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Resumo

O objetivo deste trabalho é desenvolver um sistema de controlo com base em métodos de

controlo moderno para controlar grupos de véıculos aéreos não tripulados quadrirrotores em voo

em formacão. É implementada uma metodologia de seguimento de ĺıder onde um véıculo ĺıder

possui uma trajetória definida e os véıculos seguidores são controlados de modo a seguir o ĺıder

mantendo um deslocamento constante.

A solucão para o sistema de controlo, responsável pela formacão de véıculos, considera, num

primeiro momento, apenas o movimento a altitude constante e, posteriormente, o movimento

tridimensional. Em ambos os casos, são derivadas leis de controlo não linear com recurso à teoria

de estabilidade de Lyapunov e método de Backstepping. As leis de controlo são validadas em

simulacão recorrendo a um ambiente e modelos realistas dos véıculos.

Palavras-chave: Quadrirrotor, Voo em Formacão, Estabilidade de Lyapunov, Método

de Backstepping.
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Abstract

The aim of this work is to design a control system based on modern control methods to con-

trol flight formations of quadrotor unmanned aerial vehicles. A leader-follower methodology is

implemented where the leader vehicle has some predefined trajectory and the follower vehicles are

controlled in order to track the leader keeping a constant displacement.

The formation control system, responsible for the vehicle formation, considers, at first, only the

motion at constant height, and secondly, the three-dimensional motion. In both cases, the nonlinear

control laws are derived based on Lyapunov stability theory and the Backstepping method. The

control laws are validated in simulation resorting to a realistic environment and vehicle models.

Keywords: Quadrotor, Formation Flight, Lyapunov Stability, Backstepping Method.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs), also commonly known as drones, were developed through

the twentieth century, originally for military purposes. The first applications were during World

War II even though those drones were little more than rudimentary remote-controlled airplanes.

The Vietnam War, where thousands of American airmen were killed or captured, was a trigger

for the rapid development of more sophisticated UAVs for combat missions. In the aftermath

of the Six-Day War, Israel developed their first UAVs, which were then successfully deployed

in the Operation Peace for Galilee during the 1982 Lebanon War, which resulted in no crewed

aircrafts downed. In the twenty-first century, as the technology improved and costs fell, UAVs

have been devoted to a myriad of other uses apart from military high-risk missions, ranging from

aerial photography, goods delivery, agriculture, mapping and surveillance, pollution monitoring,

infrastructure inspections or entertainment.

As of today, if a single UAV can be completely autonomous on a solo mission, a swarm of UAVs

can perform much more complex tasks with gains in efficiency and robustness. As an example, [1]

describes how it is possible to deploy two UAVs to cooperatively carry heavy loads. [2] presents

a strategy for area exploration and mapping carried out by a swarm of autonomous UAVs. For

policing and surveillance missions in areas where the communication range is limited, [3] discusses

how efficient a network of UAVs can be in covering the area. Also, an algorithm is developed by [4]

for swarms of UAVs that maximises the detection of intruders over a certain area. For agriculture

applications, [5] delves deeply into the advantages of using multiple UAVs with distributed control

for better performance.

1.1 Motivation

Most of the examples shown in § 1 apply different concepts of formation and resort to different

techniques of how to control it. The control structure can be either centralised or decentralised.

The centralised solutions rely on only one agent performing all computations and assigning the

other agents their respective tasks. The centralised algorithms are generally easier to design but
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more difficult to implement due to the heavy computational burden. Also, the communication is

critical as [6] considers that if the communication link between the central agent and any other

agent fails, the entire formation is broken.

The decentralised solutions break down the computational burden into smaller problems to

be solved by each of the agents. In this case, the control laws are derived for each agent or

subgroup of agents. The decentralised algorithms are expectedly more intricate to design but their

implementation is more reliable, efficient and robust.

As far as the formation control problem is concerned there are many different approaches.

The most relevant ones are the leader-follower, the virtual leader and the behaviour based. The

simplest approach is the leader-follower, which implies the existence of one leader and one or more

followers. A formation is achieved when each follower drives into the desired position with respect

to the leader, which has some known trajectory. The main disadvantage of this strategy, suggested

by [7], is that there is no feedback on the state of the formation as the followers blindly follow the

leader.

Another formation control strategy is called the virtual leader approach. In this strategy, the

virtual leader describes a reference trajectory and the formation is achieved when all the vehicles

in the swarm follow the leader in a rigid structure, maintaining a rigid geometric shape with

respect to one another and to a reference frame. The main advantage is that guidance algorithms

are simplified because of the fact that the formation can be deemed a rigid body. However, the

formation lacks flexibility so complex obstacle avoidance manoeuvres become compromised, as

pointed out by [8]. It is of interest especially for guidance and control of spacecraft formations, as

done by [9].

The behaviour-based formation control approach defines different control behaviours for differ-

ent situations of interest such as target tracking or obstacle avoidance. The control action for each

vehicle is a weighted average of the control for each behaviour. The work reported in [10] provides

further insights into this topic.

In terms of sensing capability and interaction topology of the formation, [11] identifies three

distinctions:

• position-based control: each agent has full sensing capability and can drive itself to the

desired position with respect to a global reference frame. This approach does not need much

interaction among the agents but it might be costly for the advanced sensing technology each

agent has to be equipped with, such as GPS receivers.

• displacement-based control: each agent knows the relative position of its neighbours with

respect to a global reference frame.

• distance-based control: each agent knows the relative position of its neighbours with respect

to its local reference frame. The formation is treated as a rigid body and it is economical on

the global information it needs. However, interaction between agents is maximum.
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1.2 State of the art

When it comes to developing control solutions for multiple unmanned aerial vehicles flying in

formation, one of the problems to be addressed is the consensus problem. According to [12], one

of the consensus pioneers, cited by [13], “in networks of agents or dynamic systems, consensus

means to reach an agreement regarding a certain quantity of interest that depends on the state

of all agents”. In other words, this implies that all the vehicles involved agree on some common

parameter when they converge to a formation. The consensus problems can be distinguished

between unconstrained and constrained. Still according to [13], in unconstrained consensus the

state of all agents become equal, whereas in constrained solutions the state of all agents converge

to an explicitly defined function. A simple example of an unconstrained consensus is achieved

when all vehicles converge to a rigid geometric form. Articles [14] and [15] provide a pedagogical

approach and survey of applications of consensus to multi-agent control and article [16], from a

recognised authority on the consensus field, analyses three fundamental algorithms with in-depth.

The work in [17] provides a state-of-the-art decentralised cooperative control solution. In this

work, the authors coordinate a swarm of vehicles where each has an independent, deterministic

and time-dependent path. Also, the vehicles are assumed to arrive at their respective destinations

at the same time following a collision-free path. The communication network established between

the agents must be bidirectional with no time delay. However, it can be time varying, thereby

taking into account temporary breakdowns in the communication links or changing communication

topologies along the way. The coordination task is achieved by reaching consensus on a common

variable that is the virtual time [18]. The virtual time is a function that maps the universal (clock)

time to the mission time of each agent. The control of this variable ensures each agent executes

its mission at its own pace and coordinates with its neighbours.

1.3 Objectives

The aim of this work is to design a controller based on modern control methods to control a

quadrotor UAV and drive it into a formation. It was chosen a leader-follower approach in which

a leader has some predefined trajectory and a follower is controlled in order to track the leader

keeping a constant displacement in its reference frame. The formation control solution is done in

two steps: firstly, considering only the motion at constant height, secondly, considering the three-

dimensional motion. In both cases, the nonlinear control laws are derived based on Lyapunov

stability and the backstepping method.

1.4 Thesis Outline

This work is made up of four different chapters.

Chapter 1 is the introduction to the topic of formation control. It begins with a brief history

of unmanned aerial vehicles and their usefulness and applications. Section 1.1 highlights different
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concepts of formation and control techniques; section 1.2 describes in further detail one state-of-

the-art solution; section 1.3 announces the objectives of this work and section 1.4 presents the

content of each chapter and section.

Chapter 2 contains the development of the solution. Section 2.1 is for the presentation of the

quadrotor kinematics and dynamics; section 2.2 contains the derivations of the control law for the

bidirectional motion and the stability of the formation and section 2.3 derives a controller for the

three-dimensional motion.

Chapter 3 comprises the simulation results of the algorithms developed. Section 3.1 contains

the results for the bidirectional motion and section 3.2 presents the results for the three-dimensional

motion.

Chapter 4 draws the main conclusions of the work and section 4.1 presents possible avenues for

future developments.
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Chapter 2

Formation control

2.1 Quadrotor model

2.1.1 Kinematics

Let {I} be an orthonormal reference frame according to the North-East-Down (NED) coordi-

nate system, fixed at some point constant along the time with the orthonormal basis

{
e1 =

(
1 0 0

)T
, e2 =

(
0 1 0

)T
, e3 =

(
0 0 1

)T}
.

Let {B} be another orthonormal reference frame centred at point p := xe1 + ye2 + ze3. The

orientation of {B} with respect to {I} is given by the roll, pitch and yaw angles λ := (φ, θ, ψ) that

represent the rotation about their respective axes. The rotation matrix from {B} to {I} is given

by the orthogonal matrix

R := R(λ) ∈ SO(3)
∆
=
{
X ∈ R3×3 : XXT = XTX = I3, |X| = 1

}
(2.1)

that can be decomposed into three consecutive elementary rotations as

R = Rz(ψ)Ry(θ)Rx(φ)

=


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ



=


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 .

(2.2)
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From the definition in (2.1) we can write

RRT = I3

⇔ ṘRT + RṘT
= 0

⇔ ṘRT = −(ṘRT )T .

(2.3)

Thus, ṘRT is skew-symmetric. Defining the skew-symmetric matrix S(Iω) = ṘRT the derivative

Ṙ can be computed as

Ṙ = S(Iω)R, (2.4)

where Iω ∈ R3 is the angular velocity of {B} expressed in {I} . Taking into account the property

of skew-symmetric matrices that states RS(x) = S(Rx)R for any x ∈ R3, we can write Ṙ with

the angular velocity ω expressed in {B} as

Ṙ = RS(ω). (2.5)

To compute ω we derive Ṙ following the elementary rotations:

Ṙ = ṘzRyRx + RzṘyRx + RzRyṘx

= RzS(ψ̇e3)RyRx + RzRyS(θ̇e2)Rx + RzRyRxS(φ̇e1)

= RzRyRxS(RT
xRT

y ψ̇e3) + RzRyRxS(RT
x θ̇e2) + RzRyRxS(φ̇e1)

= RS(φ̇e1 + RT
x θ̇e2 + RT

xRT
y ψ̇e3︸ ︷︷ ︸

ω

).

(2.6)

So the angular velocity is given by

ω = Q(λ)−1λ̇ =


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ



φ̇

θ̇

ψ̇

 . (2.7)

Let p be the quadrotor’s position and v := ue1 +ve2 +we3 its velocity in {I} . The kinematics

of the rigid body, for any θ 6= (2k + 1)π2 , ∀ k ∈ Z, can be written as

ṗ = v

λ̇ = Q(λ)ω

(2.8)

with

Q(λ) =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 . (2.9)
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2.1.2 Dynamics

Let m be the mass of the quadrotor and J ∈ R3×3 its inertia tensor. Newton’s second law

states the conservation of linear and angular momentum in inertial frames. For the translation

motion, the sum of all external forces is

If =
d

dt
(mv) = mv̇. (2.10)

For the angular motion, the sum of all external moments is

Iτ =
d

dt
(RJω) = RJω̇ + RS(ω)Jω. (2.11)

If n = RT Iτ ∈ R3 is the sum of all external moments expressed in {B} , the rotational dynamics

is

n = Jω̇ + S(ω)Jω. (2.12)

The complete dynamics of the rigid body in {I} is given by

mv̇ = f

Jω̇ = −S(ω)Jω + n
. (2.13)

A quadrotor is made of two pairs of counter-rotating rotors, assumed equal and equally spaced,

as represented in figure 2.1. The forces applied on the quadrotor include its weight, aligned with

the inertial frame z axis pointing downwards, and the total thrust force T =
∑4
i=1 Ti, along the

body z axis, pointing upwards. Relative to {I} , it is given by

f = mge3 − TRe3. (2.14)

Figure 2.1: Simplified representation of a quadrotor with forces and moments on each rotor

The moments applied on the quadrotor are originated from the different thrust forces produced
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by each rotor and the reaction torque generated by the rotors rotating. If l is the quadrotor radius,

i.e. the distance between the centre of mass and the centre of each rotor, the moments about x

and y can be written as

nx = l(T2 − T4); ny = l(T1 − T3). (2.15)

For the purpose of this work, which by no means intends to be a fastidious description of the

quadrotor dynamics, the thrust force and reaction torque of each rotor are assumed proportional

to its angular speed squared, such that

Ti = cTΩ2
i ; Qi = (−1)i+1cQΩ2

i . (2.16)

The sum of all external moments relative to {B} is

n =


0 l 0 −l

l 0 −l 0

cQ/cT −cQ/cT cQ/cT −cQ/cT



T1

T2

T3

T4

 . (2.17)

2.2 2D motion

As a first attempt towards our objective of controlling a formation, we first restrict the problem

to the two-dimensional motion of the quadrotor in the xOy plane, which is equivalent to considering

the motion at constant height. In what follows, a controller will be designed to drive a simplified

quadrotor model to its desired position and a formation system consisting of one leader and one

follower will be studied.

2.2.1 Simplified quadrotor model

Let p := xe1 +ye2 be the quadrotor’s position, v := ue1 +ve2 its velocity expressed in {B} and

r its angular velocity expressed in {B} . We can simplify equation (2.8) to obtain the horizontal

kinematics as 
ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

ψ̇ = r

, (2.18)

with only two independent equations. Given that we ultimately wish to control the force (propor-

tional to the linear acceleration) and the torque (proportional to the angular acceleration), it is

wise to select the control vector (u̇, ṙ)T (or alternatively (v̇, ṙ)T ). So the kinematics can also be

written as ṗ = Rv

ψ̇ = r

, (2.19)
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where v := ve1 is the horizontal velocity and R is the rotation matrix from the body-fixed reference

frame to the inertial reference frame, given by

R ∆
= R(ψ) =

cosψ − sinψ

sinψ cosψ

 . (2.20)

2.2.2 Trajectory tracking controller

We want the follower to track the leader keeping a constant offset in the follower’s reference

frame. If p ∈ R2 is the follower’s position and c ∈ R2 the leader’s position, c−p is the leader’s po-

sition in the follower’s reference frame, written in the inertial reference frame. If ∆ :=
(

∆x ∆y

)T
is the desired displacement, we can write the position error z1 ∈ R2 expressed in the follower’s

reference frame as

z1 = RT (c− p)−∆. (2.21)

The error dynamics can be computed as

ż1 = RT (ċ− ṗ) + ṘT
(c− p)

= RT ċ− v− S(r)RT (c− p)

= RT ċ− v− S(r)(z1 + ∆).

(2.22)

An equilibrium point ze ∈ R2 for the error system above makes ż1 = 0 and is given by

ze = S(r)−1
[
RT ċ− v

]
−∆. (2.23)

By making the appropriate change of coordinates one can obtain the error system with an equilib-

rium point at the origin. We now want to derive a control law to stabilise the system around this

equilibrium point.

Let V1 : R2 → R be a continuously differentiable Lyapunov function such that V1(0) = 0,

V1(z1) > 0, ∀z1 6= 0 and ‖z1‖ → ∞⇒ V1(z1)→∞ given by

V1(z1) =
1

2
‖z1‖2, (2.24)

with its derivative computed as

V̇1(z1) = zT1 ż1

= zT1
(

RT ċ− v− S(r)(z1 + ∆)
)

= zT1
(

RT ċ− v− S(r)∆
)
.

(2.25)

The control variables are not visible yet so we should continue with the backstepping method. This

method can be used to stabilise systems written in strict-feedback form, according to [19]. If we
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now add and subtract a term k1‖z1‖2, we get

V̇1(z1) = −k1‖z1‖2 + zT1
[
k1z1 + RT ċ− v− S(r)∆

]
︸ ︷︷ ︸

z2

= −k1‖z1‖2 + zT1 z2,

(2.26)

where another error z2 ∈ R2 was introduced. To apply backstepping with one step we define

the continuously differentiable augmented Lyapunov function V2 : R4 → R such that V2(0) = 0,

V2(z1, z2) > 0, ∀(z1, z2) 6= 0 and ‖(z1, z2)‖ → ∞⇒ V2(z1, z2)→∞ given by

V2(z1, z2) = V1(z1) +
1

2
‖z2‖2, (2.27)

and its derivative computed as

V̇2(z1, z2) = V̇1 + zT2 ż2

= V̇1 + zT2
[
k1ż1 + RT c̈− S(r)RT ċ− v̇− S(ṙ)∆

]
= V̇1 + zT2

k1ż1 + RT c̈− S(r)RT ċ−

v̇
0

−
0 −ṙ

ṙ 0

∆x

∆y


= V̇1 + zT2

k1ż1 + RT c̈− S(r)RT ċ−

1 −∆y

0 ∆x

v̇
ṙ

 .
(2.28)

From equation (2.28) we could isolate the linear acceleration v̇ and angular acceleration ṙ. We

can now derive a control law for
(
v̇ ṙ

)T
, considered as inputs, such that the derivative of the

augmented Lyapunov function (2.28) is negative definite. That control law should be

v̇
ṙ

 =

1 −∆y

0 ∆x

−1 [
k1ż1 + RT c̈− S(r)RT ċ + z1 + k2z2

]
∀∆x 6= 0. (2.29)

Applying the control law from equation (2.29), the error system can be written in strict-feedback

form as ż1 = − (S(r) + k1I2) z1 + z2

ż2 = −z1 − k2z2

, (2.30)

where I2 is the identity matrix of size 2. The derivative of V2 becomes

V̇2(z1, z2) = −k1‖z1‖2 − k2‖z2‖2. (2.31)

It is clear that V̇2(z1, z2) < 0, ∀(z1, z2) 6= 0 if k1 > 0 and k2 > 0. Thus, according to the Barbashin-

Krasovskii theorem [19, theorem 4.2], the error system is globally asymptotically stable around its

equilibrium point (z1, z2) = 0.
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2.2.3 Perturbed system

In the real world there is no such thing as a physical system unaffected by disturbances. As a

result, one should always account for external disturbances and include them in the dynamics. In

the present case, we assume the existence of an unknown external disturbance d ∈ R2 expressed

in {B} , such that the dynamics of the error z2 is

ż2 = k1ż1 + RT c̈− S(r)RT ċ− v̇− S(ṙ)∆ + Rd. (2.32)

Additionally, we assume the controller has an estimator d̂ ∈ R2 to estimate d such that the control

law isv̇
ṙ

 =

1 −∆y

0 ∆x

−1 [
k1ż1 + RT c̈− S(r)RT ċ + z1 + k2z2 + Rd̂

]
∀∆x 6= 0. (2.33)

With this formulation, the error system is nowż1 = − (S(r) + k1I2) z1 + z2

ż2 = −z1 − k2z2 + R(d− d̂)

. (2.34)

Expressing the estimation error by d̃ = d − d̂ and the error state by z =
(

z1 z2

)T
, the error

dynamics can be written in state space as

ż =

−(S(r) + k1I2) I2

−I2 −k2I2


︸ ︷︷ ︸

A

z +

02×2

R


︸ ︷︷ ︸

B

d̃, (2.35)

where matrices A and B have been defined.

Now, we wish to design an adaptive controller for the estimator d̂. Let V3 : R6 → R be a

continuously differentiable Lyapunov function such that V3(0) = 0, V3(z, d̃) > 0, ∀(z, d̃) 6= 0 and

‖(z, d̃)‖ → ∞⇒ V3(z, d̃)→∞ given by

V3(z, d̃) = V2(z) +
1

2kd
‖d̃‖2, (2.36)

where kd > 0 is an estimator gain. Its derivative is computed as

V̇3(z, d̃) = zT ż +
1

kd
d̃T ˙̃d

= zT (Az + Bd̃) +
1

kd
d̃T ˙̃d

= zTAz + zTBd̃ +
1

kd
d̃T ˙̃d.

(2.37)

The first term of V̇3 is negative for all z 6= 0 as it has already been proved the error system converges
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under the control law from equation (2.29). As of the remaining two terms, V̇3 gets negative for

all (z, d̃) 6= 0 if they sum to zero. So,

zTBd̃ +
1

kd
d̃T ˙̃d = 0

⇔ ˙̃dT = −kdzTB. (2.38)

If the disturbance is assumed constant, then ˙̃d = − ˙̂d, so the adaptation law for the estimator is

˙̂d = kdBT z. (2.39)

Now that we have the tracking control and the disturbance estimation, we must study the

stability of the system comprised of both the position error and the disturbance estimation error

simultaneously. This system is given byż
˙̃d

 =

 A B

−kdBT 02×2

z

d̃

 . (2.40)

Let Ω = {(z, d̃) ∈ R6 : V3(z, d̃) ≤ c} for any c ∈ R+. The set Ω is compact since V3 is radially

unbounded and, from Lyapunov’s direct method [19, theorem 4.1], it is positively invariant with

respect to the dynamics (2.40). Let E be the set of all points in Ω where V̇3(z, d̃) = 0. This set is

given by

E = {(z, d̃) ∈ R6 : z = 0}. (2.41)

Let M be the largest invariant set contained in E. By LaSalle’s theorem [19, theorem 4.4], every

solution with initial condition in Ω approaches M as t→∞. Since for any (z, d̃) ∈ R6 there exists

a c > 0 such that (z, d̃) ∈ Ω, we have that any solution converges to M . From its invariance and

recalling system (2.35), we have that, for all (z, d̃) ∈M ,

ż = 0 ⇔ Bd̃ = 04×1

⇔ d̃ = 02×1.
(2.42)

Therefore, (z, d̃) = 0 is the only element in M and the system is globally asymptotically stable

around the origin.
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2.2.4 Frequency response

We now want to study the frequency response of the system in order to tune the gains k1, k2

and kd. Recalling the dynamics (2.40) we can write

ż = Az + Bd̃

= Az + Bd−B
∫

˙̂d

= Az + Bd− kdB
∫

BT z.

(2.43)

Under some simplifying conditions, that will be made clear from the context, by taking the Laplace

transform on both sides, one can represent the system in the frequency domain as

sZ(s) = AZ(s) + BD(s)− kd
s

BBTZ(s)

⇔
(
sI4 −A +

kd
s

BBT

)
Z(s) = BD(s).

(2.44)

The transfer function from BD(s) to Z(s) is the inverse of the matrix that multiplies Z(s), when

it exists, given by (s+ k1)I2 + S(r) −I2

I2 (s+ k2)I2 +
kd
s

R2

−1

. (2.45)

This transfer function, as it is defined, depends on the yaw rate r and the yaw angle ψ, which are

inputs of the system. If we consider the vehicle describing a linear path heading north, we can set

r = 0 ⇒ S(r) = 0 and ψ = 0 ⇒ R = I2. As a result, the transfer function under this assumption

is given by

H(s) =
1

p(s)


s2 + k2s+ kd 0 s 0

0 s2 + k2s+ kd 0 s

−s 0 s(s+ k1) 0

0 −s 0 s(s+ k1)

 (2.46)

with

p(s) = s3 + (k1 + k2)s2 + (k1k2 + kd + 1)s+ k1kd.

The transfer function from D(s) to Z(s) is given by H(s)B, taking the form

z1

z2

 =
1

p(s)


s 0

0 s

s(s+ k1) 0

0 s(s+ k1)


d1

d2

 . (2.47)

This transfer function is a third-order system that shows the form of a band-pass filter, which

means both constant and high-frequency disturbances are attenuated. By tuning the gains we can
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narrow the frequency range of allowed disturbances and adjust the filter gain.

Under similar simplifying conditions as before, the transfer function from d to the position

error z1 is

h(s) =
s

s3 + (k1 + k2)s2 + (k1k2 + kd + 1)s+ k1kd
. (2.48)

We can first tune the gains k1 and k2 by considering the second-order low-pass filter that results

from neglecting the disturbance estimation term. In that case, we have

h2(s) =
1

s2 + (k1 + k2)s+ k1k2 + 1
=

1

s2 + 2ξωns+ ω2
n

. (2.49)

The poles can be placed to ensure the desired dynamic behaviour. By defining a damping factor

ξ and a natural frequency ωn, the gains k1 > 0 and k2 > 0 can be computed by comparing with

the general second-order system. Afterwards, the gain kd > 0 can be adjusted by analysing a root

locus of system (2.48).

2.2.5 Closed-loop system

In the previous sections we have used Lyapunov stability theory to prove global asymptotic

stability of the error system. However, validation of the control law has yet to be done to prove

stability of the closed-loop system when the errors have converged to zero. From the definition of

the error dynamics in equation (2.22), we have, in steady state,

z1 = 0

ż1 = 0

⇒ RT ċ− v− S(r)∆ = 0. (2.50)

From equation (2.50), the only variables actually controlled in this model are the linear and angular

velocities (which are calculated respectively from the linear and angular accelerations after an

integration). So, it is useful to study the dynamics of these variables depending on the leader’s

path and the displacement ∆. Let’s consider a leader describing a path modelled similarly to the

follower’s, such that its velocity can be written as

ċ = C (cosψce1 + sinψce2) , (2.51)
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where C and ψc are the leader’s speed and heading angle, respectively, at each time instant.

Following this reasoning, equation (2.50) can be simplified as

cosψ − sinψ

sinψ cosψ

T

C

cosψc

sinψc

−
v

0

−
0 −r

r 0

∆x

∆y

 =

0

0


⇔

v − r∆y

r∆x

 = C

 cosψ sinψ

− sinψ cosψ

cosψc

sinψc


⇔

1 −∆y

0 ∆x

v
r

 = C

cosψ cosψc + sinψ sinψc

cosψ sinψc − sinψ cosψc


⇔

v
r

 =
C

∆x

∆x ∆y

0 1

cos(ψ − ψc)

sin(ψc − ψ)


⇔

v
r

 =
C

∆x

∆x cos(ψ − ψc) + ∆y sin(ψc − ψ)

sin(ψc − ψ)


⇔

v
r

 =

C cos(ψ − ψc)−
C∆y

∆x
sin(ψ − ψc)

− C

∆x
sin(ψ − ψc)

 ,∀∆x 6= 0. (2.52)

These equations represent the closed loop and can be seen as describing a nonlinear system with

a dynamics for ψ and an output v. If the heading difference is assumed to be very small, it can be

approximated by a first-order system as

ψ̇ = − C

∆x
(ψ − ψc) . (2.53)

By taking the Laplace Transform on both sides one can represent the system in the frequency

domain as

sΨ(s) = − C

∆x
(Ψ(s)−Ψc(s))

⇔ Ψ(s)

Ψc(s)
=

C
∆x

s+ C
∆x

.

(2.54)

Stability in ensured if
C

∆x
> 0⇔ ∆x > 0. (2.55)

A physical interpretation of this result is that the leader must be seen by the follower from behind

when they both head approximately in the same direction, which means the leader has to be always

advanced in relation to the follower.

A more complete comprehension of the system can be achieved if the nonlinearities are taken

into account. The equilibrium points of the system from equation (2.52) are

ψ∗ = ψc + kπ , ∀k ∈ Z. (2.56)
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To analyse stability, one can consider infinitesimal disturbances around these equilibrium points.

Let

ψ = ψc + 2kπ + ε , ε > 0. (2.57)

Then, system (2.52) becomes

ψ̇ = − C

∆x
sin(2kπ + ε)

= − C

∆x
sin(ε)

≈ − C

∆x
ε,

(2.58)

which is negative if ∆x > 0. Thus, the system is asymptotically stable in the vicinity ε > 0 of the

equilibrium points ψ∗ = ψc + 2kπ , ∀k ∈ Z.

Similarly, if we consider

ψ = ψc + (2k + 1)π + ε , ε > 0, (2.59)

system (2.52) becomes

ψ̇ = − C

∆x
sin((2k + 1)π + ε)

=
C

∆x
sin(ε)

≈ C

∆x
ε,

(2.60)

which is positive if ∆x > 0. Thus, the system is unstable in the vicinity ε > 0 of the equilibrium

points ψ∗ = ψc + (2k + 1)π ,∀k ∈ Z.

A phase portrait of the system when ψc = 0 is represented in figure 2.2. It is easy to see that

the region of convergence of the equilibrium point ψ∗ = ψc + 2kπ is

ψ ∈ ]ψc + (2k − 1)π; ψc + (2k + 1)π[ ,∀k ∈ Z. (2.61)

As a result, the follower can have a heading difference relative to the leader of up to 180◦ . The

bigger it is, the slower is the convergence to the desired heading. In the limit, if a follower is set

to track a leader describing a linear path, starting in opposite heading, it will not converge.

2.3 3D motion

In § 2.2 the motion of the quadrotor at constant height has been studied and a controller for

the simplified model has been derived through the backstepping method applied to the position

error. We now wish to resort to the backstepping method to derive a similar nonlinear controller

for the complete model.
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Figure 2.2: Phase portrait of the system ψ̇ = − sin(ψ).

2.3.1 State-space formulation

The first step prior to applying backstepping is to write the system in a special form. As done

by [20], the complete quadrotor dynamics from equation (2.13) can be rewritten in a state-space

form Ẋ = f(X,U) by introducing the state vector X ∈ R12 and the input vector U ∈ R4 given by

X =
(
φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ

)T
, (2.62)

U = (T nx ny nz)
T
. (2.63)

The nonlinear dynamics is

f(X,U) =



φ̇

aφθ̇ψ̇ + bφnx

θ̇

aθφ̇ψ̇ + bθny

ψ̇

aψφ̇θ̇ + bψnz

ż

g − T
m cosφ cos θ

ẋ

T
mux

ẏ

T
muy



(2.64)

with

ux = cosφ sin θ cosψ + sinφ sinψ; uy = cosφ sin θ sinψ − sinφ cosψ (2.65)
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and the following constants

aφ =
Jy − Jz
Jx

; aθ =
Jz − Jx
Jy

; aψ =
Jx − Jy
Jz

; bφ =
1

Jx
; bθ =

1

Jy
; bψ =

1

Jz
(2.66)

The system as it is posed highlights an important relation between the position and attitude

of the quadrotor. In fact, the position components depend on the angles, however the opposite

is not true. In other words, the way the position evolves is a consequence of the attitude of the

quadrotor but the attitude is oblivious to its position. As seen from figure 2.3, the overall system

can be thought of as the result of two semi-decoupled subsystems: the translation subsystem and

the rotation subsystem – for which two controllers will be designed separately.

Figure 2.3: Quadrotor model scheme.

2.3.2 Attitude control

Roll

Let zφ ∈ R be the roll angle error given by

zφ = φref − φ (2.67)

and Vφ : R → R a continuously differentiable Lyapunov function such that Vφ(0) = 0, Vφ(zφ) >

0, ∀zφ 6= 0 and zφ →∞⇒ Vφ(zφ)→∞ given by

Vφ(zφ) =
1

2
z2
φ, (2.68)

with its time derivative computed as

V̇φ(zφ) = zφżφ = zφ(φ̇ref − φ̇). (2.69)
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If φ̇ is controlled to be

φ̇ = φ̇ref + kφzφ, (2.70)

then

V̇φ(zφ) = −kφz2
φ. (2.71)

Let now zφ̇ ∈ R be the roll rate error given by

zφ̇ = φ̇− φ̇ref − kφzφ (2.72)

and Vφ̇ : R2 → R a continuously differentiable Lyapunov function such that Vφ̇(0) = 0, Vφ̇(zφ, zφ̇) >

0, ∀(zφ, zφ̇) 6= 0 and (zφ, zφ̇)→∞⇒ Vφ(zφ, zφ̇)→∞ given by

Vφ̇(zφ, zφ̇) = Vφ(zφ) +
1

2
z2
φ̇
, (2.73)

with its time derivative computed as

V̇φ̇(zφ, zφ̇) = V̇φ(zφ) + zφ̇żφ̇

= −kφz2
φ + zφ̇(φ̈− φ̈ref − kφżφ)

= −kφz2
φ + zφ̇(aφθ̇ψ̇ + bφnx − φ̈ref − kφżφ)

(2.74)

If the control law for nx is chosen to be

nx =
1

bφ
(φ̈ref + kφżφ − aφθ̇ψ̇ − kφ̇zφ̇), (2.75)

then

V̇φ̇(zφ, zφ̇) = −kφz2
φ − kφ̇z

2
φ̇
. (2.76)

It is clear that V̇φ̇(zφ, zφ̇) < 0, ∀(zφ, zφ̇) 6= 0 if kφ > 0 and kφ̇ > 0. Thus, according to the

Barbashin-Krasovskii theorem [19, theorem 4.2], the roll error system is globally asymptotically

stable around its equilibrium point (zφ, zφ̇) = 0.

Pitch

Let zθ ∈ R be the pitch angle error given by

zθ = θref − θ (2.77)

and Vθ : R → R a continuously differentiable Lyapunov function such that Vθ(0) = 0, Vθ(zθ) >

0, ∀zθ 6= 0 and zθ →∞⇒ Vθ(zθ)→∞ given by

Vθ(zθ) =
1

2
z2
θ , (2.78)
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with its time derivative computed as

V̇θ(zθ) = zθ żθ = zθ(θ̇ref − θ̇). (2.79)

If θ̇ is controlled to be

θ̇ = θ̇ref + kθzθ, (2.80)

then

V̇θ(zθ) = −kθz2
θ . (2.81)

Let now zθ̇ ∈ R be the pitch rate error given by

zθ̇ = θ̇ − θ̇ref − kθzθ (2.82)

and Vθ̇ : R2 → R a continuously differentiable Lyapunov function such that Vθ̇(0) = 0, Vθ̇(zθ, zθ̇) >

0, ∀(zθ, zθ̇) 6= 0 and (zθ, zθ̇)→∞⇒ Vθ(zθ, zθ̇)→∞ given by

Vθ̇(zθ, zθ̇) = Vθ(zθ) +
1

2
z2
θ̇
, (2.83)

with its time derivative computed as

V̇θ̇(zθ, zθ̇) = V̇θ(zθ) + zθ̇ żθ̇

= −kθz2
θ + zθ̇(θ̈ − θ̈ref − kθ żθ)

= −kθz2
θ + zθ̇(aθφ̇ψ̇ + bθny − θ̈ref − kθ żθ)

(2.84)

If the control law for ny is chosen to be

ny =
1

bθ
(θ̈ref + kθ żθ − aθφ̇ψ̇ − kθ̇zθ̇), (2.85)

then

V̇θ̇(zθ, zθ̇) = −kθz2
θ − kθ̇z

2
θ̇
. (2.86)

It is clear that V̇θ̇(zθ, zθ̇) < 0, ∀(zθ, zθ̇) 6= 0 if kθ > 0 and kθ̇ > 0. Thus, according to the

Barbashin-Krasovskii theorem [19, theorem 4.2], the pitch error system is globally asymptotically

stable around its equilibrium point (zθ, zθ̇) = 0.

Yaw

Let zψ ∈ R be the yaw angle error given by

zψ = ψref − ψ (2.87)
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and Vψ : R → R a continuously differentiable Lyapunov function such that Vψ(0) = 0, Vψ(zψ) >

0, ∀zψ 6= 0 and zψ →∞⇒ Vψ(zψ)→∞ given by

Vψ(zψ) =
1

2
z2
ψ, (2.88)

with its time derivative computed as

V̇ψ(zψ) = zψ żψ = zψ(ψ̇ref − ψ̇). (2.89)

If ψ̇ is controlled to be

ψ̇ = ψ̇ref + kψzψ, (2.90)

then

V̇ψ(zψ) = −kψz2
ψ. (2.91)

Let now zψ̇ ∈ R be the yaw rate error given by

zψ̇ = ψ̇ − ψ̇ref − kψzψ (2.92)

and Vψ̇ : R2 → R a continuously differentiable Lyapunov function such that Vψ̇(0) = 0, Vψ̇(zψ, zψ̇) >

0, ∀(zψ, zψ̇) 6= 0 and (zψ, zψ̇)→∞⇒ Vψ(zψ, zψ̇)→∞ given by

Vψ̇(zψ, zψ̇) = Vψ(zψ) +
1

2
z2
ψ̇
, (2.93)

with its time derivative computed as

V̇ψ̇(zψ, zψ̇) = V̇ψ(zψ) + zψ̇ żψ̇

= −kψz2
ψ + zψ̇(ψ̈ − ψ̈ref − kψ żψ)

= −kψz2
ψ + zψ̇(aψφ̇θ̇ + bψnz − ψ̈ref − kψ żψ)

(2.94)

If the control law for nz is chosen to be

nz =
1

bψ
(ψ̈ref + kψ żψ − aψφ̇θ̇ − kψ̇zψ̇), (2.95)

then

V̇ψ̇(zψ, zψ̇) = −kψz2
ψ − kψ̇z

2
ψ̇
. (2.96)

It is clear that V̇ψ̇(zψ, zψ̇) < 0, ∀(zψ, zψ̇) 6= 0 if kψ > 0 and kψ̇ > 0. Thus, according to the

Barbashin-Krasovskii theorem [19, theorem 4.2], the yaw error system is globally asymptotically

stable around its equilibrium point (zψ, zψ̇) = 0.

*

Having done backstepping for all the angular variables, the attitude controller is summarised
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as 
nx = 1

bφ

(
φ̈ref + kφ(φ̇ref − φ̇)− aφθ̇ψ̇ − kφ̇[φ̇− φ̇ref − kφ(φref − φ)]

)
ny = 1

bθ

(
θ̈ref + kθ(θ̇ref − θ̇)− aθφ̇ψ̇ − kθ̇[θ̇ − θ̇ref − kθ(θref − θ)]

)
nz = 1

bψ

(
ψ̈ref + kψ(ψ̇ref − ψ̇)− aψφ̇θ̇ − kψ̇[ψ̇ − ψ̇ref − kψ(ψref − ψ)]

) . (2.97)

In order to output the necessary moments, this controller receives as inputs the reference Euler

angles and their derivatives up to the second and also the actual quadrotor attitude and angular

velocity. As it will be shown further ahead in this work, the reference roll and pitch will be

produced by the position controller, whereas the reference yaw is defined from the outset.

As stated in § 2.1, the quadrotor kinematics is well defined for any θ 6= (2k + 1)π2 , ∀ k ∈ Z. It

is important to remember that, because of the singularities of the Euler angles and the topological

limitations of SO(3) group, this attitude controller is almost globally stable.

2.3.3 Position control

A similar backstepping approach will next be followed for controlling the quadrotor position.

Altitude

Let zz ∈ R be the altitude error given by

zz = zref − z (2.98)

and Vz : R → R a continuously differentiable Lyapunov function such that Vz(0) = 0, Vz(zz) >

0, ∀zz 6= 0 and zz →∞⇒ Vz(zz)→∞ given by

Vz(zz) =
1

2
z2
z , (2.99)

with its time derivative computed as

V̇z(zz) = zz żz = zz(żref − ż). (2.100)

If ż is controlled to be

ż = żref + kzzz, (2.101)

then

V̇z(zz) = −kzz2
z . (2.102)

Let now zż ∈ R be the vertical speed error given by

zż = ż − żref − kzzz (2.103)

and Vż : R2 → R a continuously differentiable Lyapunov function such that Vż(0) = 0, Vż(zz, zż) >
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0, ∀(zz, zż) 6= 0 and (zz, zż)→∞⇒ Vz(zz, zż)→∞ given by

Vż(zz, zż) = Vz(zz) +
1

2
z2
ż , (2.104)

with its time derivative computed as

V̇ż(zz, zż) = V̇z(zz) + zż żż

= −kzz2
z + zż(z̈ − z̈ref − kz żz)

= −kzz2
z + zż

(
g − T

m
cosφ cos θ − z̈ref − kz żz

) (2.105)

If the control law for T is chosen to be

T =
m

cosφ cos θ
(g − z̈ref − kz żz − kżzż), (2.106)

then

V̇ż(zz, zż) = −kzz2
z − kżz2

ż . (2.107)

It is clear that V̇ż(zz, zż) < 0, ∀(zz, zż) 6= 0 if kz > 0 and kż > 0. Thus, according to the Barbashin-

Krasovskii theorem [19, theorem 4.2], the altitude error system is globally asymptotically stable

around its equilibrium point (zz, zż) = 0.

X position

Let zx ∈ R be the x position error given by

zx = xref − x (2.108)

and Vx : R → R a continuously differentiable Lyapunov function such that Vx(0) = 0, Vx(zx) >

0, ∀zx 6= 0 and zx →∞⇒ Vx(zx)→∞ given by

Vx(zx) =
1

2
z2
x, (2.109)

with its time derivative computed as

V̇x(zx) = zxżx = zx(ẋref − ẋ). (2.110)

If ẋ is controlled to be

ẋ = ẋref + kxzx, (2.111)

then

V̇x(zx) = −kxz2
x. (2.112)
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Let now zẋ ∈ R be the x speed error given by

zẋ = ẋ− ẋref − kxzx (2.113)

and Vẋ : R2 → R a continuously differentiable Lyapunov function such that Vẋ(0) = 0, Vẋ(zx, zẋ) >

0, ∀(zx, zẋ) 6= 0 and (zx, zẋ)→∞⇒ Vx(zx, zẋ)→∞ given by

Vẋ(zx, zẋ) = Vx(zx) +
1

2
z2
ẋ, (2.114)

with its time derivative computed as

V̇ẋ(zx, zẋ) = V̇x(zx) + zẋżẋ

= −kxz2
x + zẋ(ẍ− ẍref − kxżx)

= −kxz2
x + zẋ

(
T

m
ux − ẍref − kxżx

) (2.115)

If the control law for ux is chosen to be

ux =
m

T
(ẍref + kxżx − kẋzẋ), (2.116)

then

V̇ẋ(zx, zẋ) = −kxz2
x − kẋz2

ẋ. (2.117)

It is clear that V̇ẋ(zx, zẋ) < 0, ∀(zx, zẋ) 6= 0 if kx > 0 and kẋ > 0. Thus, according to the Barbashin-

Krasovskii theorem [19, theorem 4.2], the x position error system is globally asymptotically stable

around its equilibrium point (zx, zẋ) = 0.

Y position

Let zy ∈ R be the y position error given by

zy = yref − y (2.118)

and Vy : R → R a continuously differentiable Lyapunov function such that Vy(0) = 0, Vy(zy) >

0, ∀zy 6= 0 and zy →∞⇒ Vy(zy)→∞ given by

Vy(zy) =
1

2
z2
y , (2.119)

with its time derivative computed as

V̇y(zy) = zy ży = zy(ẏref − ẏ). (2.120)
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If ẏ is controlled to be

ẏ = ẏref + kyzy, (2.121)

then

V̇y(zy) = −kyz2
y . (2.122)

Let now zẏ ∈ R be the y speed error given by

zẏ = ẏ − ẏref − kyzy (2.123)

and Vẏ : R2 → R a continuously differentiable Lyapunov function such that Vẏ(0) = 0, Vẏ(zy, zẏ) >

0, ∀(zy, zẏ) 6= 0 and (zy, zẏ)→∞⇒ Vy(zy, zẏ)→∞ given by

Vẏ(zy, zẏ) = Vy(zy) +
1

2
z2
ẏ , (2.124)

with its time derivative computed as

V̇ẏ(zy, zẏ) = V̇y(zy) + zẏ żẏ

= −kyz2
y + zẏ(ÿ − ÿref − ky ży)

= −kyz2
y + zẏ

(
T

m
uy − ÿref − ky ży

) (2.125)

If the control law for uy is chosen to be

uy =
m

T
(ÿref + ky ży − kẏzẏ), (2.126)

then

V̇ẏ(zy, zẏ) = −kyz2
y − kẏz2

ẏ . (2.127)

It is clear that V̇ẏ(zy, zẏ) < 0, ∀(zy, zẏ) 6= 0 if ky > 0 and kẏ > 0. Thus, according to the Barbashin-

Krasovskii theorem [19, theorem 4.2], the y position error system is globally asymptotically stable

around its equilibrium point (zy, zẏ) = 0.

*

The position controller is thus written as


T = m

cosφ cos θ (g − z̈ref − kz(żref − ż)− kż[ż − żref − kz(zref − z)])

ux = m
T (ẍref + kx(ẋref − ẋ)− kẋ[ẋ− ẋref − kx(xref − x)])

uy = m
T (ÿref + ky(ẏref − ẏ)− kẏ[ẏ − ẏref − ky(yref − y)])

. (2.128)

Similarly enough to the attitude controller, this controller receives as inputs the reference position

and its derivatives up to the second and also the actual quadrotor position and velocity. It outputs

the required total thrust and the orientation of that vector responsible for the horizontal movement.
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In order to feed the attitude controller with the reference values for roll and pitch, the definitions

(2.65) are recalled and written in the following format:

ux
uy

 =

cosψ sinψ

sinψ − cosψ

A
B

 , (2.129)

where A and B are auxiliary variables defined as

A = cosφ sin θ; B = sinφ. (2.130)

This system is always invertible for any ψ defined from the outset so the reference roll and pitch

can be calculated through the system of equations
A2 +B2 = (1− sin2 φ) sin2 θ + sin2 φ

B2

A2
=

sin2 φ

(1− sin2 φ) sin2 θ

. (2.131)

Although this system of equations can be solved for appropriate values of φref and θref , it is

highly nonlinear and multiple solutions are possible. To avoid any singularities and reduce the

computational burden of these calculations, a simplified system is considered under the assumption

that the quadrotor does not perform complex manoeuvres thereby keeping the roll and pitch angles

small enough. In this case, A ≈ θ and B ≈ φ and the inputs of the attitude controller areθref

φref

 =

cosψ sinψ

sinψ − cosψ

ux
uy

 . (2.132)

The attitude controller also requires the derivative and second derivative of the reference Euler

angles. These derivatives could be explicitly computed from systems (2.129) or (2.132), however

that would require measurements of the acceleration and its derivative, which are in all likelihood

unavailable. A numerical differentiation of the reference angles is suggested by [21] and adapted

to

φ̇ref ≈
φref(t)− φref(t−∆t)

∆t
, (2.133)

θ̇ref ≈
θref(t)− θref(t−∆t)

∆t
, (2.134)

where ∆t is the sampling period. The second derivative of the reference angles can be computed

likewise. Figure 2.4 depicts the control scheme for the 3D model.
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Figure 2.4: 3D controller scheme: position controller (2.128), attitude controller (2.97) and virtual
output converter (2.132).
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Chapter 3

Simulation results

3.1 2D simulations

This section shows the simulation results of a formation of two vehicles – one leader and one

follower – in the two-dimensional space. The follower is intended to track a leader with four

different trajectories for a simulation of 50 seconds. Table 3.1 contains the controller gains used

for all simulations.

2D controller gains

k1 0.5 s−1

k2 0.5 s−1

kd 0.5

Table 3.1: 2D controller gains.

3.1.1 Still leader

In the first simulation, the leader stays still at the origin as the follower approaches keeping

a displacement of ∆ = (1, 1) m. The follower’s initial position is (5, 5) m, its initial heading is

ψ0 = −90◦ and the disturbance intensity is d = (1, 1) m/s2. The simulation results are plotted in

figure 3.1.

3.1.2 Linear tracking

In the second simulation, the leader describes a linear path departing from the origin. The

follower’s initial position is (5, 5) m, its initial heading is ψ0 = 0◦ , it keeps a displacement of

∆ = (1, 1) m and the disturbance intensity is d = (1, 1) m/s2. The simulation results are plotted

in figure 3.2.
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Figure 3.1: 2D simulation of a vehicle following a still leader with disturbance.

Figure 3.2: 2D simulation of a vehicle following a leader in a linear path with disturbance.
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3.1.3 Circular tracking

In the third simulation, the leader describes a circular path with radius 2 meters and angular

speed 1 m/s. The follower’s initial position is (3, 2) m, its initial heading is ψ0 = 90◦ , it keeps

a displacement of ∆ = (1, 1) m and the disturbance intensity is d = (1, 1) m/s2. The simulation

results are plotted in figure 3.3.

Figure 3.3: 2D simulation of a vehicle following a leader in a circular path with disturbance.

3.1.4 Sinusoidal tracking

In the third simulation, the leader describes a sinusoidal path departing from the origin. The

follower’s initial position is (−10, 6) m, its initial heading is ψ0 = 0◦ , it keeps a displacement

of ∆ = (0.5, 0.5) m and the disturbance intensity is d = (1, 1) m/s2. The simulation results are

plotted in figure 3.4.

*

All the error plots from figures 3.1 to 3.4 show that both the position error z1 and the velocity

error z2 converge to zero after around 10 to 20 seconds. Also, the disturbance estimation error

d̃ converges to zero approximately at the same rate. This observation illustrates the proofs of

convergence for the control law and adaptation law given in § 2.2.
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Figure 3.4: 2D simulation of a vehicle following a leader in a sinusoidal path with disturbance.

From the position plots, however, the displacement achieved by the formation in steady state

is not so clear. This is due to the fact that the displacement has been expressed in the follower’s

body reference frame but the graphs are plotted in an inertial frame.

One final observation from the position and heading graphs is that the trajectory described by

the follower prior to its convergence can be irregular and have sudden changes in the direction of

movement. This behaviour is especially noticeable in figure 3.2 in the first 5 seconds of simulation.

3.2 3D simulations

This section shows the simulation results of a formation of two vehicles – one leader and one

follower – in the three-dimensional space. Table 3.2 contains the physical characteristics of the

quadrotors, namely its mass, radius, ratio between coefficient of torque and coefficient of thrust

and moments of inertia. This values were obtained for the heavy quadrotor developed in [22], cited

by [23].

The initial conditions of position, velocity, attitude and angular velocity of the follower vehicle

have been made equal in all simulations and are shown in table 3.3. The simulations have been

run for 100 seconds.
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3D Model parameters

m 4.34 kg

l 0.315 m

cQ/cT 8.004× 10−4 m

Jx 0.0820 kg m2

Jy 0.0845 kg m2

Jz 0.1377 kg m2

Table 3.2: Physical parameters of the 3D model [22].

3D Initial conditions

(x0, y0, z0) (0, 0, 0) m

(u0, v0, w0) (0, 0, 0) m/s

(φ0, θ0, ψ0) (0, 0, 0) rad

(φ̇0, θ̇0, ψ̇0) (0, 0, 0) rad/s

Table 3.3: Initial 3D simulation conditions.

3.2.1 Still leader

In the first simulation, the follower vehicle is intended to track a leader that stays still at

position (25, 35, 45) m while keeping the yaw angle equal to zero. The displacement to the leader

should be ∆ = (5, 5, 5) m. The controller gains are defined in table 3.4 and the simulations results

are plotted in figure 3.5, including state variables, the distance to the leader and the actuation on

each rotor.

Attitude

kφ 1 s−1 kφ̇ 1 s−1

kθ 1 s−1 kθ̇ 1 s−1

kψ 1 s−1 kψ̇ 1 s−1

Position

kx -0.5 s−1 kẋ 0.05 s−1

ky -0.5 s−1 kẏ 0.05 s−1

kz 0.2 s−1 kż 0.1 s−1

Table 3.4: Controller gains for 3D still leader tracking.
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Figure 3.5: 3D simulation of a vehicle following a still leader.
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3.2.2 Linear tracking

In the second simulation, the follower vehicle is intended to track a leader that describes a

linear path starting at position (5, 5, 25) m and moving at different speeds along the x, y and z

axes. The follower should keep the yaw angle equal to zero. The displacement to the leader should

be ∆ = (5, 5, 5) m. The controller gains are defined in table 3.5 and the simulations results are

plotted in figure 3.6, including state variables, the distance to the leader and the actuation on each

rotor.

Attitude

kφ 1 s−1 kφ̇ 1 s−1

kθ 1 s−1 kθ̇ 1 s−1

kψ 1 s−1 kψ̇ 1 s−1

Position

kx -0.5 s−1 kẋ 0.05 s−1

ky -0.5 s−1 kẏ 0.05 s−1

kz 0.2 s−1 kż 0.1 s−1

Table 3.5: Controller gains for 3D linear tracking.
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Figure 3.6: 3D simulation of a vehicle following a leader in a linear path.
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3.2.3 Circular tracking with constant heading

In the third simulation, the follower vehicle is intended to track a leader that describes a circular

path with radius 3 meters, angular speed 0.5 rad/s at constant height z = 5 m. The follower

should keep the yaw angle equal to zero. The displacement to the leader should be ∆ = (1, 1, 0) m.

The controller gains are defined in table 3.6 and the simulations results are plotted in figure 3.7,

including state variables, the distance to the leader and the actuation on each rotor.

Attitude

kφ 1 s−1 kφ̇ 1 s−1

kθ 1 s−1 kθ̇ 1 s−1

kψ 1 s−1 kψ̇ 1 s−1

Position

kx -2.2 s−1 kẋ 0.18 s−1

ky -2.2 s−1 kẏ 0.18 s−1

kz 0.5 s−1 kż 0.2 s−1

Table 3.6: Controller gains for 3D circular tracking.

3.2.4 Circular tracking heading inwards

In the fourth simulation, the follower vehicle is intended to track the same leader as before but

heading inwards. The yaw angle should change to make the quadrotor point to the centre of the

trajectory. The controller gains are the same as defined in table 3.6 and the simulations results

are plotted in figure 3.8, including state variables, the distance to the leader and the actuation on

each rotor.

3.2.5 Circular tracking heading inwards with multiple followers and

noise

A more ambitious simulation is done for a formation of one leader and two followers, each of

them with equal controllers as defined in table 3.6 and departing from the same place. The first

follower keeps a displacement of ∆1 = (1, 1, 0) m and the second followers keeps a displacement of

∆2 = (2, 2, 0). To add a little more reality into the simulation, white Gaussian noise is added to

the sensors of the followers with signal-to-noise ratio equal to 45 dB. The simulation results are

represented in figure 3.9.
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Figure 3.7: 3D simulation of a vehicle following a leader in a circular path with ψ = 0.
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Figure 3.8: 3D simulation of a vehicle following a leader in a circular path heading inwards.
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Figure 3.9: 3D simulation of two vehicles following a leader in a circular path heading inwards
with noisy sensors.

*

As opposed to the error plots from § 3.1, the displacement plots from figures 3.5 to 3.9 show

the distance from the follower(s) to the leader at each time instant. These plots converge to the
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desired value after 20 to 40 seconds, which bears testimony to the fact that all position error

systems converge to zero.

Also, the thrust forces for each rotor are represented and converge to a constant value when

the movement is not accelerated. The main difference between the circular path simulations from

figures 3.7 and 3.8 is the attitude and actuation. In the case of constant heading, the quadrotor

has to continuously tilt and bank to describe the circular path. However, if the quadrotor adjusts

to keep heading inwards, roll and pitch become constant. Taking a closer look at the angles in the

second case, zoomed in in figure 3.10, it is possible to see that the vehicle can perform the curve

with constant roll and pitch angles.

Figure 3.10: Attitude of the quadrotor in a circle heading inwards.

In what regards the simulation with two followers equipped with noisy sensors, it is made the

assumption that the noise is both white and Gaussian. In fact, this assumption, however suitable

for a simulation, is not completely correct. Firstly, the real noise is never completely white because

the power spectral density is not necessarily constant for all frequencies. Secondly, the real noise

is never completely Gaussian given that a Gaussian distribution allows infinite frequency values

which is certainly not verifiable in a physical environment. The signal-to-noise ratio of 45 dB

implies the power of the signal is more than 30 000 times higher than the power of noise, which

might be rather optimistic.
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Chapter 4

Conclusions

This work proposes an approach to the problem of flight formation by solving the trajectory

tracking problem of quadrotor unmanned aerial vehicles. The formation is conceived as a leader

vehicle being followed by a follower vehicle that keeps a constant displacement between them. The

backstepping method has been applied to derive nonlinear control laws and the stability concerns

have been addressed through Lyapunov stability theory.

The control solution is twofold. Firstly, only the motion at constant height was considered. In

this case, the controller is purely kinematic but robust to constant acceleration disturbances and

the stability of the error system is globally asymptotic. The dynamic behaviour of a closed-loop

formation comprised of one leader and one follower is shown to be periodic. A formal proof of

asymptotic stability within a certain region of convergence is also provided for this closed loop.

Secondly, a complete three-dimensional model was considered. This model is both kinematic

and dynamic and takes into account the relevant inputs from the rotors spinning. The error system

is also proved globally asymptotically stable.

Extensive simulation studies have been carried out to attest the performance of the control laws

developed previously. For the motion at constant height, the follower was intended to track a still

leader and a leader in a linear, circular and sinusoidal path. For the complete model, the follower

tracks a still leader and a leader in a linear and circular path, with different heading requirements.

At the end, a simulation has been carried out with two followers taking part in the formation with

noisy measurements from the sensors.

4.1 Future Work

For the vastness and complexity of the formation control problem, never could this work aim

to solve more than a small subproblem of the bigger problem. This work only considers simple

formations of vehicles where the followers have complete access to the leader’s position and velocity.

One possible topic for future work, of special interest to large formations, could be addressing the

problem of estimating variables unavailable to the followers.
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The present solution is oblivious to any uninvited obstacles which may be found by the for-

mation. In order to make the control solution more robust, incorporating collision avoidance

techniques and adapting the formation framework could be another promising future development.
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