted for the extended TM-A1 model presented in Appendix B. However, for the

study of the SQM techniques with the threat model TM-C1, it was not deemed necessary to increase

the threat space (TS) beyond |∆| < Tc/12. Thus, this analysis is not presented.

Fig. 4.11 shows the normalized crosscorrelation function for TM-C1 with AltBOC(15,10) signal.

Figure 4.11: Normalized crosscorrelations RA(τ) for BTc = 2.5. TM-C1. Modulation: AltBOC(15,10).
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4.3.2 Threat Model TM-C2

Similarly to what was done previously, in this section only the AltBOC(15,10) signal will be covered

as it is the only one with subcarriers present.

4.3.2.1 AltBOC(15,10) signal

In the presence of a distortion of the type TM-C2, the receiver output correlation is given by Eq. 4.63

with Gs̃sp defined in Eq. 4.46.

RA(τ
′) =

∫ +B

−B

Gssp(f)H̃(f) exp(j2πfτ ′)df

+
Tc

π2

∫ +B

−B

sinc2(Tc(f − fs))[exp(−j2πfs∆s)− 1]H̃(f) exp(j2πfτ ′)df

+
Tc

π2

∫ +B

−B

sinc2(Tc(f + fs))[exp(j2πfs∆s)− 1]H̃(f) exp(j2πfτ ′)df

(4.68)

Using Eq. 4.50 we obtain

RA(τ
′) = 2

∫ +B

0

(1− Ω2)Gssp(f)

(1− Ω2)2 + 4ξ2Ω2
cos (2πfτ ′) df

+ 4ξ

∫ +B

0

ΩGssp(f)

(1− Ω2)2 + 4ξ2Ω2
sin (2πfτ ′) df

+
2Tc

π2

∫ +B

0

(1− Ω2)sinc2(Tc(f − fs)))

(1− Ω2)2 + 4ξ2Ω2
[cos [2π(fτ ′ − fs∆s)]− cos(2πfτ ′)] df

+
4ξTc

π2

∫ +B

0

Ωsinc2(Tc(f − fs)))

(1− Ω2)2 + 4ξ2Ω2
[sin [2π(fτ ′ − fs∆s)]− sin(2πfτ ′)] df

+
2Tc

π2

∫ +B

0

(1− Ω2)sinc2(Tc(f + fs)))

(1− Ω2)2 + 4ξ2Ω2
[cos [2π(fτ ′ + fs∆s)]− cos(2πfτ ′)] df

+
4ξTc

π2

∫ +B

0

Ωsinc2(Tc(f + fs)))

(1− Ω2)2 + 4ξ2Ω2
[sin [2π(fτ ′ + fs∆s)]− sin(2πfτ ′)] df

(4.69)

Finally, replacing Gssp(f) by Eq. 3.17 and doing µ = ωnTc

2π , ρ = 2πB
ωn

, x = Ω, D = ∆/Tc we obtain

RA(τ
′) = µ

∫ ρ

0

(
1− x2

)
Q2 (µ, ξ, x) cos

(
2πµ

τ ′

Tc
x

)
dx

+ 2µξ

∫ ρ

0

xQ2 (µ, ξ, x) sin

(
2πµ

τ ′

Tc
x

)
dx

+
2µ

π2

∫ ρ

0

(1− x2)Q3(µ, ξ, x)

[
cos

[
2π(µ

τ ′

Tc
x− kDs)

]
− cos(2πµ

τ ′

Tc
x)

]
dx

+
4µξ

π2

∫ ρ

0

xQ3(µ, ξ, x)

[
sin

[
2π(µ

τ ′

Tc
x− kDs)

]
− sin(2πµ

τ ′

Tc
x)

]
dx

+
2µ

π2

∫ ρ

0

(1− x2)Q4(µ, ξ, x)

[
cos

[
2π(µ

τ ′

Tc
x− kDs)

]
− cos(2πµ

τ ′

Tc
x)

]
dx

+
4µξ

π2

∫ ρ

0

xQ4(µ, ξ, x)

[
sin

[
2π(µ

τ ′

Tc
x− kDs)

]
− sin(2πµ

τ ′

Tc
x)

]
dx

(4.70)
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with Q2 (µ, ξ, x) defined in Eq. 4.61, k = fs
fc

= 1.5 and

Q3 (µ, ξ, x) =
sinc2(µx− k)

(1− x2)2 + 4ξ2x2
(4.71)

Q4 (µ, ξ, x) =
sinc2(µx+ k)

(1− x2)2 + 4ξ2x2
(4.72)

Fig. 4.12 shows the normalized crosscorrelation function for TM-C2 with AltBOC(15,10) signal.

Figure 4.12: Normalized crosscorrelations RA(τ) for BTc = 2.5. TM-C2. Modulation: AltBOC(15,10).
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Chapter 5

Signal Quality Monitoring Techniques

After proposing several EWF TMs for the BPSK(10) and AltBOC(15,10) signals in the previous chap-

ters, it is necessary to make sure that the distortions which generate hazardous effects on the receivers

are detected

In this chapter, the SQM techniques employed to detect the distortions introduced by the proposed

threat models will be presented. These techniques consist on combining measurements estimated from

the correlator outputs in order to form metrics that are compared to their nominal values.

In section 5.1, the correlator outputs are characterized. It is presented a statistical analysis of the

correlator outputs.

In section 5.2, several metrics and tests to be employed by the SQM will be presented. An approach

to define the thresholds for each test, using the Neyman-Pearson criterion, will be explained.

5.1 Correlator Outputs Analysis

Consider a receiver constituted by a bank of 2N + 1 correlators, as sketched in Fig. 5.1 [6, 19].

In the figure, r(t) is the received signal which includes the GNSS signal of power P and additive

white Gaussian noise of power spectral density N0/2. The corresponding carrier-to-noise ratio is (C/N0)

= P/N0. The correlators spacing is ∆ and ϵ denotes the code synchronization error. The baseband

signal is

y(t) =
√
2P s̃(t) ∗ h(t) + n(t) (5.1)

where s̃(t) is the complex baseband GNSS distorted signal, h(t) the filter impulse response and n(t)

is complex Gaussian lowpass noise given by

n(t) = nI(t) + jnQ(t) (5.2)

with power spectral density
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Figure 5.1: Receiver with bank of correlators.

GnI
(f) = GnQ

(f) = N0|H(f)|2 ≈ N0Π
(

f

2B

)
(5.3)

where B is the baseband filter bandwidth.

The real part of the complex correlator outputs are

Zi = Zi + ni, i = 0,±...,±N (5.4)

with

Zi =
√
2PRA(ϵ− i∆) (5.5)

The additive noise are

ni =
1

T

∫ T

0

nI(t)sI(t− i∆− ϵ)dt

+
1

T

∫ T

0

nQ(t)sQ(t− i∆− ϵ)dt, i = 0,±...,±N

(5.6)

being correlated, zero-mean, Gaussian random variables, with common variance given by
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σ2
N =

1

T 2

∫ T

0

∫ T

0

E{nI(t)nI(λ)}sI(t− i∆− ϵ)sI(λ− i∆− ϵ)dtdλ

+
1

T 2

∫ T

0

∫ T

0

E{nQ(t)nQ(λ)}sQ(t− i∆− ϵ)sQ(λ− i∆− ϵ)dtdλ

+
2

T 2

∫ T

0

∫ T

0

E{nI(t)nQ(λ)}sI(t− i∆− ϵ)sQ(λ− i∆− ϵ)dtdλ

(5.7)

But the in-phase and quadrature noise components are independent, thus, E{nI(t)nQ(λ)} = 0.

Furthermore,

E{nI(t)nI(λ)} = E{nQ(t)nQ(λ)} = F−1{GnI
(f)} = 2BN0sinc [2B(t− λ)] (5.8)

Thus,

σ2
N =

1

T 2

∫ T

0

∫ T

0

2BN0sinc [2B(t− λ)] sI(t− i∆− ϵ)sI(λ− i∆− ϵ)dtdλ

+
1

T 2

∫ T

0

∫ T

0

2BN0sinc [2B(t− λ)] sQ(t− i∆− ϵ)sQ(λ− i∆− ϵ)dtdλ

(5.9)

Eq. 5.9 is really hard to compute. However, since, in general, 2BT ≫ 1, we can greatly simplify it by

making 2Bsinc [2B(t− λ)] ≈ N0δ(t− λ). Therefore,

σ2
N =

N0

T 2

∫ T

0

[
s2I(λ− i∆− ϵ) + s2Q(λ− i∆− ϵ)

]
dλ =

N0

T

[
RsI (0) +RsQ(0)

]
=

N0

T
Rs(0) (5.10)

If the power of the received signal is normalized, i.e., Rs(0) = 1 watt, then

σ2
N =

N0

T
=

1

(C/N0)T
(5.11)

Similarly, the crosscorrelations between the correlators’ noises yielding

E{nink} =
N0

T
Rs((k − i)∆) (5.12)

The noise covariance matrix can, therefore, be written as

C =
N0

T


1 Rs(∆)

Rs(0)
. . . Rs(2N∆)

Rs(0)

...
...

. . .
...

Rs(2N∆)
Rs(0)

Rs((2N−1)∆)
Rs(0)

. . . 1

 (5.13)

Appendix C describes how to generate a noise vector [n−N , ..., n0, ..., nN ]T with covariance matrix C

(Eq. 5.13) using independent, zero-mean, Gaussian r.v. of unity variance.
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5.2 Metrics and Tests

SQM consists of a test to evaluate if the signal is affected by a distortion or not. These tests are

based on the use of metrics, µ, to detect distortions of the correlation function. It consists in comparing

the difference between the measured value of the metric and its nominal value to a threshold. The test

based on a given metric j using the correlator output i is, mathematically, defined by

T i
j =

µi
j,mea − µi

j,nom

λi
j

(5.14)

where µi
j,mea is the measured value of the metric j using the correlator output i that can be affected

by a distortion, µi
j,nom is the nominal value of the metric j (without additive noise or distortion) using

the correlator output i and λi
j is the detection threshold associated to the metric j using the correlator

output i, determined according to a required false alarm probability as explained later in this section. In

practice, estimating the nominal value of a metric is usually a difficult task. A solution presented in [16]

is to compute the median of that metric across all satellites in view. The method presented by Pagot, [3],

is to estimate the nominal value from the average value of that metric for a given PRN.

In order to detect a faulty case in real time, a Neyman-Pearson hypothesis test is performed [32].

Consider the two hypotheses, H0 (signal is not distorted) and H1(signal is distorted). If T i
j < 1, it is

assumed that the signal is not distorted; whereas if T i
j ≥ 1, the signal is considered to be distorted. For

a given test, we can, therefore, define the following probabilities:

Pfa = prob{T i
j ≥ 1|H0} (5.15)

Pmd = prob{T i
j < 1|H1} (5.16)

It is not possible to minimize simultaneously Pfa and Pmd [6, 19]. The solution herein employed is

the Neyman-Pearson criterion which consists of fixing Pfa in order to comply with the requirements and

then minimizing Pmd [32].

The probabilities of false alarm and missing detection are schematized in Fig. 5.2 and follow the

Neyman-Pearson criterion described previously.

Figure 5.2: Probability density functions of the test Ti for hypotheses H0 and H1.

In [3], three tests based on ratio metrics were proposed: simple ratio metric, difference ratio metric

and sum ratio metric. These are the metrics used in this dissertation.
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5.2.1 Simple Ratio Metric

The tests based on ratio metrics, such as the simple ratio metric, attempt specifically to detect the

presence of deadzones (flat correlation peaks) and abnormally sharp or elevated correlation peaks [16].

More specifically, the Simple Ratio Metric is the easiest metric to implement and permits to detect all

kind of correlation function distortions [3].

Assuming that there are 2N +1 correlators (as sketched in Fig. 5.1), it is possible to form 2N simple

ratio metrics

µi
1 =

Zi

Z0
, i = ±1, ...,±N (5.17)

Replacing this metric in the test (Eq. 5.14) and using the expression for the correlator outputs given

in Eq. 5.4, yields

T i
1 =

(
Zi+ni

Z0+n0

)
mea

−
(

Zi

Z0

)
nom

λi
1

(5.18)

In the absence of EWF distortion (hypothesis H0) the only disturbance in the correlator outputs is the

additive noise. Thus, (Zi)mea = (Zi)nom = Zi and (Z0)mea = (Z0)nom = Z0 and the test in Eq. 5.18 is

T i
1 =

Zi+ni

Z0+n0
− Zi

Z0

λi
=

ni − (Zi/Z0)n0

(Z0 + n0)λi
1

(5.19)

It can be shown (see appendix D) that T i
1 can be approximated by a zero-mean r.v. with variance

σ2
T i
1
=

(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

2(C/N0)TR2
A(0)

[
λi
1

]2 (5.20)

with

ρi =
RA(i∆)

RA(0)
, i ̸= 0 (5.21)

Assuming that T i
1 is well approximated by a gaussian distribution, the probability of false alarm of the

test i is

P i
fa = prob{T i

1 ≥ 1|H0} = Q

(
1

σT i
1

)
(5.22)

where Q(·) is the Gaussian error function defined by

Q(x) =
1√
2π

∫ ∞

x

exp(−y2

2
)dy (5.23)

Consider now, for simplicity, that all tests have the same probability of false alarm, that is:

P i
fa = Pfa, i = ±1, ...,±N (5.24)
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Using Eq. 5.20 and Eq. 5.22 we can obtain for the threshold

λi
1 =

Q−1(Pfa)

RA(0)

√
(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

2(C/N0)T
(5.25)

where Pfa is such that the overall probability of false alarm is PFA = 1.5× 10−7. In this work we will

consider a M of N search detection [1]. This criterion consists in declaring the presence of an anomaly

if M (for M ≤ N ) or more tests assume that an anomaly is present. For simplicity we will consider

henceforth that M = 1. Using this criterion and assuming independent tests, the overall probability of

false alarm can be writen in terms of the single test probability of false alarm, Pfa, using a binominal

distribution. Taking into considering the 2N possible tests

PFA =

2N∑
k=1

(
2N

k

)
P k
fa(1− Pfa)

2N−k

= 1− (1− Pfa)
2N

(5.26)

Given that Pfa << 1, we can use the binomial approximation yielding

PFA ≈ 1− (1− 2NPfa) = 2NPfa (5.27)

Hence, the threshold in Eq. 5.25 can be rewritten as

λi
1 =

Q−1(PFA/(2N))

RA(0)

√
(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

2(C/N0)T
(5.28)

5.2.2 Difference Ratio Metric

This metric permits to detect distortions that affect the correlation function in an asymmetric way

(asymmetry from the prompt) more efficiently than the simple ratio metric [3].

Considering the 2N + 1 correlators (Fig. 5.1) we can form N difference ratio metrics

µi
2 =

Z−i − Zi

Z0
, i = 1, ..., N (5.29)

Replacing this metric in the test (Eq. 5.14) and using the expression for the correlator outputs given

in Eq. 5.4, yields

T i
2 =

(
Z−i+n−i−Zi−ni

Z0+n0

)
mea

−
(

Z−i−Zi

Z0

)
nom

λi
2

=

(
Z−i+n−i−Zi−ni

Z0+n0

)
mea

λi
2

(5.30)

In the absence of EWF distortion (hypothesis H0) the only disturbance in the correlator outputs is the

additive noise. Thus, (Z−i)mea = (Zi)mea and the test in Eq. 5.30 is

T i
2 =

n−i − ni

Z0 + n0λi
2

(5.31)
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It can be shown (see appendix D) that T i
2 is a zero-mean r.v. with variance

σ2
T i
2
=

Rs(0)−Rs(2i∆)

(C/N0)TR2
A(0)

[
λi
2

]2 (5.32)

Assuming that T i
2 is well approximated by a Gaussian distribution, the probability of false alarm of

the test i is

P i
fa = prob{|T i

2| ≥ 1|H0} = 2Q

(
1

σT i
2

)
(5.33)

Similarly to what was done for the Simple Ratio Metric, we assume that all tests are characterized by

a common probability of false alarm (Pfa).

Using Eq. 5.32 and Eq. 5.33 we can obtain for the threshold

λi
2 =

Q−1(Pfa/2)

RA(0)

√
Rs(0)−Rs(2i∆)

(C/N0)T
(5.34)

where, once again, Pfa is such that the overall probability of false alarm is PFA = 1.5 × 10−7.

Following a similar procedure as the one for the simple ratio tests, taking into considering the N possible

tests we obtain for the overall probability of false alarm PFA ≈ NPfa. Hence, the threshold in Eq. 5.34

can be rewritten as

λi
2 =

Q−1(PFA/(2N))

RA(0)

√
Rs(0)−Rs(2i∆)

(C/N0)T
(5.35)

5.2.3 Sum Ratio Metric

This metric permits to detect distortions that affect the correlation function in an symmetric way

(symmetry from the prompt) more efficiently than the simple ratio metric [3].

Considering the 2N + 1 correlators (Fig. 5.1) we can form N sum ratio metrics

µi
3 =

Z−i + Zi

Z0
, i = 1, ..., N (5.36)

Replacing this metric in the test (Eq. 5.14) and using the expression for the correlator outputs given

in Eq. 5.4, yields

T i
3 =

(
Z−i+n−i+Zi+ni

Z0+n0

)
mea

−
(

Z−i+Zi

Z0

)
nom

λi
3

=

(
Z−i+n−i+Zi+ni

Z0+n0

)
mea

λi
3

− 2
ρi
λi
3

(5.37)

with ρi given by Eq. 5.21.

In the absence of EWF distortion (hypothesis H0) the only disturbance in the correlator outputs is the

additive noise. Thus, (Z−i)mea = (Zi)mea = Zi = ρZ0 and the test in Eq. 5.37 is

T i
3 =

n−i + ni − 2ρin0

Z0 + n0λi
3

(5.38)
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It can be shown (see appendix D) that T i
2 is a zero-mean r.v. with variance

σ2
T i
3
=

(1 + 2ρ2)Rs(0) +Rs(2i∆)− 4ρiRs(i∆)

(C/N0)TR2
A(0)[λ

i
3]

2
(5.39)

Assuming that T i
3 is well approximated by a Gaussian distribution, the probability of false alarm of

the test i is

P i
fa = prob{T i

3 ≥ 1|H0} = Q

(
1

σT i
3

)
(5.40)

Similarly to what was done previously, we assume that all tests are characterized by a common

probability of false alarm (Pfa).

Using Eq. 5.39 and Eq. 5.40 we can obtain for the threshold

λi
3 =

Q−1(Pfa)

RA(0)

√
(1 + 2ρ2)Rs(0) +Rs(2i∆)− 4ρiRs(i∆)

(C/N0)T
(5.41)

where, once more, Pfa is such that the overall probability of false alarm is PFA = 1.5×10−7. Following

a similar procedure as the one for the simple ratio tests, taking into considering the N possible tests we

obtain for the overall probability of false alarm PFA ≈ NPfa. Hence, the threshold in Eq. 5.41 can be

rewritten as

λi
3 =

Q−1(PFA/N)

RA(0)

√
(1 + 2ρ2)Rs(0) +Rs(2i∆)− 4ρiRs(i∆)

(C/N0)T
(5.42)
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Chapter 6

Implementation and Results

In this chapter, we propose to apply the tests and metrics introduced in chapter 5 to detect EWF

distortions described by the threat models presented in chapter 4.

In section 6.1 the different aspects for each processing option are presented. Namely, it is described

the threat models corresponding to each processing option, as well as, the SQM characteristics.

In section 6.2 the results obtained are presented. These results are divided in three groups according

to the type of EWF distortion. It is also established a comparison between each receiver’s performance.

6.1 Implementation Aspects

The performance of the EWF anomaly detectors in the presence of several types of anomalies will be

carried out for different types of signal processing (whole E5 signal, sub-bands E5a/E5b or E5a+E5b).

Each one of these scenarios will have differences when it comes to the threat models employed and/or

the SQM techniques.

The results will be displayed as plots of detectability and hazard regions. An anomaly will be con-

sidered to be successfully detected if the probability of missing detection is Pmd ≤ 10−3 for a probability

of false alarm PFA = 1.5 × 10−7. However, in certain cases the failure to detect the anomaly will not

be harmful to the receiver’s operation as it can lead to a code discriminator error smaller than a certain

pre-defined value called Maximum-Allowable Error in Range (MERR). Undetected EWF anomalies that

yield code discriminator errors above the MERR constitute the hazard region. To determine the hazard

region, besides detecting the anomalies, the simulation program must compute the associated code

discriminator errors.

The equilibrium solution of the code discriminator with E-L spacing ∆EL requires that

RA(τ1) = RA(τ2), with τ2 = τ1 +∆EL (6.1)

The equilibrium solution is the mid position of τ1 and τ2. That is

ϵ =
τ1 + τ2

2
= τ1 +

∆EL

2
(6.2)
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In the absence of EWF anomaly the filtered version of the code ACF exhibits symmetry around its

maximum leading to ϵ = 0 and the DLL presents no tracking error. In the presence of EWF anomaly the

filtered code ACF typically presents a shift regarding the version without EWF or an asymmetry, or both

effects (see example in Fig. 4.11). In those scenarios, typically ϵ ̸= 0, which corresponds to a tracking

error of the DLL. The two scenarios (with and without EWF anomaly) are illustrated in Fig. 6.1.

(a) Scenario without EWF. (b) Scenario with EWF.

Figure 6.1: Code discriminator equilibrium solution with E-L spacing.

Computing the DLL tracking error ϵ from Eq. 6.1 and Eq. 6.2 is, in general, cumbersome when the

expressions of the ACF RA(τ) are complicated. For this reason, numerical computations was carried

out.

The required number of Monte Carlo runs was obtained using the halt criterion described in appendix

E. In order to obtain a confidence level of 95% (α = 0.05) and a length of the confidence interval of

L = 0.4p it was seen that n ≈ 100 missed detections were required. Taking into consideration that the

target probability of missed detection is Pmd = 10−3, a total number of runs N = 100/10−3 = 105 are

needed. Even though the halt criterion in appendix E suggests the use of a variable number of runs,

having a fixed number of Monte Carlo runs was seen to be beneficial in order to take advantage of

Matlab’s matrix computational performance.

6.1.1 Processing the whole AltBOC signal

The first scenario considered is the one where the whole E5 signal is processed. Naturally, for this

scenario, we will consider the threat models developed for the AltBOC(15,10) signal in chapter 4. It will

be assumed an ideal code delay synchronization for the DLL using a pair of correlators with early-late

spacing equal to 0.1Tc. However, we have not included channel noise aiming to simulate the noise

reduction introduced by the DLL loop filter [19]. For this reason, the value chosen for the DLL spacing

doesn’t influence too much the results.

As for the SQM, we will consider the bank of correlators sketched in Fig. 5.1 where H(f) is an ideal

rectangular filter with bandwidth BRF = 51.15 MHz. This bandwidth is the receiver reference bandwidth

for the E5 signal [20]. The considered baseband bandwidth chip rate product is, therefore, BTc = 2.5.

The number of pair of correlators, N , and the spacing, ∆, were obtained by minimizing the hazardous
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region as will be seen later.

It is stated in [19] that the best SQM results are obtained when using all the tests mentioned in

section 5.2. Consequently, all 2N simple ratio tests, N difference ratio tests and N sum ratio tests are

used. The thresholds were adjusted to achieve an overall probability of false alarm PFA = 1.5 × 10−7.

The probability is defined as

PFA = 1− prob{T−i
1 < 1, T i

1 < 1, |T i
2| < 1, T i

3 < 1, i = 1, ..., N |H0} (6.3)

where T i
j denotes the output of test j (with j = 1, 2, 3) obtained with the correlator pair of index i as

depicted in Fig. 5.1. The hypothesis H0 assumes that the incoming signal is not distorted and is only

affected by additive Gaussian white noise and front-end filtering.

The thresholds λi
1, λi

2 and λi
3 are defined by Eq. 5.28, Eq. 5.35 and Eq. 5.42, respectively. However,

the overall probability of false alarm, PFA, has to be adjusted to take into consideration the new number

of tests. Therefore, PFA is replaced by PFA/3 as we are assuming that each of the three tests contributes

with one third to the overall probability of false alarm, yielding

λi
1 =

Q−1(PFA/(6N))

RA(0)

√
(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

2(C/N0)T
(6.4)

λi
2 =

Q−1(PFA/(6N))

RA(0)

√
Rs(0)−Rs(2i∆)

(C/N0)T
(6.5)

λi
3 =

Q−1(PFA/(3N))

RA(0)

√
(1 + 2ρ2)Rs(0) +Rs(2i∆)− 4ρiRs(i∆)

(C/N0)T
(6.6)

The hazard region corresponds to the threat space parameters for which the range error exceeds the

maximum-allowable error in range (MERR) and the EWF anomaly is not detected. In order to find the

optimal values for N and ∆ we adopted the criterion of minimizing the hazard region for a pre-defined

MERR. Herein, we considered MERR=1m. This value was chosen to be conservative. A more detailed

approach on how to compute MERR can be found, for instance, in [3].

Figure 6.2 displays the percentages of the hazard region for three different threat models: TM-A1,

TM-A2 and TM-B. The signal-to-noise ratio used for the simulations is C/N0 = 50 dB-Hz.

For TM-A1 the area corresponding to 0 < D < 0.165 and 0 < T < 0.5 seconds was considered. This

threat space was seen to be sufficient to analyze the action of the SQM. The plot shows that there are

two major regions where the criterion is minimized: ∆ ≥ 0.125Tc for N ≥ 3 and 0.165Tc ≤ ∆ ≤ 0.21Tc.

Even though both regions are valid, the second one is preferable in terms of hardware implementation.

The smaller the correlator spacing, the higher the sampling frequency has to be, which in turn, implies

the usage of more expensive hardware and larger power consumption. Thus, the first region is not

sufficiently better to justify the implementation burden. Therefore, it is going to be neglected.

For TM-A2 the area corresponding to 0 < Ds < 1/12 and 0 < T < 0.5 s was considered. The plot

shows the criterion is minimized for 0.15Tc ≤ ∆ ≤ 0.17Tc and N ≥ 3.

Finally, for TM-B the area corresponding to 0 < fd < 65 MHz and 0 < σ < 400 Mnepers/s was
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considered. The time of correlation was set to T = 0.5 s. The plot shows the criterion is minimized for

0.16Tc ≤ ∆ ≤ 0.22Tc for N ≥ 4.

The remaining thread models (TM-C1 and TM-C2) were not studied due to being a combination of

TM-A1/TM-A2 with TM-B, respectively. Thus, it is assumed that minimizing the hazard region of those

threat models will also improve the results for TM-C1/TM-C2. Furthermore, conducting this analysis for

TM-C1/TM-C2 would be computationally extremely demanding due to the large number of variables.

For the sake of simplicity, the optimal regions obtained for each threat model are described in table

6.1. It is also stated the common region for all the threat models, N ≥ 4 and 0.165Tc ≤ ∆ ≤ 0.17Tc. This

is the region of interest when choosing the number of pair of correlators, N , and the spacing, ∆. This

analysis shows that there is no improvement in using a number of pair of correlators larger than 4. This

result allows us to greatly reduce the complexity of the bank of correlators. Hence, we adopt the value

N = 4 and ∆ = 0.17 for all the simulations presented for the signal E5.

(a) Threat model TM-A1. (b) Threat model TM-A2.

(c) Threat model TM-B.

Figure 6.2: Percentages of the hazard region for three threat models. Signal: E5.
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Table 6.1: Optimal region for N and ∆. Signal: E5.

N ∆/Tc

TM-A1 [3,6] [0.165,0.21]
TM-A2 [3,6] [0.15,0.17]
TM-B [4,6] [0.16,0.22]
Union [4,6] [0.165,0.17]

6.1.2 Processing one of the sub-bands

The second scenario considered is the processing of one of the sub-bands, either E5a or E5b (hence-

forth denoted as E5a/E5b). For this scenario, we will consider the threat models developed for the

BPSK(10) signal in chapter 4. Once again, it will be assumed an ideal code delay synchronization for

the DLL using a pair of correlators with early-late spacing equal to 0.1Tc. However, we have not included

channel noise aiming to simulate the noise reduction introduced by the DLL loop filter [19].

The SQM architecture is really similar to the previous one, apart from the bandwidth. The typical

RF bandwidth for a E5a/E5b receiver is BRF = 20.46 MHz ([25]) which results in a chip period times

baseband bandwidth product of BTc = 1. To improve the SQM results, once more, all the tests will be

employed. Assuming that each of the three tests contributes with one third to the overall probability of

false alarm, the thresholds are given by Eqs. 6.4-6.6.

The remaining parameters to be defined are N and ∆. Once more, these parameters were chosen

to minimize the hazard region for a pre-defined MERR=1m. Figure 6.3 sketches the percentages of the

hazard region for two different models: TM-A1 and TM-B. The signal-to-noise ratio used for the simula-

tions is C/N0 = 47 dB-Hz. It is 3 dB less than the signal-to-noise ratio used for the E5 signal simulations.

This is because when tracking only one sub-band using a single band receiver, approximately only 50%

of the power is utilized when compared with tracking the E5 pilot signal. This is equivalent to a loss of 3

dB.

For TM-A1 the area corresponding to 0 < D < 0.5 and 0 < T < 0.5 seconds was considered.

This threat space is a little bigger than the one employed for the E5 signal. This is because the signal

BPSK(10) yields worse results, hence, the tests only start detecting the presence of anomalies for larger

delays. The plot shows that the criterion is minimized for ∆ ≥ 0.16Tc for N ≥ 4.

For TM-B the area corresponding to 0 < fd < 20 MHz and 0 < σ < 200 Mnepers/s was considered.

Contrarily, this threat space is smaller than the E5 counterpart. This is because the distortions are larger

for smaller values of fd and σ. Hence, the tests stop detecting the presence of anomalies for lower values

of those variables. The time of correlation was set to T = 0.5 s. The plot shows the criterion is minimized

for ∆ ≥ 0.2Tc for N ≥ 4.

The remaining threat model (TM-C1) was not studied due to being a combination of TM-A1 with

TM-B. The threat models TM-A2 and TM-C2 are not considered because, as explained in chapter 4, the

BPSK(10) signal doesn’t have subcarriers.

Notice, also, that the percentages of the hazard region are much higher than the ones obtained for

57



the E5 signal (Fig. 6.2). Even though this has, in part, to do with the worse performance of the BPSK(10)

signal, we cannot neglect the fact that the threat space areas used are different in both cases. Thus, we

cannot make any conclusions out of this aspect. The comparison between the two processing options

will be presented later.

The optimal regions obtained for each threat model are described in table 6.2. The common region

for all the threat models, N ≥ 4 and ∆ ≥ 0.2Tc is also presented. This is the region of interest when

choosing the number of pair of correlators, N , and the spacing, ∆. This analysis shows that there is

also no improvement in using a number of pair of correlators larger than 4. Hence, we adopt the value

N = 4 and ∆ = 0.2Tc for all the simulations presented for the signal E5a/E5b.

(a) Threat model TM-A1. (b) Threat model TM-B.

Figure 6.3: Percentages of the hazard region for two threat models. Signal: E5a/E5b.

Table 6.2: Optimal region for N and ∆. Signal: E5a/E5b.

N ∆/Tc

TM-A1 [4,6] [0.16,0.3]
TM-B [4,6] [0.2,0.3]
Union [4,6] [0.2,0.3]

6.1.3 Processing both sub-bands separately

The third and last scenario considered is the processing of both sub-bands separately. For this

scenario, we will consider for each one of the sub-bands the threat models developed for the BPSK(10)

signal in chapter 4. Once more, it will be assumed an ideal code delay synchronization for the DLL using

a pair of correlators with early-late spacing equal to 0.1Tc.

The SQM architecture is a little more complex than the previous ones. We will consider two indepen-

dent banks of correlators, one for each sub-band. Given that the signal E5a and E5b are independent to

each other and so are the noises in each sub-band, the outputs of the correlators are also independent.

From the outputs of each sub-band, we will form 2N simple ratio tests, N difference ratio tests and N

sum ratio tests. Thus, we will use twice the number of tests. The overall probability of false alarm is,
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therefore, defined as

PFA = 1− prob{T−i
1,E5a < 1, T i

1,E5a < 1, |T i
2,E5a| < 1, T i

3,E5a < 1,

T−i
1,E5b < 1, T i

1,E5b < 1, |T i
2,E5b| < 1, T i

3,E5b < 1, i = 1, ..., N |H0}
(6.7)

The thresholds λi
1, λi

2 and λi
3 are derived from Eq. 5.28, Eq. 5.35 and Eq. 5.42, respectively.

However, this time, PFA has to be replaced by PFA/6 as we are assuming that each of the six tests

contributes with one sixth to the overall probability of false alarm, yielding

λi
1 =

Q−1(PFA/(12N))

RA(0)

√
(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

2(C/N0)T
(6.8)

λi
2 =

Q−1(PFA/(12N))

RA(0)

√
Rs(0)−Rs(2i∆)

(C/N0)T
(6.9)

λi
3 =

Q−1(PFA/(6N))

RA(0)

√
(1 + 2ρ2)Rs(0) +Rs(2i∆)− 4ρiRs(i∆)

(C/N0)T
(6.10)

The typical RF bandwidth used is BRF = 20.46 MHz ([25]) which results in a chip period times

baseband bandwidth product of BTc = 1.

Fig. 6.4 shows the Monte Carlo results for PFA of the three processing options with 109 independent

runs. The results show good agreement with the desired overall probability of false alarm of PFA =

1.5 × 10−7. These results could be improved by refining the thresholds using Monte Carlo simulation.

However, to obtain probabilities of false alarm of PFA = 1.5× 10−7 would require a very large number of

runs which becomes rapidly prohibitive.

Figure 6.4: Monte Carlo results for PFA obtained with 109 independent runs.

The parameters N and ∆ still need to be defined. Once more, these parameters were chosen to

minimize the hazard region for a pre-defined MERR=1m. Figure 6.5 shows the percentages of the haz-
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ard region for two different models: TM-A1 and TM-B. The signal-to-noise ratio used for the simulations

is C/N0 = 47 dB.

For both TM-A1 and TM-B were considered the same areas as for the single band receiver. The plots

show that, for TM-A1, the criterion is minimized for ∆ ≥ 0.16Tc for N ≥ 4. On the other hand, for TM-B,

the optimal region is given by ∆ ≥ 0.2Tc and N ≥ 4. It is no surprise that the optimal regions are the

same as for the single band receiver given that both these receivers use the same signal (BPSK(10)).

The remaining threat model (TM-C1) was not studied due to being a combination of TM-A1 with

TM-B. The threat models TM-A2 and TM-C2 are not considered because, as explained in chapter 4, the

BPSK(10) signal doesn’t have subcarriers.

The optimal regions obtained for each threat model are described in table 6.3. The common region

for all the threat models, N ≥ 4 and ∆ ≥ 0.2Tc is also presented. This is the region of interest when

choosing the number of pair of correlators, N , and the spacing, ∆. This analysis shows that there is no

improvement in using a number of pair of correlators larger than 4. Hence, we adopt the value N = 4

and ∆ = 0.2Tc for all the simulations presented for the signal E5a+E5b.

(a) Threat model TM-A1. (b) Threat model TM-B.

Figure 6.5: Percentages of the hazard region for two threat models. Signal: E5a/E5b.

Table 6.3: Optimal region for N and ∆. Signal: E5a+E5b.

N ∆/Tc

TM-A1 [4,6] [0.16,0.3]
TM-B [4,6] [0.2,0.3]
Union [4,6] [0.2,0.3]

Table 6.4 summarizes the parameters used for each one of the receivers.

6.2 Simulation Results

The simulations are divided in three groups according to the type of EWF distortion: TM-A, TM-B

and TM-C. This division allows for an easy comparison between the performance of each processing
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Table 6.4: Simulation Parameters for each processing option.

N ∆/Tc BTc

E5 4 0.17 2.5
E5a/E5b 4 0.2 1
E5a+E5b 4 0.2 1

option.

6.2.1 Threat Model A

In the presence of EWF anomaly the solution of the code discriminator is affected by an error, as

shown in Fig. 6.6. The tracking errors present a linear region. The code discriminator error solely due to

the TM-A1 anomaly for the signal E5a+E5b is not presented as it is the same as the error of the signal

E5a/E5b (both were considered to use a BPSK(10) signal).

(a) Threat model TM-A1: E5. (b) Threat model TM-A2: E5.

(c) Threat model TM-A1: E5a/E5b.

Figure 6.6: Code discriminator errors in the presence of TM-A distortion.

Figure 6.7 displays the detectability region for TM-A1 and TM-A2 with E5 signal versus parameters

D and T . It can be recognized that, in both graphs, there is a large area for which the anomaly is
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not detected (with T ≤ 0.5 s). A solution to this problem would be increasing the time of correlation.

However, by increasing the time of correlation, the system would become slower. Besides, there are

some other effects such as the variation of the Doppler shift that would prevent using large correlation

times [2].

It is also interesting to note that the threat model A2 is much more disruptive than the threat model

A1. While the SQM was only able to detect the presence of a TM-A1 anomaly for D ≈ 0.08 (for T = 0.5

s), the presence of a TM-A2 anomaly was detected for Ds ≈ 0.04 (for T = 0.5 s).

(a) Threat model TM-A1: E5. (b) Threat model TM-A2: E5.

Figure 6.7: Detectability regions for threat models A1 and A2 with E5 signal.

Figure 6.8 shows the corresponding hazard regions for MERR=1m. Despite the TM-A1 anomalies

with D < 0.07 not being detected for any of the plotted correlation times, it can be seen that they are

outside of the hazard region. This is because the code discriminator error is less than MERR. The

hazard region for TM-A2 is really small showing that the SQM works very well for this type of anomaly.

(a) Threat model TM-A1: E5. (b) Threat model TM-A2: E5.

Figure 6.8: Hazard regions for threat models A1 and A2 with E5 signal.

Figure 6.9 displays the detectability regions for TM-A1 with E5a/E5b and E5a+E5b signals. The plots

are very similar and exhibit worse results than the E5 case. Only for D > 0.275 is the anomaly detected

with the signal E5a/E5b (for T = 0.5 s) and D > 0.255 with the signal E5a+E5b. By comparing both
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images, we can conclude that the improvement in using both sub-bands instead of one is really shallow.

The improvement that would come from using two times the number of tests is mitigated by the need to

readjust the thresholds to maintain the probability of false alarm.

(a) Threat model TM-A1: E5a/E5b. (b) Threat model TM-A1: E5a+E5b.

Figure 6.9: Detectability regions for threat models A1 with E5a/E5b and E5a+E5b signals.

In fact, Fig. 6.10 shows that by using both sub-bands there is a gain of approximately 1.2 dB when

compared to using only one. Note that this gain is independent of the delay. Besides, notice how the

probability of missed detection decays asymptotically with C/N0 as the channel is Gaussian.

Figure 6.10: Probability of missed detection for TM-A1 with different delays for E5a/E5b and E5a+E5b
signals.

Figure 6.11 shows the corresponding hazard regions for MERR=1m. Comparing these results with

Fig. 6.8 we come to the conclusion that both receivers using sub-bands have much worse results than

the receiver using the whole E5 signal.
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(a) Threat model TM-A1: E5a/E5b. (b) Threat model TM-A1: E5a+E5b.

Figure 6.11: Hazard regions for threat models A1 with E5a/E5b and E5a+E5b signals.

6.2.2 Threat Model B

The code discriminator errors obtained with threat model B are shown in Fig. 6.12. The TS consid-

ered is 0 < fd < 65 MHz and 0 < σ < 400 Mnepers/s.

In general, the errors increase as fd and σ approach simultaneously zero, yielding errors larger than

30 m. On top of that, when both variables tend to zero, exists a really large correlation loss which will

most likely result in signal tracking loss [18]. The code discriminator error for the signal E5a+E5b is not

presented as it is the same as the error of the signal E5a/E5b concerning solely the errors induced by

the distortion of the signal (both were considered to use a BPSK(10) signal).

(a) Threat model TM-B: E5. (b) Threat model TM-B: E5a/E5b.

Figure 6.12: Code discriminator errors in the presence of TM-B distortion.

Figure 6.13 presents the detectability region for TM-B with E5, E5a/E5b and E5a+E5b signals. The

correlation time was set to T = 0.5 s in all simulations. It is clear that the signal E5 yields much

better results than the remaining two signals. The E5a/E5b and E5a+E5b signals have a very similar

performance.

Note that, although the discriminator errors indicated in Fig 6.12 exceed one meter, the correspond-
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(a) Threat model TM-B: E5. (b) Threat model TM-B: E5a/E5b.

(c) Threat model TM-B: E5a+E5b.

Figure 6.13: Detectability regions for threat model B with E5, E5a/E5b and E5a+E5b signals.

ing EWF anomalies can be detected in some regions of the TS, as illustrated in Fig. 6.13. Thus, the

hazard regions will be subsets of the plots of Fig. 6.12.

Figure 6.14 presents the hazard region for TM-B with E5, E5a/E5b and E5a+E5b signals. For

E5a/E5b and E5a+E5b signals, the code tracking error in the hazard region may reach values above

5m. On the other hand, the worst code tracking error for the E5 signal is about 2m.

6.2.3 Threat Model C

The threat model C includes the analog and digital EWF anomalies. Therefore, it is expectable that

the effects of the two types of distortions are added. Fig. 6.15 shows the code discriminator errors.

We have considered a delay ∆ = ∆s = 0.03Tc for the E5 signal with TM-C1/TM-C2, respectively. For

the sub-band signals, we used a delay ∆ = 0.2Tc with TM-C1. Ideally, we would want to use the same

delay for both signals in order to compare them. However, as it was seen previously, the E5 signal is

much more sensible to the distortions. Thus, we need to employ a different scale of anomalies to obtain

noticeable results in each case.

Analyzing Fig. 6.15 we conclude that there isn’t much difference between the code discriminator error
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(a) Threat model TM-B: E5. (b) Threat model TM-B: E5a/E5b.

(c) Threat model TM-B: E5a+E5b.

Figure 6.14: Hazard regions for threat model B with E5, E5a/E5b and E5a+E5b signals.

for TM-C1 and TM-C2. This result was to be expected when taking into account the results obtained for

TM-A1 and TM-A2 in Fig. 6.6. It was seen that for the same delay, both these threat models present

similar code discriminator error. It is also evident that the errors for the sub-band signals are larger than

for the E5 signal. This has to do, not only, with the poorer performance of the sub-band signals but also

due to the larger delay chosen. Finally, comparing Fig. 6.15 with Fig. 6.12 we see the errors become

larger as a result of the digital failure.

Figure 6.16 displays the detectability region for TM-C1 and TM-C2 with E5 signal. Comparing Fig.

6.16 with Fig. 6.13, it can be concluded that the regions of detectability of TM-B are approximately equal

or are contained in the regions of TM-C. The expansion of the detectability region is carried out only in

the σ-axis. This result suggests that, even though for TM-B the tests are insensitive to large values of σ,

the detection of anomalies is due, essentially, to the digital component introduced by the TM-A.

Figure 6.17 shows the corresponding hazard regions for MERR=1m. Despite the reduction of the

hazard region when compared to Fig 6.14 (TM-B), the code tracking errors are larger. This has to do

with the addition of the digital EWF distortion. On one hand, the addition of the digital anomaly increases

the detectability region. On the other hand, it also increases the code discriminator errors.

Figure 6.18 displays the detectability regions for TM-C1 with E5a/E5b and E5a+E5b signals. The
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(a) Threat model TM-C1: E5. (b) Threat model TM-C2: E5.

(c) Threat model TM-C1: E5a/E5b.

Figure 6.15: Code discriminator errors in the presence of TM-C distortion.

(a) Threat model TM-C1: E5. (b) Threat model TM-C2: E5.

Figure 6.16: Detectability regions for threat models C1 and C2 with E5 signal.

plots exhibit worse results than the E5 case. Contrarily to what was seen for the TM-B, the difference

in performance between E5a/E5b and E5a+E5b is more evident. Namely, this difference occurs in the

σ-axis. This result can be explained when taking into consideration the better performance registered

for E5a+E5b with TM-A1.
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(a) Threat model TM-C1: E5. (b) Threat model TM-C2: E5.

Figure 6.17: Hazard region for threat models C1 and C2 with E5 signal.

(a) Threat model TM-C1: E5a/E5b. (b) Threat model TM-C: E5a+E5b.

Figure 6.18: Detectability regions for threat models C1 with E5a/E5b and E5a+E5b signals.

Figure 6.19 shows the corresponding hazard regions for MERR=1m. Comparing these results with

Fig. 6.17 we come to the conclusion that both receivers using sub-bands have much worse results than

the receiver using the whole E5 signal. Not only do they have a larger hazard region, but also larger

code discriminator errors. Note that in Fig. 6.17 a) the sub region of the TS with 0 < fd < 20 MHz and

0 < σ < 200 Mnepers/s is a hazard-free region.

Figure 6.20 presents the detectability regions for TM-C1 with E5, E5a/E5b and E5a+E5b signals

with lower C/N0. We can see that the region of detectability diminishes significantly when the signal-

to-noise ratio decreases. In fact, it was concluded that the important parameter to be considered in

the performance analysis is the product (C/N0)T . This means that, in order to maintain the same

level of performance, for smaller values of C/N0, larger integration intervals are required. This result

corroborates the conclusions made in [19]. The corresponding hazard region plots are shown in Fig.

6.21. As expected, the code discriminator errors inside the hazard region are much larger. Comparing

the plots of Fig. 6.17 a) and Fig. 6.21 a) we can also conclude that the area of the hazard region for the

same TS increases as the product (C/N0)T diminishes.
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(a) Threat model TM-C1: E5a/E5b. (b) Threat model TM-C1: E5a+E5b.

Figure 6.19: Hazard regions for threat models C1 with E5a/E5b and E5a+E5b signals.

(a) Threat model TM-C1: E5. (b) Threat model TM-C1: E5a/E5b.

(c) Threat model TM-C1: E5a+E5b.

Figure 6.20: Detectability regions for threat model C1 with E5, E5a/E5b and E5a+E5b signals with lower
C/N0.

69



(a) Threat model TM-C1: E5. (b) Threat model TM-C1: E5a/E5b.

(c) Threat model TM-C1: E5a+E5b.

Figure 6.21: Hazard regions for threat model C1 with E5, E5a/E5b and E5a+E5b signals with lower
C/N0.
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Chapter 7

Conclusions

This chapter presents in section 7.1 the conclusions drawn from the present dissertation and, in

section 7.2, future work recommendations.

7.1 Achievements

The main objective of this work, as stated in chapter 1, was to establish a comparison of the perfor-

mance between the SQM techniques using each processing option for the AltBOC signal: (i) process

the entire signal; (ii) process both sub-bands, but separately; (iii) process only one of the sub-bands.

In chapter 2, an introduction to the Galileo E5 AltBOC signal was conducted, describing how the

AltBOC modulation can be derived from the BOC modulation and listing the characteristics of the signal.

Given the complexity of the AltBOC signal, there are different processing options that lead to different

types of receivers. In chapter 3, these different receivers were described, highlighting the advantages

and drawbacks of each one. Furthermore, the autocorrelation functions of the pilot signals used for

tracking were computed. These expressions were especially useful when defining the threat models in

chapter 4. It was noted that for the single band receiver, the tracking technique is similar to the tracking

of a BPSK(10) signal making it the simplest receiver model. Contrarily, the coherent dual band receiver

is the most complex receiver model because it takes advantage of the whole AltBOC signal, leading to

the best performance.

In chapter 4, the expressions of the threat models for the AltBOC modulation were developed. These

threat models were based on the 2OS model presented in the literature and adopted by ICAO for

GPS/GLONASS C/A code signal. These expressions correspond to the crosscorrelation between the

incoming distorted pilot signal and the pilot signal replica generated in the receiver. Taking into con-

sideration the receiver models presented in chapter 3, it was necessary to make a distinction between

processing the whole AltBOC signal or a sub-band. Therefore, both the BPSK(10) and AltBOC(15,10)

signals were considered.

In chapter 5, the SQM technique based on the multicorrelator architecture was presented. It was

seen that this technique consisted in combining measurements estimated from the correlator outputs in
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order to form metrics that are compared to their nominal values. The metrics presented were the simple

ratio metric, difference ratio metric and sum ratio metric. A statistical analysis of each one of the metrics

was conducted. These analysis were of paramount importance to define thresholds for each test in

order to comply with the desired probability of false alarm.

Chapter 6 aimed on applying the tests and metrics introduced in chapter 5 to detect the EWFs de-

scribed by the threat models developed in chapter 4. As stated previously, one of the main objectives

of this work was to establish a comparison between the performance of the SQM using three different

processing options, each one with different characteristics. Thus, in section 6.1, some SQM architecture

aspects for the different receiver options were covered, namely, the thresholds for the tests, the number

of pair of correlators and its spacing. While the thresholds for the tests were defined using the expres-

sions developed in chapter 5 for an overall probability of false alarm PFA = 1.5 × 10−7, the number of

pair of correlators and its spacing were obtained through simulation. For each processing option, several

simulations were performed using a different number of pairs of correlators and spacing. The optimal

regions for these quantities were found by minimizing the hazardous region. It was seen that, regardless

of the type of anomaly or processing option, a number of pair of correlators greater than 4 led to no

major improvement of the hazardous region. This result allowed us to greatly reduce the complexity

of the bank of correlators. Section 6.2 presents the results of the signal quality monitoring for each

processing option. These results were displayed as the detectability region and the hazard region for

MERR=1m. The goal was to achieve the probability of EWF missed detection Pmd < 10−3. It was clear

that, regardless of the type of anomaly, processing the entire AltBOC signal outperformed every other

signal processing option. Processing both sub-bands, but separately, performed better than processing

only one of the sub-bands, although not by much.

Another important conclusion is that the correlation time needed to obtain substantial regions of

detectability is large. This may present a problem in applications that require a really low latency time

(such as aviation or autonomous vehicles). In fact, it was concluded that the regions of detectability tend

to increase with the growth of the product (C/N0)T . Thus, for scenarios where the signal-to-noise ratio

is really low, the correlation time must be larger to maintain the same level of performance (at the cost

of longer latency times).

Finally, it was verified that the signal distortions introduced by the satellite anomalies are similar

to the ones introduced by multipath. Therefore, it is expected that for a mobile receiver affected by

multipath, the probability of false alarm greatly increases. A possible solution for this problem would

be to use fixed stations with highly directive antennas to detect EWF anomalies and broadcasting the

SQM status of each satellite to the mobile receiver. The drawbacks of this solution would be to have

an additional equipment to broadcast the SQM status of each satellite and the delays induced by the

station-to-receiver link.
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7.2 Future Work

There are several paths for improving the work presented in this dissertation. Some of the most

relevant ones are now highlighted:

• Implementation of DLL, PLL and C/N0 estimator: In this work it was assumed a perfect DLL

and PLL. Furthermore, it was assumed that the signal-to-noise ratio (used to define the tests’

thresholds) is known or at least correctly estimated. The inclusion of these blocks would allow for

more realistic simulation results.

• Testing other threat models: Even if the threat models herein described are very useful concepts,

they do not represent all signal distortions that could appear on a GNSS signal. Therefore, other

threat models could be investigated and tested.

• Testing in presence of multipath: Testing the SQM techniques in multipath scenarios can be

very useful especially when considering its applicability to mobile receivers. Multipath has similar

effects on the correlation functions as EWFs. Therefore, it is expected that the probability of false

alarm increases in its presence. An interesting topic of study would be to assess the effect of

multipath in SQM of EWFs for different modulations (not only AltBOC). Besides, the application of

the techniques used to mitigate the multipath effect, which includes code discriminators based on

multicorrelator architectures, could be beneficial in the presence of EWF anomalies.

• Testing other EWF detection techniques: The proposed EWF detection techniques could be

complemented with other detection algorithms, such as the Receiver Autonomous Integrity Moni-

toring (RAIM).

• Testing a non-uniform correlator spacing: The proposed multicorrelator architecture used an

uniform spacing. It would be interesting to study if there is any optimal position for the correlators

without forcing them to be uniformly spaced.
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Appendix A

Crosscorrelation between two

rectangular pulses

In this annex will be computed the crosscorrelation between two rectangular pulses with different

length and centre.

Consider two rectangular pulses

ΠL0
(x− x0) =

1, |x− x0| < L0/2

0, otherwise

(A.1)

ΠL1
(x− x1) =

1, |x− x1| < L1/2

0, otherwise

(A.2)

with L1 ≥ L0. Fig. A.1 represents these two functions.

Figure A.1: Two rectangular pulses.

The crosscorrelation between the two pulses is given by

R(τ) =

∫ +∞

−∞
ΠL0

(x− x0)ΠL1
(x− τ − x1)dx

=

∫ x0+L0/2

x0−L0/2

ΠL1
(x− τ − x1)dx

(A.3)

For τ < x0 − x1 − L0+L1

2 or τ > x0 − x1 +
L0+L1

2 the integral is equal to 0.

On the other hand, for x0 − x1 − L1−L0

2 < τ < x0 − x1 +
L1−L0

2 we have a maximum.
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Thus, the crosscorrelation between two rectangular pulses with different centres and lengths is dis-

played in Fig. A.2.

Figure A.2: crosscorrelation between two rectangular pulses.

This function, herein called ΞL0,L1(τ), can be written analytically as the difference between two

triangular pulses

ΞL0,L1
[τ − (x0 − x1)] =

L0 + L1

2
ΛL0+L1

2
[τ − (x0 − x1)]−

L1 − L0

2
ΛL1−L0

2
[τ − (x0 − x1)] (A.4)

Consider now that the rectangular pulse ΠL0(x− x0) is lowpass filtered by an ideal rectangular filter

with a frequency response given by Eq. 4.9. Let ΞF
L0,L1

[τ − (x0 − x1)] be the filtered crosscorrelation

function, using Eq. 4.8, we obtain

ΞF
L0,L1

[τ ′ − (x0 − x1)] =

∫ B

−B

F{ΞL0,L1
[τ − (x0 − x1)]} exp(j2πfτ ′)df

=

∫ B

−B

[
L0 + L1

2

]2
sinc2

(
f
L0 + L1

2

)
cos[2πf(τ ′ − (x0 − x1))]df

−
∫ B

−B

[
L1 − L0

2

]2
sinc2

(
f
L1 − L0

2

)
cos[2πf(τ ′ − (x0 − x1))]df

(A.5)
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Appendix B

Error model extension for Threat

Model TM-A1 with AltBOC(15,10)

signal

This appendix contains the extension of the error models presented in section 4.1.1.2 for the TM-A1

model with AltBOC(15,10) signal.

In Fig. B.1 is represented the typical waveform for TM-A1 real/imaginary part of AltBOC(15,10) signal

for a delay ∆ > Tc/12 using the error model presented in Eq. 4.16.

Figure B.1: Typical waveform for TM-A1 with real/imaginary part of AltBOC(15,10) signal and |∆| >
Tc/12 using the model described in Eq. 4.16.

It can be seen that the previously presented error model doesn’t introduce any correction in the area

marked by the blue rectangle even though it should to comply with the physical model. For that reason,
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it was necessary to develop an extension of such model in order to cover larger delays.

Consider now the following expression for the extended error model

ϵ(t) = ϵ0(t) + ϵ1(t) (B.1)

We can understand Eq. B.1 as a sum of error models, where ϵ1(t) introduces corrections that weren’t

covered by ϵ0(t).

ϵ1(t) is given by Eq. 4.16 and

ϵ1 (t) =
1

2
ℜ{s (t− Tc/12)− s̃1 (t)}[1 + sign{ℜ{s (t− Tc/12)− s̃1 (t)}}]

+
j

2
ℑ{s (t− Tc/12)− s̃1 (t)}[1 + sign{ℑ{s (t− Tc/12)− s̃1 (t)}}]

(B.2)

where s̃1(t) is the distorted signal containing the previous corrections given by s̃1(t) = s(t) + ϵ0(t).

This formulation allows us to extend the model up to |∆| < Tc/6.

Multiplying this new error term, ϵ1(t), by the conjugate of the delayed version of the pilot signal and

time-averaging

< ϵ1 (t) s
∗
p (t− τ) >=

1

2
< ℜ{s (t− Tc/12)− s̃1 (t)}s∗p (t− τ) >

+
1

2
< |ℜ{s (t− Tc/12)− s̃1 (t)}|s∗p (t− τ) >

+
j

2
< ℑ{s (t− Tc/12)− s̃1 (t)}s∗p (t− τ) > +

j

2
< |ℑ{s (t− Tc/12)− s̃1 (t)}|s∗p (t− τ) >

=
1

2
< [s (t− Tc/12)− s̃1 (t)]s

∗
p (t− τ) > +

1

2
< |ℜ{s (t− Tc/12)− s̃1 (t)}|s∗p (t− τ) >

j

2
< |ℑ{s (t− Tc/12)− s̃1 (t)}|s∗p (t− τ) >

(B.3)

Unlike what was stated previously for the case of ϵ0(t) in section 4.1.1.2, the prob{ℜ{s(t− Tc/12)−

s̃(t)} > 0} ≠ prob{ℜ{s(t−Tc/12)−s̃(t)} < 0} as well as prob{ℑ{s(t−Tc/12)−s̃(t)} > 0} ≠ prob{ℑ{s(t−

Tc/12) − s̃(t)} < 0} . One could study these probabilities and compute the cross-correlation functions

taking them into account. However, herein, another approach was followed.

The signal ϵ1(t) was evaluated for each one of the possible waveforms the AltBOC(15,10) signal

can take. Assuming equal probable symbols, we were able to compute the complex cross-correlation

functions between ϵ1(t) and sp(t).

The AltBOC(15,10) signal is composed of 4 independent codes which means that there are 16

equiprobable different symbols. However, since the signal ϵ1(t) is obtained using a delayed version

of the AltBOC(15,10) signal, in order to study the transitions, we need not only to consider one symbol

duration but two, making a total of 162 = 256 waveforms.

Furthermore, it was seen previously in section 2.4 that the AltBOC(15,10) signal waveform also

depends on time due to the sub-carrier phase.
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We can then conclude that in order to fully characterize the ϵ1(t) signal we need to take into consid-

eration 512 waveforms. This is a rather tedious task. Fortunately, it can be simplified.

The purpose of defining the signal ϵ1(t) is to correlate it with sp(t). Since the pilot signal only has

the pilot bits, each symbol is composed by only 2 bits instead of 4. While there are 16 different symbols

in the AltBOC(15,10) signal, there are only 4 in the pilot signal. This means that, for instance, the ϵ1(t)

waveforms corresponding to all these symbols: [eAI , eBI , eAQ, eBQ] = [0, 0, 0, 0], [eAI , eBI , eAQ, eBQ] =

[0, 1, 0, 0], [eAI , eBI , eAQ, eBQ] = [1, 0, 0, 0] and [eAI , eBI , eAQ, eBQ] = [1, 1, 0, 0] correlate with the same

pilot waveform (given by the symbol [eAQ, eBQ] = [0, 0]). This allows us to sum up those waveforms of

ϵ1(t) for all those cases and compute only one cross-correlation.

As stated previously, the AltBOC(15,10) symbols can have two different waveforms depending on

the phase of the subcarriers. However, it can be seen that these two waveforms are symmetric to each

other (Fig. 4.5). This means that instead of correlating each ϵ1(t) waveform with the corresponding pilot

signal (with the same subcarrier phase), we can subtract those ϵ1(t) corrections and correlate them with

a single pilot signal.

Taking these properties into account we can significantly simplify the study of the ϵ1(t) signal. With

this simplification, to study every possible waveform we need to compute only 16 cross-correlations.

The corresponding waveforms, which for simplicity will be called ϵT1 , that are to be correlated with the

pilot signal are represented in Fig. B.2. In the figure are also mentioned the pilot symbols corresponding

to each one of the corrections.

∆1 is defined as

∆1 =

∆− Tc/12, Tc/12 < ∆ ≤ Tc/6

0, otherwise

(B.4)

To obtain the cross-correlation between ϵ1(t) and sp(t) we need to compute the pilot signal for each

possible combination of symbols using Eq. 3.2 and correlate it with the waveforms presented in Fig. B.2.

< ϵ1 (t) s
∗
p (t− τ) >=

1

512

11∑
s0=00

11∑
s1=00

1

Tc

∫ Tc

0

ϵT1 (t)|s0,s1s∗p(t− τ)|s0,s1dt (B.5)

where s0 = [eAQ(t)eBQ(t)]0 represents the symbol at time slot 0 and s1 = [eAQ(t)eBQ(t)]1 at time

slot 1.

Note now that the pilot signal can be written in terms of the subcarriers, which, in turn, can be

computed as a sum of rectangular pulses (Eq. 2.16). Likewise, ϵT1 (t) depicted in Fig. B.2, is also a sum

of rectangular pulses for each case. Thus, the cross-correlation between ϵ1(t) and sp(t) is equal to the

sum of cross-correlations between several rectangular pulses with different centre, length and height,

which can be computed using the result presented in Appendix A.

Computing B.5 taking into account that both signals can be written as a sum of rectangles and

grouping every common term, we obtain that
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(a) First Symbol: 00 (b) First Symbol: 01

(c) First Symbol: 10 (d) First Symbol: 11

Figure B.2: Sum of the corrections employed by ϵ1(t), ϵT1 (t), for each pilot signal symbol.

< ϵ1 (t) sp (t− τ) >=

13∑
n=−11

γn
Tc
Ξ∆1,Tc/12

[
τ − Tc

12

(
n− 1

2
+ 6D2

)]
(B.6)

with ΞL0,L1
[τ − (x0 − x1)] defined in Eq. A.4, D1 = ∆1

Tc
. The coefficients, gamman, are given by

Table B.1: Coefficients for the extended TM-A1 model.
n -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

γn
207

10975 − 259
3433 − 207

2195 − 53
915

53
4278

259
3433

207
2195

53
915 − 53

4278 − 259
3433 − 207

2195 − 53
915

1
16

n 2 3 4 5 6 7 8 9 10 11 12 13

γn − 53
915 − 207

2195 − 259
3433 − 53

4278
53
915

207
2195

259
3433

53
4278 − 53

915 − 207
2195 − 259

3433
207

10975

Finally, using 4.23 and B.6 we have for ∆ < Tc/6

Rs̃sp(τ) =
1

2
[Rssp (τ) +Rssp (τ −∆)] +

13∑
n=−11

γn
Tc
Ξ∆1,Tc/12

[
τ − Tc

12

(
n− 1

2
+ 6D2

)]
(B.7)
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Lastly, if the incoming distorted signal were to be low-pass filtered, as it is usual for real receivers,

we would obtain using Eqs. 4.26,A.5:

RA (τ ′) =
B1

12

∫ BTc

−BTc

sinc2
(x
6

)
cos

(
2π

τ ′

Tc
x

)
dx+

B1

12

∫ BTc

−BTc

sinc2
(x
6

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

+

2∑
m=1

Bm

6

∫ BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

τ ′

Tc
x

)
dx

+

2∑
m=1

Bm

6

∫ BTc

−BTc

sinc2
(x
6

)
cos
(
2π

mx

3

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
dx

+

5∑
n=0

Cm

12

∫ BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

τ ′

Tc
x

)
dx

+

2∑
m=1

Cm

12

∫ BTc

−BTc

sinc2
( x

12

)
cos

(
2π

(2n+ 1)x

12

)
cos

(
2π

(
τ ′

Tc
−D

)
x

)
df

+

13∑
n=−11

∫ BTc

−BTc

γn

[
1

24
+

D1

2

]2
sinc2

(
x

[
1

24
+

D1

2

])
cos

(
2π

[
τ ′

Tc
− 1

12

(
n− 1

2
+ 6D1

)]
x

)
dx

−
13∑

n=−11

∫ BTc

−BTc

γn

[
1

24
− D1

2

]2
sinc2

(
x

[
1

24
− D1

2

])
cos

(
2π

[
τ ′

Tc
− 1

12

(
n− 1

2
+ 6D1

)]
x

)
dx

(B.8)

In Fig. B.3 is represented a graph that shows the difference on the cross-correlation function between

the simple and the extended model for BTc = 1.

(a) Normal plot (b) Zoomed plot

Figure B.3: Correlation Function for AltBOC signal with TM-A1 distortion, D= 1.95Tc

12 , with and without
taking ϵ1 into account.
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Appendix C

Generation of random correlated

Gaussian noise vectors

In the present thesis, it is required to generate vectors of correlated noise for use in the various

simulations undertaken. This annex will address a method for generating those vectors. The method

here presented is described in further detail in [19].

Consider the problem of generating a zero-mean Gaussian noise vector, U, with covariance matrix C

using a zero-mean Gaussian Vector, W, with independent components of unity variance. Thus, the aim

is to determine a certain matrix, G, that satisfies

U = GW (C.1)

The covariance matrix, C, can be computed from

C = E{UUT } = E{GWWTGT }

= GE{WWT }GT

= GGT

(C.2)

According to [33], the covariance matrix can be written in terms of its eigenvalues and eigenvectors

as

C = V ΛV T (C.3)

with V being a matrix whose columns are the eigenvectors of C and Λ is a diagonal matrix with the

eigenvalues of C. Comparing Eq. C.2 and Eq. C.3 we obtain the expression for G:

G = V Λ1/2 = V diag{
√

λ1,
√
λ2, ...,

√
λM} (C.4)
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Appendix D

Statistical analysis of Tests

In this appendix will be presented a statistical characterization of the tests proposed in section 5.2.

This analysis is of extreme importance to define the thresholds for the tests to comply with the require-

ments for the probability of false alarm. This characterization is defined is further detail in [19].

Consider the following test T = g(X,Y ) defined as a function of two correlated gaussian random

variables, X ∼ N(mX , σ2
X) and Y ∼ N(mY , σ

2
Y ). According to [34], the mean, mT and variance, σ2

T ,

can be estimated in terms of the mean, variance, and covariance of X and Y :

mT ≈ g(mX ,mY ) +
1

2

(
∂2g

∂x2
σ2
X + 2

∂2g

∂x∂y
rσXσY +

∂2g

∂y2
σ2
Y

)
(D.1)

σ2
T ≈

(
∂g

∂x

)2

σ2
X + 2

(
∂g

∂x

)(
∂g

∂y

)
rσXσY +

(
∂g

∂y

)2

σ2
Y (D.2)

where

r =
E{XY } −mXmY

σXσY
(D.3)

is the correlation coefficient. The derivatives in Eq. D.1 and Eq. D.6 are evaluated at x = mX and

y = mY :

∂g

∂x
=

1

mY
,

∂g

∂y
= −mX

m2
Y

∂2g

∂x∂y
= − 1

m2
Y

∂2g

∂x2
= 0,

∂2g

∂y2
=

2mX

m3
Y

(D.4)

Replacing Eq. D.4 in Eq. D.1 and D.6 we obtain (see also [35])

mT ≈ mX

mY
− rσXσY

m2
Y

+
mXσ2

Y

m3
Y

(D.5)
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σ2
T ≈ σ2

X

m2
Y

− 2rmXσXσY

m3
Y

+
m2

Xσ2
Y

m4
Y

(D.6)

D.1 Test T i
1

For the scenario without distortion (H0), the test T i
1 is given by Eq. 5.19

T i
1 =

X

Y
=

ni − (Zi/Z0)n0

(Z0 + n0)λi
1

(D.7)

The mean mX = 0 and mY = Z0λ
i
1. The variances of X and Y are

σ2
X =

N0

T

[
Rs(0)(1 + ρ2i )− 2ρiRs(i∆)

]
(D.8)

σ2
Y =

[
λi
1

]2 N0

T
Rs(0) (D.9)

Besides, E{XY } = 0 yielding r = 0. Using these results, we obtain for the mean and variance of the

r.v. T i
1

mT i
1
= 0 (D.10)

σ2
T i
1
=

(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

2(C/N0)TR2
A(0)

[
λi
1

]2 (D.11)

D.2 Test T i
2

For the scenario without distortion (H0), the test T i
2 is given by Eq. 5.31

T i
2 =

X

Y
=

n−i − ni

Z0 + n0λi
2

(D.12)

The mean mX = 0 and mY = Z0λ
i
2. The variances of X and Y are

σ2
X = E{(n−i − ni)

2} = 2
N0

T
[Rs(0)−Rs(2i∆)] (D.13)

σ2
Y =

[
λi
2

]2 N0

T
Rs(0) (D.14)

Besides, E{XY } = 0 yielding r = 0. Using these results, we obtain for the mean and variance of the

r.v. T i
2

mT i
2
= 0 (D.15)
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σ2
T i
2
=

Rs(0)−Rs(2i∆)

(C/N0)TR2
A(0)

[
λi
2

]2 (D.16)

D.3 Test T i
3

For the scenario without distortion (H0), the test T i
3 is given by Eq. 5.38

T i
3 =

X

Y
=

n−i + ni − 2ρin0

Z0 + n0λi
3

(D.17)

The mean mX = 0 and mY = Z0λ
i
3. The variances of X and Y are

σ2
X =

N0

T

[
(2 + 4ρ2i )Rs(0) + 2Rs(2i∆)− 8ρiRs(i∆)

]
(D.18)

σ2
Y =

[
λi
3

]2 N0

T
Rs(0) (D.19)

Then

E{XY } = 2λi
3

N0

T
[Rs(i∆)−Rs(0)] (D.20)

yielding for the correlation coefficient

r =
2[Rs(i∆)/Rs(0)− 1]√

2 + 4ρ2i + 4Rs(2i∆)/Rs(0)− 8ρiRs(i∆)/Rs(0)
(D.21)

Using these results, we obtain for the mean and variance of the r.v. T i
3

mT i
3
≈ Rs(0)−Rs(i∆)

λi
3(C/N0)TR2

A(0)
≈ 0 (D.22)

σ2
T i
3
≈ (1 + 2ρ2)Rs(0) +Rs(2i∆)− 4ρiRs(i∆)

(C/N0)TR2
A(0)[λ

i
3]

2
(D.23)
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Appendix E

Halt criterion for the Monte Carlo

simulation

An important issue in Monte Carlo simulation is to determine how many runs are necessary to

achieve a given accuracy for the probability of false alarm and missing detection probabilities. The

brute force solution would be to use a very large number of runs. However, the larger the number of

runs, the longer the run time. Thus, a trade off between the run time and accuracy must be taken into

consideration.

Assuming N independent trials such that the number of error events n is binomially distributed,

B(N,p), where p is the a priori probability of error event, for a given N, the estimate of p is given by

p̂ = n/N [36].

Consider now the random variable X that follows a binomial distribution with parameters N and p.

The probability of having exactly n error events, with n = 0,1,...,N is

prob{X = n} =

N

n

 pn(1− p)N−n (E.1)

where

N

n

 =
N !

(N − n)!n!
(E.2)

X has mean E{X} = Np and variance σ2 = Np(1− p) [34].

Because B(N, p) is a binomial distribution, it is not possible to determine a confidence interval with

exactly a specified confidence level 1− α, with α << 1. However, it is possible to obtain an interval with

a coverage probability of, at least, 1 − α. Most introductory statistic textbooks present the confidence

interval based on the normal approximation. Nevertheless, this approximation fails when the a priori

probability, p, is close to 0 (as is the case) [37].

The strategy herein followed, is the Clopper-Pearson ”exact” confidence interval for p, that is obtained

by solving [38]
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N∑
k=n

N

k

hk
1(1− h1)

N−k =
α

2
(E.3)

and

n∑
k=0

N

k

hk
2(1− h2)

N−k =
α

2
(E.4)

where h1 and h2 are, respectively, the lower and upper limit of the confidence interval and 1 − α is

the confidence level. When N → ∞ and p → 0, such that Np = λ (constant), we can obtain for Eq. E.3

and E.4 [34]

N∑
k=n

N

k

hk
1(1− h1)

N−k ≈
N∑

k=n

N

k

 λk
1

k!
exp(−λ1) =

α

2
(E.5)

and

n∑
k=0

N

k

hk
2(1− h2)

N−k ≈
n∑

k=0

N

k

 λk
2

k!
exp(−λ2) =

α

2
(E.6)

with

h1 =
λ1

N
, h2 =

λ2

N
(E.7)

Normalizing these limits by p = n/N yields

ρ1 =
h1

p
=

λ1

n
, ρ2 =

h2

p
=

λ2

n
(E.8)

The confidence interval is, thus, given by

ρ1p ≤ p̂ ≤ ρ2p (E.9)

The length of the confidence interval is L = (ρ2 − ρ1)p.

Table E.1 contains the lower and upper factors ρ1 and ρ2 for different numbers of error events n and

confidence levels 1 − α. As expected, it can be seen that by increasing the number of available error

events, the confidence intervals become narrower and better accuracies are obtained. For instance,

selecting α = 0.05 and L = 0.04p requires n ≈ 100. This provides the halt criterion for the Monte Carlo

simulation: the simulation process is stopped after 100 error events are obtained. For a typical missing

detection probability Pmd = 10−3, the average of runs is N = 100/10−3 = 105.
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Table E.1: Confidence intervals for the estimation of p.

α = 0.1 α = 0.05 α = 0.01

n ρ1 ρ2 ρ1 ρ2 ρ1 ρ2

10 0.543 1.696 0.480 1.839 0.372 2.140
25 0.695 1.397 0.647 1.476 0.560 1.640
50 0.779 1.266 0.742 1.318 0.673 1.425
100 0.841 1.181 0.814 1.216 0.761 1.288
125 0.858 1.160 0.832 1.191 0.785 1.254
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