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Abstract

Brain activity during rest has been demonstrated to evolve through a repertoire of functional connectivity

(FC) patterns, whose alterations may provide biomarkers of schizophrenia - a psychotic disorder charac-

terised by dysfunctional brain connectivity. In this study, differences between the dynamic exploration of

resting-state networks using functional magnetic resonance imaging (fMRI) data from 71 schizophrenia

patients and 74 healthy controls were investigated using a method focusing on the dominant fMRI signal

phase coherence pattern at each time point. Through the lens of dynamical systems theory, brain activity

in the form of temporal FC state trajectories was examined for intergroup differences by calculating the

fractional occupancy, dwell time, limiting probability of each state and the transition probabilities between

states. Results showed a medium to large effect size for a globally synchronised state which was found

to have decreased fractional occupancy in schizophrenia. The fractional occupancy and limiting proba-

bility of FC states overlapping with canonical functional subsystems was identified to have increased in

schizophrenia, with small to medium effect sizes. Medium to large effect size for the reduced probability

of remaining in a global integrative state and for a number of altered state-to-state transition probabil-

ities were revealed in schizophrenia. Finally, this study showed that using K-medoids clustering did

not influence the observed intergroup differences - highlighting the utility of dynamical systems theory

to better understand brain activity. Combined, these findings expose pronounced differences between

schizophrenia patients and healthy controls - supporting and extending current knowledge regarding

disrupted brain dynamics in schizophrenia.
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Resumo

A atividade cerebral em repouso evolui através de um repertório de padrões de conectividade funcional,

cujas alterações poderão fornecer biomarcadores de esquizofrenia. Neste estudo foram investigadas

diferenças entre a exploração dinâmica de redes de repouso em 71 pacientes esquizofrénicos e 74

controlos saudáveis, usando um método baseado no padrão de coerência de fases do sinal de Res-

sonância Magnética em cada instante de tempo. Na perspetiva da teoria de sistemas dinâmicos, foram

examinadas diferenças, entre grupos, na atividade cerebral concebida como trajetórias entre estados,

calculando a probabilidade de ocorrência, tempo de permanência, probabilidade limite de cada estado

e as probabilidades de transição entre estados. Os resultados mostraram tamanho de efeito médio a el-

evado para um estado globalmente sincronizado, cuja probabilidade de ocorrência estava reduzida em

esquizofrenia. A probabilidade de ocorrência e a probabilidade limite de estados relacionados com sub-

sistemas funcionais canônicos foram identificadas como aumentadas em esquizofrenia, com tamanhos

de efeito pequenos a médios. Em esquizofrenia, foi revelado tamanho de efeito elevado para a probabil-

idade reduzida de permanecer num estado global e ainda tamanhos de efeito médios para um conjunto

de probabilidades de transição de estado alteradas. Por último, constatou-se que as diferenças ob-

servadas entre grupos não eram influenciadas pelo uso de agrupamento de K-medóides - salientando

a maior utilidade da teoria de sistemas dinâmicos para a compreensão da atividade cerebral. Estes

resultados, expondo diferenças demarcadas entre pacientes e controlos, reforçam e expandem o con-

hecimento atual sobre o dinamismo cerebral alterado na esquizofrenia.

Palavras Chave

Ressonância magnética funcional em repouso, Conectividade funcional dinâmica, Redes funcionais,

LEiDA, Esquizofrenia
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1.1 Motivation

The use of Magnetic Resonance Imaging (MRI) data has increased significantly in recent years, resulting

in a deeper understanding of the foundations of brain structure and function. In fact, the application of

this technique within the clinical neuroimaging field has brought about significant breakthroughs, with

the identification and validation of clinical biomarkers of diseases being one of the most relevant [1–4].

Schizophrenia, a severe neuropsychiatric disorder, has been the subject of an abundance of research

in previous years. Notably, neural activity within this disorder has been studied both from an anatomical

and functional perspective contributing with essential insights to the understanding of this disease [5–7].

Despite these efforts, the neuropathology of schizophrenia remains unknown, impeding the development

of clinical diagnostics and effective treatments [7,8].

A special focus regarding Functional Magnetic Resonance Imaging (fMRI) research lies on the exam-

ination of the dynamic fluctuations of brain connections, i.e., the way different brain areas communicate

with each other. A plethora of promising methodologies to examine time-resolved fluctuations in connec-

tivity have been proposed [9,10]. The referred approaches were extensively applied to neuropsychiatric

disorders, such as schizophrenia, due to their ability to detect transient changes in neural signalling

which were hypothesised to underlie such disorders [11]. Nevertheless, inconsistent methodological

considerations and statistical challenges for studying the dynamic fluctuations in brain activity in fMRI

hinder the identification and validation of a universal biomarker for schizophrenia [10, 12, 13]. Further-

more, the clinical utility of such a marker, assuming one is found, is still questionable [3]. In this project,

a novel methodology to study time-resolved neural activity will be applied to a large sample of patients

with schizophrenia. This is to deal with the mentioned shortcomings and provide reliable and biologically

meaningful biomarkers of schizophrenia.

1.2 Problem

Given input data collected from fMRI it is possible to characterise the spatiotemporal organisation of the

functional interactions in both healthy and diseased brains. Initially, the brain’s functional organisation

was assessed over an entire scan, through the computation of average connectivity maps. Nevertheless,

the clinical utility of such approaches is unclear [11]. As a result, recent years have seen a rapidly

growing interest in studying time-resolved brain activity, which has been suggested to provide more

sensitive and specific biomarkers of disease [9, 11, 13]. In fact, the time-resolved characterisation of

the activity within the brain has enabled the detection of aberrant connectivity across regions, which

is consistent with existing theories of psychiatric disorders that suggest impaired brain functionality [1,

14]. Notably, these approaches have propelled the identification of potentially promising biomarkers of

several disorders, including schizophrenia [6,7,9,11,15].

3



A plethora of time-resolved techniques may be utilised to explore and characterise the temporal fluc-

tuations of brain activity in schizophrenia patients. Nevertheless, the study of time-varying connectivity

is not straightforward and several open questions remain under debate. On the one hand, multiple tech-

niques and methodologies to extract and quantify time-resolved fluctuations in brain activity have been

used in the literature, therefore hindering comparability between studies [9,10,13]. In addition, estimates

of time-varying connectivity are strongly influenced by the preprocessing steps applied to the raw fMRI

data [9, 10, 16, 17]. On the other hand, it is uncertain whether these approaches capture information of

relevance regarding brain function, or simply resolve methodology-related artefacts [9, 10, 13, 18]. An

additional important concern when assessing time-varying connectivity regards the omission or mis-

use of appropriate statistical testing of connectivity temporal variations [9,10,13]. Such procedures are

paramount in order to guarantee that the observed connectivity temporal fluctuations are in fact caused

by transient changes in neural activity, instead of simple artefacts or noise. Furthermore, it is critical

that estimates of dynamic functional connections are reliable and sensitive enough to serve as robust

biomarkers of disease. This is because they may illuminate significant intergroup differences that enable

the detection and potential treatment of such diseased populations.

The aforementioned issues exacerbate the need to use approaches with a robust methodology and

solid statistical analysis to facilitate the interpretability and comparability of relevant differences in brain

function between healthy and diseased populations.

1.3 Objectives

Schizophrenia affects around 20 million people worldwide and, if left untreated, its symptoms can be

persistent and disabling [19]. Hence, there is a great need for a better understanding of the pathology of

this disease. Understanding whole-brain patterns of functional connections in patients with schizophre-

nia would be the first step towards discovering clinically relevant biomarkers that might have the potential

to diagnose the disorder, to determine its prognosis, and to predict and monitor a patient’s response to

interventions.

The central aim of this MSc thesis is the detection of statistically significant differences between the

neural activity observed in schizophrenia patients and healthy controls that could contribute with relevant

biomarkers of this disease. To this effect, a recently proposed method is used to investigate whole-

brain time-varying connectivity fluctuations observed in an open-source fMRI neuroimaging dataset from

patients with schizophrenia and healthy controls [20].

This method, designated Leading Eigenvector Dynamics Analysis (LEiDA) [21], clusters the dominant

functional connectivity patterns captured at each time point to define a repertoire of Blood Oxygenation

Level Dependent (BOLD) phase coherence connectivity patterns which transiently emerge and dissolve

4



during neural activity - defining time courses of recurrent patterns of BOLD phase coherence. Firstly,

this study assesses whether intergroup differences exist by characterising the estimated time courses

of recurrent connectivity patterns using tools from dynamical systems theory. Specifically, differences

between schizophrenia patients and healthy controls are investigated in terms of the probability of oc-

currence, the mean duration, the limiting probability of each pattern of connectivity and the one-step

transition probabilities between patterns. Secondly, this research examines the quality and stability of

the partitions resulting from the clustering procedure. This is because previous studies employing LEiDA

have not closely examined the validity of the partitions of the data, tending to focus primarily on detect-

ing differences between groups. Lastly, this project attempts to understand the influence of using an

alternative clustering algorithm on the ability to differentiate patients with schizophrenia from healthy

controls. This work hypothesised to find altered time-resolved functional connectivity in schizophrenia

patients compared to healthy controls characterised by: (1) reduced excursions to a connectivity pattern

possibly involved in the integration of segregated functional connections and (2) increased excursions

to a number of functionally segregated connectivity patterns.

1.4 Outline

This project is organised into six chapters. The current chapter serves as an introductory overview of

the problem under study, by stating its relevance and the objectives of this work. Chapter 2 provides

a comprehensive literature review to provide context for the current research. This chapter starts by

briefly describing the transverse workflow of the fMRI technique, followed by the discussion of analytical

tools and theoretical concepts relevant for this study. Chapter 2 ends with the review of relevant past

studies about time-resolved brain functional connectivity in schizophrenia measured by fMRI. Chapter 3

presents the materials and methods used to accomplish the objectives of this project. Firstly, the fMRI

data and associated processing steps are outlined. Then a detailed description of the analytic approach

used to capture the dynamic connectivity patterns is provided. This chapter ends by presenting the

tools necessary to evaluate, compare and interpret the results. Chapter 4 outlines the findings obtained

throughout this project. Results from the application of LEiDA to the neuroimaging data are provided in

the first section. Chapter 4 ends by evaluating the influence of using a distinct clustering algorithm while

conducting a LEiDA analysis. Chapter 5 provides the discussion and interpretation of the findings of the

previous chapter. Chapter 6 reflects on the findings and contributions of this work. Limitations of this

study, as well as areas of focus and recommendations for future work are also discussed.

5



6



2
Literature Review

Contents

2.1 Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Functional Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Resting-state functional connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Resting-state functional connectivity analysis methods . . . . . . . . . . . . . . . . . 14

2.5 Permutation tests for the two-sample location problem . . . . . . . . . . . . . . . . . 21

2.6 State Of The Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7



8



This chapter aims at providing the reader with necessary background for the current research. The

chapter starts by presenting a summary overview of schizophrenia in Section 2.1. Section 2.2 presents

the fundamentals aspects of fMRI research. Section 2.3 surveys seminal findings of the resting-state

fMRI studies. Relevant analytical methods to investigate resting-state brain activity are described in

Section 2.4. Section 2.5 explains the theoretical background of two-sample location permutation tests.

The chapter concludes by presenting the state of the art in resting-state schizophrenia research.

2.1 Schizophrenia

Schizophrenia is a chronic brain disorder characterised by disruption to thought processes, perceptions,

emotional responsiveness and social interactions. This mental illness accounts for a disproportionately

high healthcare burden [22]. Furthermore, patients with schizophrenia have an increased mortality and

suicide [23] risk whilst also having a reduced quality of life [24].

The symptomatology of schizophrenia falls into three major categories. Positive symptoms include

psychotic manifestations such as hallucinations, delusions and thought disorder, which are often the rea-

son patients seek clinician’s advice. However, the disorder is also associated with negative symptoms,

such as amotivation and social withdrawal, and cognitive symptoms, which include deficits in working

memory, executive function, and processing speed.

Schizophrenia has been described as a “disconnection syndrome” [25], referring to over and under-

connection of neural circuits. In fact, brain-imaging studies suggest that schizophrenia is a disorder char-

acterised by altered brain structure and function that may be related to clinical symptoms [2,4,6,26,27].

To date, no biomarker for schizophrenia diagnosis has been discovered and the condition is usually di-

agnosed after assessment by a specialist [28]. Consequently, one of the major goals in schizophrenia

research is to identify underlying neural pathophysiological correlates of symptoms to yield a compre-

hensive understanding of this disease, thereby enabling the development of new treatment approaches,

and establishment of personalised treatment planning. To this effect, neuroimaging tools and techniques

may be particularly suitable schizophrenia-specific biomarkers, which may aid in developing accurate

and reliable diagnostic platforms.

2.2 Functional Magnetic Resonance Imaging

Since its development, fMRI studies have become increasingly popular in neuroimaging research as

they provide an unprecedented ability to safely and noninvasively image brain activity with very good

spatial resolution. This neuroimaging method led to the expansion of a plethora of areas, such as

clinical neuroimaging [1,5,6,29] and cognitive neuroscience [29–35].
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2.2.1 Basic principles

The technique of fMRI is most commonly performed using BOLD contrast imaging [36]. The increase in

the magnitude of the BOLD signal provides an indirect measure of neural activity. This is triggered by a

complex sequence of physiological events, which reflect changes in regional cerebral blood flow, volume

and oxygenation. Briefly, exceeding the cerebral metabolic rate of oxygen leads to an increase in local

neural activity - stimulating both higher energy consumption and increased blood flow. The local influx

of oxygenated blood increases the oxy-to-deoxyhemoglobin ratio, which leads to an increase in the MRI

signal compared to that of the surrounding tissue [31] (for an extensive discussion consult [37]).

Experimental designs used in fMRI studies may be either resting state or task-based. While task-

based fMRI studies investigate brain response to various forms of stimuli and activity during task per-

formance, resting-state fMRI (rs-fMRI) studies rely on the intrinsic spontaneous dynamics of the brain

to detect and characterise activity within the brain [12, 30]. The goal of rs-fMRI is to measure the level

of co-activation of the fMRI BOLD signals in different anatomical regions of the brain as an indicator of

synchronous activity, i.e., interregional functional communication. Despite the challenges that rs-fMRI

studies impose [12], studies of intrinsic brain dynamics and self-directed “resting” cognition, both in

health and disease, are an indispensable tool to the neuroimaging community as they provide an impor-

tant perspective on brain function.

2.2.2 Preprocessing and noise removal

In order to characterise or quantify brain activity using fMRI data, it is essential to differentiate the actual

signal of interest from other noise-related fluctuations. Notably, one weakness of rs-fMRI lies in the

complexity associated with noise/artefact identification and removal. The BOLD responses observed

with rs-fMRI lack an a priori known task. As such, connectivity patterns are determined by measuring

the temporal similarity of the BOLD time series using a given metric. Consequently, any non-neural

activity-related process that is spatially or temporally correlated with the BOLD signals will also affect

the derived measures of connectivity - introducing spurious results [12, 17]. These rs-fMRI confounds

may be particularly problematic when comparing the brain’s functional architecture between groups that

display physiological or behavioural differences during “rest” [3,16].

The analysis of rs-fMRI data has an intrinsically complex workflow, with quality control and prepro-

cessing procedures playing a fundamental role in minimising the impact of artefacts and optimising data

usability, reliability and reproducibility [12] (for a discussion on quality control and preprocessing con-

sult [31]). Throughout rs-fMRI studies, spatial smoothing, temporal filtering and nuisance regression are

commonly implemented preprocessing steps [12].
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Spatial smoothing is a preprocessing technique which attempts to remove high-frequency signals.

This technique involves the application of a filter to the data points, which replaces the signal at each

voxel with a weighted average of that voxel’s neighbours - resulting in blurred images [12, 31]. Whilst

smoothing simultaneously increases the signal-to-noise ratio and the validity of the statistical tests while

blurring any residual anatomical differences (decreases inter-subject variability), it also reduces the ef-

fective spatial resolution which may lead to the loss of meaningful local activations [12]. Smoothing

typically involves convolving the functional images with a Gaussian kernel, often described by the full

width of the kernel at half its maximum height - determining to which extent the data is smoothed [31].

Data from rs-fMRI studies contains noise, which may be observed at multiple frequency bands, de-

pending on its source. Temporal filtering is performed in order to remove the effects of such noise

confound signals with known or expected frequencies. This procedure hypothetically differentiates sig-

nal from noise frequency bands, resulting in increased signal-to-noise ratio [12, 38]. Research has

shown that physiologically meaningful fMRI resting signals were predominantly “low-frequency” (∼< 0.1

Hz) spontaneous frequency fluctuations [16,30,33]. Furthermore, cardiac and respiratory physiological

noise components typically reside in frequency bands above 0.1 Hz, where neural activity related signal

is believed to be minimal [12,16]. As a result, the standard strategy within investigations of rs-fMRI con-

sists in applying a band-pass filter (typically, 0.01−0.08/0.1 Hz). Nevertheless, it has been suggested

that relevant neural activity may be detected at higher frequency ranges [39,40].

Complementary to the aforementioned preprocessing procedures, a large body of research has been

devoted to investigating cleanup methods to reduce the susceptibility of fMRI data to participant’s physi-

ological artefacts, such as head motion, cardiac and respiratory “noise”, as well as vascular effects [17].

In fact, due to the indirect nature of fMRI, neural effects may be hard to distinguish from such sources

of noise, thus hindering the interpretability of the results. In order to overcome the referred problem

when conducting fMRI studies, a wide range of techniques have been proposed, such as time series-

based strategies to remove nuisance regressors, that is, spurious fluctuations unlikely to be of neuronal

origin [17, 41, 42], and the combination of fMRI with electrophysiological activity measurements [17],

among others. Nevertheless, it is not currently possible to entirely isolate the true neural activity-related

BOLD signals of interest from the confounds that may arise from many processes in the MRI environ-

ment [9,10,17]. Therefore, removing such confounds/noise will also inadvertently remove signals of in-

terest [38]. Cleanup methods still require further refinements [16], which would facilitate more advanced

applications to the healthy and diseased brains and, possibly, improve the reliability and interpretability

of findings obtained from fMRI studies. However, despite the lack of consensus as to whether noise

removal strategies should be applied and the fact that no “optimal” method has yet been identified, in

recent years, a large number of studies have employed these techniques [41–43].
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2.2.3 Brain parcellation

Brain parcellation is paramount for understanding brain organisation and function. It consists of defining

distinct partitions within the brain, be they regions of interest (ROIs) or networks that comprise multiple

discontinuous but closely interacting regions. Typically, BOLD time courses in each voxel in the brain

are combined, according to a parcellation template, to extract the regional time courses for each of the

areas or networks comprised in the selected parcellation scheme. To date, several brain parcellation

templates have been proposed in the literature, with the optimal method yet to be discovered [44]. The

Subset of 90 non-cerebellar Automated Anatomic Labeling brain areas (AAL90) parcellation divides the

cortical and subcortical grey matter of the standard Montreal Neurological Institute (MNI) brain into 90

brain regions [45]. The procedure for parcellating fMRI data is summarised graphically in Figure 2.1.

Figure 2.1: Axial slice of the brain obtained during “rest” at a given time point. BOLD time courses in each voxel
of the brain are recorded and subsequently combined with a parcellation scheme (AAL90 was used) to
recreate the (BOLD) regional time courses for each of the regions in the parcellation scheme.

2.3 Resting-state functional connectivity

The brain is characterised by a complex network of functional communications which enable the inte-

gration of information across different regions. The investigation of functional interactions in the human

brain is of utmost importance, providing new valuable insights into the foundations of brain activity. In the

context of functional neuroimaging, the characteristic temporal dependence of neural activity patterns

of anatomically separated brain regions was termed Functional Connectivity (FC) [29]. FC reflects the

level of functional communication between brain signals originating at different locations.

Early neuroimaging studies led to the recognition that spontaneous/intrinsic brain activity was a fun-

damental aspect of normal brain function. Resting-state FC, i.e., the spontaneous activity of the brain

during “rest”, was first described in the seminal discovery that estimated BOLD FC between the primary
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motor cortex and other brain areas - revealing spatial FC patterns which mirrored those observed when

executing a motor response [30]. This study showed brain regions could be synchronised in activity

despite the absence of any task or stimulus [30]. Following this breakthrough, it became necessary to

define a baseline - or default mode - of brain activity. This is because studies have shown that a given

set of brain regions presented high activity levels during “rest” and low activity levels during task perfor-

mance, and vice-versa - constituting a cohesive, task-negative default state of brain activity designated

as Default Mode Network (DMN) [32]. The DMN has received special attention in investigations of cogni-

tive misfunctioning in neurologic and psychiatric brain disorders [29,46–48]. Subsequent neuroimaging

studies of the brain at “rest” identified several other meaningful large-scale, task-positive, FC networks

of correlated temporal patterns between anatomically separated brain regions. These FC networks

were consistently observed across different subjects and corresponded to patterns of task-evoked acti-

vation. They define the so-called Resting-State Networks (RSNs) which constitute a discrete collection

of anatomically separated, but functionally linked brain regions that display a high level of ongoing FC

during “rest” [29,33,34]. Importantly, a wide range of studies have focused on examining possible func-

tional dysconnectivity effects and/or altered activity within RSNs in neuropsychiatric disorders [4,29,47].

Figure 2.2 illustrates consistently reported RSNs across multiple studies as presented in [29].

Figure 2.2: Consistent resting-state functional networks reported across different studies. The RSNs include the
primary sensorimotor network, the primary visual and extra-striate visual network, a network consisiting
of bilateral temporal/insular and anterior cingulate cortex regions, left and right lateralised networks
consisting of superior parietal and superior frontal regions and the DMN consisting of precuneus, medial
frontal, inferior parietal cortical regions and medial temporal lobe. Adapted from [29].

Motivated by prior investigations [30, 32–34], efforts were directed into the investigation of global

functional organisation within the human brain, by mapping its functional connectivity. This resulted

in reference FC maps which estimated the functional communications of the human cerebral cortex -

providing information about the level of correlated dynamism across distinct brain regions [49]. Based
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on rs-fMRI data collected from a large sample, the influential work of [49] provided a 7-network func-

tional parcellation. The derived parcellation, presented in Figure 2.3, includes the Visual network, the

Somatomotor network, the Dorsal and Ventral attention networks, the Limbic network, the Frontoparietal

network and the Default network.

Figure 2.3: A coarse 7-network parcellation of the human cerebral cortex based on a large sample of rs-fMRI data.
Adapted from [49].

The authors suggested that these functionally coupled networks emphasise the need to adopt net-

work approaches when exploring fluctuations in brain activity, since function within the brain is thought

to emerge from the interactions among functionally interconnected brain areas [49]. Although research

primarily focused on the role of the DMN in neurologic and psychiatric disorders, recent studies have

started to examine whole-brain FC using a plethora of techniques - providing new insights in impaired

brain communication and functional organisation in several disorders [4, 9, 10]. The following section

moves on to describe commonly used analytical methods in rs-fMRI studies.

2.4 Resting-state functional connectivity analysis methods

Investigations of large-scale FC derived from rs-fMRI data have revealed valuable insights about the pat-

terns of interregional neural interactions in both healthy and diseased brains [1, 4, 29, 46]. Such break-

throughs were obtained using a wide range of sophisticated analytic methods. Notably, the selection of

the method to extract the relevant functional information plays a key role, since the method employed

may greatly impact the results and, consequently, for instance, identify disease biomarkers [4, 50]. Tra-

ditionally, FC was assumed to be relatively static over the scan period (usually several minutes) and the

majority of previous rs-fMRI studies applied static Functional Connectivity (sFC) approaches to assess

brain functional organisation. Nonetheless, this assumption may be an oversimplification, as studies in

humans demonstrated that measurements of BOLD signals during “rest” exhibited intrinsic spatiotempo-

ral dynamic organisation [51]. Consequently, recent years have seen rapidly growing interest in studying

time-resolved fluctuations in FC [13], often referred to as dynamic Functional Connectivity (dFC).
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2.4.1 Static functional connectivity

Methods to extract relevant functional information from rs-fMRI data can be considered along a spec-

trum of temporal resolution. On one end, sFC methods assume that FC between regions is constant

over an arbitrarily prolonged time window. These methods may focus on the local function of specific

brain regions (functional segregation) or on the functional relationships between different brain areas

(functional integration) [52, 53]. Functional segregation may be assessed utilising approaches such as

Regional Homogeneity (ReHo) and Amplitude of Low Frequency Fluctuations (ALFF), while seed-based

correlations, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Clustering

and Graph Theory may be used to evaluate functional integration [53]. Figure 2.4 presents the most

common approaches for the analysis of rs-fMRI data.

(a) Seed-based (b) ReHo (c) ALFF (d) PCA

(e) ICA (f) Clustering (g) Graph Theory

Figure 2.4: Commonly used analysis methods in resting-state fMRI studies. Adapted from [12].

The first observation of resting-state FC from rs-fMRI data was accomplished using seed-based

correlational analysis [30]. This technique is based on assessing the correlation among a priori defined

ROIs or voxels, typically called seeds - resulting in FC maps [12,50]. The FC maps provide information

about with which regions the selected seed is functionally linked and to what extent [29].

Aiming to reflect regional FC (or co-activation), ReHo employs Kendall’s coefficient of concordance

to measure the similarity of the time series of a given voxel to those of its nearest neighbours (based on

a pre-defined ROI) [54]. The ALFF [55] and its variant fractional ALFF [56], measure signal magnitude

on a voxel-to-voxel basis and are usually implemented alongside ReHo, since these methods reflect

different complementary properties of the BOLD signal [12].
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The aforementioned model-driven strategies rely on prior knowledge to define sets of brain region-

s/voxels - limiting FC analysis to some specific regions/voxels. Such limitations were overcome by

applying data-driven methods, such as PCA, ICA and clustering. PCA is concerned with explaining the

variance-covariance structure of the data by finding a set of orthogonal axes (principal components)

which reproduce the total or most of the data’s variability [12]. ICA [57] is a widely used approach

that has shown great promise in identifying network-based biomarkers of psychiatric disorders, such as

schizophrenia [47, 58, 59]. Typically, ICA maps of fMRI studies are generated using spatial ICA which

decomposes the BOLD signals into a linear combination of several maximally spatially independent

components, of which some may be regarded as independent brain functional networks that represent

synchronised BOLD activity [50,53]. Clustering is another data-driven approach that groups brain voxels

with similar connectivity (BOLD signal time courses) in the same cluster [12].

Functional brain networks have also been investigated through the lens of graph theory derived met-

rics, which have provided important insights to understand the architecture, development and evolution

of brain networks [46, 52]. Under this framework, the brain is modelled as a network comprised of

nodes (voxels or regions) and edges (connections between nodes, e.g., statistical dependencies among

neuronal time series), which is commonly referred to as “Functional Connectome” [60]. This whole-

brain functional network can be investigated at different levels of scale, and specific measures capture

graph attributes at local (nodal) and global (network-wide) scales [46, 52]. These graph-based mea-

sures provide powerful features which integrate across the whole-brain - revealing useful biomarkers to

characterise, identify and treat patients with psychiatric disorders such as schizophrenia [2,5,6,27,61].

The study of sFC, while undeniably informative, does not capture the spatiotemporal FC fluctuations

in the human brain at behaviorally relevant timescales. Accordingly, on the other end of the spectrum,

dFC-based methods, which are able to estimate time-resolved FC at each individual time point, were

proposed. Remarkably, dFC-based approaches have been shown to provide more sensitive and specific

markers of disease than sFC-based approaches [11,50,62]. Having introduced the general concepts of

sFC, the following section will focus exclusively on the dynamical aspects of FC.

2.4.2 Dynamic functional connectivity

Recent functional neuroimaging studies have demonstrated that FC between different regions of the

brain is not stable over time. In this perspective the term “Chronnectome” was employed to describe

the time-varying, but reoccurring, patterns of functional communication among brain regions [11]. For

instance, at “rest”, the spatiotemporal variability of brain activity can be empirically observed by consider-

ing the spontaneous time-resolved activation and deactivation of a number of potential stable functional

networks configurations, known as “FC states” or “FC patterns” [14,21,63–66]. Accordingly, dFC analy-

sis provides valuable insights into the dynamic behaviour of the brain. Notably, a neural origin of mental
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illnesses has been suggested by reports of altered resting-state brain activity - raising the possibility of

utilising dFC approaches as disease biomarkers, by unveiling the intrinsic mechanisms leading to the

diseased brain [9,10,14].

To date, several approaches have been proposed to assess and characterise the temporal variations

in the spatiotemporal structure of BOLD signal fluctuations [9, 10, 67] and to test for its statistical signif-

icance [68]. However, the optimum analysis method is still uncertain and other unresolved issues still

persist in this promising research area [13]. Moreover, despite its attractiveness to reflect time-varying

fluctuations in FC, dFC approaches - like their stationary counterparts - are susceptible to noise and

physiological artefacts [9,10,13].

The most common and straightforward approach to investigate the temporal evolution of FC is the

Sliding-Window Analysis (SWA) [15, 65, 66]. This approach aims to capture pairwise connectivity from

interregional synchrony [9, 10]. In this approach, a time window of fixed length (W ) is selected, and

within the temporal interval that it spans (t −W, t + W ), connectivity is computed between each pair of

regional time courses using a given metric. The window is then shifted by a fixed step and the same

calculations are repeated until the window spans the end part of the time courses. Figure 2.5 depicts an

illustration of the computation of dFC using SWA.

Figure 2.5: SWA using the Pearson correlation coefficient to extract dFC. BOLD signal measured at 90 distinct
brain areas, according to the AAL90 parcellation scheme, from one healthy adult at “rest” (300 seconds,
Repetition Time = 2 s). Example of correlation matrices dFC(t) obtained for sliding-windows of 40
seconds centered at different time points t.
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This iterative procedure outputs a three-dimensional time-varying tensor, with dimensions N×N×T ,

where N is the number of brain areas determined by the selected parcellation template and T the num-

ber of time windows considered, which describes the connectivity pattern of the brain during the exam-

ined temporal interval. The most frequently used metric in SWA is the Pearson correlation coefficient.

Additionally, beyond this measure, higher order multivariate analyses have been experimented as well.

In fact, by assessing FC in distinct time windows, sFC approaches can be easily extended to be time-

resolved. Briefly, dFC can be evaluated by measuring FC among ROIs or voxels in a sliding-window,

performing ICA (or Independent Vector Analysis (IVA)) on BOLD time courses in different windows,

clustering time series of networks, evaluating time-resolved ReHo and computing time-varying graphs’

metrics [10, 50]. Despite its popularity, the choice of a fixed window length limits the SWA to fluctua-

tions in the frequency range below the window period, regardless of the true frequency content of the

data [10]. Consequently, the choice of the ideal window length remains under debate [9,10,68].

Brain activity constitutes a dynamical regime in which multiple spatial patterns of correlated activ-

ity across different brain regions, i.e., RSNs, transiently form and dissolute [14, 63, 64, 66, 69]. Aiming

to capture this spatiotemporal dynamics of the phase interactions among rs-fMRI BOLD signals at a

quasi-instantaneous level, Phase Synchronization (PS) or Phase Coherence (PC) was proposed [70].

As stated, the SWA had limitations associated to the window size - compromising the time resolution/re-

liability of the dFC estimates. The adoption of data-driven PC-based approaches attempts to solve this

problem by assessing the complex time-varying FC [70] (although at the cost of greater susceptibility to

high-frequency noise fluctuations [67]).

Recently, taking advantage of PC, Phase Coherence Connectivity (PCC), described in detail below,

was proposed as a method to capture the amount of interregional BOLD signal synchrony at each time

point through the computation of a phase coherence matrix [21,69, 71, 72]. Alternative PC-based mea-

sures have been proposed, such as the Coherence Coefficient and Coherency (see [73] for a review).

To compute the pairwise phase synchrony between brain region n and every other brain region at

each time point, first the BOLD phases at each time t, θ(n, t), are estimated using the Hilbert transform of

each BOLD regional time course. Let x(n, t) be a real-valued signal representing the BOLD regional time

course of brain region n. To separate the signal’s instantaneous amplitude from the instantaneous phase

[70] it must be converted into its analytical representation, xa(n, t) - complex signal whose imaginary part

is the Hilbert transform of the real part [74]. Thus, the analytic signal is written as:

xa(n, t) = x(n, t) + jH[x(n, t)] (2.1)

where j is the imaginary unit and H[·] is the Hilbert transform. Henceforth, it is assumed that the

BOLD regional time course constitutes a narrowband signal, which can be expressed as the product of

an amplitude-modulated low-pass signal, a(n, t), and a high-frequency sinusoidal “carrier”, θ(n, t), as:
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x(n, t) = a(n, t) cos(θ(n, t)) (2.2)

The Bedrosian’s theorem states that the Hilbert transform of the product of a low-pass signal with

a high-pass signal with non-overlapping spectra is given by the product of the low-pass signal and the

Hilbert transform of the high-pass signal [74]. This can be written in mathematical terms as:

H[fLP (t)fHP (t)] = fLP (t)H[fHP (t)] (2.3)

where H[·] is the Hilbert transform, fLP is the low-pass signal and fHP is the high-pass signal.

Application of the Bedrosian’s theorem to the Hilbert transform of the narrowband signal x(n, t) yields:

H[x(n, t)] = H[a(n, t) cos(θ(n, t))] = a(n, t)H[cos(θ(n, t))] = a(n, t) sin(θ(n, t)) (2.4)

Plugging in the results from Equation (2.2) and Equation (2.4) in Equation (2.1) and applying the

Euler’s formula, the analytic signal becomes:

xa(n, t) = a(n, t) cos(θ(n, t)) + ja(n, t) sin(θ(n, t)) = a(n, t)ejθ(n,t) (2.5)

where a(n, t) is the instantaneous amplitude and θ(n, t) is the instantaneous phase of the BOLD

signal of brain region n at time t. Upon calculating the phases (angles) of the BOLD signals over time, the

PCC between brain areas n and p at time t, dFC(n, p, t), is estimated using Equation (2.6) [21,69,71,72]:

dFC(n, p, t) = cos(θ(n, t)− θ(p, t)) (2.6)

From Equation (2.6) it follows that, at a given time t, two brain areas n and p with temporarily aligned

BOLD signals will have a phase synchrony value dFC(n, p, t) close to 1. Contrarily, if, at a given time t,

the phases of the brain areas n and p are orthogonal, i.e., they are at right angles (90◦) to each other,

the phase synchrony value dFC(n, p, t) will be close to 0. Since the measure is undirected, for each time

t ∈ {1, . . . , T}, where T is the total number of time points, dFC(t) is a N ×N symmetric matrix, where

N is the total number of brain regions. Therefore, for a given subject the resulting dFC, characterised

through PCC, is expressed as a three-dimensional tensor with size N ×N × T .

It must be noted that, despite allowing for a higher temporal resolution, the computation of mean-

ingful dynamic FC through PC requires dealing with narrowband signals - imposing restrictions on the

analysed signals [70]. In previous studies, this caveat has been overcome by band-pass filtering the

BOLD regional time courses within a specified narrowband frequency range [69–72]. However, the

BOLD frequency band which best captures functionally relevant information is still uncertain [38–40].

Furthermore, performing intergroup comparisons within a given frequency band implies that the fluctu-
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ations within the groups’ dynamical repertoire of FC patterns are identical, which may not be the case.

Specifically, in many brain disorders, if the underlying anatomical connections are damaged, the ob-

served dynamical collection of FC states is reduced comparatively to healthy brain FC [26,61,63]. This

supports the claim that band-pass filtering the BOLD signals may affect the time-resolved FC estimates

and the statistical validation of the results [71].

Beyond the aforementioned methods, other relevant dFC-based approaches have been employed in

studies of rs-fMRI (consult [9,10,67] for a complete review).

2.4.3 Estimation of dynamic functional connectivity states

After the estimation of whole-brain dFC, using either SWA, PCC or another approach, a number of

methods have been employed in the literature to extract interpretable information from the dFC patterns.

These methods include assessing graph theoretical measures and/or determining dynamic FC states

[10]. The latter is of particular relevance to the present study and is, therefore, subsequently described in

further detail. This approach consists of defining a collection of patterns of connectivity that repetitively

occur over time and across subjects during resting-state acquisitions [10,67]. The decomposition of the

resting-state FC into a limited set of connectivity states relies on matrix factorisation techniques, such

as clustering algorithms [65, 66] (other techniques described in [10]). Different techniques can produce

distinct results, with each technique having particular advantages and disadvantages [11].

Within the possible clustering algorithms, the unsupervised K-means algorithm is one of the most

widely used methods [9,10]. This algorithm partitions a set of multivariate data into K clusters in which

each observation belongs to the cluster with the nearest centroid (for a complete description of the

method consult [75]). Typically, to compare dFC patterns over time, by providing the upper triangular

elements of the symmetric phase coherence matrices (dFC(t)) of all subjects, the algorithm outputs K

cluster centroids representing the resting-state FC states that describe the transition dynamics within a

rs-fMRI scanning session [67]. In other words, according to the definition of the K-means algorithm, the

FC states can be thought of as average patterns of connectivity that subjects tend to return to during

the course of a resting-state acquisition [64, 76]. This algorithm has been successfully applied in the

literature to characterise the switching dynamics of FC [9,10,65,66]. Recently, as an alternative method,

LEiDA, which considers only the leading eigenvector, V1(t), of each dFC(t) matrix, was proposed [21].

Under the framework of this method, the K-means algorithm is applied to all leading eigenvectors V1

across time points and subjects - yielding time courses of recurrent FC states, i.e., V1 at each time

point t is assigned to the cluster (FC state) that best represents the pattern of connectivity specified by

V1(t) [21]. This method is explained in greater detail in Section 3.3.

Having obtained the different FC states, these may be characterised in distinct aspects, namely their

spatial configuration, probability of occurrence and mean duration, among others [67,76]. Notably, these
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measures are thought to provide novel disease biomarkers [9,21,66,77,78], and appear to be useful for

prediction [11,62] and disease characterisation [79].

2.5 Permutation tests for the two-sample location problem

Traditionally, in the functional neuroimaging field, the classical parametric statistical framework was ap-

plied to investigate group differences in whole-brain FC [31,80]. Under this framework, distributional as-

sumptions about the data are required to identify whether the observed effects are statistically significant.

Nevertheless, a large body of neuroimaging studies have resorted to non-parametric approaches based

on permutation test theory to statistically differentiate healthy controls from diseased patients [21,77,78].

Permutation-based statistical testing is a conceptually simple method that relies on minimal assumptions

and deals with the multiple-comparison problem [31, 80, 81]. Furthermore, in comparison to the para-

metric approach, the permutation method does not lead to excessive loss of power and provides a valid

method for analysis when the assumptions required for a parametric analysis are not satisfied [80].

Here, the general theory of permutation tests for the two-sample location problem is outlined (for

a detailed discussion consult [80, 81]). Let X1 = (X11, . . . , X1n1) ∼ P1 denote the random sam-

ple, i.e., independent and identically distributed (iid) random variables, of population 1 from distribu-

tion P1 with location µ1 and x1 = (x11, . . . , x1n1
)ᵀ designate a realisation of (X11, . . . , X1n1

). Let

X2 = (X21, . . . , X2n2
) ∼ P2 denote the random sample of population 2 from distribution P2 with location

µ2 and x2 = (x21, . . . , x2n2)ᵀ designate a realisation of (X21, . . . , X2n2). Let the pooled random sample

be designated by Y = (X11, . . . , X1n1 , X21, . . . , X2n2) = (Y1, . . . , Yn1 , Yn1+1, . . . , Yn) with a pooled sam-

ple size of n = n1 + n2. The hypothesis test concerns inferences about the difference in location of the

two random samples and can be mathematically formulated as [81]:

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 (2.7)

The central assumption of permutation tests is that of exchangeability, i.e., under the null hypothesis,

all permutations of the realisations of Y are equally likely [80, 81]. Let T ∗0 designate an appropriate

test statistic for the two-sample location problem under H0. Then, let {T ∗0,b}n!b=1 designate the set of all

possible permutation test statistics under H0, i.e., T ∗0,b is the test statistic corresponding to permutation

b of the pooled sample Y. Under the null hypothesis, the set of the values of T ∗0,b, t
∗
0,b, for all possible

permutations ({t∗0,b}n!b=1) constitutes the permutation distribution [81]. Let t∗0 denote the observed value

of the test statistic T ∗0 , i.e., this value is computed for the original samples. The statistical procedure of

exact permutation tests consists in permuting the group labels n! times, each time recalculating the test

statistic. In theory, after completing the previous computations, the exact two-sided p-value is consis-

tently estimated by the number of times that |t∗0,b| ≥ |t∗0|, with b ∈ {1, . . . , n!}, is observed divided by the
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total number of computed permutations [80, 81]. However, calculating the test statistic for all possible

permutations is generally impractical for large sample sizes. Therefore, the p-value is usually estimated

by taking a random sample of size B from all possible permutations [81, 82]. This approach is desig-

nated conditional Monte Carlo permutation tests, with the term conditional emphasising that this method

is an ordinary Monte Carlo simulation carried out on the permutation sample space [81,82]. These tests

are also termed approximate permutation tests, since the permutation distribution is approximated by a

subsample, leading to approximate p-values [81]. Given t∗0 and a random sample of B permutations of

the pooled random sample Y, the approximate two-sided p-value is estimated as [81,82]:

L̂T∗ =
1

B

B∑
b=1

1{
|t∗0,b|≥|t

∗
0 |
} (2.8)

where 1 denotes the indicator function with 1{
|t∗0,b|≥|t

∗
0 |
} = 1 when |t∗0,b| ≥ |t∗0| and 1{

|t∗0,b|≥|t
∗
0 |
} = 0

otherwise. Notably, Monte Carlo permutation tests have been shown to provide minimal loss of power in

comparison to the full permutation tests [80,82].

2.6 State Of The Art

Over past decades, a large body of research has focused on investigating neural activity in schizophre-

nia during “rest”. Most rs-fMRI studies employed a sFC approach - providing a significant wealth of

knowledge about brain function in schizophrenia [6,27,61]. Nevertheless, their utility in clinical practice

is unclear as sFC features may not provide enough sensitivity and specificity [11,62]. Furthermore, sFC

findings in schizophrenia lacked consistency across studies [5]. As such, a growing number of studies

have investigated dFC to understand schizophrenia [15,62,79,83–85]. Despite these efforts, no consis-

tent clinically relevant biomarkers, have been found that can be used as a reliable and valid diagnostic

tool or as prognostic tools for schizophrenia [7,8].

Within the neuroimaging community, it is well-established that resting-state FC exhibits dynamic

fluctuations of connectivity patterns over time [13,51] - giving rise to a discrete repertoire of transient FC

states [63, 64, 66, 69, 71]. Consequently, in this MSc project, only rs-fMRI studies applying dFC-based

approaches to determine FC states were reviewed and included in the State Of The Art. Table A.1

presents a brief description of the methods and findings of the reviewed studies.

2.6.1 Resting-state dynamic functional connectivity in schizophrenia

In one of the earliest reports implementing dFC analysis to study schizophrenia, the SWA approach was

combined with clustering to determine FC patterns and assess group differences between patients with

this condition and Healthy Controls (HCs) [79]. Results from this study suggested that Schizophrenia
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(SZ) patients, in general, spent significantly more time in relatively more sparsely connected FC states.

Furthermore, results demonstrated hyperconnectivity between thalamus and sensorimotor networks, as

well as hypoconnectivity within the sensory regions. A different study, employing IVA to extract spatial

components from windowed correlation matrices, found that regarding the SZ group, significant spatial

changes in network connectivity mainly occurred between the frontoparietal, cerebellar and temporal

lobe regions [86]. Moreover, in the mentioned work, evidence suggested that SZ patients displayed

more connectivity dynamics than HCs.

Schizophrenia research has also focused on connectivity dynamics within specific brain networks. In

a combined ICA-graph theoretical approach, dFC in SZ patients within the DMN domain showed that,

compared to HCs, patients spent less time in highly connected states and exhibited reduced connectivity

strength, clustering coefficient, and both global and local efficiency [87]. These results reflected impair-

ment in DMN subsystems, specifically in the posterior cingulate cortex and anterior medial prefrontal

cortex, as well as reduced connectivity between dorsal medial prefrontal cortex and medial temporal

lobe. This suggested that the FC patterns within the DMN may be harmed by schizophrenic disease

condition. A subsequent study examining dFC within the DMN found a drop in the connectivity of the an-

terior cingulate cortex and increases in the connectivity between the precuneus and the posterior cingu-

late cortex of SZ patients [48]. Additionally, a potential relationship was identified between schizophrenia

symptom severity and the dysregulation of the dynamical properties of DMN FC [48]. Lastly, an inves-

tigation of dFC within the visual sensory network in HCs and patients with SZ indicated a substantial

disruption within the visual system in a shorter timescale in SZ patients, namely in the middle temporal

gyrus, cuneus, calcarine gyrus and fusiform gyrus [88].

One possible application of the exploration of the temporal FC dynamics within the brain is related

to the development of future preventive and therapeutic methods. It has been shown that the common

transient functional disconnectivity observed in SZ patients also extends to their unaffected siblings - im-

plying a potential risk for the healthy siblings of developing schizophrenia [89]. In a different study, using

a novel Group Information Guided ICA (GIG-ICA) framework to estimate connectivity states, it has been

established that individuals with clinical high-risk for psychosis displayed a number of disease-related

connectivity abnormalities observed in SZ patients; hence reflecting the vulnerability of this population

to develop psychosis [90]. Furthermore, targeting perceptual and cognitive deficits in SZ has been sug-

gested to enhance the understanding of the disease’s pathophysiology, thus promoting new treatment

interventions [91].

Another possible use of dFC-based approaches lies in clinical diagnostics. Evidence concretely

suggested that changes in connectivity dynamics could explain underlying similarities and differences

in SZ and Bipolar Disorder (BP) patients [83]. In fact, features extracted from dFC analysis have been

shown to provide more sensitive and disease-specific markers than sFC features - revealing connectivity
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differences between SZ and BP patients sharing overlapping symptoms [62, 92]. An additional study,

comparing dFC in patients with SZ and Autism Spectrum Disorder (ASD), concluded that SZ patients

were characterised by a severe and pervasive pattern of temporal aberrations which was not observed

both in ASD and HCs. This reinforced the clinical utility of dFC-based approaches to differentiate disor-

ders with coinciding neuropathology [93].

Resting-state FC studies reporting dysconnectivity in schizophrenia have been overwhelmingly ob-

tained in medicated subjects. Therefore, to isolate medication effects from intrinsic illness characteristics

in schizophrenia, a prospective study to evaluate dFC changes in unmedicated SZ patients submitted to

treatment with an antipsychotic medication concluded that such medications had no significant impact

on the observed FC [94]. This reinforced, to some extent, previous research on dFC in schizophrenia.

The efficacy of using fMRI and Magnetoencephalography (MEG) individually, or potentially combined,

has also been explored and has been suggested to shape the understanding of schizophrenia and

other disorders more accurately, since each neuroimaging technique depicts the FC of patient groups in

distinct ways [85].

The aforementioned investigations assumed that at each time point the observed dFC could be

represented by a single FC pattern, allowing connectivity dynamics to be described as a process of

moving from one to another of these summary FC states. Thus, to characterise the dFC features as

temporal summary measures, a so-called ’meta-state approach’ was proposed [84]. Results from this

investigation showed that patients with SZ displayed less overall temporal dynamism as they exhibited

fewer changes in overall connectivity patterns compared with HCs.

Overall, these studies indicated that patients with schizophrenia exhibited reduced dynamic con-

nectivity. On the one hand, SZ patients visited less often and spent less time in states characterised

by strong, large-scale brain connectivity than HCs. Furthermore, when SZ patients transitioned into

the state of strongest connectivity, they switched states very rapidly. On the other hand, SZ patients

visited more often and spent longer periods of time in FC states characterised by weak connectivity,

and showed less interaction between FC states. Anatomically, group differences between HCs and SZ

patients encompassed connectivity among DMN, temporal, and frontal components. Therefore, the tem-

poral dynamics analysis seemed to provide robust and sensitive disease-specific markers by capturing

the underlying intrinsic differences between the FC of HCs and SZ patients. In general, most research

on dFC in schizophrenia has been carried out by first decomposing the imaging data using group spa-

tial ICA, resulting in time courses of networks which were then used to estimate dFC through SWA.

The statistical procedures employed to assess intergroup differences spanned a range of parametric

and non-parametric statistical tests. Notably, non-parametric permutation tests were observed to be

underused across the reviewed literature.
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This chapter outlines the materials and methods utilised in this study. Section 3.1 characterises the

analysed neuroimaging data. The rationale leading to not applying spatial smoothing, temporal filtering

and nuisance regression strategies to the data is presented in Section 3.2. The method used to capture

the dynamic functional connectivity and the tools used to characterise the time-evolving brain activity

are detailed in Section 3.3. Section 3.4 outlines the statistical procedure used to assess intergroup

differences. The comparison of connectivity patterns with canonical resting-state networks is described

in Section 3.5. This chapter ends by presenting the tools used to validate clustering solutions.

3.1 Neuroimaging data acquisition and preprocessing

Neuroimaging data was obtained from the publicly available repository COBRE preprocessed with NIAK

0.17 - lightweight release [20]. This data constituted a derivative from the COBRE sample found in

the International Neuroimaging Data-sharing Initiative (INDI). The collected neuroimaging data included

preprocessed rs-fMRI data from 72 patients diagnosed with schizophrenia (58 males, age 18−65 years

old) and 74 healthy controls (51 males, age 18−65 years old) [20]. The rs-fMRI data featured 150 echo

planar imaging BOLD volumes obtained in 5 minutes, with Repetition Time (TR) = 2 s, echo time = 29

ms, acquisition matrix = 64×64 mm2, flip angle = 75◦ and voxel size = 3×3×4 mm3 [20].

Inspection of the BOLD data from each participant was performed using MATLAB R2019b [95].

This resulted in the exclusion of one participant whose data did not include all 150 BOLD volumes.

Therefore, the final dataset used in the subsequent analysis included 71 patients with schizophrenia

(80.28% males) and 74 healthy controls (68.92% males). Both groups had the same age range of

18-65 years old. The schizophrenia group had a mean age of 38.14 years old (standard deviation

(std) of 13.99) and the healthy control group had a mean age of 35.82 years old (std of 11.58). The

Framewise Displacement (FD), as defined in [96], provided a quantitative indication of each participant’s

head motion during the scanning period. The schizophrenia group had a mean FD of 0.4758 mm (std of

0.2768) and the healthy control group had a mean FD of 0.3177 mm (std of 0.1534).

To assess whether the mean age was different between groups, the two-sided Wilcoxon Rank-Sum

test with Bonferroni correction provided in R software version 4.0.4 [97] was used, since the Shapiro-

Wilk test suggested non-normality of the data. No significant difference was detected between the

mean age of the groups by the two-sided Wilcoxon Rank-Sum test (p = 0.4253). The same test was

used to compare the groups’ mean FD. The two-sided Wilcoxon Rank-Sum test detected a significant

intergroup difference in the group mean FD (p < 0.001). Specifically, on average, the BOLD signals of

schizophrenia patients were characterised by larger amounts of head motion.

The data preprocessing as well as packaging was implemented by Pierre Bellec, CRIUGM, Depart-

ment of Computer Science and Operations Research, University of Montreal, 2016 [20]. According to
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the author, the datasets were analysed using the NeuroImaging Analysis Kit (NIAK) version 0.17, under

CentOS version 6.3 with Octave version 4.0.2 and the Minc toolkit version 0.3.18. Each fMRI dataset

was corrected for inter-slice difference in acquisition time and the parameters of a rigid-body motion

were estimated for each time frame. Rigid-body motion was estimated within as well as between runs,

using the median volume of the first run as a target. The median volume of one selected fMRI run for

each subject was coregistered with a T1 individual scan using Minctracc, which was itself non-linearly

transformed to the MNI template using the CIVET pipeline. The MNI symmetric template was gener-

ated from the ICBM152 sample of 152 young adults, after 40 iterations of non-linear coregistration. The

rigid-body transform, fMRI-to-T1 transform and T1-to-stereotaxic transform were all combined, and the

functional volumes were resampled in the MNI space at a 6 mm isotropic resolution.

In this study, the neuroimaging data was not subject to any further preprocessing procedures. Ac-

cording to the description provided by the author, no spatial smoothing and temporal filtering were im-

plemented to the neuroimaging data [20]. In addition, along with the data, this repository provided a

number of confounding variables which were estimated from the BOLD time series of each subject. Im-

portantly, according to the author, no confound/noise removal techniques had been applied to the BOLD

time series [20]. Therefore, the neuroimaging data contained the neural activity captured in the BOLD

signals, as well as the participant’s physiological artefacts.

3.2 Remarks on preprocessing

Typically, the preprocessing pipeline implemented in rs-fMRI studies includes spatial smoothing, tem-

poral filtering and noise removal [12, 17]. In this project, contrary to the literature reviewed in Sec-

tion 2.6, the aforementioned preprocessing steps were not applied to the neuroimaging data. This

section presents a thorough discussion of the rationale leading to this “disruptive” decision.

3.2.1 Spatial smoothing

Previous studies have demonstrated that smoothing artificially shifts and combines activations from

adjacent functionally and anatomically distinct brain regions - leading to less reliable detection of lo-

cal activations [98]. Within investigations of whole-brain FC applying a ROI-based framework, spatial

smoothing averages voxel signals both within and across the boundaries of ROIs - blurring the bound-

aries among ROIs and increasing the similarity among brain regions with respect to their time series.

Nonetheless, the mentioned increase is limited in range by the kernel width, as neighbouring voxels

will be significantly affected whereas the smoothing effect on distant voxels may be negligible or non-

existent. Consequently, smoothing results in artefacts that depend on the parameters of the applied

smoothing process - affecting differences in functional organisation between subject groups [99].
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Despite its common use, spatially smoothing the rs-fMRI data was considered unsuitable given the

objectives of this study. In this project, dFC is assessed by computing and for all participants, a phase

coherence matrix at each time point. This matrix represents the phase synchronisation between any

pair of ROIs, as described in Equation (2.6). Therefore, with the application of spatial smoothing, it was

assumed that the phase relationship between neighbouring ROIs could be affected more significantly

than the phase relationship between anatomically distant ROIs. Specifically, by implementing smoothing

to the rs-fMRI data, the instantaneous phase of adjacent ROIs could become more similar - resulting

in increased phase coherence values. Consequently, the detection of meaningful RSNs could be hin-

dered as the captured FC patterns could become more segregated and less integrated. In other words,

connectivity within local clusters (similar phase coherence) would be increased whereas inter-cluster

connectivity would be weaker, thus “masking” the observed functional architecture of the brain in both

the control and diseased groups. In fact, smoothing would raise the question as to whether the de-

tected differences were due to actual variations in brain functional organisation or just a by-product of

this preprocessing procedure. Finally, this study relies on parcellating the brain to investigate dFC. To

some extent, this corresponds to a level of smoothing proportional to the size of the ROIs of the selected

parcellation template.

3.2.2 Temporal filtering

As stated in Section 2.2.2, BOLD fMRI signal fluctuations used to study FC during “rest” are typically

temporally filtered in a low-frequency band (0.01−0.1 Hz), predominantly to avoid the influence of physi-

ological noises (respiration and cardiac signal). However, studies have provided evidence supporting the

persistence of meaningful connectivity patterns at higher frequency bands - challenging the assumption

that rs-fMRI BOLD signals are simple “low-frequency” spontaneous signal fluctuations [39, 40, 76]. Ac-

cordingly, this preprocessing procedure could result in increased BOLD signal variance being removed

from the dataset at random [38]. Additionally, the implementation of narrow filters limits the BOLD sig-

nals to ultra-slow fluctuations. This has been shown to eliminate the unique signature of BOLD time

courses [76] and encourage unreliable correlations among unrelated ROIs [16].

Here, no temporal filtering was applied to the resting-state BOLD signals. Consequently, the whole-

frequency spectrum within the BOLD activity was considered, since it could conceal intrinsic connectivity

patterns differences between schizophrenia patients and healthy controls. In addition, conducting com-

parisons between whole-brain FC in patients with schizophrenia and healthy controls within a specified

frequency spectrum could have led to spurious results. Temporally filtering the rs-fMRI data implied that

the frequency band of interest, where all relevant BOLD activity occurs, was known a priori. However, at

the time of writing, it was unknown whether such a frequency band exists. Furthermore, more than one

frequency band of interest within a given group and across participants could have been observed.
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3.2.3 Nuisance regression

Estimates of dFC may be susceptible to confounds induced by hardware-related artefacts, subject move-

ments, and other noise sources. Such artefacts can be mistaken for neural effects and are particularly

problematic in studies of intergroup differences [16]. Additionally, it has been suggested that nuisance

effects might account for a significant portion of the fluctuations in dFC estimates [9, 10]. Numerous

cleanup methods have been proposed to isolate and remove these confounds - removing signals thought

to be of non-neural origin from the BOLD time courses [16,17,42]. Typically, in rs-fMRI studies, nuisance

regression entails regressing motion-related artefacts (consult [13,17,100] for complete discussions on

the effects of motion-related confounds) and the global signal (see [13,17,101] for complete discussions

on the effects of global signal regression). Nevertheless, understanding the influence of these cleanup

strategies on rs-fMRI studies is still under active debate [102].

Motion regression was not performed in this study. It must be noted that this choice may result in

biased estimates of dFC, since a substantial portion of the observed resting-state FC dynamics may be

attributable to head motion [100]. A consequent body of evidence provided the scientific and method-

ological reasoning for not performing motion regression. Firstly, simple motion correction does not com-

pletely remove the influence of motion-related fluctuations from estimates of FC [43,96,102]. This issue

could be addressed by applying “scrubbing” [96], i.e., censor complete volumes with excessive motion.

However, this option was not viable given the data used in this project. On the one hand, if the data

from all subjects after censoring was used for analysis, the large number of within-subject censored

volumes could potentially interrupt the temporal autocorrelation structure of the data [42] - resulting in

a considerable loss of signal variance of the data. On the other hand, following the recommendations

proposed in [43], only 22 subjects had a number of uncensored volumes considered suitable for further

analysis, thus resulting in extensive loss of data. Secondly, using excessive motion regressors was as-

sumed to be detrimental to the extent that interesting BOLD signal could be removed from the rs-fMRI

data [103]. Thirdly, the effects of motion regression in dFC estimates have been investigated mostly in

studies employing the SWA approach [9, 10, 42]. Accordingly, the effects of motion regression on dFC

estimates obtained using a PC-based approach [21], used in this project, are yet to be addressed. This

approach may prove to be more robust to motion-related artefacts, as PC estimates the dFC at a quasi-

instantaneous level by only considering the difference in phases between brain regions at each time

point. Finally, evidence suggests that motion regression may extract BOLD signal variance that may be

decomposed into functionally meaningful networks [103].

Here, the application of Global Signal Regression (GSR) to the resting-state BOLD signals was

considered inappropriate. Without an accepted gold standard, the use of GSR has been a topic of con-

troversy throughout rs-fMRI literature [101, 104]. In fact, although the global signal (mean BOLD signal

computed across all voxels in the brain) reflects non-neural confounds in the data, it also likely includes
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a neural component [101]. Furthermore, the detection of biologically meaningful RSNs could be dramat-

ically altered by this procedure, potentially biasing group differences in estimates of FC. Specifically, in

this project, the application of GSR was found to hinder the detection of a FC pattern corresponding to

a global pattern of BOLD phase coherence. This was in line with previous studies employing a similar

methodology to study dFC [21, 76–78]. Finally, the interpretation of FC results after GSR is complex

and, therefore, it has been recommended that this rs-fMRI cleanup method should be avoided [17,102].

In general, there is still little understanding of the effects of nuisance regression on dFC estimates.

Research conclusions are inherently dichotomous as to whether this procedure should be employed

or not in rs-fMRI studies [16, 103]. On the one hand, although it is not currently possible to remove

all confounds, application of noise removal techniques may increase confidence in studies’ results and

interpretations [16, 17, 105]. On the other hand, there is great variability in the effectiveness of distinct

cleanup methods, with no optimal method identified at the time of writing [17, 41–43]. Furthermore,

evidence suggests that any set of nuisance regressors may extract BOLD signal variance that can be

related to functional networks [17,103] and, if unfiltered, may even reintroduce nuisance-related variation

[105]. Additional studies have concluded that the difference between dFC estimates obtained prior and

post nuisance regression were relatively small - questioning the usefulness of such strategies [102]. The

modelling of confound effects in rs-fMRI studies is still an area of active investigation [17, 102] and its

influence on dFC estimates obtained through PC remains largely unknown. Considering the reviewed

studies, none of the confound regression strategies available in the literature were applied.

3.3 Dynamic functional connectivity analysis

In this project, rather than employing time-averaged approaches to investigate FC, the analysis pre-

sented in subsequent chapters leveraged on methods which enabled the estimation of time-resolved

fluctuations in FC. This analysis used MATLAB R2019b [95], the Statistics and Machine Learning

ToolboxTM and the Econometrics ToolboxTM. The steps to investigate dFC are described below.

3.3.1 Computation of dynamic functional connectivity

While there is no gold standard for ROI selection, following the methodology in [21, 76–78], the canon-

ical AAL90 template was used to parcellate the entire brain of each participant into 90 cortical and

sub-cortical non-cerebellar regions [45]. This template provided a clear parcellation and an explicit de-

scription of whole-brain regions [92]. Accordingly, for each region in the brain, at each time point (TR),

the BOLD signals were averaged over all voxels belonging to that brain area to compute the regional

BOLD time courses. For each subject, this procedure resulted in a N × T BOLD dataset, where N = 90

is the number of brain areas and T = 150 is the total number of recording frames in each scan (volumes).

31



For each subject in the dataset, the PCC method [69–71], described in Section 2.4.2, was used to

compute a phase coherence matrix with dimension 90 × 90 at each time point (TR). Each entry in this

matrix represented the amount of BOLD signal synchrony between two brain areas defined by the AAL90

parcellation scheme at a given time point. To compute the phase coherence between each pair of AAL90

regions, first the instantaneous phase of the BOLD signals across all brain regions n ∈ {1, . . . , N} for

each time t ∈ {2, . . . , T − 1}, θ(n, t), were estimated by computing the Hilbert transform of their BOLD

regional time courses. It must be noted that throughout the entirety of this analysis the first and last

TR of each fMRI scanning session were excluded due to possible signal distortions induced by the

Hilbert transform following the procedure of [76]. Figure 3.1(a) illustrates the phase of the analytic

representation of the BOLD signal for a given brain region, n, at each TR.

(a) Plot of the complex BOLD phase of one brain re-
gion n at each TR. It is depicted as ejθ(n,t), with
sin(θ(n, t)) representing the imaginary part of the
analytic phase and cos(θ(n, t)) representing its real
part (black dotted lines). The real part of the an-
alytic phase, cos(θ(n, t)), captures the oscillatory
behaviour of the original BOLD signal (green). Red
arrows represent the Hilbert phases at each TR.

(b) Representation of the BOLD phases in all N = 90
brain regions in both the cortical space and in the
complex plane at a single time point t. Phase
coherence matrix, dFC(t), at the same time t,
where 1 (red) indicates full coherence and -1
(blue) indicates areas are in anti-phase.

Figure 3.1: Summary of the method for computing a dFC matrix from rs-fMRI data.

Then, to obtain a whole-brain pattern of BOLD phase synchrony, the phase coherence between brain

areas n and p at each time t, dFC(n, p, t), was estimated using Equation (3.1):

dFC(n, p, t) = cos(θ(n, t)− θ(p, t)), n, p ∈ {1, . . . , N}, t ∈ {2, . . . , T − 1} (3.1)

where phase coherence values range between −1 (area n has a BOLD phase shift of 180◦ in relation

to area p at time t) and 1 (areas n and p have synchronised BOLD signals at time t). This computation

was repeated for all pairwise combinations of brain regions (n, p), with n, p ∈ {1, . . . , 90}, at each time
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point (volume) t, with t ∈ {2, . . . , 149}, and for all subjects. The resulting dFC for each subject was

therefore a three-dimensional tensor with dimension N ×N × T ′, where T ′ = 148, i.e., 148 dFC90×90(t)

matrices were computed. Importantly, from Equation (3.1), it follows that phase coherence matrices are

symmetric at each time point. Figure 3.1(b) depicts, at a single time point t, the BOLD phases in all

90 brain regions both in the cortical space and in the complex plane. The colouring of brain area n

was determined by the sign of the nth element of the leading eigenvector of the dFC(t) matrix at time t

(explained below). The dFC(t) matrix displayed in Figure 3.1(b) captured the BOLD phase synchrony

between each pair of brain areas at a single time point t (volume).

3.3.2 Functional connectivity leading eigenvector

Prior studies investigating dFC, typically analysed the symmetric N × N dFC(t) matrices at each time

point by considering the vectors found in the upper triangular elements of the matrices (N(N − 1)/2

elements) [9,10,66,71]. This approach could result in the analysis of large amounts of multi-dimensional

dFC data - hindering the estimation of recurrent patterns of connectivity. Alternatively, the method LEiDA,

considering only the leading eigenvector, V1(t), of each dFC(t) matrix, was proposed to capture the

temporal evolution of dFC with reduced dimensionality [21]. This study uses the mentioned method to

characterise the temporal evolution of the dFC in healthy controls and schizophrenia patients.

In detail, the leading eigenvector, V1(t), is a N ×1 column vector that captures the dominant connec-

tivity pattern of BOLD phase coherence at each time t, i.e., V1(t) represents the main orientation of the

BOLD phases over all brain areas [21,76–78]. It must be noted that the dominant FC pattern of the dFC

matrix at time point t can also be reconstructed back into matrix format by computing the (N ×N) outer

product V1(t)V ᵀ
1 (t). Notably, considering only the leading eigenvector, V1(t), was found to considerably

reduce the dimensionality of the classical approaches from N(N − 1)/2 to N , while still explaining most

of the variability observed in the spatiotemporal fluctuations of the connectivity patterns [21]. Addition-

ally, LEiDA has shown increased robustness to high-frequency noise, improved temporal resolution and

improved signal-to-noise ratio in the analysis of the time-evolving structure of resting-state fluctuations

compared to the traditional approaches [21].

Under this framework, for each time t, the associated leading eigenvector, V1(t), partitions theN = 90

brain areas into two modules/communities by separating the positive elements of V1(t) from the negative

elements of V1(t) [21, 106], as suggested by the projection of the BOLD phases into the cortical space

of Figure 3.1(b). In other words, at time point t, a given brain area n ∈ N is assigned to either one

of the two modules according to the sign of the nth row of V1(t). When all elements of V1(t) have

the same sign, the BOLD phases between brain regions are coherent, which is indicative of a global

mode of phase coherence governing all BOLD signals [21, 76–78]. This implies that all brain regions

belong to the same community. Contrarily, if the elements of V1(t) have different signs (i.e., positive
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and negative), the connectivity pattern between brain regions is not coherent. As a result, each ROI

will be assigned to one of the two communities according to their BOLD phase relationship [21, 77, 78]

(see cortical representation in Figure 3.1(b)). Additionally, the absolute value of each element in the

eigenvector weighs the contribution of each brain area to the assigned community [21,106].

Given that if V1(t) is a leading eigenvector, so is −V1(t), following the methodology in [76–78], it was

ensured that most of the elements in V1(t) had negative values. This is because by assigning positive

values to the brain areas whose BOLD phases did not follow the global mode, meaningful functional

brain networks (i.e., canonical RSNs) were distinctly detected [76–78].

To illustrate the preceding considerations, Figure 3.2 presents the vector, matrix and cortical space

representations of the leading eigenvector of the phase coherence matrix presented in Figure 3.1(b).

Figure 3.2: Vector, matrix and network representations of the leading eigenvector, V1(t), of the phase coherence
matrix, dFC(t), computed at time point t depicted in Figure 3.1(b).

To confirm the robustness of this approach, i.e., that reducing the dimensionality of the data did not

lead to a considerable loss of information, the proportion of the variance in phase coherence explained

by the leading eigenvector of each dFC(t) at all time points was assessed across all subjects [21, 78].

As shown in Appendix A.2, the leading eigenvector consistently accounted for more than 50% of the

variance in phase coherence at all time points and for all subjects - capturing most of the variability

in the phase coherence matrices computed across the recording frames in each scan. Additionally,

the two-sided Wilcoxon Rank-Sum test did not identify differences in the mean proportion of variance

explained by the leading eigenvector at all time points between the control and the schizophrenia groups,

as suggested in Figure A.1(b). Therefore, the health condition of each participant did not impair the

ability of the leading eigenvector to represent the dominant connectivity pattern at a given time point.
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3.3.3 Estimation of functional connectivity states

Upon computing the leading eigenvector, V1(t), of the phase coherence matrix, dFC(t), for each record-

ing frame (volume), the next step in the analysis was to characterise the evolution of the dFC over time

by identifying recurrent FC patterns in the data, i.e., FC states that defined a set of repeating patterns of

connectivity transiently emerging and dissolving through time [21].

In previous research using LEiDA, a number of FC states were detected by applying the K-means

algorithm to the leading eigenvectors from all subjects [21,77,78]. These studies aimed to obtain the set

of FC states that differed most significantly between groups, often overlooking the quality and validity

of clustering results. Here, as stated in Section 1.3, the objectives were threefold. On the one hand,

through the application of the statistical procedure explained in Section 3.4, this work aimed to detect

statistically significant differences in the FC patterns observed in schizophrenia patients and healthy

controls, independently of the number of FC states considered for analysis. On the other hand, this

project intended to explore the quality and validity of the obtained clustering results, as well as the

influence of using the K-medoids algorithm instead of the K-means algorithm to estimate FC states.

Firstly, to achieve this, the conventional LEiDA clustering analysis was performed [21,77,78]. Specif-

ically, the K-means algorithm was applied to the dataset of all leading eigenvectors computed at the

set of volumes {2, . . . , 149} across all 145 participants, which corresponded to a combined total of

148 × 145 = 21460 leading eigenvectors. The K-means clustering algorithm was run with a value of

K from 2 to 20, i.e., dividing the set of leading eigenvectors into K = {2, 3, . . . , 20} clusters. The cosine

distance was used as the distance metric for minimisation as in previous studies [21,76–78]. Aiming to

minimise the chances of getting trapped in a local minima, the K-means algorithm was run 1000 times,

considering in each iteration new initial cluster centroid positions selected according to the K-means++

algorithm [107].

The K-medoids clustering method searches for objects among the set of all observations which are

representative of the clusters (medoids1) and assigns each object to the nearest medoid to build the

clusters (for a review of the K-medoids algorithm consult [75]). The influence of using this algorithm to

conduct a LEiDA analysis was investigated through its application to the combined total of 21460 leading

eigenvectors from all participants. The algorithm was ran with a value of K from 2 to 20. Similarly, the

cosine distance was selected as the distance metric for minimisation and the algorithm was run 1000

times, considering in each iteration new initial cluster medoid positions selected according to the K-

means++ algorithm [107]. The algorithm to find medoids and other input arguments were set to the

default parameter specifications.

1A medoid is defined as the object of a cluster whose average dissimilarity to all the objects of that cluster is minimal, that is, it
is a most centrally located point in the cluster [75].
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3.3.4 Characterisation of functional connectivity state temporal trajectories

Independently of the clustering algorithm, the LEiDA clustering procedure implemented in this study

outputs one distinct clustering solution for each value of K clusters. In detail, each clustering solution

contains K clusters C = {C1, . . . , CK}, with K ∈ {2, . . . , 20}. This corresponds to decomposing the

N -dimensional space of pooled leading eigenvectors into a K-dimensional state-based space. Let VCα

be the vector of dimension N × 1 representing the coordinates of the centroid/medoid of cluster Cα,

where α ∈ {1, . . . ,K}. Then, for a given clustering solution, each VCα represents a recurrent FC pattern

or FC state, i.e., a pattern of BOLD phase coherence [21]. These patterns of connectivity are commonly

characterised by the activation of a small subset of ROIs which display coherent BOLD signal - forming

functional brain networks. It must be noted that functional networks were assumed to be represented

by the subset of ROIs with positive sign in VCα , since these defined a group of brain areas detaching

from the global mode of BOLD phases. The contribution of brain area n ∈ {1, . . . , 90} from the AAL90

parcellation to a given functional network is given by the nth row of VCα [21,106]. Importantly, throughout

this work, the FC state represented by the centroid/medoid VCα was referred to as simply FC state α.

Furthermore, each estimated FC state α can be represented back into a N ×N matrix by computing the

outer product VCαV
ᵀ
Cα

, with positive values between all elements with the same sign in VCα and negative

values between elements of different signs.

For each clustering solution, the set of estimated K FC states was subsequently utilised to obtain,

for each participant, time courses of FC states. This was accomplished by representing each V1(t) at

time point t by the FC state (centroid/medoid) of the cluster to which it was assigned by the clustering

algorithm (this corresponded to the output vector of cluster assignments). Specifically, following the con-

ceptual framework proposed by [76], resting-state BOLD time series were assumed to temporally evolve

through a finite state trajectory of recurrent patterns of BOLD phase coherence. Following this rationale,

each clustering solution with K FC states was assumed to define a finite state space S = {1, . . . ,K}.

Furthermore, for a clustering solution with K clusters, the cluster (FC state) to which V1(t) was assigned

at each time t, denoted by Vt, was assumed to define a stochastic process,
{
Vt : t ∈ {2, . . . , 149}

}
,

with associated state space as defined above. Consequently, considering the Markov property [108]

holds, the temporal trajectory of FC states was assumed to define a time-homogeneous Discrete Time

Markov Chain (DTMC) [76]. Importantly, it must be noted that, although brain activity is an uninterrupted

process, the limited fMRI scanning period implied the state trajectories were temporally limited. This

resulted in a number of DTMCs not spanning the entire state space, i.e., under this framework, despite

assuming all FC states within the state space existed, some FC states were not observed. Moreover, the

time courses of FC states were defined in a discrete sense, which could have been an oversimplification.

Figure 3.3 graphically summarises the estimation and characterisation of the temporal trajectories of

FC states for a representative clustering solution considering K = 7 clusters.
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Figure 3.3: Graphical illustration of the estimation and characterisation of the temporal trajectories of recurrent FC
states obtained by using LEiDA. The pooled leading eigenvectors are clustered into 7 FC states, which
are used to define a time course of FC states for a given participant.

A number of descriptive properties (measures) of the underlying temporal trajectories of FC states

observed in healthy controls and schizophrenia patients were considered in this study. Specifically,

the fractional occupancy and dwell time were estimated for each individual FC state. The one-step

Transition Probability Matrix (TPM) which represents the one-step probability of switching between FC

states was also computed. Furthermore, the limiting behaviour of the time courses of FC states was

also investigated by estimating the limiting distribution of the corresponding DTMCs. These measures

provided insights into the stability of BOLD phase coherence states and facilitated the characterisation

of the dynamical properties of the connectivity patterns emerging spontaneously and consistently during

“rest” [76]. Notably, these properties were shown to provide relevant insights on aberrant dynamic brain

network connectivity in previous LEiDA analysis [21,77,78].

3.3.4.A Fractional occupancy

The fractional occupancy (probability of occurrence) of a FC state α represents the proportion of times

Vt was assigned to cluster Cα throughout the duration of a scan [76]. The fractional occupancy of FC

state α for the scanning session of participant s, P (s)
α , is calculated (estimation) as follows:

P (s)
α =

1

T ′

T ′∑
t=1

1{
V

(s)
t ∈Cα

} , α ∈ {1, . . . ,K} (3.2)
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where T ′ = 148 is the number of time points (first and last volume of each scan were excluded), 1 is

the indicator function and V (s)
t is the FC state to which V1(t) was assigned at time t. For each clustering

solution with K = {2, . . . , 20} clusters, the fractional occupancy was estimated for each of the K FC

states separately for each fMRI scan. Importantly, the restricted fMRI scanning time window and low

temporal resolution resulted in FC states having a null probability of occurrence throughout the analysis.

3.3.4.B Dwell time

The dwell time (mean duration) of a FC state represents the mean number of consecutive epochs spent

in that state throughout the duration of a scan [76]. The dwell time of FC state α measured for participant

s, DT (s)
α , is defined (estimation) as:

DT (s)
α =

1

k
(s)
α

k(s)α∑
dα=1

Rdα , α ∈ {1, . . . ,K} (3.3)

where k
(s)
α is the number of consecutive periods in which V

(s)
t was assigned to FC state α (cluster

Cα) and Rdα is the duration of each of the k(s)α periods. For each clustering solution with K = {2, . . . , 20}

clusters, the dwell time was estimated for each of the K FC states separately for each fMRI scan. It

must be pointed out that unobserved FC states (null fractional occupancy) had a mean duration of zero.

3.3.4.C One-step transition probability matrix

According to [76], the probability of being in FC state α at time t and transition to FC state β at time

t + 1, considering a clustering solution with state space S = {1, . . . ,K} (K clusters), can be calculated

(estimated) by the following expression:

P
(s)
αβ =

1

T ′ − 1

T ′−1∑
t=1

1{
V

(s)
t ∈Cα , V

(s)
t+1∈Cβ

} , α, β ∈ {1, . . . ,K} (3.4)

From Equation (3.4), for a clustering solution with K FC states, it follows that the TPM of the fMRI

scan of participant s, P(s), is defined (estimation) as:

P(s) =
[
P

(s)
αβ

]
α,β∈{1,...,K} = P

[
V

(s)
t+1 ∈ Cβ | V

(s)
t ∈ Cα

]
=
P

(s)
αβ

P
(s)
α

, α, β ∈ {1, . . . ,K} (3.5)

For the tentative optimal clustering solution, a TPM was estimated separately for each DTMC repre-

senting a fMRI scan. Furthermore, for the DTMCs defined by the optimal clustering solution, the average

TPM for the control and schizophrenia groups was obtained by averaging the TPMs of all participants

from each group.
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It must be noted that for any FC state with an associated null probability of occurrence, the probabil-

ity of transitioning from that state to any other state is zero according to Equation (3.4). Consequently,

according to Equation (3.5), it follows that for any unobserved FC state j the row j of the TPM will have

K undetermined elements (“not a number” (NaN)), i.e., the one-step transition probabilities given by[
P

(s)
jβ

]
β∈{1,...,K} will be undefined since

P
(s)
jβ

P
(s)
j

= 0
0 for all β ∈ {1, . . . ,K}. This implied that not all esti-

mated TPM were right stochastic matrices [108]. Importantly, in this study, since unobserved FC states

were considered to occur at some point within the state trajectories of brain activity, all estimated TPMs

were considered for subsequent computations and analysis, with the exception of all NaN values. Fur-

thermore, the NaN values were not replaced by zeros, since this was observed to modify the distribution

of one-step transition probabilities - biasing group comparisons of these quantities.

3.3.4.D Limiting probability

The stationary distribution of the DTMCs was calculated to study the limiting probabilities of the FC

states defining the temporal state trajectories. The estimation of this property of the DTMCs aimed to

bypass the restrictions imposed by the temporal windows of the fMRI scanning sessions.

To compute this quantity, all considered DTMCs were irreducible [108], with finite state space S =

{1, . . . ,K}, with K = {2, . . . , 20}. Hence, all states were positive recurrent [108]. Furthermore, all con-

sidered DTMCs were aperiodic [108]. Therefore, for every participant, s, with an associated irreducible,

positive recurrent and aperiodic DTMC, it followed that:

lim
t→∞

(
P

(s)
αβ

)t
= π

(s)
β > 0 , α, β ∈ {1, . . . ,K} (3.6)

where the row vector π(s) =
[
π
(s)
β

]
β∈S , with dimension 1× |S|, was the unique stationary distribution

of the DTMC of participant s (see [108] for theorem) given (estimation) by:

π(s) = 1× (I−P(s) + ONE)−1 (3.7)

where 1 is a 1× |S| vector of ones, I is the identity matrix with rank |S|, P(s) is the TPM of subject s

and ONE is a |S| × |S| matrix all of whose entries are one. For a given FC state β, πβ (element β of the

row vector π) was the measure to be used to perform intergroup comparisons. Importantly, since only

aperiodic DTMCs were considered, πβ can be understood as the limiting probability that the DTMC is in

FC state β and as the long-run fraction of time the DTMC spends in FC state β. It must be noted that

intergroup comparisons between the estimated stationary distributions were not performed in this study.

For the tentative optimal clustering solution, the limiting probability of each FC state was estimated

separately for each fMRI scan. Due to the inclusion criteria imposed on the DTMCs defined by the

tentative optimal state trajectories, i.e., irreducibility and aperiodicity, only 37 and 46 DTMCs from the
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control and schizophrenia groups, respectively, were considered for further analysis. This corresponded

to excluding all DTMCs with an associated TPM with at least one row of zeros, i.e., with at least one

unobserved FC state.

3.4 Intergroup comparisons

In this work, intergroup comparisons between estimates of the properties of the temporal trajectories

of FC states were performed through the application of Monte Carlo permutation tests by adapting the

statistical procedure used in previous LEiDA analysis [21,77,78]. Permutation tests were selected over

parametric approaches as they did not impose stringent assumptions, did not lead to excessive loss of

inferential efficiency and have been extensively applied within the neuroimaging community [80,81,109].

Here, Monte Carlo permutation tests were used to assess intergroup differences because the dataset

considered for analysis contained 145 participants - leading to an extremely large number of possible

permutations of the group labels. Furthermore, the appropriateness of the application of Monte Carlo

permutation tests in the context of this analysis relied in the assumption of exchangeability of the esti-

mated data. In fact, the assumption of independent subjects implied exchangeability, since any inter-

group differences were assumed to relate to variations in the time-resolved FC, irrespective of the effect

of other variables. Under the null hypothesis that there were no actual differences between healthy

controls and schizophrenia patients, the group membership became arbitrary. Consequently, due to the

large sample size and given that the assumption of exchangeability was satisfied, the suitability of Monte

Carlo permutation tests was guaranteed.

The general framework for the hypothesis tests associated with the properties presented in Sec-

tions 3.3.4.A to 3.3.4.D is subsequently described. Each of the aforementioned measures was desig-

nated as measure m to improve readability. For each measure, consider the random sample Xm
1 =

(Xm
11, . . . , X

m
1nHC

) of size nHC from a distribution with mean µmHC from the control group, where Xm
1i is the

value of measure m for the ith chosen healthy control. Similarly, for each measure, consider the ran-

dom sample Xm
2 = (Xm

21, . . . , X
m
2nSZ

) of size nSZ from a distribution with mean µmSZ from the schizophrenia

group, where Xm
2i is the value of measure m for the ith chosen schizophrenia patient. Here, both random

samples were statistically independent. For any measure m, the null hypothesis (H0) to be tested states

there is no difference between the mean of measure m in the control group and the schizophrenia group,

whereas the alternative hypothesis (H1) states there is a difference between the mean of measure m

between groups. Mathematically, this can be written as:

H0 : µmHC = µmSZ vs. H1 : µmHC 6= µmSZ (3.8)

For each clustering solution, the realisations of the previously defined random samples were given
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by the estimates of measure m computed from the temporal trajectories of FC states of the control and

schizophrenia groups, i.e., xm1 = (xm11, . . . , x
m
1nHC

)ᵀ and xm2 = (xm21, . . . , x
m
2nSZ

)ᵀ, respectively.

Given the high computational power available, Monte Carlo permutation tests were performed using

B = 100000 permutations to produce an accurate approximate estimation of the permutation distribu-

tion. However, studies have suggested that 10000 permutations suffice for permutation testing at a 1%

significance level [82]. The remainder of this section describes the statistical procedure used to perform

intergroup comparisons for the estimates of the measures described in Sections 3.3.4.A to 3.3.4.D. It

should be noted that the same procedure was applied to all clustering solutions detected by the K-

means and K-medoids algorithms.

With the exception of dwell time, the remaining measures were probabilities. This implied that the

assumptions required to perform a two-sample t-test or a two-sample Welch’s t-test on the estimates

of the fractional occupancy, transition probabilities and limiting probabilities were not satisfied. In other

words, the distribution of the test statistic could not be assumed to follow a t-distribution. This prompted

the use of Monte Carlo permutation tests to approximately generate the distribution of the mentioned

test statistic. It must be noted that despite not representing a probability, intergroup comparisons of the

estimates of the dwell time were also conducted using Monte Carlo permutation tests. The Levene’s

test was used to assess the homogeneity of the variances of the populations from which the group-

samples were drawn. The threshold to reject the hypothesis of homogeneity of variance was fixed at a

5% significance level, i.e., the hypothesis of homocedasticity was rejected if pLevene’s test < 0.05 and not

rejected otherwise. The results from the Levene’s tests were then utilised to determine the statistic to

be employed on the Monte Carlo permutation tests. The two statistics used throughout the Monte Carlo

permutation tests (under H0) were given by Equation (3.9):

T ∗0 =



X̄1 − X̄2√
S2
1

nHC
+

S2
2

nSZ

, pLevene’s test < 0.05

X̄1 − X̄2√
(nHC−1)S2

1+(nSZ−1)S2
2

nHC+nSZ−2 ·
(

1
nHC

+ 1
nSZ

) , otherwise
(3.9)

where X̄1 and X̄2 are the random sample means, S1 and S2 are the random sample standard devia-

tions and nHC and nSZ are the sample sizes for the control and schizophrenia groups, respectively. Only

one statistic from Equation (3.9) was used depending on the relation between the variances of the group

data samples. The statistic from Equation (3.9) used to perform the statistical test was subsequently

used to obtain the value of the statistic under each of the B permutations of the sample data. Once

the statistic was selected, for each permutation, the group labels were randomly permuted and t∗0,b, with

b ∈ {1, . . . , B}, was obtained by plugging in the values of the permuted sample data. Under the null

hypothesis, the set of values {t∗0,b}Bb=1 was used to estimate the permutation distribution. This produced
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an approximation of the distribution of the statistic (T ∗0 ) employed throughout the statistical permutations

of the sample data. After calculating the B permutation statistics, the permutation distribution was es-

timated by applying a normal kernel smoothing function to the set of permutation statistics ({t∗0,b}Bb=1).

This resulted in an empirical Cumulative Distribution Function (CDF), which was observed to converge

towards the CDF of a normal distribution, as expected from the Central Limit Theorem (CLT) [110]. To

obtain an approximate p-value, linear interpolation was then used to calculate the value of the empiri-

cal CDF at the point |t∗0|. Finally, the two-sided p-value was estimated by plugging in the value of the

empirical CDF evaluated at the point |t∗0| into the expression p = 2 · (1− CDF(|t∗0|)).

It must be noted that the statistical procedure employed in this work to assess intergroup differences

differed from the one applied in prior studies employing LEiDA [21,77,78]. Specifically, a different statistic

was used according to the homocedasticity of the populations from which the samples were drawn.

Importantly, the variability observed for each measure was assumed to be independent of the effect

of other variables, such as age, gender and head motion. Here, the effect of these variables on the

estimates of the measures considered for analysis was not investigated. Section 6.2 discusses this

limitation and provides recommendations to study the mentioned effects in future research.

3.5 Comparison to reference resting-state functional networks

As explained, for each of the considered algorithms used to estimate FC states, the data was partitioned

into K clusters, with K ∈ {2, . . . , 20}. For each clustering solution, the functional relevance of the esti-

mated FC states was investigated by assessing whether there was a significant spatial overlap between

the cluster centroids/medoids which represented each FC state and any of the seven reference func-

tional networks proposed by [49] (cortical representation of the seven networks depicted in Figure 2.3).

This was accomplished by following the procedure used by [76, 78]. Briefly, the seven RSNs defined

by [49] were transformed into seven non-overlapping vectors with dimension 1× 90, where each entry of

the vectors corresponded to each of the regions defined by the AAL90 parcellation template. For each

of the seven functional networks, the nth element of its vector was obtained by calculating the number of

voxels from brain region n of the AAL90 parcellation that were assigned to that particular network [76].

Finally, the Pearson correlation coefficient was used to assess the spatial overlap between these

seven reference RSNs and the centroids/medoids VCα , with α ∈ {1, . . . ,K}, corresponding to the FC

states estimated for each clustering solution with K clusters. As in previous work, all the negative values

of the centroids’/medoids’ vectors were set to zero, to consider only areas that were thought to define

relevant functional networks [76,78]. The associated p-values were evaluated to determine whether the

spatial overlap was significant. Specifically, for each clustering solution with K FC states, the overlap

between a given FC state and any of the seven reference RSNs was considered significant if p < 0.05/K.
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3.6 Validation of clustering solutions

In this study, cluster validation techniques were used to assess the quality of the results produced by the

clustering algorithms, i.e., to determine whether the generated partitions of the data captured the actual

group-structure of the data. Here, internal and external clustering validation techniques, as well as a

method to evaluate clustering stability were utilised.

3.6.1 Unsupervised cluster validation criteria

In this study, the class labels of the leading eigenvectors obtained for each TR were unknown. Con-

sequently, given the assignment of leading eigenvectors to a given cluster formed an unsupervised

classification task, the quality of clustering structures was evaluated using internal validation measures.

Namely, the average Silhouette coefficient [111] and the Dunn’s index [112] were measured for each

clustering solution outputted by the clustering algorithms, with the highest measured value determining

the optimal number of clusters. Despite their broad applicability, the performance of these measures has

been shown to be affected by various characteristics of the data [75,113]. Therefore, internal validation

criteria were only used as an accessory tool to select an optimal clustering solution.

3.6.2 External validation using clustering agreement measures

Here, clustering agreement measures based on paired agreement and mutual information were utilised

to compare the clustering outputs from distinct clustering algorithms. These indices can be written based

on a k× r contingency table [114] of all possible overlaps between each pair of clusters in U and V (two

different partitions), where the entry nij shows the intersection of cluster Ui and Vj (nij = |Ui∩Vj |), ni. =∑
j nij and n.j =

∑
i nij represent the table’s row and column totals, respectively, with i ∈ {1, . . . , k}

and j ∈ {1, . . . , r}, and n =
∑k
i=1

∑r
j=1 nij represents the number of observations.

The Adjusted Rand Index (ARI) [114] quantifies the similarity between partitions based on paired

comparisons considering a correction for agreement by chance. This measure has a null value when

the agreement between partitions does not exceed the agreement by chance.

ARI(U, V ) =

∑k
i=1

∑r
j=1

(
nij
2

)
−
[∑k

i=1

(
ni.
2

)∑r
j=1

(
n.j
2

)]
/
(
n
2

)
1
2

[∑k
i=1

(
ni.
2

)
+
∑r
j=1

(
n.j
2

)]
−
[∑k

i=1

(
ni.
2

)∑r
j=1

(
n.j
2

)]
/
(
n
2

) (3.10)

The Variation of Information (VI) [115] measures the amount of information that is lost or gained in

changing between partitions U and V and ranges from 0 (overlapping partitions) to 2 log(max(k, r)).

V I(U, V ) =

k∑
i=1

r∑
j=1

nij
n

log
(ni.n.j/n2
n2ij/n

2

)
(3.11)
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3.6.3 Clustering stability evaluated by K-fold cross-validation

To assess the stability of a clustering solution a method based on a K-fold cross-validation procedure,

used in supervised learning, was adapted and applied to the pooled leading eigenvectors [116, 117].

This procedure is described in Table 3.1.

Table 3.1: Clustering K-fold cross-validation procedure used to evaluate stability. Adapted from [117].

Step Action Output

1 For each fold k ∈ K, split the data sample into
training and test samples

Training and test samples

2 Cluster the training sample Clusters in the training sample (partition P1)

3 Apply a Nearest Centroid classifier to the test
dataset

Classes in the test dataset (class set P2)

4 Cluster the test dataset using the clustering al-
gorithm of step 2

Clusters in the test sample (cluster set P3)

5 Obtain a contingency table between partitions
P2 and P3 of the test sample

Contingency table with the true class (P2)
and the predicted cluster (P3)

6 Calculate clustering agreement measures Indicator of stability of clustering solution

In this study, the data was randomly divided into 10 disjoint folds, each of which with approximately

the same number of observations. Performing 10-fold cross-validation was preferred to simple cross-

validation to increase the number of observations used as validation data. As observed in Table 3.1, for

each training-test split, a Nearest Centroid Classifier was considered in step 3. This classifier assigned

an observation (a leading eigenvector) to the cluster whose respective centroid/medoid was nearest

to the mentioned observation. The clustering agreement measures used to evaluate the stability of a

clustering solution were the ARI and the VI. Given that, for all 10 folds, the partitions of the test sample

obtained by applying the classifier (P2) and the clustering algorithm (P3) contained the same number

of clusters, the fraction of instances correctly assigned was computed by summing the values in the

diagonal of the contingency table and dividing by the total number of observations (percent agreement)

- measuring the level of association between the class set P2 and the cluster set P3.
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This chapter presents the results derived from the application of LEiDA to investigate differences in

dFC between schizophrenia patients and healthy controls. Section 4.1 presents the findings obtained

from performing a LEiDA analysis using the clustering solutions detected by the K-means algorithm.

Lastly, the influence of using K-medoids instead of K-means to study dFC is investigated in Section 4.2.

4.1 Exploration of dynamic functional connectivity detected using

the K-means algorithm

The K-means clustering algorithm was applied to the leading eigenvectors of all participants computed

at each time point to detect FC states. The application of the K-means algorithm yielded 19 distinct

clustering solutions (partition models), each considering a number of clusters, K, ranging from 2 to 20.

For each clustering solution, the cluster centroids (FC states) served as the prototype of the obtained

clusters and were assumed to represent averaged network configurations that consistently recurred

across fMRI scans [76]. As stated, for each participant, given that each observation in the dataset

represented a time point, the vector of cluster assignments represented a time course of FC states.

Here, Sections 4.1.1 and 4.1.2 outline the differences between groups found for the fractional oc-

cupancy and dwell time calculated for the detected FC states respectively. The overlap between the

detected FC states and reference functional networks is assessed in Section 4.1.3. Section 4.1.4 evalu-

ates the validity of clustering solutions through internal and external criteria. In Section 4.1.5 a tentative

optimal clustering solution is selected and characterised. Its stability is examined in Section 4.1.6. Fi-

nally, the intergroup differences identified in the dynamical properties of the state trajectories produced

by the optimal clustering solution are presented in Sections 4.1.7 and 4.1.8.

4.1.1 Fractional occupancy of functional connectivity states

The collection of clustering solutions was investigated to search for FC configurations whose mean frac-

tional occupancy most significantly and consistently differed between schizophrenia patients and healthy

controls. Figure 4.1 presents, for each clustering solution, K two-sided p-values obtained from evaluat-

ing whether the mean probability of occurrence of a FC state differed between schizophrenia patients

and healthy controls. It must be noted that for a partition model withK FC statesK hypothesis tests were

performed. Consequently, instead of rejecting the null hypothesis at a significance level of α1 = 0.05, two

corrected significance thresholds were considered. The first corrected significance threshold consisted

in a Bonferroni corrected significance level of α2 = 0.05/K - accounting for the increased probability of

false positives. Additionally, a conservative significance threshold of α3 = 0.05/
∑20
K=2K was consid-

ered - correcting for the total number of computed comparisons.
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Figure 4.1: Two-sided p-values obtained for the intergroup comparisons of the mean fractional occupancy of each
FC state for each partition model. FC states (clusters) are ranked according to their estimated proba-
bility of occurrence, where cluster 1 consisted of the largest number of objects and cluster K consisted
of the least number of objects.

As depicted in Figure 4.1, for partitions of the dataset into a larger number of clusters, there was

an increase in the number of FC states for which no significant differences in the mean probability

of occurrence were detected. Furthermore, on average, as shown in Figure 4.1, the number of FC

states for which the null hypothesis was rejected at a 5% significance level but did not survive the

corrected significance thresholds was reduced (α2 < p < α1). Notably, across all partition models, the

mean fractional occupancy differed significantly between groups in at least two FC states (p < α2, two-

tailed tests), as evidenced in Figure 4.1. In general, as observed in Figure 4.1, the clustering algorithm

consistently produced clusters with cluster centroids, i.e., FC states, with an associated two-sided p-

value that fell below the conservative significance threshold α3.

As shown in Figure 4.1, the statistical procedure identified significant differences in the mean frac-

tional occupancy of FC state 1 (centroid of the cluster with the largest number of assigned leading

eigenvectors) between groups (p < α2, two-tailed tests) for all clustering solutions. In fact, the null hy-

pothesis of no intergroup differences in the mean probability of occurrence of FC state 1 was rejected

at a significance level of α3 (two-tailed tests) for the clustering solutions with K ranging between 2 and

17 clusters. For each partition model, inspection of the cluster centroid associated with FC state 1

revealed this recurrent connectivity pattern represented a global mode of BOLD phase coherence (all

elements of the cluster centroid had the same sign). Hence, FC state 1 was referred to as the Global

Mode. Notably, the cluster centroids representing the Global Mode detected for each clustering solution
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were highly correlated (minimum pairwise Pearson correlation coefficient of 0.706) - indicating that all

FC states 1 represented similar forms of global BOLD phase coherence. Additionally, across all par-

tition models, further non-global FC states were characterised by a significant difference in the mean

fractional occupancy observed for the control and schizophrenia groups (p < α2, two-tailed tests). Im-

portantly, visual inspection of the FC states with associated two-sided p-value below the significance

threshold α3 revealed these states represented varying forms of the same underlying patterns of con-

nectivity. Specifically, regarding these states, it was noticed that connectivity patterns detected for lower

values of K could be obtained by combining the fine-grained patterns of connectivity identified in parti-

tion models with larger values of K - evidencing the dependence among the hypothesis tests performed

across partition models.

As stated, the mean probability of occurrence of a variety of FC states obtained across the range of

clustering solutions was identified as significantly different between groups. To understand whether the

mean fractional occupancy of the detected FC states was increased or decreased in schizophrenia pa-

tients in relation to healthy controls, one-tailed hypothesis tests were performed based on the inspection

of the estimates of the group mean fractional occupancy presented in Figure 4.2.

Figure 4.2: Barplot of the estimated mean fractional occupancy with associated standard error of each FC state
for each group. For each FC state, the colour of the bars indicates whether the null hypothesis of
no intergroup differences in the mean probability of occurrence was rejected (two-tailed tests). Black
bars indicate the null hypothesis was not rejected at a 5% significance level. Red, green and blue
bars indicate the null hypothesis was rejected at a 0.05, α2 and α3 significance level, respectively. The
standard error of each bar was calculated as the standard deviation of the sample data divided by the
square root of the sample size.

Analysis of Figure 4.2 suggested that the estimated mean fractional occupancy of FC state 1 was

decreased in patients with schizophrenia compared to healthy controls irrespective of the clustering
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solution. This was corroborated by the one-sided p-values computed from testing whether the mean

probability of occurrence of this state was decreased in schizophrenia patients compared to healthy

controls across all clustering solutions (p < α3 for K ∈ {2, . . . , 18}, one-tailed tests). Furthermore, in-

spection of Figure 4.2 revealed that all non-global FC states with an associated two-sided p-value below

the significance threshold α3 (Figure 4.1) were characterised by a higher estimated mean probability of

occurrence in the schizophrenia group compared to the control group. In fact, the one-sided p-values

obtained from testing whether the mean fractional occupancy of each of these states was increased

in patients with schizophrenia compared to healthy controls confirmed the previous findings (p < α3,

one-tailed tests).

4.1.2 Dwell time of functional connectivity states

As previously described, the collection of clustering solutions revealed connectivity patterns which were

consistently characterised by a mean fractional occupancy that differed significantly between groups.

With respect to intergroup differences in the mean dwell time of the detected FC states, the K two-sided

p-values calculated for each clustering solution are displayed in Figure 4.3.

Figure 4.3: Two-sided p-values obtained from testing the null hypothesis of no difference between the mean dwell
time of each FC state obtained for the control and schizophrenia groups. FC states (clusters) are ranked
according to their estimated fractional occupancy.

Inspection of Figure 4.3 revealed that the number of FC states with an associated two-sided p-value

that fell below the significance thresholds α2 and α3 was reduced in comparison to the findings of

Figure 4.1. As shown in Figure 4.3, significant intergroup differences in the mean dwell time of FC state
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1 were detected across the majority of the clustering solutions (p < α2, two-tailed tests). According

to Figure A.2, the estimated mean dwell time of this state was decreased in schizophrenia patients

compared to healthy controls. The one-tailed hypothesis tests confirmed the observed decrease was

significant for a group of clustering solutions (p < α3 for K ∈ {4, . . . , 11}). Conversely, as depicted in

Figure A.2, the estimated mean dwell time of a reduced number of non-global FC states appeared to

be increased in the schizophrenia group compared to the control group. One-tailed hypothesis tests

confirmed this increase to be significant at a significance level of α3 for only two FC states. Notably,

the Pearson correlation coefficient between the two mentioned states was found to be approximately

0.996 - reinforcing the fact that significant intergroup differences were consistently detected in analogous

connectivity patterns irrespective of the clustering solution.

4.1.3 Overlap with reference functional networks

Intergroup differences in the mean fractional occupancy and in the mean dwell time were consistently

detected in a number of varying forms of the same FC patterns. In Figure 4.4, for all partition models, the

cluster centroids are projected into the cortical space and color-coded according to the reference RSN

defined by [49] with which they most significantly overlapped. This aimed to elucidate the correlation

among the mentioned states and assess their functional relevance.

Figure 4.4: Representation of the centroids obtained for each clustering solution in cortical space. The rendered
ROIs correspond to positive elements in the vectors of the centroids. Brain regions are coloured ac-
cording to the reference RSNs defined by [49] whose p-value obtained from computing the Pearson
correlation coefficient was lowest (with p < 0.05/K). Centroids not significantly overlapping with any
of the reference RSNs are coloured in black. For each FC state, title asterisks indicate whether signifi-
cant intergroup differences in the mean fractional occupancy were detected. Green and blue asterisks
indicate p < α2 and p < α3 (two-tailed tests), respectively.
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Firstly, as shown in Figure 4.4, FC state 1 was represented as a transparent brain across all partition

models. This is because this state represented a global mode of BOLD phase coherence, with no

activation of any particular subset of functionally coupled ROIs. In line with the findings from Figure 4.1,

for the partition models with K ranging between 2 and 17, the title of each cortical representation of

the Global Mode reiterated that significant differences in the mean fractional occupancy between groups

were identified at a significance level of α3 (two-tailed tests).

Secondly, concerning the non-global FC states, most of the cluster centroids were found to signifi-

cantly overlap with a reference functional network defined in [49], as evidenced in Figure 4.4. It must be

noted that each non-global FC state could have significantly overlapped with more than one reference

functional network, i.e., the observed connectivity patterns could have encompassed the activation of

multiple functionally relevant subsets of ROIs. As shown in Figure 4.4, centroids detected in distinct clus-

tering solutions significantly overlapped with the same canonical RSNs. Furthermore, visual inspection

of the corresponding cortical rendering revealed approximately similar patterns of connectivity were cap-

tured across these states and partition models. This result reinforced the finding that different partition

models produced varying forms of the same underlying FC patterns.

Thirdly, the non-global FC states with a mean fractional occupancy identified as significantly in-

creased in schizophrenia patients (p < α2, one-tailed tests) were found to repeatedly overlap with the

same reference RSNs. Specifically, as depicted in Figure 4.4, the mentioned states shared signifi-

cant spatial similarities with the Somatomotor network, Dorsal Attention network and Limbic network

(p < 0.05/K) - indicating that the mean fractional occupancy of networks with functional relevance

closely related to that of the Somatomotor, Dorsal Attention and Limbic RSNs was significantly increased

in schizophrenia patients. In fact, for each group of non-global states with identified significant intergroup

differences in the group mean fractional occupancy (p < α2, two-tailed tests) and overlapping with the

Somatomotor, Dorsal Attention and Limbic networks, computation of the Pearson correlation coefficient

between the cluster centroids revealed the lowest correlation coefficient for each group was 0.870, 0.594

and 0.858, respectively. The relatively lower correlation coefficient obtained for the group of cluster cen-

troids overlapping with the Dorsal Attention network was due to the fact that, for partition models with

more than 11 clusters, at least two FC states significantly overlapped with this reference RSN, with each

state being characterised by the activation of different subsets of ROIs, as observed in Figure 4.4.

Finally, together with Figure 4.3, inspection of Figure 4.4 showed that the non-global FC states

characterised by a significantly increased mean dwell time in schizophrenia patients compared to healthy

controls (p < α2, one-tailed tests) significantly overlapped with the Dorsal Attention network and the

Limbic network.

Overall, the K-means algorithm provided clustering solutions which suggested that FC state 1 re-

curred significantly less (p < α3, one-tailed tests) and lasted significantly reduced consecutive periods
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of time (p < α2, one-tailed tests) in schizophrenia patients compared to healthy controls. Additionally,

across partition models, the mean fractional occupancy and the mean dwell time of the non-global FC

states, possibly with functional activity analogous to that of the Somatomotor, Dorsal Attention and Lim-

bic RSNs, was found to be significantly increased in schizophrenia patients compared to healthy controls

(p < α2, one-tailed tests). These findings are graphically summarised in Table 4.1.

Table 4.1: Graphical summary of the mean fractional occupancy and of the mean dwell time in schizophrenia pa-
tients compared to healthy controls observed across partition models detected by the K-means algo-
rithm. The non-global FC states are represented by the reference RSN defined by [49] with which they
most significantly overlapped. Upward/downward arrows indicate the mean fractional occupancy and/or
the mean dwell time were significantly increased/decreased in the schizophrenia group in relation to the
control group across partition models (p < α2, one-tailed tests). Crosses indicate the null hypothesis of
no intergroup differences in the mean of each measure were not rejected at a significance level of α2.

Reference functional networks defined by [49]

Global
Mode Visual Somat.a Dorsal

Attention
Ventral

Attention Limbic Front.b Default

Fractional
Occupancy ⇓ × ⇑ ⇑ × ⇑ × ×

Dwell
Time ⇓ × × ⇑ × ⇑ × ×

a Somatomotor; b Frontoparietal;

4.1.4 Internal and external validation of K-means clustering solutions

Figure 4.5 depicts the average Silhouette coefficient and the Dunn’s index utilised to evaluate the quality

of the clustering solutions produced by the K-means algorithm.

(a) Average Silhouette coefficient. (b) Dunn’s index.

Figure 4.5: Internal validation of K-means clustering solutions.

As observed in Figure 4.5, the maximum value in both criteria was obtained for clustering solutions

with a low number of FC states, which were of limited interest for the present study. Contrarily, for
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clustering solutions with K larger than 12, both criteria remained relatively constant at low values -

indicating such partitions were also of limited interest. Notably, for clustering solutions with a number of

clusters between 7 and 11, the average Silhouette coefficient decreased smoothly and the Dunn’s index

remained relatively constant, as shown, respectively, in Figures 4.5(a) and 4.5(b) - suggesting that these

partition models were of potential interest for further analysis.

Clustering solutions detected by the K-means algorithm using as input the pooled leading eigenvec-

tors from all participants were compared with clustering solutions detected by the K-means algorithm

using only the leading eigenvectors from the control group as input. This comparison revealed number

matching FC states were moderately correlated. Remarkably, the FC states from each of the cluster-

ing approaches with a mean fractional occupancy identified as significantly different between groups

(p < α3, two-tailed tests) were found to be highly intercorrelated. Furthermore, results from investigat-

ing the functional relevance of the FC states detected by using only the leading eigenvectors from the

control group were identical to the findings reported in Table 4.1. Lastly, the ARI and the VI computed

between clustering solutions with the same number of clusters detected by each approach indicated

relatively similar partitions of the data were obtained across the range of K.

4.1.5 Selection of the optimal clustering solution

For the subsequent analysis, a tentative optimal clustering solution was selected. In this study, the

partition model with 11 FC states was selected as the optimal clustering solution. The rationale leading

to this decision was based upon the ability to identify a collection of FC states with properties that

significantly differed between groups and the quality and stability of the actual partition of the data.

Firstly, visual inspection of Figure 4.1 revealed this partition model provided an optimal separation

between the FC states with mean fractional occupancy that did and did not differ between groups -

reducing the likelihood of considering false negatives and false positives in subsequent analysis. Specif-

ically, the null hypothesis of no intergroup differences in the mean fractional occupancy of 4 FC states

was rejected at a significance level of α3 (two-tailed tests), while the same hypothesis was not rejected

for the remaining 7 FC states (p > 0.05, two-tailed tests). Furthermore, as shown in Figure 4.3, the

mean dwell time of 2 FC states was identified as significantly different between groups (p < α2, two-

tailed tests). It must be noted that the two-sided p-value associated with FC state 9 did not fall below

the α3 significance level, as observed in Figure 4.3. Nonetheless, this FC state had a Pearson correla-

tion coefficient of 0.999 with FC state 9 of the partition model with K = 10 clusters whose associated

two-sided p-value fell below the α3 significance level.

Secondly, the FC states with significantly different intergroup mean fractional occupancy and signif-

icantly different intergroup mean dwell time revealed a broad spectrum of functional relevance. In fact,

the functional relevance of these states was found to possibly relate to that of the Somatomotor, Dorsal
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Attention and Limbic networks defined by [49], as demonstrated in Figure 4.4.

Finally, the quality of the structure of the clustering solution with 11 FC states was considered to lay

within the range of acceptable values according to the evaluated internal validation criteria, as evidenced

in Figure 4.5. In detail, the average Silhouette coefficient and the Dunn’s index were relatively similar to

the values observed for the clustering solutions with K ranging between 7 and 10 clusters. Additionally,

considering 11 FC states was speculated to better enable the detection of specific and fine-grained

functional networks with potentially altered activity in schizophrenia patients.

The collection of 11 BOLD phase coherence patterns represented the functional activation of different

subsets of ROIs, as depicted in Figure 4.6.

(a) Cortical space representation of each FC state.

(b) Vector representation of each FC state.

(c) Matrix representation of each FC state.

Figure 4.6: Collection of 11 FC states obtained from the selected optimal clustering solution. The FC states are
arranged (left-to-right) according to decreasing estimated fractional occupancy.

For the selected partition model, the mean fractional occupancy of the Global Mode was significantly

decreased in schizophrenia patients compared to healthy controls (p < α3; Hedge’s g = 0.694, medium

to large effect size). The estimated mean occurrence probability of this state was 29.8 ± 19.8% and

39.8 ± 14.9% (mean ± std) for the schizophrenia and control groups respectively. The mean fractional
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occupancy of FC states 5, 9 and 10 was significantly increased in schizophrenia patients compared to

healthy controls (p < α3; Hedge’s g = {0.611, 0.630, 0.629}, respectively, medium to large effect size).

The estimated mean fractional occupancy for FC states 5, 9 and 10 was 7.61± 7.78%, 5.67± 6.34% and

5.14± 4.09% for the schizophrenia group and 4.02± 3.15%, 2.52± 3.24% and 2.94± 2.81% for the control

group, respectively (mean ± std). These results are graphically summarised in Figure 4.7.

Figure 4.7: Boxplot of the fractional occupancy values for FC state 1 to 11 (left-to-right) for the schizophrenia and
control groups. Asterisks indicate significant intergroup differences (p < α3, one-tailed tests). Green
points represent outliers, according to the Tukey criterion.

The mean dwell time of the Global Mode was significantly decreased in schizophrenia patients com-

pared to healthy controls (p < α3; Hedge’s g = 0.618, medium to large effect size). The estimated mean

dwell time of this state was 4.986 ± 2.306 s and 6.574 ± 2.803 s (mean ± std) for schizophrenia patients

and healthy controls respectively. The mean dwell time of FC state 9 was significantly increased in

schizophrenia patients compared to healthy controls (p < α2; Hedge’s g = 0.519, medium to large effect

size). The estimated mean dwell time of FC state 9 was 2.287± 0.763 s for the schizophrenia group and

1.830 ± 0.977 s for the control group (mean ± std). The boxplots of Figure 4.8 represent the dwell time

values for each of the 11 FC states.

Figure 4.8: Boxplot of the dwell time values for FC state 1 to 11 (left-to-right) for the schizophrenia and control
groups. Single and double asterisks indicate significant intergroup differences with p < α2 and p < α3

(one-tailed tests), respectively. Green points represent outliers, according to the Tukey criterion.

4.1.6 Examination of the stability of the optimal clustering solution

The percent agreement, ARI and VI obtained for each fold of the 10-fold cross-validation procedure

described in Table 3.1 are provided in Table 4.2. The results suggested respectively, good levels of as-

sociation and paired agreement between partitions of the test sample and that the amount of information

that was lost in changing from the class set P2 to the cluster set P3 of the test sample was relatively low.

Consequently, the optimal clustering solution was considered valid and appropriate for further analysis.
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Table 4.2: Results from the 10-fold cross-validation stability analysis of the optimal clustering solution.

Cross-validation fold number

Indices 1 2 3 4 5 6 7 8 9 10

Percent
agreement 0.642 0.536 0.583 0.688 0.529 0.564 0.602 0.698 0.547 0.523

Adjusted
Rand 0.692 0.712 0.717 0.757 0.696 0.678 0.749 0.718 0.773 0.709

Variation of
information 1.379 1.504 1.349 1.237 1.396 1.402 1.291 1.229 1.181 1.388

4.1.7 Transition probability matrix of the optimal state trajectories

With respect to the optimal clustering solution with 11 FC states, for all participants, the individual DTMC

defined by the temporal trajectory through the finite state space S′ = {1, . . . , 11}, was characterised

by its estimated one-step TPM. The estimated average TPM for the control group, P(HC), and the

schizophrenia group, P(SZ), is depicted in Figures 4.9(a) and 4.9(b), respectively.

(a) Estimated average TPM of the control group. (b) Estimated average TPM of the schizophrenia
group.

Figure 4.9: Estimated group average one-step TPM. Each element of P(HC) and P(SZ) represents the estimated
average one-step probability of switching from state α to state β with α, β ∈ S′.

As shown in Figure 4.9, the estimated group average TPMs were aperiodic and asymmetric - rein-

forcing the transient emergence and dissolution of distinct connectivity patterns. The highest estimated

group average transition probabilities were observed in both Figures 4.9(a) and 4.9(b) along the diagonal
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(representing the probability of remaining in the same FC state) and the first column (representing the

probability of transitioning back to FC state 1) - indicating that the dynamical system of state trajectories

presented a higher propensity to maintain a given pattern of connectivity (stay locked within a given FC

state) and to return back to a state of global BOLD phase coherence. Furthermore, the FC state tran-

sitions of the form α → α (α ∈ S′), which indicate the relative stability of each FC state [76], suggested

that FC state 1 displayed the highest stability (with 65 ± 14.2% and 54 ± 15.9% (mean ± std) estimated

mean probability of remaining in this state for the control and schizophrenia groups, respectively), while

the stability of the remaining non-global FC states was relatively lower.

For each one-step probability of transitioning from state α to state β (α→ β, α, β ∈ S′), a two-sided

p-value was obtained by testing whether its group mean differed between groups. The state-to-state

transitions that were significantly affected in the schizophrenia group compared to the control group are

presented in Figure 4.10.

Figure 4.10: Transition diagram of the state-to-state transitions significantly altered in schizophrenia patients com-
pared to healthy controls. Each arrow represents a mean transition probability that was significantly
increased (green) or significantly decreased (red) in schizophrenia patients compared to healthy con-
trols. Single and double asterisks indicate significant intergroup differences with p < 0.05/11 and
p < 0.05/(11× 11) (one-tailed tests), respectively.
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On the one hand, as shown in Figure 4.10, the mean probability of remaining in a state of global

BOLD phase coherence (FC state 1) was significantly reduced in schizophrenia patients compared

to healthy controls (p < 0.05/(11 × 11), one-tailed test; Hedge’s g = 0.726, medium to large effect

size). Additionally, the mean probability of transitioning from FC state 8 to FC state 2 was also found

to be significantly reduced in schizophrenia patients (p < 0.05/(11 × 11), one-tailed test; Hedge’s g =

0.568, medium to large effect size). Lastly, the mean probability of remaining in FC states 2 and 7

was significantly reduced in the schizophrenia group compared to the control group (p < 0.05/11, one-

tailed tests; Hedge’s g = {0.449, 0.515}, respectively, small to medium effect size). On the other hand,

the mean probability of transitioning from the Global Mode to FC states 5 and 10 was significantly

increased in schizophrenia patients compared to healthy controls (p < 0.05/11, one-tailed tests; Hedge’s

g = {0.452, 0.513}, respectively, small to medium effect size). Furthermore, the mean probability of

switching from FC state 9 to FC state 10 was identified to be significantly increased in the schizophrenia

group compared to the control group (p < 0.05/11, one-tailed test; Hedge’s g = 0.461, small to medium

effect size). Finally, the mean probability of switching from FC state 2 to FC state 6 was found to be

significantly increased in schizophrenia patients compared to healthy controls (p < 0.05/11, one-tailed

test; Hedge’s g = 0.466, small to medium effect size).

4.1.8 Limiting probability of the optimal functional connectivity states

The estimates of the mean row vector representing the stationary distribution for the group of 37 healthy

controls, π(HC) =
[
π
(HC)
β

]
β∈S′ , and the group of 46 schizophrenia patients, π(SZ) =

[
π
(SZ)
β

]
β∈S′ , with

irreducible and aperiodic DTMCs, and countable state space S′ = {1, . . . , 11}, are given by:

π(HC) =
[
0.309 0.157 0.112 0.070 0.052 0.059 0.063 0.057 0.039 0.043 0.038

]
π(SZ) =

[
0.272 0.135 0.109 0.066 0.077 0.060 0.054 0.064 0.056 0.058 0.049

] (4.1)

where the highlighted values refer to estimates of the group mean limiting probabilities for which

the null hypothesis of no intergroup differences was rejected at a 5% significance level. Interestingly,

the null hypothesis of no intergroup differences in the mean limiting probabilities was never rejected

at the corrected significance value 0.05/11. Inspection of Equation (4.1) indicated that the estimated

long-run proportion of TRs spent in FC state 1 was 0.309 ± 0.104 for the group of 37 healthy controls

and 0.272 ± 0.111 for the group of 46 schizophrenia patients (mean ± std). Surprisingly, no intergroup

differences were found in the group mean limiting probability of this state (two-tailed test; Hedge’s g =

0.342, small to medium effect size). The group mean limiting probability of FC states 5 and 10 was

identified as significantly increased in the schizophrenia group compared to the control group (p < 0.05,

one-tailed tests; Hedge’s g = {0.464, 0.449}, respectively, small to medium effect size).
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4.2 Influence of using the K-medoids algorithm instead of the K-

means algorithm

The leading eigenvectors from all participants were used as input to the K-medoids clustering algorithm.

The algorithm considered values of K that ranged between 2 and 20 - producing 19 distinct partition

models consisting of K clusters and respective cluster medoids. For each clustering solution, the cluster

medoids (FC states) served as the prototype of the obtained clusters and were assumed to be the most

representative network configurations among groups of consistently recurring connectivity patterns.

Here, the clustering solutions detected by the K-medoids algorithm are analysed in Section 4.2.1.

Specifically, the fractional occupancy, the dwell time and the functional relevance of the detected FC

states are investigated. Lastly, the clustering solutions outputted by the K-medoids algorithm and the

K-means algorithm are compared in Section 4.2.2.

4.2.1 Investigation of clustering solutions detected by the K-medoids algorithm

The K two-sided p-values obtained from testing whether the mean fractional occupancy and the mean

dwell time differed between healthy controls and patients with schizophrenia are depicted in Figure 4.11.

(a) Fractional occupancy. (b) Dwell Time.

Figure 4.11: Two-sided p-values obtained from the intergroup comparisons between the mean fractional occupancy
and the mean dwell time of each FC state for each partition model detected by the K-medoids algo-
rithm. FC states (clusters) are ranked according to their estimated fractional occupancy.

Analysis of Figure 4.11 revealed that the application of the K-medoids algorithm enabled the de-

tection of FC states with a mean fractional occupancy and a mean dwell time which consistently and

significantly differed between groups, in line with the results from Sections 4.1.1 and 4.1.2. Across the

range of partition models detected by the K-medoids algorithm FC state 1, which represented a global

mode of BOLD phase coherence, was repeatedly identified as having a significantly different mean frac-

tional occupancy in the schizophrenia group compared to the control group (p < α2, two-tailed tests),

as observed in Figure 4.11(a). Significant intergroup differences in the mean fractional occupancy were
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also identified in a number of non-global FC states (p < α2, two-tailed tests). With respect to the non-

global states with an associated two-sided p-value below the significance threshold α3, the connectivity

patterns detected by both the K-means and K-medoids algorithms were found to be highly correlated

- representing the phase coherence among the BOLD signals of similar subsets of ROIs. In agreement

with previous findings, intergroup differences in the mean dwell time were only detected in a reduced

number of FC states, as evidenced in Figure 4.11(b).

In detail, across partition models and FC states detected by the K-medoids algorithm, the increase

or decrease of the estimates of the group mean fractional occupancy and of the estimates of the group

mean dwell time in the schizophrenia group relative to the control group were approximately analogous

to the findings derived using the K-means algorithm, as observed in Figures A.3(a) and A.3(b). In

fact, the mean fractional occupancy and the mean dwell time of the Global Mode were identified to be

significantly decreased in the schizophrenia group compared to the control group across a number of

clustering solutions (p < α2, one-tailed tests). Finally, the mean fractional occupancy and the mean

dwell time were found to be significantly increased in schizophrenia patients compared to healthy con-

trols at a significance level of α2 across multiple non-global FC states (one-tailed tests), as shown in

Figures A.3(a) and A.3(b).

The overlap between the cluster medoids (FC states) detected by the K-medoids algorithm and

the reference functional networks defined by [49] is depicted in Figure A.4 - revealing the detected FC

patterns displayed the activation of subsets of ROIs with possibly relevant functional relevance. The

combination of the findings from Figures A.3 and A.4 is summarised in Table 4.3.

Table 4.3: Graphical summary of the mean fractional occupancy and of the mean dwell time in schizophrenia pa-
tients compared to healthy controls observed across partition models detected by the K-medoids algo-
rithm. The non-global FC states are represented by the reference RSN defined by [49] with which they
most significantly overlapped. Upward/downward arrows indicate the mean fractional occupancy and/or
the mean dwell time were significantly increased/decreased in the schizophrenia group in relation to the
control group across partition models (p < α2, one-tailed tests). Crosses indicate the null hypothesis of
no intergroup differences in the mean of each measure were not rejected at a significance level of α2.

Reference functional networks defined by [49]

Global
Mode Visual Somat.a Dorsal

Attention
Ventral

Attention Limbic Front.b Default

Fractional
Occupancy ⇓ × ⇑ ⇑ × ⇑ no

overlap ×
Dwell
Time ⇓ × × ⇑ × ⇑ no

overlap ×
a Somatomotor; b Frontoparietal;

Inspection of Table 4.3 suggested that the connectivity patterns detected by theK-medoids algorithm

for which significant intergroup differences in the mean fractional occupancy and the mean dwell time

were identified represented FC configurations with functional relevance closely related to that of the
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patterns of connectivity detected by the K-means algorithm whose mean fractional occupancy and

mean dwell time also differed significantly between groups.

4.2.2 Comparison of partition models detected by K-means and K-medoids

The clustering solutions detected by the K-medoids algorithm were compared to the partition models

previously obtained by the K-means algorithm. For each of the 19 clustering solutions, the correlation

coefficient between the centroids and the medoids with the same label detected by each of the algo-

rithms was found to be relatively low. In detail, the ARI and the VI showed that the clustering solutions

with the same number of FC states detected by each of the clustering algorithms exhibited relatively low

paired agreement and that the amount of information that was lost from changing between clustering

solutions was relatively high. The values calculated for each of the external clustering agreement mea-

sures are provided in Table 4.4 for the clustering solutions with K ranging between 5 and 14 clusters.

Table 4.4: Comparison between clustering solutions with the same number of clusters detected by the K-means
and K-medoids algorithms.

Clustering solution with K FC states

Indices 5 6 7 8 9 10 11 12 13 14

Adjusted
Rand 0.684 0.541 0.581 0.552 0.564 0.467 0.446 0.406 0.385 0.388

Variation of
information 1.054 1.499 1.345 1.594 1.642 1.926 2.039 2.206 2.372 2.421

The results of Table 4.4 suggested that the clustering algorithms influenced the outputted clustering

solutions. Furthermore, closer inspection of Table 4.4 showed the ARI decreased and the VI increased

for successively increasing values of K - indicating that the partitions of the pooled leading eigenvectors

obtained from each of the clustering algorithms were increasingly dissimilar. This could suggest that

the detected centroids and the detected medoids, i.e., the FC states, represented the activation of

progressively different subsets of ROIs. Nevertheless, for each partition model with K clusters, the FC

states detected by each of the clustering algorithms whose mean fractional occupancy and mean dwell

time differed significantly between groups (p < α2, two-tailed tests) were found to be highly correlated -

representing approximately identical connectivity patterns. Therefore, despite providing distinct partition

models, both the K-means algorithm and the K-medoids algorithm were found to effectively identify

similar FC patterns with properties that significantly and consistently differed between groups.
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This MSc project investigated differences in resting-state dFC in schizophrenia patients compared

to healthy controls through the application of an approach focusing solely on the dominant FC pattern

captured by the leading eigenvector of BOLD phase coherence matrices [21]. Under this framework,

brain activity was conceived as a DTMC which represents the discrete temporal evolution of resting-

state connectivity patterns through a finite state space consisting of whole-brain BOLD phase coherence

configurations. By quantitatively estimating the fractional occupancy, dwell time and limiting probability

of each FC state, as well as the transition probabilities between states, it was possible to characterise the

time-resolved functional connectivity in both schizophrenia patients and healthy controls. Supported by

the analysis of clustering results, the permutation-based statistical procedure facilitated the identification

of recurrent connectivity patterns with properties distinctly and consistently altered in schizophrenia.

In agreement with previous studies [21,76–78], two distinct groups of BOLD phase coherence states

were detected by both the K-means algorithm and the K-medoids algorithm across all partition models

(Figures 4.4 and A.4). On the one hand, the algorithms detected the so-called Global Mode (FC state

1), which corresponded to a state of whole-brain BOLD signal phase coherence. Specifically, this FC

state was found to represent a strong, large whole-brain connectivity network. Varying forms of this

FC state were detected for all clustering solutions - suggesting that this pattern of connectivity is a

hallmark of time-varying FC. On the other hand, the clustering algorithms consistently identified a set of

non-global connectivity patterns which have been referred to as “ghost” attractor states [64, 76]. These

states represented the activation of a subset of ROIs with an instantaneous BOLD phase in anti-phase

compared to the bulk of the remaining BOLD phase orientations.

In this study, corrected significance thresholds were considered to reduce the likelihood of false pos-

itives when performing hypothesis tests. Specifically, the Bonferroni corrected significance threshold,

0.05/K, accounted for the K independent hypothesis tests performed within each partition model with

K FC states. Consistent with prior LEiDA analyses [21, 76–78], FC states detected across clustering

solutions were found to represent approximately varying forms of the same FC configurations - evidenc-

ing the dependency among the tested null hypotheses across K. Consequently, a further conservative

corrected significance threshold (0.05/
∑20
K=2K) was considered to encompass both dependent and

independent hypotheses tests performed within and across clustering solutions. Given the observed

dependency among hypotheses tests, the reported findings mainly concerned FC states for which the

null hypothesis of no intergroup differences was rejected at a significance level of 0.05/
∑20
K=2K.

Overall, for all clustering solutions detected by the K-means algorithm, significant intergroup differ-

ences in the mean fractional occupancy were identified for a number of connectivity patterns with a high

confidence level (Figure 4.1). Notably, a significant decrease in the mean fractional occupancy of the

Global Mode in the schizophrenia group compared to the control group was consistently detected for all

clustering solutions - suggesting that this state of global BOLD phase coherence recurred significantly
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less in schizophrenia patients compared to healthy controls (Figure 4.2). This finding was in line with

those of previous studies obtained using different approaches to investigate dFC [79,85,87,93,94]. Con-

versely, across partition models, the current study found that the mean fractional occupancy of a number

of varying forms of the same underlying non-global connectivity patterns was significantly increased in

schizophrenia patients compared to healthy controls. This indicated that a number of FC states char-

acterised by the activation of a small subset of ROIs recurred significantly more often in schizophrenia

patients than in healthy controls (Figure 4.2). In general, therefore, it seemed that the temporal evolution

of brain activity in schizophrenia patients spent a significantly increased amount of time transitioning

through the repertoire of “ghost” attractor states, as shown in [27, 79, 84, 86, 87, 93, 94]. These findings

point to the direction that, even if the temporal state trajectories of schizophrenia patients and healthy

controls span similar connectivity patterns, the recurrence of the FC states differs significantly between

groups which could be speculated to explain the observed behavioural symptoms of schizophrenia, such

as the collapse of psychological functions resulting in delusions and thought disorder.

In this study, the estimates of the dwell time of FC states were found to provide reduced sensitiv-

ity to identify discerning connectivity patterns between groups (Figure 4.3). In agreement with [78], a

possible explanation for this might be the low temporal resolution of the neuroimaging data analysed in

this research (TR = 2 s) - hindering the ability to capture the rapid fluctuations of FC, which have been

revealed by MEG studies to occur at time scales of approximately 200 ms [118]. Despite this, the possi-

bility that intergroup differences relate mostly to the fractional occupancy of connectivity patterns rather

than their mean duration cannot be ruled out. Findings derived from estimates of this measure therefore

need to be interpreted with caution. In agreement with previous studies [85, 93, 94], the mean dwell

time of the Global Mode was found to be significantly decreased in the schizophrenia group compared

to the control group in a number of partition models (Figure A.2). Furthermore, the mean dwell time of

a reduced number of “ghost” attractor states was identified as significantly increased in schizophrenia

patients in relation to healthy controls. In general, the estimates of the mean dwell time provided less

significant and consistent differences between groups - raising questions as to the validity and efficacy

of this measure [77].

Investigations of the overlap between the detected FC states and the seven reference RSNs defined

in [49] suggested that the Global Mode did not represent the activation of any particular known functional

network (Figure 4.4), as observed in previous studies [76, 78]. In contrast, the “ghost” attractor states

were found to closely relate to the reference functional networks defined by [49] - suggesting that the

phase shift in the BOLD signal of a given subset of brain areas, captured by LEiDA, revealed a separation

of the connectivity patterns into distinct functionally meaningful systems. Overall, the results indicated

that the significantly increased mean fractional occupancy in the schizophrenia group compared to the

control group concerned “ghost” attractor states with functional relevance possibly related to that of the
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Somatomotor, Dorsal Attention and Limbic reference RSNs (Table 4.1). These results supported previ-

ous research into altered dFC in brain functional subsystems [91]. Notably, despite the lack of a full un-

derstanding of the relationship between connectivity patterns observed in Electroencephalogram (EEG)

and fMRI, these findings could be speculated to portray a temporal dynamics related to that observed

with EEG microstates measured at a different time resolution. In fact, in line with the aforementioned

findings, EEG studies have reported an increased recurrence of a microstate partially associated with

the Limbic RSN in schizophrenia patients compared to healthy controls [119]. However, the same study

showed that the recurrence of a microstate partially associated with the Attention RSN was reduced in

schizophrenia patients [119]. This differed from the findings presented above.

One interesting finding was that the conceivably atypical leading eigenvectors belonging to the

schizophrenia group did not considerably influence the detected FC states and the cluster vector as-

signments. In fact, using the pooled leading eigenvectors from all participants or only the leading eigen-

vectors from the control group as input to the K-means algorithm was found to produce similar FC

states (and clusters) across the range of K. Furthermore, in both clustering approaches, significant

intergroup differences in the mean fractional occupancy and in the mean dwell time were found for FC

states which represented analogous connectivity patterns. These results further supported the idea that

the temporal state trajectories of schizophrenia patients and healthy controls explored similar repertoires

of connectivity patterns, but were characterised by properties such as the fractional occupancy, that led

to the observed intergroup differences - underpinning the role of this measure as a valid tool to capture

aberrant dFC in schizophrenia.

Here, the K-means clustering solution with 11 FC states was investigated in greater detail as it

provided an adequate trade-off between the ability to identify significant intergroup differences and the

validity of the partition of the data. Although improved clustering performance was obtained for clustering

solutions with lower K, relying solely on internal clustering validation criteria was not considered suitable

to detect schizophrenia-related abnormalities which could pertain to particular functional subsystems

optimally defined for higher K [76]. In fact, partition models with a high number of FC states had

successfully been employed in prior LEiDA analyses to investigate patients in remission from major

depressive disorder [77] and the effects of psilocybin [78]. Furthermore, a large body of research had

found evidence that brain FC may progress through a large number of connectivity patterns [33,34,49].

On the question of the validity of the optimal clustering solution, this study found that it provided

satisfactory intra-cluster homogeneity (compactness) and inter-cluster heterogeneity (separability). Re-

garding its stability, the optimal clustering solution was considered appropriate for further investigation.

Primarily, the performed 10-fold cross-validation approach allowed the entire collection of observations

to be utilised as a validation sample. Additionally, indices of association, paired agreement and variation

of information suggested that the agreement between partitions obtained from the validation samples
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was adequate. In contrast, the validation process performed in this study was not exhaustive since other

methods available in the literature were not explored. Furthermore, given the dimension and complexity

of the dataset, the use of a simple Nearest Centroid classifier could have been a naive approach.

Analysis of estimates of the fractional occupancy of the optimal partition model, similarly to the re-

maining clustering solutions, suggested that schizophrenia patients showed decreased ability to access

FC state 1 compared to healthy controls (Figure 4.7). This more frequently recurring pattern of global

BOLD phase coherence [21, 76–78] has been linked to greater neural flexible switching via integration

or segregation of different functional connections [21, 35]. Therefore, the Global Mode could be hy-

pothesised to represent a cyclic equilibrium state to which the time-varying FC dynamics often evolves

towards to facilitate the emergence of functionally meaningful RSNs [14, 64]. Following this rationale,

the reduced recurrence of this state observed in patients with schizophrenia could potentially provoke

reduced brain flexibility, i.e., the dynamical state trajectories of schizophrenia patients will, to a greater

extent, stay restricted to a fixed set of “ghost” attractor states rather than flexibly transitioning through

the full collection of FC states enabled by the recurrent transitions into the functionally integrative Global

Mode. This hypothesis seemed to be consistent with previous research which found whole-brain inte-

gration of higher-order networks was impaired in schizophrenia [91]. Furthermore, this hypothesis was

in line with previous findings indicating that schizophrenia patients exhibited diminished dynamic fluidity

as they switched less frequently between connectivity patterns compared to healthy controls [84].

Another important finding was that the state trajectories of schizophrenia patients showed a signifi-

cantly decreased mean probability of remaining in the Global Mode compared to healthy controls (Fig-

ure 4.10). Consequently, when in FC state 1, schizophrenia patients were significantly more likely not

to remain in that state at the next time instant, in concordance with findings from previous studies [93].

Additionally, schizophrenia patients displayed a significantly increased mean probability of transitioning

from the Global Mode to connectivity patterns 5 and 10 (Figure 4.10). Notably, the mean fractional occu-

pancy of these FC states was found to be significantly increased in the schizophrenia group compared

to the control group. It can therefore be suggested that the decreased fractional occupancy of FC state 1

resulted from the increased propensity of schizophrenia patients to rapidly transition to networks related

to the Somatomotor (state 5) and Limbic (state 10) RSNs. This could have in turn led to the observed

increased fractional occupancy (and limiting probability) of these states. These results provide further

support for the hypothesis that schizophrenia patients present reduced brain integration of segregated

functional connections.

Contrary to expectations, this study did not find an intergroup difference in the mean limiting proba-

bility of the Global Mode - suggesting that, in the long-run, the fraction of time points spent in a globally

BOLD synchronised state was not different between groups (Equation (4.1)). This result raises the pos-

sibility that differences between schizophrenia patients and healthy controls could rely primarily in the

68



dynamical properties of the temporal state trajectories, i.e., the transitions between states, rather than in

the fractional occupancy of FC states measured on restricted temporal windows. Nevertheless, it must

be noted that a reduced subsample of participants was considered to assess intergroup differences in

the group mean of this measure.

With respect to the selected optimal clustering solution, the results of this study showed that the

mean fractional occupancy of the “ghost” attractor states 5, 9 and 10 was significantly increased in

schizophrenia patients compared to healthy controls (Figure 4.7). Consistent with the aforementioned

findings, the mean limiting probability of connectivity patterns 5 and 10 was found to be significantly

increased in schizophrenia patients compared to healthy controls (Equation (4.1)) - suggesting that the

long-run fraction of time spent in states 5 and 10 was significantly increased in schizophrenia. One

unanticipated finding was that the long-run fraction of time spent in FC state 9 did not differ between

groups (Equation (4.1)). In detail, connectivity pattern 5 displayed BOLD phase coherence among the

somatosensory cortex, parietal gyri and supplementary motor area (Figure 4.6(b)) - suggesting a pos-

sible association with primary sensory and motor areas relevant in top-down brain processing. State 9

consisted of an extensive network including ROIs from the latter state, the precuneus and the occipital

gyri with potential implications to top-down brain processing, memory, self-consciousness and percep-

tion (Figure 4.6(b)). Lastly, FC state 10 included BOLD synchrony among areas from the temporal lobe,

namely the hippocampus and amygdalas - displaying a pattern likely involved in memory, decision mak-

ing and emotional response (Figure 4.6(b)). It is possible to hypothesise that the imbalanced recurrence

of the mentioned connectivity patterns in schizophrenia is in line with the view of schizophrenia as a dis-

order affecting memory, attention and executive function [120]. It must be noted that a thorough analysis

of the functional role of the FC patterns was not straightforward and was out of the scope of this project.

Overall, this study found that the mean probabilities of a number of state-to-state transitions were

significantly altered in schizophrenia patients (Figure 4.10). One interesting finding was that, compared

to healthy controls, schizophrenia patients presented a significantly increased mean probability of transi-

tioning from a state sharing spatial similarities with the reference Dorsal Attention RSN (FC state 9) to a

state sharing spatial similarities with the reference Limbic RSN (FC state 10). This finding was consistent

with that of EEG studies which reported unexpectedly more transitions from microstate D (associated

with the Attention RSN) to microstate C (associated with the Limbic RSN) [121]. Another important find-

ing was the significant decrease in the mean probability of remaining in a state functionally related to

the reference Default RSN observed in schizophrenia patients compared to healthy controls. This result

seemed to be consistent with other fMRI studies reporting abnormal DMN dynamics [48,86,87]. Notably,

this RSN has been linked to core processes of human cognition such as the integration of cognitive and

emotional processing, monitoring the surroundings and mind-wandering [29,32]. Therefore, this finding

may be related to the cognitive symptoms observed in patients with schizophrenia [120]. Additional
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significant intergroup differences were detected in a number of other mean state-to-state transition prob-

abilities. It may be the case therefore that the observed abnormal dynamical state transitions provide

potential biomarkers of this disorder as highlighted by studies using fMRI [93,122] and MEG [85].

On the question of the influence of the selected clustering algorithm, this study found that employ-

ing either the K-medoids algorithm or the K-means algorithm produced similar findings. As with the

K-means algorithm, the Global Mode detected using the K-medoids algorithm was found to recur sig-

nificantly less in schizophrenia patients compared to healthy controls (Figure 4.11). Additionally, a sig-

nificant increase in the group mean fractional occupancy of a number of “ghost” attractor states detected

by the K-medoids algorithm was observed in schizophrenia patients (Figure A.4). Finally, the functional

relevance of the mentioned “ghost” attractor networks (with significantly increased group mean fractional

occupancy in schizophrenia patients) suggested a possible connection with the Somatomotor, Dorsal At-

tention and Limbic reference RSNs (Table 4.3) similarly with the findings from the K-means clustering

analysis. These aforementioned findings suggested that the results from the K-medoids algorithm were

qualitatively identical to those obtained using the K-means algorithm.

Surprisingly, despite the differences in the clustering solutions detected by each of the clustering

algorithms, the FC patterns whose mean fractional occupancy and mean dwell time significantly differed

between groups in both algorithms were found, through quantitative measures, to represent the coher-

ence among BOLD signals from similar subsets of ROIs. This suggested that both clustering algorithms

captured comparable intergroup differences and further reinforced the findings from the previous LEiDA

analysis using the K-means algorithm (Section 4.1).

Importantly, although both clustering algorithms provided similar findings, the choice of an optimal

clustering algorithm should rely not only on statistical and cluster validation analyses, but also on con-

cepts and methods from dynamical systems theory [21, 64, 76]. In this study, the cluster centroids

detected using K-means were considered to provide greater physiological interpretability than the clus-

ter medoids detected using K-medoids. On the one hand, from the definition of the K-means algorithm,

the detected FC states were not necessarily observations from the input dataset, but could rather be

interpreted as averaged unobserved connectivity patterns to which the time-resolved state trajectories

tended to transiently evolve towards and temporarily settle; hence, the designation of these FC patterns

as “ghost” attractor phase locking states [64, 76]. However, the definition of the K-medoids algorithm

implied the detected FC states were the most representative patterns of connectivity among all observed

leading eigenvectors. Hence, under this framework, it could conceivably be hypothesised that the phase

locking states of the time-varying state trajectories were not “ghost” states, but rather represented con-

nectivity patterns which existed during the state trajectories of individuals. Research questions per-

taining to the functional meaning of the detected FC patterns underline the need to employ tools from

dynamical systems theory to provide further insights into the dynamical regime of brain activity [14,64].
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This final chapter reflects on the main findings and contributions of this thesis in Section 6.1. In

Section 6.2 limitations of this study are discussed and recommendations for future studies are provided.

6.1 Concluding Remarks

In this thesis, resting-state dynamic functional connectivity comparisons were conducted between pa-

tients with schizophrenia and healthy controls by employing and extending the Leading Eigenvector

Dynamics Analysis method. Through the characterisation of the temporal expression of different func-

tional connectivity patterns, this analytical approach contributed with new insights into the dynamical

foundations of brain activity in schizophrenia.

The investigation of intergroup differences has shown that patients with schizophrenia exhibited de-

creased fractional occupancy and mean duration of a strong, large-scale connectivity network represent-

ing BOLD signal phase coherence of the whole set of AAL90 brain regions. Conversely, schizophrenia

patients showed increased fractional occupancy and mean duration of a number of functionally mean-

ingful “ghost” phase locking states. One of the more significant findings to emerge from this study was

that, from a dynamical perspective, the ability to remain in the Global Mode was reduced in schizophre-

nia patients, which was hypothesised to lead to decreased integration of segregated functional connec-

tions [21,35]. Additionally, this study found that a number of state-to-state transitions displayed abnormal

dynamical behaviour in schizophrenia patients. In general, therefore, it seemed that, even in the absence

of any explicit task, the dynamical behaviour of brain activity in schizophrenia was typified by more fre-

quent transitions to network patterns that are commonly activated during specific tasks - supporting and

extending the findings of previous research [84–86,91,93,121].

Developing on from previous LEiDA analyses, this study proposed examining the limiting probability

of the FC states which defined the state trajectories characterised by irreducible and aperiodic DTMCs.

Notwithstanding the relatively reduced estimated effect sizes, this property offered valuable insights into

the long-run fraction of time that the DTMCs spent in each of the FC states defined by the selected opti-

mal state repertoire from a dynamical perspective. Furthermore, it highlighted the relevance of transition

probabilities, which capture the underlying dynamical behaviour of brain activity, as a potential biomarker

of schizophrenia [122]. In fact, this measure is based on the state-to-state transition probabilities. This

study laid the groundwork for future research into this property of state trajectories. However, consider-

ably more work will need to be conducted to determine its utility, which would greatly benefit from fMRI

scanning sessions with high temporal resolution to capture more rapid state-to-state transitions.

In addition to investigating differences between schizophrenia patients and healthy controls, this

study set out to examine the validity of the results outputted by the clustering procedure to a greater

depth than in previous research employing LEiDA. Specifically, evaluating the performance of the K-
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means clustering algorithm aided to guide the choice of an optimal clustering solution - guaranteeing

the selected number of FC states facilitated the identification of intergroup differences, whilst reflecting

a partition of the dataset with suitable compactness and separation properties. Importantly, this was the

first LEiDA analysis to study the stability of the selected optimal clustering solution. The results of this

investigation showed that the stability of its partition of the data was adequate. Although the stability

analysis was not comprehensive, this finding reinforced that the estimated patterns of connectivity were

accurate average representations of the dynamical fluctuations of brain activity. A natural progression of

this investigation is to analyse clustering stability using other methods proposed in the literature.

Finally, this study aimed to assess the influence of using the K-medoids clustering algorithm to

investigate dFC differences between schizophrenia patients and healthy controls. This study found that

generally similar conclusions would have been drawn from conducting a K-medoids clustering analysis.

This emphasised the need to interpret the results through the lens of dynamical systems theory to decide

on the appropriate clustering analysis method [21,64,76].

6.2 Limitations & Future Work

The heterogeneity of characteristics of schizophrenia patients in research poses difficulties to the iden-

tification of reliable biomarkers of this disease [120]. Specifically, components of heterogeneity include

the often unclear characterisation of patients and their clinical history [94, 120]. Since the data of this

study was limited to a public repository [20], it was not possible to control the clinical heterogeneity of

the schizophrenia sample. In combination with the analytical flexibility of fMRI research [4,12], this could

have influenced the findings of this study in an uncertain fashion.

A limitation of this study was that the detected FC states were strongly constrained by the selected

parcellation atlas (AAL90). Despite having shown consistent results across studies employing LEiDA

[21,76–78], the AAL90 template is based on an anatomical parcellation and, therefore, may not provide

an adequate framework to conduct an analysis of dFC. Accordingly, future studies could extend this

analysis to other fMRI-derived anatomical or functional parcellations.

One source of weakness in this study which could have affected the measurements of the proper-

ties of the DTMCs was the low temporal resolution of the BOLD signals and the relatively short fMRI

recording time window. This was most clearly observed from the inconsistencies found across state

trajectories obtained from the optimal clustering solution where, often times, the occurrence of all FC

states was not guaranteed. The referred limitation was overcome by assuming all recording sessions

represented different observations of the same underlying dynamical system where, although all FC

states existed, some could have not been observed. Future work should utilise lengthier fMRI scanning

sessions with higher temporal resolution to improve the utility of properties such as the state-to-state
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transition probabilities and the limiting probability of FC states as possible biomarkers of schizophrenia.

In schizophrenia research, it is unclear whether specific cognitive problems are schizophrenia spe-

cific or may be linked to concomitant factors such as age and gender [28,120]. A limitation of this study

is that the effect of age and gender was not taken into account while assessing intergroup differences.

Consequently, the findings of this study were attributed solely to the effect of the group, independently

of the effect of the mentioned variables. The effect of age and gender could be investigated by consid-

ering logistic regression models where group and age/gender correspond to the independent variables

and a given property corresponds to the dependent variable. Future investigations should interpret the

intergroup differences in light of age (e.g., by splitting the data into age quantiles and rerunning the per-

mutation tests within each age group) and gender (e.g., by rerunning the permutation tests within each

gender). Lastly, the interaction between age and gender should also be explored to determine its effect

on the intergroup differences.

The results presented in this project were obtained by considering the full frequency spectrum of

the ROI-averaged BOLD time courses (see Section 3.2.2). Contrary to the requirements when working

with PC-based approaches [70], it was unknown whether the BOLD signals analysed herein were nar-

rowband. Further research is necessary to determine the influence of not temporally filtering the data

on the ability to differentiate schizophrenia patients from healthy controls. This could be achieved by

following the procedure of [76] and may contribute with additional valuable insights into this controversial

preprocessing procedure [39,40].

One of the more significant findings to emerge from this study was that the dynamical behaviour of a

state representing global BOLD phase coherence was found to be altered in schizophrenia. Interestingly,

this FC state has been suggested to possibly relate to the “global signal” [21, 77] (see Section 3.2.3).

Here, the “global signal” was not regressed from the neuroimaging data. Therefore, the study should be

repeated using GSR to understand whether schizophrenia patients would still be distinguishable from

healthy controls based on the properties of a whole-brain BOLD phase coherence FC pattern.

In this project, motion-related artefacts were not removed from the neuroimaging data (see Sec-

tion 3.2.3). Therefore, an additional uncontrolled factor was the possibility that motion parameters could

have biased the estimates of dFC [100]. Further research needs to be conducted to fully understand the

influence of these artefacts on the results. Furthermore, this investigation could usefully evaluate the

robustness of LEiDA to motion-related confounds as this remains to be elucidated. On the one hand,

this could be achieved by applying motion regression methods to the data and repeating the statistical

analysis. On the other hand, following the procedure proposed to study the effect of age and gender,

FD [96] could be used as an independent variable of a logistic regression model to assess the overall

impact of head motion. In fact, an initial analysis showed that the hypothesis of zero-effect of head

motion on the estimates of the fractional occupancy and on the estimates of the dwell time was rejected.
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Following previous LEiDA studies, intergroup comparisons were performed by utilising permutation

tests. In contrast to previous research [21, 77, 78], this study used permutation tests based on two

different statistics, depending on the homogeneity between the group variances. A limitation of the

statistical tests used to perform intergroup comparisons was that the standard deviation of the difference

of the group means was not estimated independently of the calculated means difference. Therefore,

this study should be repeated using a modified version of the permutation-based statistical procedure.

The alternative version could explore the possibility of using bootstrap samples within each permutation

sample to estimate the standard deviation of the difference of the means. A preliminary analysis showed

that this modified statistical procedure produced relatively similar results to the ones presented in this

study - leading to similar conclusions regarding dynamic brain activity in schizophrenia patients. A

thorough and comparative analysis of both these procedures merits further investigations. Alternatively,

statistical tests based on random sampling with replacement, i.e., bootstrap tests, could be considered in

future investigations to assess intergroup differences. Another alternative to study intergroup differences

could be to build logistic regression models with the group of participants as the dependent variable

and the estimates of a given measure as the independent variable. The latter approach would enable

assessing the effect of other concomitant variables in a more flexible fashion.

This research has thrown up the use of the limiting probability of FC states as a dynamic property

to differentiate diseased patients from healthy subjects. In fact, the measurements of this property were

derived from the estimation of the stationary distribution of the state trajectories defined as irreducible

and aperiodic DTMCs. As stated in Section 3.3.4.D, this study did not examine intergroup differences

in the stationary distributions. A natural progression of this work is to analyse whether this property

may provide further insights into differences between the limiting dynamic behaviour of brain activity in

diseased and healthy populations. This could be achieved by employing the two-sample goodness of fit

χ2 test.

With respect to the clustering algorithm, inspection of the clustering solutions detected byK-medoids

suggested that the partition model with 7 clusters provided an adequate trade-off between a higher num-

ber of FC states and clusters with a relatively high compactness and separation (results not presented).

The exploration of the K-medoids algorithm as a suitable alternative to the K-means algorithm, in light

of the methods and concepts from dynamical systems theory, merits further examination.

Finally, this study attempted to provide unbiased and statistically rigorous evidence for differences

between schizophrenia patients and healthy controls. Nevertheless, the potential to serve as biomarkers

of schizophrenia and the clinical implications of the results derived herein remain to be analysed. Future

research should gather a diverse panel of experts to explore how these findings could be applied to

diagnose the disorder to determine its prognosis and to predict and monitor a patient’s response to

interventions.
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A.1 Supplementary Material of Section 2.6

Table A.1: State of the art of resting-state dynamic functional connectivity in schizophrenia.

Study Main Objective Sample Methods Main Findings

[86] Examine dynamic
connectivity changes
among pairs of
spatial components
estimated from
rs-fMRI data.

10 SZ
10 HC

Markov modelling
analysis: (1)
Sliding-window
analysis to seg-
ment data; (2) IVA
to extract spatial
components; (3)
K-means cluster-
ing (K = 3).

Overall, SZ patients presented
higher FC values than HCs. Sig-
nificant spatial changes in network
connectivity in the SZ group mainly
occurred between the frontopari-
etal, cerebellar and temporal lobe
regions. SZ patients presented
more FC dynamics.

[79] Assess whole brain
FC differences be-
tween HCs and SZ
patients and evaluate
if any observed dif-
ferences primarily oc-
curred in certain con-
nectivity states during
the scan duration.

151 SZ
163 HC

(1) Group spatial
ICA to decompose
imaging data; (2)
dFC via SWA; (3)
K-means cluster-
ing (K = 3).

On average, SZ patients spent
much less time than HCs in states
characterised by strong, large-
connectivity and abnormal con-
nectivity patterns were more pro-
nounced during these connectiv-
ity states. SZ patients showed
hypoconnectivity within sensory re-
gions, hyperconnectivity of the tha-
lamus with these regions.

[83] Provide a whole-brain
characterisation of re-
gional differences in
FC variability and dis-
tinction of discrete FC
states among HCs,
SZ and BP patients.

60 SZ
38 BP
61 HC

(1) Group spatial
ICA to decompose
imaging data; (2)
dFC via SWA; (3)
K-means cluster-
ing (K = 5).

Patients made fewer transitions to
some states compared to HCs, with
most such differences confined to
a single state. SZ patients showed
more differences from HCs than did
BP patients, including both hyper-
and hypoconnectivity in one com-
mon connectivity state.

[87] Evaluate the differ-
ences in dynamic
connectivity within
DMN between HCs
and SZ patients using
rs-fMRI.

82 SZ
82 HC

dFC within DMN.
(1) Spatial ICA to
decompose imag-
ing data; (2) dFC
via SWA; (3) K-
means clustering
(K = 2).

Overall, SZ patients displayed
within-network disruptions of the
DMN. Connectivity measures sug-
gested HCs showed stronger DMN
inter-subsystem interaction than
patients. Compared to HCs, pa-
tients spent more time in the states
with nodes sparsely connected. SZ
patients showed lower values than
HCs in the averaged node strength,
clustering coefficient, global effi-
ciency, and local efficiency.

Continued on next page
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Table A.1 – continued from previous page
Study Main Objective Sample Methods Main Findings

[84] Present evidence
that multiple explicitly
dynamical proper-
ties of time-varying
whole-brain network
connectivity are
strongly associated
with schizophrenia.

151 SZ
163 HC

(1) Group ICA
to decompose
imaging data; (2)
dFC via SWA;
(3) Parametrised
vector with dis-
tance between
each windowed
FC matrix to each
cluster centroid.

Time-varying whole-brain network
connectivity patterns are found to
be less dynamically active in SZ
patients. Compared to HCs, SZ
patients exhibited diminished dy-
namic fluidity: (1) SZ patients occu-
pied fewer meta-states and (2) SZ
patients switched less frequently
between meta-states.

[62] Classification of SZ,
BP and healthy sub-
jects based on their
static and dynamic
FC features.

60 SZ
38 BP
61 HC

(1) Group spatial
ICA to decompose
imaging data; (2)
sFC via covari-
ance matrix; (3)
dFC via SWA; (4)
Linear Support
Vector Machine.

Results showed that the dFC fea-
tures significantly outperformed the
sFC features in terms of predic-
tive accuracy. Combining sFC
and dFC features did not signif-
icantly improve the classification
performance over the dFC features
alone.

[89] Explore the possibility
that there are similar
transient connectivity
patterns between SZ
patients and their un-
affected siblings (SB).

25 SZ
25 SB
25 HC

(1) dFC via SWA;
(2) PCA to reduce
data dimensional-
ity; (3) K-means
clustering (K =
8).

Five FC states, with reduced con-
nectivity strength in both sibling
and patient groups, were recog-
nised as trait-related connections
(cingulo-opercular, occipital, and
default mode networks) and re-
flected shared connectivity alter-
ations between SZ patients and
their unaffected siblings. SZ pa-
tients and their unaffected siblings
shared common transient func-
tional dysconnectivity.

[94] Prospective study
to evaluate dFC in
unmedicated pa-
tients with SZ (N)
and to test if, and
how, antipsychotic
medications change
brain network dy-
namics after 1 (1W)
and 6 (6W) weeks
of treatment in an
effort to disentangle
medication effects
form intrinsic illness
characteristics.

SZ:
33 N

29 1W
24 6W
35 HC

(1) Group spatial
ICA to decompose
imaging data; (2)
dFC via SWA; (3)
K-means cluster-
ing (K = 3).

Significantly increased connectivity
was present only between the tha-
lamus and somatomotor network in
one state in unmedicated patients
compared to HCs, but no evidence
of decreased connectivity in any
states was found. In comparison to
controls, unmedicated patients had
shorter mean dwell times and frac-
tion of time spent in the sparsely
connected state, and longer dwell
times and fraction of time spent in
the intermediately connected state.
Antipsychotic medication appeared
to normalise mean dwell times, but
not fraction of time.

Continued on next page
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Table A.1 – continued from previous page
Study Main Objective Sample Methods Main Findings

[92] Explore dFC across
a spectrum of
symptomatically-
related disor-
ders including BP
with psychosis,
Schizoaffective Dis-
order (SAD) and SZ
using the GIG-ICA
method.

113 SZ
132 SAD
140 BP
238 HC

(1) dFC via
SWA of whole-
brain BOLD time
courses; (2)
GIG-ICA to esti-
mate group-level
and subject-
specific connectiv-
ity states.

Progressive abnormalities from
HCs to BP patients to SAD pa-
tients to SZ patients with respect
to hypoconnectivities and hy-
perconnectivities were found.
Diagnosis-related states with
varied activation were present in
mental disorders. Overall, results
suggested SAD and SZ showed
common impairments in frontal
connectivities, compared to HCs
and BP.

[90] Investigate group
differences among
HCs, clinical high-risk
for psychosis (CHR)
and early illness SZ
groups by applying
the group informa-
tion guided GIG-ICA
method.

58 SZ
53 CHR
70 HC

(1) dFC via
SWA of whole-
brain BOLD time
courses; (2)
GIG-ICA to esti-
mate group-level
and subject-
specific connectiv-
ity states.

Multiple functional connections in
the dominant state were altered in
CHR and SZ groups. The dominant
connectivity state showed greater
connectivity changes in the SZ
group compared to the CHR group.
The results suggested disease-
related connectivity states occurred
in CHR and SZ groups.

[91] Identify voxel-level,
region-level and
network-level FC
variability alterations
in order to map the
temporal dynamics
of resting-state FC in
SZ.

102 SZ
124 HC

dFC via SWA at
every level.

Patients showed consistent in-
creased FC variability in the sen-
sory and perceptual system, in-
cluding the visual, sensorimotor,
attention networks, and thalamus.
Findings highlighted the rudimen-
tary role of elevated instability of
information communication in sen-
sory and perceptual system and at-
tenuated whole-brain integration of
high-order networks in SZ.

[93] Compare multiple as-
pects of whole-brain
resting state tempo-
ral dynamics in young
adults with SZ and
ASD, and HCs, pro-
viding a detailed ac-
count of convergence
and divergence.

33 SZ
34 ASD
34 HC

(1) Group spatial
ICA to decompose
imaging data; (2)
dFC via SWA; (3)
K-means cluster-
ing (K = 4).

SZ and ASD spent an increased
portion of the time in a state
of weak intra-network connectivity,
and a decreased portion of the time
in the state of strong connectivity.
When SZ patients transitioned into
the state of strongest connectivity,
they switched states very rapidly.
SZ group presented reduced num-
ber of transitions between states.
These results suggested a severe
and pervasive pattern of altered
temporal dynamics in SZ.

Continued on next page
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Table A.1 – continued from previous page
Study Main Objective Sample Methods Main Findings

[85] Identify overlaps and
differences between
the dFC of HCs and
patients with SZ us-
ing different imaging
modalities (fMRI and
MEG).

46 SZ
45 HC

(1) PCA to reduce
data dimension-
ality; (2) Group
spatial ICA on
retained principal
components; (2)
dFC via SWA; (3)
K-means cluster-
ing (K = 4).

On average, dFC analysis pre-
dicted on fMRI data revealed HCs
and SZ patients remained in dif-
ferent overall brain states for sig-
nificantly different periods of time,
with SZ patients spending less time
in a state typified by strong, large-
scale connectivity. fMRI and MEG
revealed between-group FC differ-
ences in distinct ways, highlight-
ing the utility of using each of the
modalities individually, or poten-
tially a combination of modalities.

A.2 Supplementary Material of Section 3.3.2

This section aimed to confirm the robustness of the approach used by LEiDA when analysing rs-fMRI

data from [20]. The derivations presented below followed the methodology of [78].

Let B denote the phase coherence matrix at time t (B(t) is equivalent to dFC(t) used in the main

text, and was simply used here to improve the readability of the equations). The phase coherence

between brain areas n and p at time t is written as:

Bn,p(t) = cos(θn(t)− θp(t)) (A.1)

The phase coherence matrix B is real-valued and symmetric. Then, from the spectral theorem

it follows that there exists an eigenbasis {vi}Ni=1 with associated eigenvalues {λi}Ni=1, such that the

spectral decomposition of B at time t is given by Equation (A.2):

B(t) = QΛQᵀ =

N∑
i=1

λiviv
ᵀ
i =

 v1 . . . vN


λ1 . . .

λN


 vᵀ1

...
vᵀN

 (A.2)

where N is the number of brain areas, Λ is the diagonal matrix of eigenvalues and the columns of Q

are the eigenvectors of B. Here it was assumed that λ1 ≥ λ2 ≥ . . . ≥ λN . Using PCA it is possible to

quantify the variance explained by each eigenvector of B, and thus the proportion of the signal explained

by the leading eigenvector.

The jth column of B represents the pairwise similarities between the phase of ROI j and all the other
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ROIs. For a given column j, the centered phases were obtained by subtracting the mean of that column

from all its entries. The matrix of the centered similarities was denoted with a subscript c:

Bc = B − 1Bᵀ
m (A.3)

where Bm is the vector of the mean of the columns of B. The sample variance-covariance matrix

at time t of the centered similarities between each pair of phases is approximated by Sc = Bᵀ
cBc. This

matrix is symmetric since Sᵀ
c = (Bᵀ

cBc)
ᵀ

= Bᵀ
c (Bᵀ

c )
ᵀ

= Bᵀ
cBc = Sc. Consequently, for each time t, the

spectral theorem holds and the spectral decomposition of Sc is written in Equation (A.4):

Sc(t) = QcΛcQ
ᵀ
c =

N∑
i=1

λc,ivc,iv
ᵀ
c,i (A.4)

where Λc is the diagonal matrix of eigenvalues and the columns of Qc are the eigenvectors of Sc so

that QcQᵀ
c = Qᵀ

cQc = I. From the properties of the trace of matrices it follows for each time t:

tr(Sc) = tr(QcΛcQ
ᵀ
c ) = tr(ΛcQ

ᵀ
cQc) = tr(Λc) = λc,1 + λc,2 + . . .+ λc,N (A.5)

From standard PCA, the proportion of total variance in the coherence of the phases due to (explained

by) the ith eigenvector of the sample variance-covariance matrix is expressed as the ratio [123]:

(
Proportion of the total sample

variance due to the ith eigenvector

)
=

λc,i
λc,1 + λc,2 + . . .+ λc,N

(A.6)

As the eigenvalues are ordered in decreasing order, the eigenvector λc,1 will explain the most vari-

ance, and if λc,1 >
∑N
i>1 λc,i it explains most of the variance in the similarities between phases. Fol-

lowing this reasoning, it was observed that the leading eigenvectors V1 computed at each time point

t ∈ {1, . . . , T} and for all subjects consistently explained more than 50% of the variance in the similarities

between BOLD phases in each group, as evidenced in Figure A.1(a). To assess whether the mean pro-

portion of variance explained by the leading eigenvectors across all time points differed between healthy

controls and schizophrenia patients, a two-sided Wilcoxon Rank-Sum test with Bonferroni correction was

performed, since the QQ-plots suggested non-normality and the Levene’s test heteroscedasticity of the

data. This test did not detect intergroup differences in the mean proportion of variance explained by V1

across all time points. The boxplot in Figure A.1(b) corroborates the previous result.

Therefore, as in previous work [21, 76–78], considering only the leading eigenvector of each phase

coherence matrix is a robust and representative approach of the dominant FC pattern at each time point.
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(a) Proportion of variance explained by the leading
eigenvector at all time points for all participants.

(b) Boxplot of the proportion of variance explained by
the leading eigenvector at each time point for each
group. Comparison of means performed using the
two-sided Wilcoxon Rank-Sum test. Red points
represent outliers, according to the Tukey criterion.

Figure A.1: Proportion of phase coherence explained by the leading eigenvectors.

A.3 Supplementary Material of Section 4.1.2

Figure A.2: Barplot of the estimated mean dwell time with associated standard error of each FC state detected by
the K-means algorithm for each group. For each FC state, the colour of the bars indicates whether
the null hypothesis of no intergroup differences in the mean dwell time was rejected (two-tailed tests).
Black bars indicate the null hypothesis was not rejected at a 5% significance level. Red, green and blue
bars indicate the null hypothesis was rejected at a 0.05, α2 and α3 significance level, respectively. The
standard error of each bar was calculated as the standard deviation of the sample data divided by the
square root of the sample size.
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A.4 Supplementary Material of Section 4.2.1

(a) Probability of occurrence.

(b) Dwell Time.

Figure A.3: Barplot of the estimated mean fractional occupancy and of the estimated mean dwell time with asso-
ciated standard error of each FC state detected by the K-medoids algorithm for each group. For each
FC state, the colour of the bars indicates whether the null hypothesis of no intergroup differences in the
mean of each measure was rejected (two-tailed tests). Black bars indicate the null hypothesis was not
rejected at a 5% significance level. Red, green and blue bars indicate the null hypothesis was rejected
at a 0.05, α2 and α3 significance level, respectively. The standard error of each bar was calculated as
the standard deviation of the sample data divided by the square root of the sample size.
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Figure A.4: Cortical space representation of the cluster medoids obtained for each clustering solution produced
by the K-medoids algorithm. The rendered ROIs correspond to positive elements in the vectors of
the cluster medoids. Medoids (FC states) are coloured according to the reference functional network
defined by [49] whose p-value obtained from computing the Pearson’s correlation coefficient was lowest
(with p < 0.05/K). Medoids not significantly overlapping with any of the reference RSNs are coloured
in black. For each FC state, title asterisks indicate whether significant intergroup differences in the
mean fractional occupancy were detected. Green and blue asterisks indicate p < α2 and p < α3

(two-tailed tests), respectively.
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