
Development of a Multi-Platform Whiteboard Application

Lucas Emanuel Figueiredo Soares

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Fernando Peixoto Ferreira
Prof. Alexandra Sofia Ferreira Mendes

Examination Committee

Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. João Fernando Peixoto Ferreira

Member of the Committee: Prof. Pedro Henrique e Figueiredo Quaresma de Almeida

October 2021

Acknowledgments

First, I would like to thank God for always being with me. I know I can always count on Him. I

would like to thank my parents Paula and Emanuel for their unconditional love and support, for the

encouragement and caring over all these years, for always being there for me, and for always pushing

me a step further when I most needed it. Without them, this Master’s degree would not be possible. I

am forever grateful for everything you have done for me. I love you both. I want to thank my girlfriend

Renata for always being there for me. For the support, for the understanding, for the love, for the laughs.

I love you. I want to thank my family for their love and support throughout all these years.

I would also like to acknowledge my dissertation supervisors Prof. João F. Ferreira and Prof. Alexan-

dra Mendes for their insight, support, and sharing of knowledge that has made this Thesis possible.

To all my friends and colleagues that helped me grow as a person and were always there for me

during the good and bad times in my life. A special mention to my best friends Jin Xin and João

Bernardo. Thank you.

Last but not least, I want to thank me. I want to thank me for believing in me. I want to thank me for

doing all this hard work. I want to thank me for having no days off. I want to thank me for never quitting.

I want to thank me for always being a giver and trying to give more than I receive. I want to thank me for

trying to do more right than wrong. I want to thank me for just being me at all times.

Abstract

The goal of this project is to develop an innovative whiteboard application supported in multi-platforms

that aims to facilitate the presentation and manipulation of handwritten content. The project will use

as a starting point the application Xournal++ Mobile 1. The idea is to extend the editor with features

that allow for reliable input and manipulation of handwritten content while supporting remote and self-

learning. Given the recent shift to online/remote work and teaching, a whiteboard application that can be

used regardless of the device choice can have a massive impact on note-taking and the overall learning

experience. The idea is to make a solid whiteboard application to assist the development of the first

mathematical structure editor using a cross-platform app software.

Keywords

handwritten mathematics; digital ink; structure editor; tablet PCs; pen-based input; mathematical sketch-

ing; mathematical expression recognition; gestures; STEM education; calculational method; educational

technology; intelligent tools; sketch recognition

1Github repositary for Xournal++ Mobile, https://github.com/xournalpp/xournalpp mobile

iii

Resumo

O objetivo deste projeto é desenvolver uma aplicação inovadora de whiteboard com suporte em mul-

tiplataformas que visa facilitar a apresentação e manipulação de conteúdos manuscritos. O projeto

utilizará como ponto de partida a aplicação Xournal++ Mobile 2. A ideia é estender o editor com re-

cursos que permitem um input confiável e manipulação de conteúdo escrito à mão, ao mesmo tempo

que oferece suporte à aprendizagem remota e autoaprendizagem. Dada a recente mudança para tra-

balho e ensino online/remoto, uma aplicação de whiteboard que pode ser usada independentemente

da escolha do dispositivo pode ter um impacto enorme para fazer anotações e também na experiência

geral de aprendizagem. A ideia é fazer uma aplicação sólida de whiteboard para auxiliar no desenvolvi-

mento do primeiro editor de estrutura matemática feita através de um software que permite utilização

em multiplas plataformas.

Palavras Chave

matemática manuscrita; tinta digital; editor de estrutura; tablet PCs; input baseada em caneta; esboço

matemático; reconhecimento de expressões matemáticas; gestos; Educação STEM; método de cálculo;

tecnologia educacional; ferramentas inteligentes; reconhecimento de expressões

2Github repositary for Xournal++ Mobile, https://github.com/xournalpp/xournalpp mobile

v

Contents

1 Introduction 1

1.1 Work Objectives . 4

1.2 Thesis Outline . 5

2 Background and Related Work 7

2.1 Pen-based devices and Digital Ink . 9

2.1.1 Overview . 9

2.1.2 Role in education . 9

2.2 Digital Ink in presentations . 10

2.2.1 Microsoft PowerPoint . 10

2.2.2 Classroom Presenter . 11

2.3 Software for handwritten mathematics . 13

2.3.1 Math Boxes . 13

2.3.2 MathBrush . 15

2.3.3 MathPath2 . 18

2.3.4 Mathpad Tablet . 20

2.4 Handwriting recognition . 22

2.4.1 Optical and Intelligent Character Recognition . 22

2.4.2 Neural Networks and Convolutional Neural Networks 23

2.5 Cross-Platform Application Frameworks . 25

2.5.1 Cross-platform technology options . 25

2.5.2 Pros and Cons . 26

2.5.3 Tools for developing cross-platform apps . 27

2.5.3.A React Native . 27

2.5.3.B Xamarin . 27

2.5.3.C Ionic . 28

2.5.3.D Flutter . 28

2.5.3.E Flutter whiteboard applications . 28

vii

3 Development of the Whiteboard Application 31

3.1 Starting point choice . 33

3.2 Flutter Widgets explained . 36

3.2.1 CustomPaint . 36

3.2.2 ClipRect . 38

3.2.3 ListView . 38

3.2.4 FloatingActionButton (FAB) . 38

3.2.5 Stack . 38

3.2.6 Listener . 39

3.3 Initial changes to the interface . 39

3.4 New features implementation . 42

3.4.1 Eraser . 42

3.4.2 Highlighter . 43

3.4.3 Whiteout eraser . 43

3.4.4 Undo and Redo . 44

3.4.5 Gestures . 46

3.4.6 Select . 47

3.4.6.A Detect selection . 47

3.4.6.B Isolate the selected content . 48

3.4.6.C Drag and drop content . 48

3.5 Problems while developing the application . 49

3.5.1 Explanation . 49

3.5.2 End of the development . 53

4 Evaluation 57

4.1 Phase 1: Users perform a script of actions . 60

4.2 Phase 2: Users move freely over the interface . 61

4.3 Usability testing conclusions . 62

5 Conclusion and Future Work 65

5.1 Achievements . 68

5.2 Future Work . 69

viii

List of Figures

2.1 Digital Ink tools integration in PowerPoint presentations (Source: Three Tips for Reviewing

Documents, https://www.parallels.com/blogs/reviewing-documents/) 11

2.2 On the left: Digital Ink annotations using Classroom Presenter slides; On the right: Dif-

ferent screens of a Classroom Presenter presentation including one instructor view, one

public view and two students views (Source: Tablet PC use in freshman mathematics

classes promotes STEM retention, [1]) . 12

2.3 Concrete application of Math Boxes in 4 different equations. Every subexpression is con-

tained in a hierarchy of boxes based on their relationship with adjacent subexpressions

(Source: [2]) . 14

2.4 MathBrush interface after recognition of an expression (Source: MathBrush: A System

for Doing Math on Pen-Based Devices) . 15

2.5 MathBrush character recognizer training (Source: [3]) . 16

2.6 MathBrush character recognition (Source: [3]) . 17

2.7 MathBrush dealing with long expressions (Source: [3]) . 17

2.8 A mathematical sketch, created in MathPad2 (Source: [4]) 18

2.9 Gestures for interacting with MathPad2 (Source: [5]) . 19

2.10 MST editor on a Tablet PC manipulating mathematical expressions (Source: [6]) 20

2.11 Optical Character Recognition vs Intelligent Character Recognition (Source: OCR that

thrives in complexity, Digitize Handwriting With Intelligent Character Recognition) 23

2.12 A simple Neural Network (Source: What is a Neural Network) 24

2.13 A CNN sequence to classify handwritten digits (Source: A CNN sequence to classify

handwritten digits) . 24

2.14 Basic Flutter interface coded in Dart (Source: Flutter. A revolução mobile da gigante

Google) . 29

2.15 Whiteboard applications build with Flutter. 30

3.1 Screenshot of the XBoard whiteboard online application 33

ix

3.2 Screenshot of the Xournal++ Mobile whiteboard desktop application 34

3.3 Drawer with Home, Open and New; BottomNavigationBar to change background 35

3.4 most common use of drawPath in CustomPaint . 37

3.5 Final interface of the application . 39

3.6 On top: old tool bar; on bottom: new tool bar . 40

3.7 on the left: old stroke width bar and old stroke width; on the right: new stroke width bar

and new stroke width . 40

3.8 on the left: old Zoom In/Out bar; on the right: new Zoom In/Out bar 41

3.9 on the left: stroke before finishing the action ; on the right: stroke after update 41

3.10 stroke constantly being drawn inside and outisde canvas area 42

3.11 Example of how both delete methods work and how we can switch between them. Ex-

pression is written and Eraser button is hovered/long pressed. Eraser button is pressed;

User clicks on the ”+” sign; Eraser button is pressed; User hovers on the canvas 43

3.12 On the left: previously implemented highlighter; on the right: new implementation 43

3.13 Sequence of the whiteout tool being used: Expression is written; Whiteout Eraser button

is pressed; Canvas is pressed; Whiteout Eraser button is pressed again. 44

3.14 Sequence of the Undo/Redo tools being used. First scenario: Expression is written; Undo

button is hovered/long pressed; Undo button is pressed; Redo button is hovered/long

pressed; Redo button is pressed. Second scenario: Expression is written; Undo button

is pressed; New stroke is drawn; Undo button is pressed; Redo button is pressed. Third

scenario: Expression is written; Eraser is used; Redo button is pressed; Redo button is

pressed. 45

3.15 Sequence of actions triggered by double tap on canvas: Expression is written; User dou-

ble taps on the canvas; User double taps on the canvas again; User switches to select

mode; User double taps on the canvas . 46

3.16 Sequence of actions triggered by long press on canvas: Expression is written; User long

presses on the canvas; User long presses on the canvas again; User switches to select

mode; User long presses on the canvas . 46

3.17 On the left: drawn expressions on the canvas; on the right: first expression is selected . . 47

3.18 Sequence of an expression being selected . 48

3.19 Sequence of the select tool being used: User presses the select button; selects expres-

sion; drags the expression to outside the canvas; makes new selection; drags the expres-

sion to the edge of the canvas; moves the selected content; clicks outisde the selected

area . 49

3.20 Expandable FloatingActionButton. 50

x

3.21 Overflow of the FAB inside the ListView; expandable Fab animation with strange behavior;

expandable animation with another type of button. 50

3.22 Select using a FloatingActionButton . 52

3.23 Sequence of an expression being dragged: Content is selected; Content is dragged in full

screen mode; Content is dragged in a small application window 52

3.24 Selected expression; User double clicks on the selected expression 53

3.25 Problem with duplicating the strokes without drawing them 54

3.26 Console error . 55

4.1 Script for the evaluation process . 59

xi

xii

1
Introduction

Contents

1.1 Work Objectives . 4

1.2 Thesis Outline . 5

1

2

We live in a digital era where technology is gradually making its way into every sector, and education

is no exception. We are experiencing a technological revolution in the pedagogical area, progressively

improving communication means and teaching methods. The launch of electronic presentations was

a big mark in this process. It allows the instructor to previously prepare classroom presentations and

present high-quality content with the benefit of saving time in class and avoiding human errors. Fur-

thermore, it is thought that technology-based presentations can bring major positive changes in the

pedagogical area and solve problems related to traditional lecture-based methods [7, 8]. Technology

has also shown to be imperative during the COVID pandemic. Since multiple institutions were forced to

shut down their installations, education transited to full remote mode, forcing the instructors that were

still attached to old teaching methods to make the transition to technology-based ones.

Although electronic presentations are very reliable for most areas, they have significant downsides

in areas that involve writing mathematical formulae and expressions such as in STEM education. The

problem lies in the complications that involve writing and presenting mathematical content. Commonly

used input devices like keyboards and mice do not support most mathematical symbols, involve high

cognitive load, and are very time-consuming compared to paper and pen for problem-solving [9]. Be-

sides, slide-based presentations work mainly as one-to-many communication, which limits interaction

with the audience, and in STEM education, there’s often the need to adapt content during class to com-

prehend students’ level of understanding [10]. Blackboards solve this kind of drawback but imply that

the presenter writes everything in presentation time, which consumes a high amount of time and can

lead to errors.

A potential solution is to use pen-based devices to write and display mathematical content through

digital ink, which has the potential to play an important role in the future of the classroom [11, 12]. In-

structors can now write and present without the additional effort that common input devices add to the

process while taking advantage of the benefits that technology offers. In addition to solving problems re-

lated to mathematical content, digital ink lets students express themselves in innumerous ways, offering

instructors insight into the student thought process and generating interesting artifacts for discussion [1].

It lowers barriers so that more students feel comfortable participating in class and reduce the high cog-

nitive load associated with common input methods. Digital ink also facilitates active learning, where

students are directly engaged in the learning process [13].

However, because manipulating mathematical content involves a large number of syntactic manip-

ulations, users often find themselves overloaded with tasks that could be optimized through computer

software used in tablet PCs. For example, having to manually rewrite expressions for minor changes

and using overly complex menus to trigger actions often lead to loss of thought, wasting of time, and

3

error making. For this reason, there is the need for an interface able to effectively and reliably input and

manipulate mathematical content to improve the overall experience of writing and make the transition to

technology-based devices as smooth as possible [6].

1.1 Work Objectives

The main goal of this thesis is to enrich the state of the art by developing the most advanced whiteboard

application built with Flutter, supported in multi-platforms. The idea is to construct a solid starting point

for the development of the first structure editor supported in multi-platforms.

Since the main objective is to bring improvements in the pedagogical area, instructors, students and

researchers are the main beneficiaries. It not only brings advantages to lectures and in-class presen-

tations but also brings significant benefits for personal use. Although this software was developed to

make the most out of pen-based devices, users are free to use it on any kind of smartphone, tablet, or

computer.

This application was developed to support and improve the presentation and manipulation of any writ-

ten content through features that make the process more interactive and intuitive, less time-consuming,

and prevent human errors. The system provides flexible and reliable tools that assist the user in writ-

ing and displaying content. By combining digital ink with the benefits of computer software, the idea is

to improve the overall note-taking experience in multiple devices to build the starting point for the first

structure editor using cross-platform software.

• Development of a cross-platform whiteboard application

It is discussed which cross-platform frameworks available are the best to use and some advantages

and disadvantages of this kind of software compared with native development. Finally, since Flutter is

the toolkit used, some other used toolkits are surveyed in section 2.

• Survey of the best cross-platform frameworks available

• Survey of already implemented software using the Flutter toolkit

4

1.2 Thesis Outline

This section presents a detailed breakdown of this document.

• Section 2 (Background and Related Work) explores and explains some of the concepts used in the

project as well as ideas and state-of-the-art technologies similar to the project that were sources

of inspiration.

• Section 3 (Development of the Whiteboard Application) describes the process of developing the

project that intends to solve the problem presented above, the approach to take as well as the

architecture behind it.

• Section 4 (Evaluation) describes the evaluation methodology used in the project

• Section 5 (Conclusion and Future Work) Sums up the project and the possible future work

5

6

2
Background and Related Work

Contents

2.1 Pen-based devices and Digital Ink . 9

2.2 Digital Ink in presentations . 10

2.3 Software for handwritten mathematics . 13

2.4 Handwriting recognition . 22

2.5 Cross-Platform Application Frameworks . 25

7

8

Topics introduced in the previous section will now be explored in further detail. To better understand

this work’s objectives and thereafter the proposed solution, software that contributed to the state of the

art will be analysed in order to build up a concrete set of ideas that will be helpful to the development of

this project.

2.1 Pen-based devices and Digital Ink

Instructors are increasingly relying on digitally projected slides rather than using blackboards and white-

boards to write and display content. It allows the preparation of high-quality content in advance without

requiring the instructor to write everything during the presentation. While allowing easy sharing and

reuse of materials, it also facilitates distance learning.

This kind of tool lacks the flexibility to adjust the materials in lecture time so the natural response is to

integrate digital ink, giving instructors the flexibility they need to adjust previously prepared materials [14].

2.1.1 Overview

Digital ink refers to the technology that represents handwritten content in a digital kind of way. The ma-

jority of these systems use some kind of pen, stylus, or even the user’s finger over a digitizer laid under

an LCD screen to record what is being written. The effect depends on the system but in the pen and

stylus case, it normally resembles to writing on paper with a pen. Systems using these technologies

support note taking and sharing, real-time distributed conversation and meetings, and classroom pre-

sentation and capture. Ink can change colors, be moved and resized, be transformed into standardized

text, among other things. Inking systems can record time, pressure, context, and other types of infor-

mation for every stroke drawn [14]. It can then be saved as handwritten content or converted through

handwriting recognition technology to standardized the text.

2.1.2 Role in education

Digital Ink systems are becoming more popular over the years across a wide variety of domains. With its

many advantages, these have the potential to play a big role in the future of education software [15]. One

key ability that makes digital ink beneficial for learning is its potential to support intelligent interaction and

visualization features [15].

Technology is being used to facilitate learning experiences inside and outside the classroom [16].

Without depending on direct communication with an instructor, the technology used in this way needs

to provide appropriate instructions for a student to operate freely without additional effort. By encour-

aging students to engage with the content, technology may promote active learning while the system

9

demonstrates the effects of their changes. To better understand a concept, tutoring experiences guide

students through a series of interactive activities. Because the majority of these tools are WIMP-based

(Windows, Icons, Menus, Pointers), we end up with low fluidity levels and a slower learning rate, which

affects the learning process and might distract the student from his task [17,18].

Digital Ink allows the interactive tutoring experience without the complications associated with these

kinds of tools. Unlike passive learning, where students are merely observers, in active learning students

are directly engaged in the process. Because each activity is followed by feedback, students tend to

understand and retain better what is being taught [19]. This statement is supported by the Constructivist

Theory [20] which says that to get a deep understanding of a topic, it is very important for the learner to

be actively engaged in the process. Constructivism could be supported outside the classroom with the

growing use of software systems involving intelligent tutoring in education.

Without the active intervention of instructors, learners could still have high levels of interactivity,

which aids in the student’s independent work [21]. This would be extremely useful in a situation such

as the COVID pandemic. Considering most of the classes have been transferred online, digital ink

improves remote communication between students and teachers. While bringing the experience closer

to a presential class, it brings additional support to the teachers as well.

2.2 Digital Ink in presentations

2.2.1 Microsoft PowerPoint

As previously mentioned, digital presentation software has gained prominence in the pedagogical area

over the years. Beyond the many advantages it brings to the instructor, overall research indicates that

students prefer PowerPoint type presentations rather than traditional ones [8]. There are many points

on whether the use of PowerPoint presentations is beneficial for delivering content: it allows the pre-

planning and organization of classroom material; the text is more legible; facilitates the editing and

revision of content; material sharing is a lot easier [22–25]. Although it brings major advantages it also

has some constraints: lectures tend to be less student-centered; classroom rhythm tends to accelerate;

answering students’ questions tend to be difficult; and students tend to give less feedback regarding what

is being taught [26–28]. Much of these constraints are solved with digital ink integration in presentations,

through tablet PCs as input.

Incorporating digital ink requires very few modifications on slide design. Many might think most of

the annotations reside in complementary information like highlighting, circling, and underlighting but it

is beneficial to leave additional room for writing during class and for including extra explanatory infor-

mation (Fig. 1). While writing on slides during class-time, students tend to keep up better with the

instructor’s pace, as the writing shows on the screen in real-time. Students can actively participate in

10

what the teacher is writing down as notes since everything is being written in real-time. While working

through problems, there is not the need to previously prepare a different slide with the solution. Also,

leaving additional space can allow the annotation of different approaches to solving a particular problem

in order to better understand the solution. As Johnson stated, “Using digital ink in combination with

presentation technology is an excellent solution for real-time classroom activities that require input dur-

ing class, especially when other teaching technologies (chalkboard, whiteboard, overhead projector, or

document camera) are unavailable or switching to them is sufficiently inconvenient. Therefore, the digital

inking technique described above can be used in any PowerPoint lecture to involve the students in the

development of their knowledge.” [29].

Figure 2.1: Digital Ink tools integration in PowerPoint presentations (Source: Three Tips for Reviewing Documents,
https://www.parallels.com/blogs/reviewing-documents/)

2.2.2 Classroom Presenter

Classroom Presenter goes one step further from PowerPoint presentations by supporting in real-time

sharing of digital ink slides between the instructor and the student. The framework incorporates the

benefits of current computer-based systems with the reliability of the manual systems’ handwriting ca-

pability. The system runs over a pen-based device allowing the presenter to handwrite on projected

slides. The materials are then broadcasted to other devices for students’ use or are displayed in a public

display. Students can also contribute to the public display if the instructor finds it pertinent to use their

work as an example, always maintaining anonymity among other colleagues. [30].

This distributed architecture provides a range of benefits to the system: enables flexible distribution of

11

material for lectures; lowers obstacles to having more students participating in class more comfortably;

promotes peer learning by the integration of student work to debates in the classroom; increases the

participation and understanding of students through student tasks in class; allows the instructor to be

more conscious of whether a student is following up the lecture or not [1].

Figure 2.2: On the left: Digital Ink annotations using Classroom Presenter slides; On the right: Different screens
of a Classroom Presenter presentation including one instructor view, one public view and two students
views (Source: Tablet PC use in freshman mathematics classes promotes STEM retention, [1])

The interface differs depending on whether a student or a instructor is using it. There is also a public

display where only slides are shown without any additional features. Classroom Presenter includes

mechanisms to allow bidirectional sharing of data between instructor and students devices offering more

flexibility in delivering classroom material by improving presentation tools. Dynamicity is provided by

allowing the real-time annotation of slides to highlight or to clarify a point. It allows to get feedback on

whether a student has understood a certain problem or not and depending on those results the instructor

can opt to change the course of his initial approach if some subject is not being clear for someone. Since

students’ screens are shared anonymously it allows for discussion without embarrassing students who

got the wrong result or followed the wrong path. As Anderson et al. stated, “This process causes

the instructor to focus on developing activities to promote specific learning goals as opposed to merely

covering material” [1]. Displaying student work in the public display is a strong motivator for students to

contribute even more as it puts student efforts on the same level as the instructor’s content.

This tool was deployed in classrooms in order to get feedback both from the students and the instruc-

tors. Classroom Presenter was tested in some computer science courses taught by different instructors.

Users manifested enthusiasm about using the application on their courses. Most of the students inquired

considered that it increased their attention to the lecture and would encourage its use in other classes.

Instructors also thought it was not distracting at all as it improved their student’s learning experience. [14].

Although the highlight feature was anticipated to be used by the instructors to draw attention to the

12

slides, this feature has not received much use. Instead, users used other types of attention marks

like underlining and circling around important content. This was caused by the extra effort to switch to

highlighting mode due to the many customizable features included. It was also shown that instructors do

not tend to waste much time switching pen color. The erasing methods also brought some interesting

results. Although erase by stroke is available, page erases were much more frequent. They were used

mostly to clear annotation mistakes rather than used with the purpose to erase all the ink content. This

happens because page erases only involve one click while stroke erase involves selecting that option,

searching for the ink we want to erase, and actually erase it. All these results support the idea that

instructors (and users in general) tend to minimize the use of features that involve too much effort for the

purpose [14].

With these results, we can identify some good points that will help in the development of the white-

board application:

• The best app design is the one that provides less cognitive load required to achieve the desired

tasks.

• It is important to understand users’ needs and desires and which information is important to be

included in the system.

• Gestures are a great improvement for task performance and trying to resemble them to commonly

used gestures while writing and annotating on regular paper/blackboard would drastically reduce

the cognitive load needed.

(Some other interesting considerations would be saving ink’s direction while being written or maybe

ink changing color to simulate temporal aging of strokes. (This would be a great idea for an editor

capable of recognizing the Mandarin language as it matters the pressure, stroke direction, and order of

strokes for its handwriting)

2.3 Software for handwritten mathematics

In this section, some tools capable of dealing with handwritten mathematical content will be analysed.

2.3.1 Math Boxes

Math Boxes is a relatively recent user interface based on digital ink designed to ease the process of

writing complex mathematical expressions by hand. The system detects relationships including super-

scripts, subscripts, and fractions by displaying bounding boxes around subexpressions. According to

their spatial relationship with nearby words, subexpressions are incorporated in a hierarchy of boxes. By

13

inserting new words directly into its defined boundaries, math boxes and their relatives are dynamically

resized so that the corresponding subexpressions can be easily expanded. Structural recognition feed-

back is generated by the boxes themselves. By transforming individual characters so that they can be

stored in a database, feedback on character recognition can also be provided. Figure 2.3 presents four

examples of equations displayed using math boxes.

Figure 2.3: Concrete application of Math Boxes in 4 different equations. Every subexpression is contained in a
hierarchy of boxes based on their relationship with adjacent subexpressions (Source: [2])

Without technical knowledge of the algorithms and architecture used by the mathematical parser,

it can be difficult to identify and correct errors. Another problem happens while writing mathematical

expressions. Even if we have the expression available in advance, in most cases we will not allocate

enough space in advance to write the whole expression [2].

This user interface (UI) was developed to solve this kind of issues while writing mathematical expres-

sions: lack of space related to writing long/difficult expressions and to make identifying and correcting

errors simpler. To detect mathematical syntax, Math Boxes relies on simple structural parsing. Boxes

are created once a particular relationship has been determined to exist between two symbols that do

not share the same math baseline. These boxes are visible to the user and can easily be extended with

a mouseover or by writing inside a box, allowing new symbols to have the necessary space. Based on

a study regarding Math Boxes, the following conclusions were taken:

• Problems related to space while writing long expressions were solved. Error correction has been

simplified. Many participants considered the UI helpful mainly with expressions containing several

levels of subexpressions. It accomplished its goal.

• Users are more likely to use this tool for extensive/difficult equations as accuracy and time of writing

improve with expressions’ complexity.

• Users’ experience and acceptance depends much on a well-designed UI.

14

2.3.2 MathBrush

People who perform complex mathematical problem-solving exercises often use pen and paper in en-

vironments like high-school classrooms, engineering companies, and university research laboratories.

These people will turn to computer algebra systems (CAS) to solve computer problems that are either

too boring or too difficult to solve by hand if pen and paper fail to help their problem-solving tasks [31].

Any mathematical program is called a computer algebra system if it has the ability to manipulate math-

ematical expressions in a way close to the conventional manual computations of mathematicians and

scientists. However, an inconsistency exists between mathematical work performed on pen and pa-

per and mathematical work performed in a CAS. The need to transcribe two-dimensional mathematical

expressions into a one-dimensional sequential form can have a high impact on the interface [32].

Recognition of mathematics can be divided into offline systems that generate equations from scanned

images and online systems that allow hand-drawn input and parse math expressions. Many existing of-

fline methods have the storage of physical manuscripts as their objective in the offline domain [33].

Usually, the output of these systems is a typographical representation of math expressions, allowing dig-

ital storage of the original paper document and high-quality recreation on a computer screen or printer.

Math Brush follows a different path as it focuses on the recognition of online mathematics, where the

purpose is to allow a user to insert a math expression into a computer system [3].

The input and manipulation of mathematical expressions are normally the main concerns for pen-

based math systems. This means that, for a system to be successful, handwritten content must be

easily inserted and the recognition verification should require minimum effort. The use of gestures

should also resemble natural gestures that people normally use while working with pen and paper to

assure consistency among users [34].

Figure 2.4: MathBrush interface after recognition of an expression (Source: MathBrush: A System for Doing Math
on Pen-Based Devices)

15

MathBrush allows users to draw math input using a pen-input device on a tablet computer, recognizes

the math expression, and then supports mathematical transformation and problem-solving (Fig. 2.4) [3].

It allows users to draw handwritten mathematical content and to correct eventual recognition mistakes.

It uses recognition algorithms to support the transformation of handwritten content into MathML (Math-

ematical Markup Language) [35], which helps with the backend communication. It presents trainable

recognizers that can be customized to users handwriting (Fig. 2.5) [3].

Figure 2.5: MathBrush character recognizer training (Source: [3])

For input, the user can write multiple expressions in the math sheet and has the ability to operate on

one or more of such input expressions. The system provides a simple and easy way for users to verify

the correctness of their handwritten expressions and, if needed, to correct any errors in recognition.

After an ink expression has been entered the user can use context menus to recognize and manipulate

the expression. Optionally, it is also possible that such recognition can be performed automatically after

a pause or even after each stroke input. Choosing mathematical operations is done by making use of

context menus, both with input and output expressions (Fig. 2.6). [34]

While developing an effective system for supporting mathematical tasks, MathBrush is also study-

ing recognition technology and interface design to make the most effective support for their users. It

includes several features that support the tuning of the interface to specific users, and the study of math

recognition algorithms. Finally, to allow mathematical tasks common to both researchers and students,

MathBrush supports the input and output of large expressions, and process logging to capture and

archive problem-solving rationale (Fig. 2.7) [31].

16

Figure 2.6: MathBrush character recognition (Source: [3])

Figure 2.7: MathBrush dealing with long expressions (Source: [3])

17

2.3.3 MathPath2

The principle of using computers to render dynamic illustrations of mathematical concepts has a strong

background. Systems like Borning’s ThingLab [36], Interactive Physics [37], and The Geometer’s Sketch-

pad [38], were used to create dynamic models and illustrations in geometry and physics, although they

did not support handwritten mathematics to create these illustrations. Since these systems rely on WIMP

tools (Windows, Icons, Menus, Pointers), low fluidity levels and the necessity to switch between modes

makes these interfaces difficult to use [18]. While users of these systems can perceive the dynamic

behavior of their diagrams, it is difficult for them to gain a concrete understanding of the underlying

mathematical phenomena because they are unable to write mathematics [4].

Figure 2.8: A mathematical sketch, created in MathPad2 (Source: [4])

MathPad is a pen-based application prototype with the purpose of dealing with mathematic and

physic concepts through the creation of dynamic illustrations (Fig. 2.8). It allows users to create inter-

active diagrams by combining handwritten mathematical content with sketches and offers a collection

of tools for graphing and analyzing mathematical expressions and solving equations. MathPad relies

on mathematical sketching for mathematical problem solving and supports diagrams to improve the

process of formulating mathematical content. Because mathematical sketching uses handwritten math-

ematical expressions, users may use their knowledge of mathematical notation to create mathematical

sketches. When users actually write mathematics, they achieve a higher understanding of the concepts

represented and learn from their errors [4].

In order to sketch mathematical content, users combine mathematical expressions with drawing

18

elements by association. It is done implicitly by using diagram labels as input to an inferencing engine

or manually using a gestural user interface [5]. For problems involving mathematics and physics, users

usually use pen and paper for problem-solving so the idea of MathPad2 is to be as similar and as fluid

as this method. Since all interactions are derived from using digital ink, a gestural user interface was

developed to fulfill this idea (Fig. 2.9).

Figure 2.9: Gestures for interacting with MathPad2 (Source: [5])

To prevent gestures from interfering with the entry of drawings and equations, context-sensitivity was

used to associate gestures with performed operations. The notion of punctuated gestures, single and

multi-stroke compound gestures, and terminal punctuation were used to help to disambiguate gestures

from mathematical expressions and drawings [39]. For mathematical expression recognition, a lasso

selection over the expression followed by a tap inside must be done. Then, since the UI stores samples

from the user, recognized material is presented to the user in his own handwriting. [4].

In math problems, students usually draw diagrams for assisting in the visualization of relationships

among variables, constants, and functions. With the appropriate drawing, it makes it easier to solve the

math problem. “By animating sketched diagrams from changes in associated mathematical expressions,

users can evaluate different formulations with their physical intuitions about motion. They can sense mis-

19

matches between animated and expected behaviors and can often see that a formulation is incorrect

and also make better educated guesses as to why.” [5]. In addition to diagram association, MathPad

provides users with a toolset on recognized mathematical expressions for graphing and evaluating func-

tions as well as solving equations. Although rudimentary, this set of tools gives some representative

early results on adding advanced features to the system. [5].

The results of a usability study show that MathPad is very intuitive. Most gestures are easy to

remember and use with minimum training. It has the potential to be an important tool for dealing with

mathematical and physical content inside and outside the classroom.

2.3.4 Mathpad Tablet

Figure 2.10: MST editor on a Tablet PC manipulating mathematical expressions (Source: [6])

Students and teachers frequently need to display and alter mathematical content as efficiently as

possible, however the majority of regularly used technologies, such as computers, have substantial

input constraints. Most mathematical symbols are not supported by keyboards, and mouse actions

take a long time to complete due to the amount of clicks required. Although blackboards eliminate the

limitations imposed by computer inputs, they require the instructor to write everything in class, which

leads to mistakes and wasted time. Projected slides are a typical option, meaning that everything has

20

been planned ahead of time, which may be advantageous in some cases by saving time and avoiding

typing errors. Because the input devices used to produce and control slides are quite difficult to modify

while giving a lecture, they act more like a guideline. There is frequently a requirement for debate and

engagement in presentations including mathematical subjects. [6,40,41]

The best approach is to introduce digital ink through pen-based devices to present and display math-

ematics, although this does not exploit its full potential [6, 11–13]. As Mendes et al. stated, “Tablet

PC’s computational capabilities can be a valuable help to write calculations and to show the dynamics

of the symbols (that the calculational method stresses so much). Even if the presenter does not want

to emphasize syntactic manipulations, having, for example, a feature that allows the reliable copy of

expressions is a huge improvement.” [6,40,41].

Mathpad Tablet was created in the context of education and research by merging the benefits of

computers with pen-based devices. It includes a structural editor to help with the entry and modification

of structured handwritten information, with the goal of improving the display of mathematical content. It

also has capabilities that help to make presentations more flexible and interactive [6,40,41].

The editor supports in mathematics manipulation and ensures that human errors are less likely to oc-

cur to improve user engagement with handwritten calculation proofs. The MST editor allows for runtime

definition of operators and redefining of their precedences, as well as user-defined handwritten character

representation and problem correction in recognition results (also allows the change of the recognizer).

Because the user is likely to add handwritten text and mathematical expressions, everything is kept

handwritten to minimize misunderstanding for the user and, in the case of presentations, the students.

In some cases, the animation of particular structural alterations may be viewed in real-time to demon-

strate how expressions are modified from one step to the next. It helps students comprehend how the

manipulation rules operate since the consequence of applying the algebraic rule is not instantaneous.

The definition of a structure for handwritten mathematical material is the core characteristic of MST. It

makes operations like selecting and copying mathematic expressions easier by enabling manipulation of

expressions. Additionally, motions can be used to initiate various actions. It makes writing mathematics

a continuous process by eliminating the need for menu selection. Gestures are adjustable to meet

the demands of various users and aim to match the visual image that is commonly associated with its

application. [6,40,41].

The feedback gathered about the idea and functionality of the MST editor appears to imply that

the tools supplied are useable, appropriate for their purpose, and provide a meaningful contribution to

mathematical problem teaching and learning.

21

2.4 Handwriting recognition

The idea is to use an existing recognizer, as the implementation of a new one would not contribute to

the main idea of the project and would lead to an additional unnecessary workload with poorer results.

By using an existing recognizer, we benefit from the specialized work already developed and remain

with the possibility of changing the recognizer in the future, as the course of things will lead to a more

complete, specialized and with better results recognizer. In this subsection, it will be briefly explain how

the handwritten recognition process works and talk about some handwriting math expression recognition

software in order to build up knowledge related with this kind of tools and to be able to make the most

adequate decisions for the project. Before talking about character recognition itself, it will be giving a

brief background about the subject, starting with Optical Character Recognition (OCR) and Intelligent

Character Recognition (ICR) technology.

2.4.1 Optical and Intelligent Character Recognition

OCR is a commercial solution for extracting data from printed or written text in a scanned document or

image file, then translating the text into a machine-readable format for data processing such as editing

or searching 2.11. Its market is rapidly expanding, owing to the rising digitization of company operations

to cut labor costs and save valuable man-hours. Although OCR has been deemed a solved problem,

one of its important components, Handwritten Text Recognition (HTR), remains a difficult challenge to

tackle. Converting or simply recognizing handwritten text to machine-readable form can be tricky due to

the wide range of handwriting styles across people and the low quality of handwritten text compared to

printed text. Nonetheless, it’s a critical issue for a variety of industries, including healthcare, insurance,

banking, and, in our case, education and research. Recent Deep Learning advances, such as the

introduction of transformer architectures, have accelerated our progress in handwritten text recognition,

which is described by the Intelligent Character Recognition (ICR) 2.11. The algorithms used to solve ICR

require far more intelligence than those who are used to solve ordinary OCR, and that’s why it deserves

more attention 1.

A self-learning system known as Neural Network is used in most ICR software to automatically up-

date the recognition database for new handwriting patterns. It expands the capabilities of scanning

machines for document processing beyond printed character recognition (a feature of OCR) to include

handwritten matter recognition. Because this technique involves recognizing handwriting, accuracy lev-

els may vary. The high accuracy rates are obtained when reading handwriting in standardized formats.

Several read engines are frequently utilized within the program to attain these high recognition rates,

and each is granted elective voting rights to decide the real reading of characters. Engines built to read

1What is Optical Character Recognition?: OCR Technology, https://www.hyland.com/en/resources/terminology/data-
capture/what-is-optical-character-recognition-ocr

22

numbers have higher elective rights in numeric fields, while engines geared to read handwritten letters

have higher elective rights in alpha fields. Handwritten data can be automatically fed into a back-office

system when utilized in conjunction with a bespoke interface hub, avoiding tiresome manual keying and

being more accurate than traditional human data entry. 2.

Figure 2.11: Optical Character Recognition vs Intelligent Character Recognition (Source: OCR that thrives in com-
plexity, Digitize Handwriting With Intelligent Character Recognition)

2.4.2 Neural Networks and Convolutional Neural Networks

Neural networks and deep learning currently provide the best solutions to many problems in image

recognition, speech recognition, and natural language processing. A neural network is a set of algo-

rithms that attempts to recognize underlying relationships in a set of data using a method that mimics

how the human brain works. Neural networks, in this context, refer to systems of neurons that can

be organic or artificial in nature. Because neural networks can adapt to changing input, they can pro-

duce the best possible outcome without requiring the output criteria to be redesigned. The artificial

intelligence-based notion of neural networks (ANN) is quickly gaining traction in the creation of trading

systems 3.

In the final year of my Master’s in the Machine Learning course, we used this kind of technology,

more specifically, Convolutional Neural Networks (CNN), to be able to recognize handwritten symbols.

Convolutional Neural Networks are a subclass of Neural Networks with at least one convolution layer.

They are distinguished from other neural networks by their superior performance with image, speech,

or audio signal inputs. It will not be explain CNN’s architecture with any more detail than what we see

from the image because it would not have any impact on this project’s context, as the goal is to use the

technology as a starting point and not to detailly understand it. 4 2.13.

2Handwritten Character Recognition, https://nanonets.com/blog/handwritten-character-recognition/
3Neural Network, https://www.investopedia.com/terms/n/neuralnetwork.asp
4Convolutional Neural Networks explained, https://towardsdatascience.com/convolutional-neural-networks-explained-

9cc5188c4939

23

Figure 2.12: A simple Neural Network (Source: What is a Neural Network)

Figure 2.13: A CNN sequence to classify handwritten digits (Source: A CNN sequence to classify handwritten
digits)

24

2.5 Cross-Platform Application Frameworks

We need a larger user base to generate more income. Furthermore, in today’s quickly evolving techno-

logical world, we have the need for robust cross-platform app frameworks. The reason for this is simple:

creating a cross-platform software allows our product to reach a wider audience at a lower cost 5. Based

on the objectives of the future mobile application, we may choose one of two development paths: create

two or more native apps, or create a single cross-platform app that works on many devices at once.

When we have a large potential, limited time, and a short budget, a cross-platform software is the ap-

propriate choice. Another reason to create a cross-platform mobile app might be if we want a simple

app with no complicated animations or functionality 6.

The need for cross-platform app development frameworks has skyrocketed. The main reason for this

surge in demand is that cross-platform apps have a far greater reach than native apps. Cross platform

applications enable the access to a larger number of individuals. Developers created customized frame-

works to make the cross-platform app development task more efficient. Cross-platform app frameworks

enable developers to create mobile apps with a single line of code and run them on many devices with

few adjustments. There are numerous good cross-platform frameworks for mobile app development

available nowadays that allows us to build high-quality apps.

2.5.1 Cross-platform technology options

We can build cross-platform apps using 3 different options:

• Web-based Apps

A web-based application is any software that is accessible via HTTP over a network connection

rather than being stored in memory on a device. A web browser is frequently used to execute web-

based applications. Web-based apps can also be client-based, in which a tiny portion of the software is

downloaded to the user’s desktop but processing is done on an external server through the internet 7.

Despite its drawbacks, web-based apps are a popular choice for cross-platform development. Web

applications can be used on all mobile and desktop platforms, but they lack native mobile functionalities.

For example, iOS system notifications will be missing, apps will be unable to be found in the app store,

and performance will be poor. Apart from the aforementioned drawbacks, web technology is ideal for

5Best 10 cross-platform app frameworks to consider in 2021, https://www.thirdrocktechkno.com/blog/best-10-cross-platform-
app-frameworks-to-consider-in-2021/

6Best cross-platform app development frameworks, https://messapps.com/allcategories/development/best-cross-platform-app-
development-frameworks/

7Web Based Application, https://www.techopedia.com/definition/26002/web-based-application

25

developing apps that are constantly evolving. PWA (Progressive Web App) capabilities may also be in-

tegrated with the recently announced Web APIs, allowing developers to construct web apps that operate

similarly to native apps 8.

• Hybrid Apps

Hybrid applications, as the name suggests, combine the advantages of native development with the

benefits of online development. Hybrid applications, like native apps, are built using web technologies

and operate on the device (HTML5, CSS and JavaScript). Hybrid apps run inside a native container and

use the browser engine on the device to render HTML and handle JavaScript locally. A web-to-native

abstraction layer gives you access to device features like the accelerometer, camera, and local storage

that aren’t available in Mobile Web apps 9.

This technology allows developers to use APIs to create online apps with native functionality. As a

result, hybrid apps may be published on both the Google Play and Apple App Stores. The two main

drawbacks are the lack of performance compared to native apps and the native feature limitations.

• Cross-Platform Native Apps

The process of developing an app that runs across many platforms is referred to as cross-platform

development. This is accomplished utilizing tools such as Flutter, React Native, and Xamarin, and the

resulting apps may be used on both Android and iOS. While cross-platform development saves time

and money, it comes at the expense of quality. It’s tough to create an app that works well on several

platforms, and the program will require an additional abstraction layer to execute, resulting in inferior

performance 10.

The frameworks used to construct these apps create an abstraction layer on top of native systems.

It’s worth mentioning that cross-platform native programming tools necessitate some amount of native

development.

2.5.2 Pros and Cons

Our solution can run on numerous mobile operating systems and is created in a single programming

language thanks to cross-platform development. When an app’s code is complete, it passes through a

bridge that converts it to iOS or Android’s native APIs. It helps us to create the system quickly; it saves

us money since we only need one codebase to operate the app on many operating systems; it provides

for reusable code; and it allows us to reach a huge portion of the mobile app market.

8Best cross-platform app development tools, https://blog.back4app.com/best-cross-platform-development-
tools/#Best Mobile Cross-Platform Development Tools

9What is a hybrid mobile app, https://www.telerik.com/blogs/what-is-a-hybrid-mobile-app-
10Native vs Cross Platform app development, https://www.uptech.team/blog/native-vs-cross-platform-app-development

26

On the other hand, we have limited access to some native features and can encounter issues with

user experience. If we don’t want to compromise the user experience and want to take advantage of all

of a phone’s native features, we may go with native app development 11.

2.5.3 Tools for developing cross-platform apps

2.5.3.A React Native

React Native is a JavaScript framework that allows us to create real-time, natively rendered mobile

apps for iOS and Android. It’s built on React, Facebook’s JavaScript toolkit for creating user interfaces,

although it’s designed for mobile devices rather than the web. To put it another way, web developers

can now create native-looking mobile applications using a JavaScript framework they’re already familiar

with. Furthermore, because much of the code we create can be shared between platforms, React Native

makes it simple to build for both Android and iOS at the same time 12.

React Native allows developers to construct a highly responsive UI design since it focuses on the

user interface. React Native has a strong developer community since it is an open-source cross-platform

app framework. As a result, developers can receive enough help during difficult moments in their app

development project. React Native is a prominent cross-platform app development framework, so devel-

opers just have to code once. Apps may operate on a variety of mobile OS systems, including iOS and

Android, with just one time development.

2.5.3.B Xamarin

Xamarin is a free, open-source cross-platform software framework, similar to React Native. It was

created in 2011 as a stand-alone platform, but Microsoft bought it five years later. Xamarin is not

like the majority of cross-platform frameworks. It is based on Mono, an open-source .NET platform

implementation. The C# compiler, runtime, and core.NET libraries are all included in this implementation.

The project’s purpose is to enable C# applications to run on operating systems other than Windows, such

as Unix, Mac OS, and others.

Xamarin is simple to use since it just requires developers to be familiar with.NET and C#. Developers

may simply utilize diverse third-party codebases using Xamarin. This is due to the fact that it includes

C++, Java, and Objective-C libraries directly. When working with Xamarin, developers see fewer run-

time problems since it has compile-time verification. App developers and other contributions make up a

sizable part of the community.

11Best cross platform mobile development tools in 2021, https://litslink.com/blog/best-cross-platform-mobile-development-tools-
in-2021

12Learning React Native, https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html

27

2.5.3.C Ionic

Ionic framework is perhaps the most impressive AngularJS-based cross-platform app development

framework. It is a cross-platform open-source software framework created by Adam Bradley, Max Lynch,

and Ben Sperry in 2013. Apache Cordova and AngularJS were the key components of Ionic’s main ver-

sion. Ionic framework mobile applications are hybrid HTML apps since they follow the Apache Cordova

concepts. The unique feature of these applications is that they operate in a separate shell on your

smartphone. WebView for Android and UIWebView for iOS, for example, are used to execute the apps.

2.5.3.D Flutter

Mobile users expect their apps to have beautiful designs, smooth animations, and great performance.

To deliver on this, developers need to create new features fast without compromising on quality or

performance. That’s why Google built flutter in 2017. Despite being the youngest, Flutter cross-platform

app frameworks is making its own distinct image in the present day market. Flutter is a mobile UI

framework that provides a fast and expressive way for developers to build native apps for mobile (IOS

and Android), for desktop (Mac and PC), and for the Web, using Dart as its main programming language.

This is because apps and interfaces made in flutter are built from a single codebase, compiled directly

to native ARM code, use the GPU, and can access platform APIs and services. In 2015, Facebook

had already launched its cross-platform mobile development framework (for multiple platforms), called

React Native. However, since the launch of Flutter, many users prefer to use Google technology. Due to

the user experience, development time, and performance, it becomes an alternative to React. Even so,

React is a language that has been on the market for a long time and has a large online community. Over

the next few years, we’ll see fierce competition for popularity between the two frameworks, but it’s safe

to say that, overall, Google’s tool is superior. Flutter is engineered for high developer velocity. Stateful

hot reload allows the user to change his code and see it come to life in less than a second without losing

the state of the app. Flutter also ships with a rich set of customizable widgets, all build from Google’s

reactive framework. Flutter moves the widgets, rendering, animation, and gestures into the framework

to give the user complete control over every pixel on the screen. Flutter apps follow platform conventions

and interface details such as scrolling, navigation, icons, fonts, and more 13 14.

2.5.3.E Flutter whiteboard applications

Because Dart is not a native mobile language, it is hard to find such a specific type of content as

programmers usually use Flutter to build more simple UIs. In terms of the whiteboard applications there

is not much to show and comment on. All these applications share more or less the same features and

13Flutter. A revolução mobile da gigante Google, https://pplware.sapo.pt/internet/flutter-a-revolucao-mobile-da-gigante-google/
14Productively build apps, https://flutter.dev/?gclsrc=ds&gclsrc=ds

28

Figure 2.14: Basic Flutter interface coded in Dart (Source: Flutter. A revolução mobile da gigante Google)

overall organization. What is common to all is a pen tool, an eraser tool, and a tool that allows changing

color. As we can see from the picture below, they all have really poor designs and very minimalist

interfaces.

29

Figure 2.15: Whiteboard applications build with Flutter.

30

3
Development of the Whiteboard

Application

Contents

3.1 Starting point choice . 33

3.2 Flutter Widgets explained . 36

3.3 Initial changes to the interface . 39

3.4 New features implementation . 42

3.5 Problems while developing the application . 49

31

32

3.1 Starting point choice

The idea was to find a functional whiteboard application with some key features already implemented

and use it as starting point, as the goal of the project was not to develop a whiteboard application but to

build upon it to allow structure editing of mathematical content.

Regarding the choosing of the starting point, it was very challenging to find an application with these

characteristics with an open-source code. We ended up with two possible solutions: the XBoard 1 and

the Xournal++ Mobile 2.

Figure 3.1: Screenshot of the XBoard whiteboard online application

Xboard, which is implemented in JavaScript, is an online whiteboard with a very minimalist yet simple

interface with some tools on the bottom bar. Stood out a pen-like tool with the allowance to change color

and width, an eraser, a tool that allowed to make straight lines, and a tool for text boxes. Although it

filled the requirements regarding the initial features, it had lots of functionality problems, starting with the

basic stroke, as we could not draw a straight line because the stroke would suffer a lot of width variations

through the path, as seen in figure X. The background color feature was not the changing the color of the

background but instead, the page would get filled with a solid color that would be noticed when using the

eraser, as it would leave a white path underneath the area we were trying to erase, with no possibility to

repair the erased area. Strokes themselves had other problems related to responsiveness. In the end,

considering XBoard’s code last update was on August 16 of 2019, was not worth using as it was barely

usable and would take a lot of effort to fix the mentioned problems.

1Github repositary for XBoard, https://github.com/OXOYO/XBoard
2Xournal++ Mobile, https://github.com/sr-lab/xournalpp mobile

33

Figure 3.2: Screenshot of the Xournal++ Mobile whiteboard desktop application

Xournal++ Mobile 3, coded mainly in Dart, is a port of Xournal++ files and features to various plat-

forms by using the Flutter toolkit. As previously mentioned, this app already won extra points for using

Flutter, as it allows the user to have a single codebase and to deploy the app on a lot of different plat-

forms. The overall design of the app is very clean, as a well-organized toolbar with a pen-like tool and an

eraser already working, allows to change the page background pattern (none, solid color, lined, ruled,

graph), supports multiple pages, and is possible to save the current state of the document. In the pic-

tures bellow we can see the drawer (where we return to the home screen, open files and create new

ones) and the bottom navigation bar (where we change the background aspect and create new pages)

3.3. Although the implemented tools were not completely reliable, through a usability test it seemed the

right application for the starting point, as it did not share the same usability issues with XBoard and was

constantly being updated (until that date). Xournal++ Mobile code’s last update was on May 30, 2021.

It seems like none of these applications will have any further updates as the main ideas were already

implemented and some serious drawbacks must have been shown, as they were left with a lot of ”not

implemented” features. Because we never went forward with the XBoard, we can only suppose that’s

what happened. Regarding Xournal, conclusions were already taken (which will be disclosed later on)

as the last semester was spent understanding the app, the language, and its limitations.

3Github repositary for Xournal++ Mobile, https://github.com/xournalpp/xournalpp mobile

34

Figure 3.3: Drawer with Home, Open and New; BottomNavigationBar to change background

35

3.2 Flutter Widgets explained

In this sub-section, it will be mentioned some widgets that were used in the development of the project.

This concepts are important to understand because they will be later used to explain all the decisions

made during the development of the project, and, more concretely, where it stopped.

3.2.1 CustomPaint

Most widgets in the framework handle basic features and functionality, and even if they don’t, we’ll hardly

need to design it ourselves because modifications like rounding corners, altering opacity and replacing

colors are all simple to achieve. When it comes to more creative design, such as an arrow drawn from

one location to another, a sophisticated loading animation, or a ticket receipt that resembles a ticket

paper, we may want a solution to render shapes that ordinary widgets cannot give 4 5.

Most if not all UI frameworks provide a Canvas API — a way for drawing custom graphics that does

not involve existing UI components. A Canvas is pretty much what is sounds like: we can draw lines,

shapes, curves, etc. using the Paint (color, stroke, . . .) we prefer. This allows us to render custom

components which can be exactly the shape and size we want them to be. In Flutter the CustomPaint

widget provides a Canvas for us to use. We use the CustomPainter class to actually draw our graphics

on the screen. The three main things to take a look at are: CustomPaint, CustomPainter, and the Canvas

class.

CustomPaint is a widget that generates a canvas on which we can draw during the paint phase.

When CustomPaint is requested to paint, it first asks its painter to paint on the current canvas. After it

paints its child, the widget asks its foregroundPainter to paint.

The CustomPaint widget supplies the Canvas while the CustomPainter is where we write logic for

painting. The painter and foregroundPainter are both CustomPainters which define what is drawn on the

canvas. However, the instructions from the painter are drawn first. After that, the child is rendered over

the background. And finally, the instructions from the foregroundPainter are drawn over the child.

1 CustomPaint(

2 child: childWidget(),

3 foregroundPainter: ForegroundPainter(),

4 painter: Painter(),

5)

4A deep dive into CustomPaint in Flutter, https://medium.com/flutter-community/a-deep-dive-into-custompaint-in-flutter-
47ab44e3f216

5Drawing shapes in flutter with CustomPaint and ShapeMaker, https://blog.logrocket.com/drawing-shapes-in-flutter-with-
custompaint-and-shape-maker/

36

Now that we have a CustomPaint widget which will provide the Canvas, we need to actually paint

something. To do this, we subclass the CustomPainter class to create our own.

1 class Painter extends CustomPainter {

2

3 @override

4 void paint(Canvas canvas, Size size) {}

5

6 @override

7 bool shouldRepaint(CustomPainter oldDelegate) {}

8

9 }

The paint() function supplies the actual Canvas instance which we can use to invoke the drawing

functions. It also gives us the size of the canvas which is either the child size or supplied through the

size parameter.

The Paint class stores attributes related to painting or drawing objects on the screen. Attributes like

color, stroke width and style are all specified in here.

Finally, some common used methods in painting are drawRect, to create a virtual rectangle, draw-

Points, to create single points in the screen, drawCircle, to create a circle, and so on. In our case, the

most used method is called drawPath. drawPath is used for creating custom shapes by using lines and

quadratic beziers 3.4 but we use it to create strokes 6.

Figure 3.4: most common use of drawPath in CustomPaint

6Flutter Custompaint tutorial. Draw a custom shape path in Flutter, https://medium.com/devmins/flutter-custom-paint-tutorial-
draw-a-custom-shape-path-in-flutter-afbbf0202941

37

3.2.2 ClipRect

The ClipRect widget is used to clip its child using a rectangle. It is associated with the Clippers family.

The main use of clippers is to clip out any portion of the widget as required. By default, ClipRect

prevents its child from painting outside its bounds, but the size and location of the ClipRect can be

customized using a custom clipper. ClipRect is commonly used with CustomPaint, Align and Center,

which commonly paint outside their bounds. In the code bellow its presented a simple ClipRect wrapping

an Align widget to show just the top half of an image.

1 ClipRect(

2 child: Align(

3 alignment: Alignment.topCenter,

4 heightFactor: 0.5,

5 child: Image.network(userAvatarUrl),

6),

7)

3.2.3 ListView

ListView is the most commonly used scrolling widget. It is used to group several items in an array and

display them in a scrollable list. It displays its children one after another in the scroll direction. The list

can be scrolled vertically, horizontally, or displayed in a grid. This is how our toolbar is organized.

3.2.4 FloatingActionButton (FAB)

A floating action button is a circular icon button that hovers over content to promote a primary action in

the application. Floating action buttons are most commonly used in the Scaffold. All the buttons on the

toolbar are displayed using FABs.

3.2.5 Stack

A stack is a widget that positions its children relative to the edges of its box. This class is useful if we

want to overlap several children in a simple way. For example, having some text and an image overlaid

with a gradient and a button attached to the bottom. This not only allows brilliant custom designs but

also some really cool animations. This widget is used to display the canvas and everything that is drawn

in it.

38

3.2.6 Listener

A Listener is a widget that calls callbacks in response to common pointer events. It listens to events

that can construct gestures, such as when the pointer is pressed, moved, then released or canceled. It

does not listen to events that are exclusive to mouse, such as when the mouse enters, exits or hovers a

region without pressing any buttons. For these events, we use MouseRegion. This is the widget used

in the class PointerListener (explained in the end of the development) responsive for dealing with all the

pointer events happening on the canvas.

3.3 Initial changes to the interface

It was decided that the original application layout and overall organization (with minor adjustments)

should be maintained, as it was already well designed and well structured. In this section, it will be

mentioned all the changes made to the original interface and explained the reason behind them. All the

changes and new features implemented were taking in consideration that the application is designed

mainly for pen-based devices, although it can be used on computers and smartphones as well. The

image below 3.5 shows the final application interface. The application screen was zoomed so it would

be more visible in the document. The application has the same aspect as the original, although it seems

different.

Figure 3.5: Final interface of the application

Staring with the toolbar. The toolbar was aligned at the left end of the bar, which seemed off from the

39

rest of the interface. A center alignment for design and functional purposes was implemented because it

is easier for the user to change between tools, as they are much closer to the canvas and consequently

pressed much faster. There were a lot of icons with not implemented features (Text, LaTeX, Whiteout

eraser, Image, and Select) which were removed for being a waste of space and to avoid misguiding the

user to click on icons without functionality. A much more clean, precise and easy to use toolbar was

achieved.

Figure 3.6: On top: old tool bar; on bottom: new tool bar

Regarding the stroke width bar, it makes no sense for the bar to have values from 0.1 to 30 because,

in this range of values, we find overly thin and overly thick strokes that are just unpractical to use. Also,

having a starting value of 2.5 on this scale, free width values through the bar, and no indication of the

current stroke width value, makes it challenging or nearly impossible for the user to find the same width

used before, leading to a huge width variety and inconsistency that turns the canvas exhausting and

puzzling to read. The original width bar was replaced for a quantitative stroke width range (from 1 to 5,

with 3 as a starting value) and a tooltip was added alongside a dynamic text box indicating the current

width size. In this scenario, although the user has a much more limited range of choice, all the values

available are plausible to use, the user has real-time knowledge regarding the exact stroke width he is

choosing and is much easier to replicate a previously used stroke width.

Figure 3.7: on the left: old stroke width bar and old stroke width; on the right: new stroke width bar and new stroke
width

Zoom In/Out bar was standing out (in a negative way) from the rest of the application, as it was

barely noticeable. The button and background colors of the bar were changed so it could match with the

40

interface design. Color to the ”+” and ”-” buttons was added to make some contrast with the background

and a tooltip for both the plus and the minus buttons was added too. Tooltips can be seen on hover,

in case the input device is a mouse, and on long press, in case the input device is a stylus pen or any

other similar device. With these changes the zoom bar is way more visible and included in the overall

app design.

Figure 3.8: on the left: old Zoom In/Out bar; on the right: new Zoom In/Out bar

The way the stroke was being treated outside the canvas area was fixed. Initially, we could draw

freely on the application and the stroke part that was drawn outside the canvas area would get cut off

after the user finished the action . It was giving a false notion of canvas area as this update was not made

in real-time. This problem was solved by wrapping the Stack (in which the CustomPaint responsible for

the drawing was inserted in) with a ClipRect, which prevented the user from drawing outside the canvas.

With this fix, writing outside the canvas area is no longer possible. For example, if the user initiates a

stroke in the canvas area but tried to extend it to the outside, the stroke will simply stop showing on that

part: If the user comes back to the canvas, the stroke will continue and will be dealt as the same stroke.

Figure 3.9: on the left: stroke before finishing the action ; on the right: stroke after update

41

Figure 3.10: stroke constantly being drawn inside and outisde canvas area

3.4 New features implementation

In terms of what was already implemented in the project, there were some drawbacks regarding usabil-

ity. In this section, those usability flaws will be mentioned and they were solve. It will also be explaining

the new features that were implemented and an explanation for decisions made will be given.

3.4.1 Eraser

The eraser tool had some malfunctions associated. Although in the majority of times it worked properly,

there were times where the stroke we were trying to erase would not get precisely cut apart (or would not

get erased at all). The reason for what was happening could not be found, as it was not distinguishable

if it was a consequence of a width variation malfunction or simply just a wrong implementation.

Because this eraser could not completely be relied on , another type of stroke deletion was imple-

mented: the erase-by-stroke tool. The original eraser tool was kept as well as they both have different

uses (but not as a default tool). With this implementation, the app ended up with two functional eraser

tools. For more general uses, the default tool allows us to delete whole strokes/set of strokes. If we only

want to partially delete a stroke, we use the second eraser. In the sequence below 3.11, we can see

how both tools work and how we can change between them.

As soon as we hover (or long-press) on the eraser button, the tooltip ”Eraser by Stroke” immediately

shows so that the user knows the tool he is using (and more specifically which kind of eraser). The

eraser deletes the whole stroke (or multiple ones) as soon as the mouse pointer (or pen) collides with

the content coordinates. Plus sign (+) was deleted on step 3. If we want to change between eraser tools,

42

we just need to click again on the eraser icon. As we can see in step 4, the icon and the tooltip changed

to the corresponding eraser tool. Finally, in step 5, we can see the letter ”a” being partially deleted. The

stroke is now handled as two different strokes and the rest of the content stored in the array is shifted to

the right.

Figure 3.11: Example of how both delete methods work and how we can switch between them. Expression is
written and Eraser button is hovered/long pressed. Eraser button is pressed; User clicks on the ”+”
sign; Eraser button is pressed; User hovers on the canvas

3.4.2 Highlighter

After we used the highlighter, the new highlight stroke would have no opacity whatsoever, acting like

a normal pen stroke with 5 times its width, which is the predefined width value for highlighter. It was

discovered that the stroke would acquire highlighter properties (0.5 opacity) as we were deleting it.

Anyhow, this tool wasn’t usable, so it was re-implemented as we can see in the figure bellow. The

highlighter can be useful when the user wants to emphasize some of his written content as the new

stroke is see through. (Highlighter stroke is dealt as a normal stroke when performing the actions

described above and bellow).

Figure 3.12: On the left: previously implemented highlighter; on the right: new implementation

3.4.3 Whiteout eraser

The whiteout eraser functionality was implemented, which is kind of self-explanatory. Similar to the

previews tools, has a tooltip associated with the button to help the user always be sure of what kind of

tool he is using. After the user selects the ”Whiteout eraser” button, as soon as a click on the canvas

area happens, all the content is immediately erased. For preventing miss clicks, this functionality was

purposefully not executed on button press but on canvas press, with immediate visual effect. If by any

43

means the user still miss-clicks and erases the whole page, it is possible to revert the action by clicking

again in the Whiteout eraser Icon. All the content that has been deleted is stored until the user uses

another tool. For example, if the user whiteouts everything and then selects the pen tool and writes new

content, it is no longer possible for the old content to be recovered. In the original Xournal++ Mobile,

the user could also delete everything that was written on the canvas by creating a new file. The problem

with creating a new file is that it also restarts the color being using, the stroke width, the canvas position

on the screen, the zoom, the page background color, and, in the case multiple pages are being used, all

the remaining content.

The whiteout eraser tool allows us to keep all the previously mentioned settings and start on an

empty canvas, with the possibility to revert the action (which is not possible if a new file is created). By

being in the center of the screen in the toolbar, also facilitates performing this action. This tool can be

handy when the user wants to delete everything that is written on the canvas and wants to keep the

previously set up settings.

Figure 3.13: Sequence of the whiteout tool being used: Expression is written; Whiteout Eraser button is pressed;
Canvas is pressed; Whiteout Eraser button is pressed again.

3.4.4 Undo and Redo

The Undo and the Redo buttons were implemented and, just like the whiteout, are self-explanatory.

These two buttons (alongside the Color button) are the only buttons that do not permanently change

color when pressed, as the change of color only occurs when a tool is selected. The Color button

changes color after a new color is selected from the color pallet and only changes again when a different

color is selected. When Undo/Redo buttons are pressed, they suffer from a fade in/fade out kind of

animation, changing from their color to a more light one and changing back to the original color in a

small matter of time, so the user knows the button as been used.

The Undo allows us to revert the last added stroke all the way back to an empty canvas and the

Redo allows us to advance all the way forward to our starting point (before Redo is used). As soon as a

new stroke is introduced to the canvas, all the previously deleted strokes are permanently deleted and

are no longer available for recovery through the Redo. These tools work together with both eraser tools,

sharing a similar behavior. If a stroke has been deleted by Eraser-by-Stroke, it is recoverable through the

Redo button. If a stroke has been partially erased or cut apart leaving us with two strokes (through the

other eraser), is possible to reintegrate the deleted part back into the original stroke. It was decided not

44

to include what had been deleted by the Whiteout Eraser for recovery because it was already included

in the feature to undo that action in the Whiteout Eraser itself.

This feature can be useful if the user mistakenly erased some content he wants to recover or wants

to remove what has just been drawn, without having to select it. The figure bellow shows 3 different

scenarios of this functionality 3.14.

Figure 3.14: Sequence of the Undo/Redo tools being used.
First scenario: Expression is written; Undo button is hovered/long pressed; Undo button is pressed;
Redo button is hovered/long pressed; Redo button is pressed.
Second scenario: Expression is written; Undo button is pressed; New stroke is drawn; Undo button is
pressed; Redo button is pressed.
Third scenario: Expression is written; Eraser is used; Redo button is pressed; Redo button is pressed.

45

3.4.5 Gestures

Some features that are not as evident as the previously mentioned were also implemented, as they are

not triggered by buttons but by gestures instead. For example, if the user is using the pen tool and wants

to change to eraser mode, it is possible to switch between these two without actually having to press

the eraser button. By simply double tapping the canvas on pen mode the eraser tool is immediately

triggered. The inverse is also possible. If the user has the eraser mode activated and wants to switch

back to drawing mode, a simple double tap on the canvas will do it. If any other tool is selected and a

double tap action on the canvas is executed, the pen tool was chosen to be the default switch back.

Figure 3.15: Sequence of actions triggered by double tap on canvas: Expression is written; User double taps on
the canvas; User double taps on the canvas again; User switches to select mode; User double taps
on the canvas

Similar to what happens on double-tap actions, long-press also has functionality. If the user is using

the pen and wants to switch to highlighter mode, a long press on the canvas area will change between

the tools and the inverse is also possible. In the case another tool is selected, the default switchback tool

is also the pen. By adding these gestures to switch between tools, it takes from the user the additional

effort to press on buttons, making the overall experience a bit more interesting and fluid.

Figure 3.16: Sequence of actions triggered by long press on canvas: Expression is written; User long presses on
the canvas; User long presses on the canvas again; User switches to select mode; User long presses
on the canvas

46

3.4.6 Select

Initially, there were three ideas of how to implement the select function. The first idea consisted of a

selection made by an adjustable rectangle or a free form where the user would press his pen/mouse

against the canvas and make a form around what he wanted to be selected. The second idea was to

simply press the content and it would become selected. The third idea, which was the one implemented,

consists of a mix of these two. The content is selected by simply dragging on the canvas over what we

want to select. The selection is made by a pen-like tool with the same width as the normal stroke, which

can be changed in the toolbar. Initially, this stroke was resembling a highlighter (with low opacity levels)

but it was decided to keep it fully invisible, as it seemed not to make a difference in functional matters

and looked more aesthetic.

The select functionality is divided in 3 main steps:

3.4.6.A Detect selection

The first thing to do is to detect what is being selected. We need to check for collisions between the

coordinates that are constantly being pressed against the collection of strokes that are already drawn

and stored on the canvas.

After this step, the user has to have the knowledge of what is selected and what is not, so it is

necessary to somehow be able to distinguish the selected strokes.

Initially, all the selected strokes’ colors were changed to blue, but this solution would be problematic

and confusing if the user opted for using another stroke color other than the default grey. As multiple

strokes with different colors would be added to the canvas, it would not be possible to distinguish the

original color until the content was deselected. The solution for this problem was to change the strokes

color opacity so the original colors could be maintained while selecting and give the user a more clear

perception of his content.

Figure 3.17: On the left: drawn expressions on the canvas; on the right: first expression is selected

Because the original strokes were already drawn and stored, their appearance could not be changed

or modified in any sense. The solution was to access the array where strokes were being stored, erase

those strokes and replace them for new strokes with the same characteristics but with lower opacity

47

values. This was only possible because previously drawn strokes were being used and only changing

color values and not stroke points. If we wanted to change the stroke’s appearance they would have to

be redrawn.

3.4.6.B Isolate the selected content

Now that the selected strokes are already known, it was decided to make a rectangle around what is

selected to better isolate the content from the rest. This rectangle is updated in real-time (redrawn with

bigger dimensions), as the user is selecting new content. Five key points were added to make the

presentation more aesthetic (top left, top right, bottom left, bottom right and middle).

Figure 3.18: Sequence of an expression being selected

3.4.6.C Drag and drop content

The solution for dragging the selected content was to include a semi-transparent container over the rect-

angle area so it would be possible to wrap it around a Draggable widget and be able to drag and drop it.

In this case, as the strokes are already drawn in the canvas, it is possible for deleting and replacing the

strokes for new ones with new offsets.

To be able to select some content, the user presses the Select button and starts to press on the

screen, just like he was drawing. The difference is that no stroke is shown and wherever the user

presses the canvas, if it encounters a stroke, it will be selected. If the user made a bad selection or

wants to select new content, he just needs to press the canvas outside the selected area and a new

selecting will begin. It is also possible to restart the selection by pressing the selection button. If the

content is selected and the user wants to delete it without having to manually delete every stroke, it is

possible to do that by just simply dragging the content to the outside of the canvas area. If the user

presses any functionality button it deselects the content. If the user no longer wants to use the select

and wants to switch back to writing, the gestures on double tap and long press for returning to the pen

tool also work.

The select functionality is described below in a sequence of prints. Firstly, the user presses the select

48

button. As he no longer wants the last expression, he selects and drags it to the outside of the canvas so

he could easily delete it. The expression is immediately deleted as the user lets go of the screen. The

user makes another selection and wants to keep a part of it. He drags the expression to the edge of the

canvas as he knows everything that is outside the canvas is deleted. With the new selected expression,

the user correctly places it where he wants and finally presses outside the selected area to deselect.

Figure 3.19: Sequence of the select tool being used: User presses the select button; selects expression; drags
the expression to outside the canvas; makes new selection; drags the expression to the edge of the
canvas; moves the selected content; clicks outisde the selected area

3.5 Problems while developing the application

3.5.1 Explanation

In this part it will be explained the most relevant problems that appeared while developing the app to be

able to justify the decisions made and so it can help other programmers to develop over similar Flutter

APIs.

While changing the toolbar and its tools, the idea for switching between the erasers was to implement

an expandable FloatingActionButton as the one in the figure 3.20.

The button would expand through a smooth animation to reveal the additional buttons. The problem

with this idea was not the implementation itself but the integration with the ListView widget. We use

ListView to display the toolbar as it is one of the few widgets that allows to have a scrollable list and does

not overflow when we shrink the app. If we tried to make the animation inside this widget it would simply

get overflowed (although we are not moving in the Y axis) or get real messy in terms of the animation

itself.

49

Figure 3.20: Expandable FloatingActionButton.

It was also tried to wrap this FAB into a Transform widget to manually change its coordinates but

the onPressed method would be stuck in the original location of the button. It was tried to make a non-

clicable container where the buttons would be expandable, but it would lead to two empty button slots

because when we create those buttons, although there are hidden at first, flutter previously defines their

location after expansion. It was tried to change the type of button but it would be very noticable that the

button was different as they have different on click behaviors. Finally, the last approach before giving

up on the expandable Fab was to make the button outside the ListView itself, but it would get us new

problems with the ListView interaction 3.21.

Figure 3.21: Overflow of the FAB inside the ListView; expandable Fab animation with strange behavior; expandable
animation with another type of button.

Regarding the development of the first selection method proposed, more concretely, the rectangle

selection. The idea was to make an expandable rectangle controlled by the user to be able to select

content. In Flutter, in order to draw a rectangle or a custom shape, we have to define its parameters in

the custompaint that is drawing the shape. Because we wanted to build the rectangle in real time and

would not have access to its coordinates until the user finished the action, we had to discard this idea.

Regarding the lasso selection, it would be doable for creating a pen-like tool to circle what we want to

be selected. The problem relies on the fact that the content would only be selected after we finished the

form, so it would not be seen in real-time. It would also be challenging to calculate the area inside this

free form.

With respect to the second selection method proposed, the user only had to touch the characters

he wanted to be selected. This is not possible in Flutter, as the CustomPaint refuses to respond to

any kind of gestures. It was even tried to wrap the strokes with another gesture detection widgets (like

50

GestureDetector, InkWell and MouseClick) and to use external packages to deal with this situation but

none of them fixed the problem. Also, this kind of selection would be more viable if the strokes were

already being recognized and treated as a character, as it would be frustrating for the user to click on a

stroke and the whole character not be selected.

In the Detect Selection step, the original idea was to give the selected content some kind of glow to

distinguish what was selected from what was not, but this was not possible to implement in Flutter. It was

then thought of decomposing the stroke in RGB components and max out one of those (for example, by

setting the blue value to 255), but this solution was also not possible because it would simply change to

a different color for every stroke and could not be recognized as selected.

In the isolation of the selected content part of the selection, the original idea with the five key points

was different from just adding an aesthetic look. These 4 corners points were originally added to shrink

and expand the selected content and the middle points to move that same content. As previously men-

tioned, it was not possible to find a way to detect gestures hover CustomPaint so this idea was discarded.

Those points were left for the referred reason.

The dragging part was tricky. Because CustomPaint did not allow for gesture detection, another

solution had to be found. An idea was to use a FloatingActionButton on the center of the rectangle so

we could wrap it around a Draggable widget and move the selected content. The problem here is that,

with any kind of button, Flutter assumes that any given coordinates are global. Because what is inside

of the Stack where the canvas is inserted everything is dealt with local coordinates, it is not possible for

this button to be centered. The button would always get deviated from the center of the rectangle 3.22.

Manually adjustment of the button position was approached but because its coordinates are defined

globally, when we changed the app’s zoom, it would be wrongly placed again. It was tried to convert

these global coordinates to local but still had no luck. By making a transparent container in front of the

rectangle and wrapping it around a GestureDetector, it was possible to convert the global coordinates

into local ones through a RenderBox and make the drag and drop possible.

This solution for the dragging still suffers from some kind of global/local problems as we can see

in the figure below 3.23 (in this case, both containers are created with the same dimensions but the

one being dragged changes size while dragging). It was also tried for the strokes to move along the

container while being dragged but the Draggable widget does not support on dragging coordinates. It is

only possible to access on drag end coordinates, and then make the update.

51

Figure 3.22: Select using a FloatingActionButton

Figure 3.23: Sequence of an expression being dragged: Content is selected; Content is dragged in full screen
mode; Content is dragged in a small application window

52

3.5.2 End of the development

After the selection was implemented, the idea was to allow for copy pasting the selected content. By

simply double pressing what was selected, the expression would immediately be copied to a new location

below. That old expression would be deselected and the new expression selected in its place, so the

user could now move the copied content. Here is the first prototype of this functionality. 3.24.

Figure 3.24: Selected expression; User double clicks on the selected expression

In order to be able to understand why this functionality and the development of the structure editing

part of the application did not went further, its necessary to understand a bit more about Flutter and the

overall project structure. That is why, in this part, it will be a bit more technical.

Similarly to the example provided in 2.5.3.D, the app is organized inside a Scaffold, which allows for

the interface to have a bunch of prebuilt widgets like the app bar, the bottom app bar and the drawer. In

the pseudo-code bellow, the project structure was simplified just so we can have some notions for what

is about to be explain.

1 CanvasPage{

2 Scaffold(

3 drawer

4 body: PointerListener

5 appBar

6 bottomNavigationBar

7)

8 }

In the PointerListener class, the body of our app, is where we handle all that happens on the canvas.

The Canvas page is where we define what to do with what just happened.

For example, for a stroke to be saved: as soon as the user presses the canvas, PointerListener has

a method that immediately starts to track every point the user has pressed and when the user releases

the pointer, it saves all those points in a XppStroke structure. It sends that structure to CanvasPage to

be stored in a collection of strokes and, at the same time, draws those strokes in the canvas through a

53

CustomPaint widget.

Initially, while trying to do the copy/paste functionality, the idea was to go to the structure where

strokes where being saved, duplicate the selected strokes and change their offset as described in 3.24.

Because the strokes have to be drawn before being able to be displayed on the canvas, we ended up

with what is shown in the picture below 3.25.

Figure 3.25: Problem with duplicating the strokes without drawing them

Although the strokes were being added to the collection of strokes, they were not being added to the

canvas, so the old strokes would be replaced by the new ones at the canvas. In the image 3.25 we can

see the last stroke being redrawn at the new location (in red). To solve this problem, a stroke had to

somehow be drawn and stored with its own structure. The selected strokes’s attributes (tool, points and

color) were used to paint the new strokes, and that is what is shown in figure 3.24. The problem at this

step is how the code is arranged inside the PointerListener. Because what is been drawn at the canvas

is inside a Stack of widgets (so we can overlap drawings), this stack only accepts widgets inside, so we

cannot call functions or any other methods. As the directly drawn strokes at the canvas were being saved

before they were painted (through onPointerMove method used by PointetListener as explained before),

they just had to be paited inside this stack at this step. Our new replicated strokes, on the other hand,

can not use this method because they are really never manually drawn, they are built through code.

This being said, we could not tell the interface to build a XppStroke structure with these newly drawn

strokes neither to store them in the collection of strokes. The development of the project was stopped

here because, without being able to duplicate content and classify it as an unique stroke/character, the

recognition and the structure manipulation would not be possible.

Is important to mention that most available packages online are not available at the moment because

of a new flutter update. The only thing we can do is wait for packages developers to fix the problem. It

won’t stop us from building or running our code until the packages author update to v2 Android embed-

54

ding on Flutter. The system evaluation was a bit harmed by this update because it was not possible to

run the code on the iPad version. A downgrade to a previous version of Flutter and an upgrade of the

disk space was tried manually but with no successful.

Figure 3.26: Console error

55

56

4
Evaluation

Contents

4.1 Phase 1: Users perform a script of actions . 60

4.2 Phase 2: Users move freely over the interface . 61

4.3 Usability testing conclusions . 62

57

58

The purpose of evaluating the system is to ascertain whether the implemented features are usable

and if the application fulfills its overall goal, which is to support the presentation and manipulation of

mathematical content. It will also reveal eventual bugs that the application might show. So feedback

could be acquired about whether the project is usable or not, 10 users interacted directly with the sys-

tem through 2 phases: In the first phase, through a scripted series of actions that the user had to

complete; in the second phase, the idea was that the user could move freely over the interface. It was

offered to the testers a one-page sheet explaining the interface and the action to perform 4.1.

Figure 4.1: Script for the evaluation process

59

It was decided not to do an extensive questionnaire with questions like ”totally agree” or ”totally

disagree” after the usability test and, instead, asking users to have a small conversation in the end

where they would give some overall feedback of the experience and some suggestions of how the in-

terface could be improved. It was asked the users to think out loud during the experience so it would

be possible to understand what was going through their minds and to better analyze the experience

later. Through observation of the users’ actions and thoughts, and by communication, it was collected a

detailed evaluation of the system. This way, the user was not overloaded with the experience and it was

generated very interesting data regarding the usability of the system.

After the approval for starting the user test, the sheet of paper mentioned in 4.1 was handed. After

the users read the script, it was explained to them how the interface worked and how each feature should

be used. The select and the gestures were left unexplained. Testing the interface was then started and

the following analysis and results were collected.

4.1 Phase 1: Users perform a script of actions

At steps 1, 2, and 3, there is not much to say because no problems were found. It was observed that

most users were still getting used to the interface so they took a bit to select the tool asked to select.

This changed after the users finished the scripted part of the user testing and explored the app by them-

selves. Some users asked if they could use the eraser at step 1 because they wanted to rewrite the

expression. As the important here is to evaluate the performance and usability of each tool, it was asked

to follow the script because the aspect of the content was not important.

At step 4, some users had problems with the originally implemented eraser, because it was not delet-

ing the way they wanted (this problem was already addressed in Section 3).

At step 5, some users questioned why the redo was being used for adding back the deleted strokes

and suggested it should be the undo to revert the last actions. It was noticed, in this step, that there were

some problems restoring previously partially deleted strokes using the original eraser tool. This might

have happened because the removal of stroke points was not being done instantaneously but instead

through a series of small steps. In some cases, users had to redo around 10 times to restore a small

portion of the removed part of the stroke.

At step 6, although all the testers manage to change the width and the color of the stroke with no

60

problem whatsoever, some of them forgot they had the eraser tool selected and had to change it back

to the pen tool. Step 7 was also done with ease by all the users as the tool was kind of self-explanatory.

At step 8, it was wanted to see how the user would try to select content. The majority of the users

were using lasso and rectangle selection and the rest was using a selection where they just had to click

on the strokes they wanted to be selected. Users that tried to use the lasso selection couldn’t select

anything because the pointer didn’t hover any content. Users that tried to press directly on the strokes

they wanted to be selected found it strange why the content was not being selected but the animation

was showing. People that were used to using rectangle selection immediately discovered how to select,

as the initial part in this kind of selection is similar. At this step, it was explained to everyone how to

correctly use this functionality.

Some users commented on the fact that the content was not moving along the container while being

moved. Some people tried to make a new selection while one was still on the screen and got confused

why they could not select more content. Users commented that sometimes they were not able to per-

ceive where the box was while being dragged.

At step 9, after the whiteout was executed, most users tried to use the undo button instead of using

the whiteout button to undo the whiteout eraser. Maybe this was due to the name ”undo” that was used

to describe this step. After it was explained again how to revert this action properly they suggested one

more time that undo should undo the last action and redo remake the last action.

4.2 Phase 2: Users move freely over the interface

And now, at step 10, it was told to the users to freely explore the app as they pleased and in the end to

give small feedback regarding the overall usability of the app. Before letting them explore the interface,

it was disclosed how the ”on double-tap” and ”on long-press” would allow them for changing between

tools and that they could erase selected content by simply throwing it to the outside of the canvas.

Because it was just explained how the gestures worked, all the users decided to test out this new

feature. At this step, only one user remembered to change back to the pen tool to perform gesture

events. Because the rest of the buttons were linked to these gestures, this was not a problem. All the

users found the ”on double-tap” and ”on long-press” gestures very helpful, as they would not need to

manually press buttons to change between tools. At this step, all the users were able to use the select

functionality for themselves and to test how content could be deleted while selected.

61

Some people also noticed it was not possible to draw single dots on the application. This functionality

had to be removed so the gestures to change between tools could be implemented. Some suggested

that the stroke width and color should not be the same to pen, highlighter, and erased. Independent

stroke width and color for each one of them should have been configured.

They mentioned again the fact that strokes were not moving alongside the container while being

dragged. This problem was not able to be solved as the widget used for dragging content around only

allowed to access the pointer’s offset after the drag was ended. The interface would also bug sometimes

while trying to select the content that was previously partially deleted and added again (using the original

eraser tool).

After some usages, users found interesting the way the select functionality was implemented, as they

could have a more precise notion of what was being selected and make more customized and precise

decisions, and rapidly adapted.

4.3 Usability testing conclusions

In the end, all the users complemented the overall experience with the interface. They also mentioned

some usability issues (most of which had already been noted while they were testing the application)

and made really strong suggestions on how the interface could be improved.

The fact that gestures were introduced to trigger action was highly praised. Not only for being able

to change between tools faster but also the way the selected content could be deleted. Users said they

would like to see this implemented in a more advanced and robust interface.

Users suggested:

• PDF and images should be possible to incorporate

• it should be able to shrink/expand selected content by pressing the edges

• be able to zoom in/out using a pinch gesture with 2 fingers

• select mode being automatically turned on when long pressing strokes

• being able to print screen by swiping up with 3 fingers

• some additional selection modes should be incorporated

• undo/redo buttons should be used to undo/redo actions and not be related with the strokes directly

• each stroke should have its own color and width

• detect different levels of pressure while drawing

62

• add text boxes

• allow for copy pasting selected expressions

The conclusion with this evaluation is that, although with some flaws, the implemented features are

usable and the application fulfills its overall goal. This whiteboard application revealed itself suitable for

inserting and manipulating mathematical content and to be a good starting point for being able to go

through with the development of the first structure editor interface supported in multiple devices.

63

64

5
Conclusion and Future Work

Contents

5.1 Achievements . 68

5.2 Future Work . 69

65

66

Pen-based devices have the potential to play an important role in the future of the classroom. With

digital ink as the main input, users can take advantage of the technology without having to sacrifice

the pen and paper style of writing. Using tablet PCs only for writing does not exploit its full potential.

It can help to solve problems related to mathematical content and lets students express themselves in

innumerous ways, offering instructors insight into the student thought process and generating interesting

artifacts for discussion. Furthermore, digital ink also facilitates active learning, allowing students to work

freely while being directly engaged in the learning process. Tablet PC’s computational capabilities can

be a valuable help to manipulate and present mathematical content. Even if the user does not need syn-

tactic manipulation of expressions, having features to reliably copy content can make a huge difference.

The idea was always to be focused on pen-based devices and on how digital ink could be a valuable

asset to the educational area. Because I was extremely interested in learning about mobile develop-

ment, when professor João Ferreira introduced me to the Xournal++ Mobile for the first time, I did not

have much to think about before deciding to use it as starting point. Besides a well-designed interface,

a pen and an eraser already implemented, it was built using Flutter. Flutter lets us program in a single

code base (in dart) and auto-generate applications for iOS, Android, Windows, Mac, Linux, and even

for the web. This is truly interesting to think from a programmer’s point of view because not even a

single line of code has to be changed for the interface to run on different devices and operating systems.

Although Flutter itself has only 4 years of existence, I decided to learn a new language and embrace the

opportunity I was being given.

Multiple different widgets were used on the project, but the most relevant to the theme was the Cus-

tomPaint. Because everything that is drawn on the canvas is produced by this widget, it was something

to look into and be comfortable with. As mentioned before, this widget is used mainly for drawing custom

graphics that does not involve UI components to be able to produce innovative and create designs. We

go a little further with CustomPaint. The method that is used for creating custom shapes was used to

build paths between the points the user presses on the canvas and consequently create what we call an

“XppStroke” structure.

As Flutter is relatively new, is deductible that there is still not much information online, at least com-

pared to Python or Java. Because, in our case, the subject is even more specific, the amount of informa-

tion that can be gathered and the help we can get is even more reduced. This was the main drawback

while developing the project. We could not manage to find much help from online searching as there

was not enough development in this subject. Making a whiteboard application on Flutter is way more

specific than just building a simple user interface with buttons and menus as a common developer uses

67

it for.

When we look at the flutter whiteboard interfaces mentioned earlier, we can see there is not much to

compare to and to be based on. These interfaces have a pen, an eraser, and that is it. If we compare

those interfaces to the Xournal++ Mobile that we started with, we can see how superior this application

is at every level. Although the tools for on canvas actions are the same (a pen, an eraser, and a color

change), this interface is much more appealing design and structure-wise and has already tools imple-

mented for changing the background, for adding new pages, and for saving the document. It looked like

a promising application. Unfortunately, they stopped updating it as soon as the development started, so

they must have come to the conclusion it was no longer worth it to keep updating.

While making changes to the application and adding new features, I realized I was not able to copy

and paste previously drawn strokes because of the way the code was organized. This was already

explained in . This being said, it was not possible to go further with the structure editing part of this

thesis original idea because it was simply not possible to manipulate and store strokes created via code,

as they had to be physically drawn to be saved and handled.

It is also important to mention that, after Flutter updated to the 2.5 version, we no longer were

able to use external packages as they were considered deprecated and were going to be removed in

future releases. The authors have to migrate these plugins to the V2 embedding before we can use the

packages again.

5.1 Achievements

By using Xournal++ Mobile as a starting point, it was developed the most advanced whiteboard appli-

cation built with Flutter until today (to my knowledge). In addition to the design and functional changes

made to the interface itself, it was created a new eraser, a highlighter, a whiteout eraser, undo and redo

buttons, a select functionality, and added some action triggered with the usage of gestures. We can say

this thesis was a pioneer when it comes to whiteboard applications built-in Flutter and that the contribu-

tions are remarkable since it is very little (to none) exploration in the field (once more, to my knowledge).

The work that has been done here brings new contributions to the state of the art regarding whiteboard

applications built-in Flutter and gives us an insight into what kind of obstacles we might face when trying

to explore this toolkit and more particularly, the CustomPaint widget.

68

5.2 Future Work

Firstly, it would be reasonable to make changes to the interface based on the user testing results to im-

prove the overall usability of the system. The integration of pdf and image files, text boxes, and making

the interface rely way more on gestures like the ones described at the end of the evaluation would be

the next step. If somehow it would be possible to overcome what ended the development of the appli-

cation in the first place, the development of the project would go to a whole new level with being able to

manipulate strokes.

The starting point would be to implement the copy-pasting of selected expressions. With the inte-

gration of a handwritten mathematics recognizer, the points that are being pressed on the screen could

automatically be subjected to the recognizer while being drawn and as soon as the user finishes the

action, recognized characters would be stored instead of the strokes. Another possible approach could

be to use the recognizer on selected content and then proceed to store strokes as characters in another

structure. Because every individual has his handwriting, it would be interesting to have a model for

handwritten characters which was updated as the user draws new content. Just this feature alone would

be a lot to think about mainly because recognition systems normally output multiple results with different

percentages of being correct and we have to be able to select or to give the user the decision on which

recognition was correct. It is also important to consider the fact the system might output an incorrect

answer and the user would have to be able to change that. We also would have to think of a way for the

user to take advantage of the recognition without overloading the system.

Finally, a good contribution to this thesis would be to have an article published about the usage of

CustomPaint for building whiteboard applications using Flutter.

69

70

Bibliography

[1] R. Anderson, R. Anderson, P. Davis, N. Linnell, C. Prince, V. Razmov, and F. Videon, “Classroom

presenter: Enhancing interactive education with digital ink,” Computer, vol. 40, no. 9, pp. 56–61,

2007.

[2] E. M. Taranta and J. J. LaViola Jr, “Math boxes: A pen-based user interface for writing difficult

mathematical expressions,” in Proceedings of the 20th International Conference on Intelligent User

Interfaces, 2015, pp. 87–96.

[3] G. Labahn, E. Lank, S. MacLean, M. Marzouk, and D. Tausky, “Mathbrush: A system for doing math

on pen-based devices,” in 2008 The Eighth IAPR International Workshop on Document Analysis

Systems. IEEE, 2008, pp. 599–606.

[4] J. J. LaViola Jr, “An initial evaluation of mathpad2: A tool for creating dynamic mathematical illus-

trations,” Computers & Graphics, vol. 31, no. 4, pp. 540–553, 2007.

[5] J. J. LaViola Jr and R. C. Zeleznik, “Mathpad2: a system for the creation and exploration of mathe-

matical sketches,” in ACM SIGGRAPH 2006 Courses, 2006, pp. 33–es.

[6] A. Mendes, R. Backhouse, and J. F. Ferreira, “Structure editing of handwritten mathematics: Im-

proving the computer support for the calculational method,” in Proceedings of the Ninth ACM Inter-

national Conference on Interactive Tabletops and Surfaces, 2014, pp. 139–148.

[7] F. Konukman, E. Rabinowitz, M. W. Kernodle, and R. N. McKethan, “The effective use of powerpoint

to facilitate active learning,” Journal of Physical Education, Recreation & Dance, vol. 81, no. 5, pp.

12–16, 2010.

[8] R. A. Bartsch and K. M. Cobern, “Effectiveness of powerpoint presentations in lectures,” Computers

& education, vol. 41, no. 1, pp. 77–86, 2003.

[9] L. Anthony, J. Yang, and K. R. Koedinger, “Evaluation of multimodal input for entering mathemat-

ical equations on the computer,” in CHI’05 Extended Abstracts on Human Factors in Computing

Systems, 2005, pp. 1184–1187.

71

[10] T. D. Trang, “Using ppt in the esl classroom: Benefits and drawbacks from high school students’

perspectives,” Transforming English Language Education in the Era of Globalization, pp. 301–309,

2015.

[11] J. Cromack, “Technology and learning-centered education: Research-based support for how the

tablet pc embodies the seven principles of good practice in undergraduate education,” in 2008 38th

Annual Frontiers in Education Conference. IEEE, 2008, pp. T2A–1.

[12] T. J. Fitzgerald, “The tablet pc takes its place in the classroom,” The New York Times, vol. 9, 2004.

[13] B. Simon, R. Anderson, C. Hoyer, and J. Su, “Preliminary experiences with a tablet pc based system

to support active learning in computer science courses,” in Proceedings of the 9th annual SIGCSE

conference on Innovation and technology in computer science education, 2004, pp. 213–217.

[14] R. J. Anderson, C. Hoyer, S. A. Wolfman, and R. Anderson, “A study of digital ink in lecture presen-

tation,” in Proceedings of the SIGCHI conference on Human factors in computing systems, 2004,

pp. 567–574.

[15] M. A. Imtiaz, R. Blagojevic, A. Luxton-Reilly, and B. Plimmer, “A survey of intelligent digital ink tools

use in stem education,” in Proceedings of the Australasian Computer Science Week Multiconfer-

ence, 2017, pp. 1–8.

[16] L. Anthony, J. Yang, and K. R. Koedinger, “Evaluation of multimodal input for entering mathemat-

ical equations on the computer,” in CHI’05 Extended Abstracts on Human Factors in Computing

Systems, 2005, pp. 1184–1187.

[17] S. Cheema and J. J. LaViola, “Applying mathematical sketching to sketch-based physics tutoring

software,” in International Symposium on Smart Graphics. Springer, 2010, pp. 13–24.

[18] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs, N. Elmqvist, and N. Diakopoulos, Designing

the user interface: strategies for effective human-computer interaction. Pearson, 2016.

[19] C. C. Bonwell and J. A. Eison, Active Learning: Creating Excitement in the Classroom. 1991 ASHE-

ERIC Higher Education Reports. ERIC, 1991.

[20] J. Mills, A. Bonner, and K. Francis, “The development of constructivist grounded theory,” Interna-

tional journal of qualitative methods, vol. 5, no. 1, pp. 25–35, 2006.

[21] M. Ben-Ari, “Constructivism in computer science education,” Acm sigcse bulletin, vol. 30, no. 1, pp.

257–261, 1998.

[22] A. E. Johnson, “Digital ink: in-class annotation of powerpoint lectures,” Journal of Chemical Educa-

tion, vol. 85, no. 5, p. 655, 2008.

72

[23] J. E. Susskind, “Powerpoint’s power in the classroom: Enhancing students’ self-efficacy and atti-

tudes,” Computers & education, vol. 45, no. 2, pp. 203–215, 2005.

[24] A. Szabo and N. Hastings, “Using it in the undergraduate classroom: should we replace the black-

board with powerpoint?” Computers & education, vol. 35, no. 3, pp. 175–187, 2000.

[25] J. M. Apperson, E. L. Laws, and J. A. Scepansky, “The impact of presentation graphics on students’

experience in the classroom,” Computers & Education, vol. 47, no. 1, pp. 116–126, 2006.

[26] R. M. Felder and R. Brent, “Random thoughts: Death by powerpoint,” Chemical Engineering Edu-

cation, vol. 39, no. 1, pp. 28–29, 2005.

[27] D. Hlynka and R. Mason, “’powerpoint’in the classroom: What is the point?” Educational Technol-

ogy, vol. 38, no. 5, pp. 45–48, 1998.

[28] D. Hlynka, “Postmodernism in educational technology: update: 1996-present,” Handbook of Re-

search for Educational Communications and Technology, vol. 2, pp. 243–246, 2004.

[29] A. E. Johnson, “Digital ink: in-class annotation of powerpoint lectures,” Journal of Chemical Educa-

tion, vol. 85, no. 5, p. 655, 2008.

[30] R. Anderson, R. Anderson, B. Simon, S. A. Wolfman, T. VanDeGrift, and K. Yasuhara, “Experiences

with a tablet pc based lecture presentation system in computer science courses,” in Proceedings of

the 35th SIGCSE technical symposium on Computer science education, 2004, pp. 56–60.

[31] G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean, and D. Tausky, “Mathbrush: A case study for

pen-based interactive mathematics,” in Proceedings of SBIM, Eurographics Workshop on Sketch-

Based Interfaces and Modeling. Geneva, Switzerland: Eurographics Association, 2008.

[32] K. Ruthven, “Instrumenting mathematical activity: Reflections on key studies of the educational

use of computer algebra systems,” International Journal of Computers for Mathematical Learning,

vol. 7, no. 3, pp. 275–291, 2002.

[33] S. Toyota, S. Uchida, and M. Suzuki, “Structural analysis of mathematical formulae with verification

based on formula description grammar,” in International Workshop on Document Analysis Systems.

Springer, 2006, pp. 153–163.

[34] G. Labahn, S. MacLean, M. Marzouk, I. Rutherford, and D. Tausky, “A preliminary report on the

mathbrush pen-math system,” in Maple 2006 Conference, 2006, pp. 162–178.

[35] D. Carlisle, P. Ion, R. Miner, N. Poppelier et al., “Mathematical markup language (mathml) version

2.0,” W3C recommendation, vol. 21, 2001.

73

[36] A. Borning, “The programming language aspects of thinglab, a constraint-oriented simulation lab-

oratory,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 3, no. 4, pp.

353–387, 1981.

[37] W.-M. Roth, “Affordances of computers in teacher-student interactions: The case of interactive

physics™,” Journal of research in science teaching, vol. 32, no. 4, pp. 329–347, 1995.

[38] E. McClintock, Z. Jiang, and R. July, “Students’ development of three-dimensional visualization in

the geometer’s sketchpad environment.” 2002.

[39] J. J. Laviola Jr, “Mathematical sketching: a new approach to creating and exploring dynamic illus-

trations,” 2005.

[40] A. Mendes and J. F. Ferreira, “Towards verified handwritten calculational proofs,” in Interactive

Theorem Proving, J. Avigad and A. Mahboubi, Eds. Cham: Springer International Publishing,

2018, pp. 432–440.

[41] A. Mendes, “Structured editing of handwritten mathematics,” Ph.D. dissertation, University of Not-

tingham, 2012.

74

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures

	1 Introduction
	1.1 Work Objectives
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Pen-based devices and Digital Ink
	2.1.1 Overview
	2.1.2 Role in education

	2.2 Digital Ink in presentations
	2.2.1 Microsoft PowerPoint
	2.2.2 Classroom Presenter

	2.3 Software for handwritten mathematics
	2.3.1 Math Boxes
	2.3.2 MathBrush
	2.3.3 MathPath2
	2.3.4 Mathpad Tablet

	2.4 Handwriting recognition
	2.4.1 Optical and Intelligent Character Recognition
	2.4.2 Neural Networks and Convolutional Neural Networks

	2.5 Cross-Platform Application Frameworks
	2.5.1 Cross-platform technology options
	2.5.2 Pros and Cons
	2.5.3 Tools for developing cross-platform apps
	2.5.3.A React Native
	2.5.3.B Xamarin
	2.5.3.C Ionic
	2.5.3.D Flutter
	2.5.3.E Flutter whiteboard applications

	3 Development of the Whiteboard Application
	3.1 Starting point choice
	3.2 Flutter Widgets explained
	3.2.1 CustomPaint
	3.2.2 ClipRect
	3.2.3 ListView
	3.2.4 FloatingActionButton (FAB)
	3.2.5 Stack
	3.2.6 Listener

	3.3 Initial changes to the interface
	3.4 New features implementation
	3.4.1 Eraser
	3.4.2 Highlighter
	3.4.3 Whiteout eraser
	3.4.4 Undo and Redo
	3.4.5 Gestures
	3.4.6 Select
	3.4.6.A Detect selection
	3.4.6.B Isolate the selected content
	3.4.6.C Drag and drop content

	3.5 Problems while developing the application
	3.5.1 Explanation
	3.5.2 End of the development

	4 Evaluation
	4.1 Phase 1: Users perform a script of actions
	4.2 Phase 2: Users move freely over the interface
	4.3 Usability testing conclusions

	5 Conclusion and Future Work
	5.1 Achievements
	5.2 Future Work

	Bibliography

