
COSMIC: fast closed-form identification from large-scale data
for LTV systems leading to optimal spacecraft attitude control

Maria Carvalho
mariaccarvalho@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

The present work introduces a closed-form method for identification of discrete-time linear time-variant systems
from data. We formulate the learning problem as a regularized least squares problem where the regularizer favors
smooth solutions within a trajectory. Further, we develop a closed-form algorithm with guarantees of optimality
and a complexity that varies linearly with the number of instants considered per trajectory. The COSMIC algorithm
achieves the desired result even in the presence of large volumes of data, too large for general purpose solvers
and for a specially designed coordinate descent method to reach a valid solution. To prove its applicability to real
world systems, we start by performing the validation in synthetic spring-mass-damper systems and guarantee that
the estimated system model can be used to find the optimal control path for such systems. Our algorithm was
implemented in a Low Fidelity Simulator for a simplified version of the Comet Interceptor mission from European
Space Agency, that requires precise pointing of the on-board cameras in a fast dynamics environment. Thus, we
conclude that this thesis provides a new and better approach to classical system identification techniques for linear
time-variant systems, while proving to be a solid base for applications in the Space industry and a step forward to
the incorporation of algorithms that leverage data in such a safety-critical scientific environment.
Keywords: Closed form; system identification; linear time variant; Space

1. Introduction
System modeling represents a significant cost in com-
plex engineering projects, sometimes up to 50% of the
total cost. Thus, it is essential to create practical system
identification tools that adapt to a wide range of prob-
lems and achieve a solution in a time-constrained set-
ting. Such tools can be especially useful in a Space mis-
sion project that represents huge cost efforts for entire
countries and agencies [12]. The integration of Machine
Learning (ML) and Guidance, Navigation and Control
(GNC) can be helpful in these set of problems, from
building robust control frameworks that address param-
eter varying systems to applying verification and valida-
tion techniques to a system in a more efficient way.

The Comet Interceptor mission aims to explore a
comet entering the Solar System for the first time by
obtaining precise images of the celestial body that will
allow its chemical characterization, the assessment of its
structure and the interaction of its components [7].

We are going to analyze a mission profile that re-
gards the pointing as a function of the attitude of the
spacecraft, without the aid of external pointing correc-
tion structures. Thus, the pointing requirement becomes
an attitude control problem, where we wish to achieve
a spacecraft orientation in relation to the comet that
allows it to be in the main camera line of sight con-

stantly. This requirement gets harder to meet the closer
the spacecraft gets to the target, as the dynamics become
faster and the actuation needed to maintain the attitude
increases, as shown in Figure 1(a). Moreover, it can
be observed that the variation of the system between
consecutive instants, in a discrete-time setting, is con-
strained and does not vary indefinitely, which is clear
in Figure 1(b). For controller design purposes, nonlin-
ear systems as the attitude of the spacecraft can benefit
from being modeled as linear time-variant (LTV), which
is how we look at the problem.

100 75 50 25 0 25 50 75 100
Time to CA (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y(r
ad

/s
)

Angular velocity over y axis

(a) Angular velocity evolution.

100 75 50 25 0 25 50 75 100
Time to CA (s)

0.000

0.001

0.002

0.003

0.004

||C
lin

(k
)

C l
in

(k
1)

|| F

System variation between consecutive instants

(b) Variation between instants.

Figure 1: Dynamics throughout the trajectory.

Given what is presented above, the present work aims
to address the shortcomings of classical system identi-
fication techniques for LTV systems in order to create
models that are simultaneously accurate enough to rep-

1

resent a wide range of phenomena while being simple
enough to use with well-known and widely used control
techniques, leading to a more robust control algorithm.
The main challenges of this proposal are the amount
of data needed to characterize one trajectory due to its
changing dynamics and guaranteeing a solution for the
problem in a finite-time setting.

1.1. Related work
A large body of work has been developed in order to
incorporate information provided by measurements in
system identification and controller synthesis. The re-
sults described in [14] establish the grounds for system
identification from observed data. Earlier, the work of
Kumpati et al. [11] already proposed a system identi-
fication strategy based on Neural Networks. Neverthe-
less, data availability and computational and algorithmic
tools were limited, so performance and speed were con-
strained.

Recently, there has been more focus on providing
guarantees that a problem can be solved to a given pre-
cision in finite time, which is crucial to bridge the gap
to optimal control. A lot of work has been developed
regarding linear time-invariant (LTI) systems [9], [2],
[15]. Although these are significant achievements, not
many real world systems can be represented as LTI and
generalizing these findings to LTV systems is essential
for a broader application of the results.

The literature is not as extensive regarding the direct
application of data-driven system identification to lin-
ear time-variant systems. However, this problem has
been a concern for many years. Dudul et al [6] apply
Feedforward Neural Networks to identify an LTV sys-
tem, assuming a transfer function characterization. Lin
et al. [13] proposes an episodic block model for an LTV
system, where parameters within a block are kept con-
stant, followed by the exploration of a meta-learning ap-
proach for system identification divided into two steps:
an offline initialization process and online adaptation.
Formetin et al [8] have recently proposed a system iden-
tification procedure that takes control specifications into
account in the form of regularization.

When presented with a nonlinear model, one can de-
cide to go forward to identify the best linear approxi-
mation if it is taken into account the error associated
with this assumption. We can choose to implement a
linear system identification for nonlinear systems due
to its simplicity and reasonably good approximation for
many applications or even just as an initial estimation
[16] [17]. When choosing how to proceed with the sys-
tem identification, we must recognize the trade-off be-
tween the versatility of nonlinear models and the sim-
plicity of linear ones. It is important to refer that LTV
systems, in particular discrete-time, are a powerful class
of models and perform well when used to approximate
nonlinear dynamics and can be very useful for controller
design and analysis, as we propose to do in this the-

sis [4].

2. Problem Statement
Let us address a discrete linear time-variant system de-
fined as

x(k+1) = A(k)x(k)+B(k)u(k), (1)

such that k ∈ [0, ...,N− 2], with N being the total num-
ber of instants considered to be part of one trajectory. In
a given instant k, the state is x(k) ∈ Rp and the control
input is u(k)∈Rq. System parameters A(k)∈Rp×p and
B(k)∈Rp×q are, respectively, the dynamics and control
matrices that define the system’s response and the un-
known variables we aim to derive from the data.

Taking into account all the data available, we
need to additionally define the matrices that
contain the state information, X(k) ∈ Rp×L

as X(k) =
[
x1(k) x2(k) ... xL(k)

]
and the

control information, U(k) ∈ Rq×L as U(k) =[
u1(k) u2(k) ... uL(k)

]
, of all the L different

simulations for the k-th instant of the trajectory.
Moreover, we define X′(k) as X′(k) = X(k+1).

To find the proper solution for system (1), we start
by defining the optimization variable C(k) ∈ R(p+q)×p

as C(k) =
[

AT (k)
BT (k)

]
, with C = [C(k)]k=N−2

k=0 , such that

C ∈R(N−1)(p+q)×p. Besides, to allow for a least squares
representation of the identification problem, we need
to define D(k) ∈ RL×(p+q) as D(k) =

[
XT (k) UT (k)

]
,

with D = [D(k)]k=N−2
k=0 , following V = diag(D(k)) with

V ∈ R(N−1)L×(N−1)(p+q).
To limit the variation of the system between instants,

thus encoding the domain knowledge that a system will
not change drastically from one time step to the next,
as addressed in the motivation of this work, we add a
term to the cost function, with regularization parame-
ters λk > 0. By allowing for the λk to vary throughout
the trajectory, we impose more flexibility to the problem
formulation, covering a wider range of scenarios.

As such, we are solving

Problem 1.

minimize
C

f (C) :=
1
2
‖VC−X′‖2

F

+
1
2

N−2

∑
k=1
‖λ 1/2

k (C(k)−C(k−1))‖2
F .

(2)

Remark 1. The problem we are solving can be seen as
a trade off between how close the optimization variable
is to the data and how much we allow for it to change
between instants. Thus, we can address the tuning of
parameter λk as the tuning of the relative importance of
each objective. Higher values of λk are congruent with
little variation of the system behavior between instants
and will emphasize the weight of the second term has in

2

the cost function and lower values will allow for more
drastic changes between k and k+1.

Moreover, to aid the analysis, we can define the sec-
ond term of f writing all the weighted difference equa-
tions λ

1/2
k (C(k)−C(k−1)) as a matrix product


λ

1/2
1 0 ... 0 0
0 λ

1/2
2 ... 0 0

...

0 0 ... λ
1/2
N−3 0

0 0 ... 0 λ
1/2
N−2


︸ ︷︷ ︸

ϒ
1/2


−I I 0 ... 0 0 0
0 −I I ... 0 0 0
...
0 0 0 ... −I I 0
0 0 0 ... 0 −I I


︸ ︷︷ ︸

F


C(0)
C(1)
...

C(N−2)

 ,

(3)
allowing Problem 1 to be written as

Problem 2.

minimize
C

f (C) :=
1
2
‖VC−X′‖2

F +
1
2
‖ϒ1/2FC‖2

F .

(4)

This statement makes explicit that we are solving an
unconstrained convex optimization problem. As Prob-
lem 2 is an unconstrained minimization of a quadratic
function, a solution is proven to exist and is well-
defined [1]. Solving problem (4) amounts to solving the
equation

∇ f (C) = 0. (5)

The following linear equation solves the problem,

∇ f (C) = VT (VC∗−X′)+FT
ϒFC∗ = 0

⇔
(
VT V+FT

ϒF
)

C∗ = VT X′

⇔ C∗ =
(
VT V+FT

ϒF
)−1

VT X′
. (6)

We now derive a condition on data that guarantees
that the information collected is enough to reach a solu-
tion and correctly identify the system.

Theorem 1 (Informal: When is the dataset large
enough?). When the collected data is sufficiently var-
ied, there is a unique solution to Problem 1. Further,
after each collected trajectory, it is possible to identify
if there is enough information for attaining a unique so-
lution by computing the sum of the required trajectories
covariances and testing it for positive definiteness.

To prove Theorem 1, we will require two lemmas.

Lemma 1. Let B � 0, B ∈ Rm×m and x 6= 0. If x ∈
Im(B) then xT Bx > 0.

Proof. If the result of the Lemma does not hold, we
would have that x ∈ Im(B) and x ∈ Ker(B). However,
since Im(B)∩Ker(B) = /0, the only option would be to
have x= 0, which violates the conditions of the Lemma,
thus proving that the inference holds.

Lemma 2. The following two expressions are equiva-
lent: (i) A� 0, B� 0, ∀v ∈ Ker(B)\{0} vT Av > 0;
and (ii) A+B� 0.

Proof. The proof that (ii) implies (i) follows trivially
from the fact that both A and B are positive semidefi-
nite.

To prove the other way around, we first remember that
if B� 0, then Im(B)⊥ Ker(B).

Let v = vI + vK , x 6= 0, with vI ∈ Im(B) and vK ∈
Ker(B).

If vI 6= 0, then

(vI +vK)
T (A+B)(vI +vK) =

(vI +vK)
T A(vI +vK)+(vI +vK)

T B(vI +vK).
(7)

From the conditions of the Lemma, we know that the
first term of the sum holds, as vT Av > 0. For the second
term, we recall Lemma 1, yielding that vT Bv > 0, thus
we infer that the LHS product is greater than zero. From
this, we get

A+B� 0.

If vI = 0, (7) is turned into

vK(A+B)vK = vKAvK > 0. (8)

Thus, we prove that A+B� 0.

Theorem 1. [Existence and uniqueness of the solution
of Problem 2] Let the collected dataset D be comprised
of L trajectories drawn independently

D = {(x`(k),ul(k)) : k ∈ {0, ...,N−2}, ` ∈ {1, ...,L}}

and let Σ` be the empirical covariance of trajectory `,
i.e.,

Σ` =
1
N

N−1

∑
k=0

[
x`(k)
u`(k)

][
x`(k)
u`(k)

]T

. (9)

Then, the following statements are equivalent:

(i) the solution of Problem 1 exists and is unique;

(ii) the empirical covariance of the data, Σ = Σ1 +
Σ2 + ...+ΣL, as in (9) is positive definite.

Proof. Initially, let us define x̄(k) = vec(X(k)) and
c̄(k) = vec(C(k)) and rewrite Problem 1

minimize
c̄

f (c̄) :=
1
2

N−2

∑
k=0
‖x̄(k+1)− (D(k)⊗ I)c̄(k)‖2+

1
2

N−2

∑
k=1
‖λ 1/2

k (c̄(k)− c̄(k−1))‖2.

(10)
Thus, applying the second-order condition for con-

vex minimization problems from [1], which states that
a function f is strictly convex if and only if its domain
is convex and its Hessian is positive semidefinite. The
Hessian of the cost function of our problem as stated
in (10) is

∇
2 f (c̄) = diag(DT (k)D(k)⊗ I)︸ ︷︷ ︸

Π

+FT
ϒF︸ ︷︷ ︸

Γ

(11)

3

and we must guarantee that ∇2 f (c̄)� 0, which is equiv-
alent to say that the solution exists and is unique. From
here on, we will use this knowledge to infer about the
conditions on data.

Let us define the kernel of Γ as Ker(Γ) ={[
c̄ · · · c̄

]T
: c̄

}
. From Lemma 2, if we have

Π+Γ� 0, then we know that
[
c̄T · · · c̄T]

Π

c̄
...
c̄

> 0.

Therefore,

c̄T

(
N−2

∑
k=1

DT (k)D(k)⊗ I

)
c̄ > 0

⇔
N−2

∑
k=1

DT (k)D(k)� 0

⇔
N−2

∑
k=1

[
XT (k) UT (k)

]T [XT (k) UT (k)
]
� 0

⇔
N−2

∑
k=1

([
xT

1 (k) uT
1 (k)

]T [xT
1 (k) uT

1 (k)
]
+

· · ·+
[
xT
` (k) uT

` (k)
]T [xT

` (k) uT
` (k)

])
� 0

⇔Σ1 +Σ2 + · · ·+ΣL � 0

(12)

Thus, we found the necessary and sufficient condition
on data and proved that statements (i) and (ii) are equiv-
alent.

Theorem 1 allows to efficiently collect data, as we
can address the covariance of the data as we collect it
and verify its positive definiteness. When this condition
is verified, we can stop the data collection and advance
for the training.

Equation (6) makes evident that in order to find the
optimal value for C, it is required to invert a matrix

A := VT V+FT
ϒF,

A ∈ R(N−1)(p+q)×(N−1)(p+q). This result shows that the
approach requires the computation of a matrix heavily
dependent on the number of instants considered in the
trajectory being studied and the dimension of the sys-
tem, meaning the result will become harder to obtain
with an increased sampling rate and system complexity.
When presented with a high sampling rate system, the
size of matrices involved in the calculations can be very
high, so solving directly the regularized least squares
problem is not feasible. Regardless of this shortcom-
ing, it is still important to understand the conditions in
which the matrix A is invertible, since it will impact the
numerical solution of the optimization problem. Theo-
rem 2 addresses this point.

Theorem 2. Let ϒ 6= 0. Then, matrix A is invert-
ible if there exists a set of p + q pairs p + q pairs
(`,k) ∈ {1, ...,L} × {0, ...,N − 2} pairs such that the

corresponding
[
xT
` (k) uT

` (k)
]

are all linearly indepen-
dent.

Proof. The proof is made by contraposition, by proving
that if the problem does not have a unique solution, then
conditions of the theorem do not hold.

Let us consider then that A is not invertible. Then

∃η :
‖η‖=1

η
T A η = 0⇔ η

T VT Vη +η
T FT

ϒFη = 0

⇔‖Vη‖2 +‖ϒ1/2Fη‖2 = 0

⇔ Vη = 0∧ϒ
1/2Fη = 0

.

(13)
Defining η(k) =

[
ηT

A (k) ηT
B (k)

]T and
η = [η(k)]k=N−2

k=0 , it is possible to write, for all
k,

ϒ
1/2Fη = 0⇔{
ηA(k)−ηA(k−1) = 0⇔ ηA(k) = ηA(k−1) := η̄A

ηB(k)−ηB(k−1) = 0⇔ ηB(k) = ηB(k−1) := η̄B

(14)
where the fact that ϒ

1/2 is invertible was used. This
yields

η
∗ :=

 I
...
I


︸ ︷︷ ︸

N

[
η̄A
η̄B

]
︸ ︷︷ ︸

η̄

(15)

denoting the null space of F. In order for (13) to hold,
η∗ has to be contained by the null space of V whenever
λ 6= 0, i.e.

Vη
∗ = 0⇔ VN η̄ = 0 (16)

that can be reduced to

∀k∀` xT
` (k)η̄A +uT

` (k)η̄B = 0. (17)

The solution of (17) implies that either η̄ = 0, con-
tradicting the hypothesis of the proof (‖η‖= 1), or that
the vectors

[
xT
` (k) uT

` (k)
]

in the dataset are linearly
dependent, i.e., it is not possible to find p+q linearly in-
dependent vectors for all `= 1, ...,L and k = 0, ...,N−2.
Thus, if λk 6= 0 for all k and the matrix A is singular, the
condition of the Theorem cannot hold and, by contrapo-
sition, if it holds, then A is invertible and there exists a
unique solution to Problem 2.

This concludes the proof of sufficiency of the condi-
tions to the existence of solution.

Remark 2. The conditions for the existence and unique-
ness of solution set forth by Theorem 1 can be clearly
seen as equivalent to this new result, as both require
the complete set of

[
xT
` (k) uT

` (k)
]

vectors within the
dataset to span Rp+q.

Solving (6) is the path adopted by classic solvers to
perform its operations, which becomes a disadvantage
of this technology, as it is not capable of keeping up

4

with the complexity of the estimation. Hence, address-
ing this shortcoming is essential to configure the system
identification problem of linear time-variant systems as
a regularized least squares problem.

3. Closed form discrete LTV system identification
We can regard (4) for each instant k independently, such
that it can be formulated as

Problem 3.

minimize
C

f (C) :=
1
2

N−2

∑
k=0
‖D(k)C(k)−X′T (k)‖2

F︸ ︷︷ ︸
h(C)

+

1
2

N−2

∑
k=1
‖λ 1/2

k (C(k)−C(k−1))‖2
F︸ ︷︷ ︸

g(C)

.

(18)

Accordingly, let us once again think of the derivative
of the cost function as a sum of the derivatives of its
parcels and have for the k-th instant

∇k f (C) = ∇kh(C)+∇kg(C), (19)

knowing that the gradient at each instant k is ∇k f (C).
The gradient of h(C) at k is

∇kh(C) = 2DT (k)(D(k)C(k)−X′T (k)). (20)

The gradient of g(C) is

∇g(C) = 2FT
ϒFC. (21)

With F as in (3), we can compute FT ϒF

FT ϒF =


λ1I −λ1I 0 ... 0 0 0
−λ1I (λ1 +λ2)I −λ2I ... 0 0 0
...
0 0 0 ... −λN−3I (λN−3 +λN−2)I −λN−2I
0 0 0 ... 0 −λN−2I λN−2I

.
(22)

Replacing (20) in (19) and addressing each element of
(21), we get ∇k f (C) =

∇k f (C)=DT (k)(D(k)C(k)−X′T (k))+[FT
ϒFC](k)= 0.

(23)
We have, thus, to solve a linear system of equations.

Given the previously defined D, let us have the fol-
lowing auxiliary variables

S00 = DT (0)D(0)+λ1I
SN−2,N−2 = DT (N−2)D(N−2)+λN−2I
Skk = DT (k)D(k)+(λk +λk+1)I
Sk,k−1 = Sk−1,k =−λkI
Sk,k+1 =−λk+1I
Θk = DT (k)X′T (k)

. (24)

Remark 3. Our closed form solution, with a complexity
that scales linearly with the number of time steps con-
sidered stems, from the key observation that the linear

system of equations to be solved in (23) is in fact a block
tridiagonal linear system. By considering the LU factor-
ization method, our problem has a closed form solution
with linear complexity [10].

In the next section, we apply the LU factorization
to (23). In general, it consists on a forward pass and
then a backward pass, in this case with a complexity that
scales linearly with the number of time steps considered
in the system model.

Algorithm 1 COSMIC - Closed form system identifica-
tion
Input: D, X′, [λk]

k=N−2
k=1

Output: C∗

1: S00← DT (0)D(0)+λ1I
2: SN−2,N−2← DT (N−2)D(N−2)+λN−2I
3: for k ∈ [1, ...,N−3] do
4: Skk← DT (k)D(k)+(λk +λk+1)I
5: end for

6: for k ∈ [0, ...,N−2] do
7: Θk← DT (k)X′T (k)
8: end for

9: Λ00← S0
10: Y0← Λ

−1
0 Θ0

11: for k ∈ [1, ...,N−2] do . forward pass
12: Λk← Skk−λ 2

k Λ
−1
k−1

13: Yk← Λ
−1
k (Θk +λkYk−1)

14: end for

15: C(N−2)← YN−2

16: for k ∈ [N−3, ...,0] do . backward pass
17: C(k)← Yk +λk+1Λ

−1
k C(k+1)

18: end for
return C∗← C

Forward pass
For the forward pass, we solve LY = Θ, where L is

L =


Λ0 0 · · · 0 0
S1,0 Λ1 · · · 0 0

...
.

...
...

0 0 · · · ΛN−3 0
0 0 · · · SN−2,N−3 ΛN−2

 ,

and Λk and Θk,` are square submatrices of size (p+q)×
(p+q). To start the process, the unknown variables are
initialized with {

Λ0 = S00

Y0 = Λ
−1
0 Θ0

,

5

and for the subsequent time steps k = 1, ...,N−2, we
incrementally compute


Ωk = Sk,k−1Λ

−1
k−1Sk−1,k

Λk = Skk−Ωk

Yk = Λ
−1
k (Θk−Sk,k−1Yk−1).

(25)

Backward pass
Given the results of the forward pass, we can address

the backward propagation by solving MC = Y, with

M =


I Λ

−1
0 S0,1 · · · 0 0

0 I · · · 0 0
...

...
.

...
0 0 · · · I Λ

−1
N−3SN−3,N−2

0 0 · · · 0 I

 .
(26)

The optimization variable in the last instant is initialized
with C(N−2) = YN−2. For i = N−3, ...,0,

C(k) = Yk−Λ
−1
k Sk,k+1C(k+1). (27)

Next, we state the main result of this work, about the
convergence in a fixed, finite number of algebraic oper-
ations, i.e., as a closed form.

Theorem 3. [Algorithm 1 solves (18) in closed form
with linear complexity]

Algorithm 1 yields a closed form solution for the
system identification problem of the linear time-variant
system from data, with linear complexity on the num-
ber of time steps. Namely, the number of multiplica-
tion operations to be performed by the Algorithm 1 is
c = (N−1)

(
(p+q)3 +(2p+3)(p+q)2

)
, which is lin-

ear on the number of time steps N, and cubic on the size
of state space and control space, and does not depend
on L, the size of the dataset used for learning matrices
[A(k),B(k)]N−2

k=0 .

Proof. We must prove that solving ∇ f (C) = 0 is equiv-
alent to solving

LMC = Θ, (28)

where L is a lower triangular matrix with non zero di-
agonal and first subdiagonal blocks, and M is an upper
triangular matrix with diagonal identity submatrices and
first superdiagonal non-zero.

Let us assume a system starting from the results
in (23). We can rearrange the system of linear equations
to address it as


DT (0)D(0)C(0)+λ (−C(0)+C(1))

...
DT (k)D(k)C(k)+λ (−C(k−1)+2C(k)−C(k+1))

...
DT (N−2)D(N−2)C(N−2)+λ (−C(N−3)+C(N−2)


︸ ︷︷ ︸

LMC

=



DT (0)X′T (0)
...

DT (k)X′T (k)
...

DT (N−2)X′T (N−2)


︸ ︷︷ ︸

Θ

,

which directly yields the definition of Θ, just like it was
defined in (24). Decomposing the LHS of the previous
definition, we can identify the dependence on C and sin-
gle it out. Thus, we get

S00 −λ1I 0 0 0
.

...
. . . −λkI Skk −λk+1I

. . .
...

0 0 0 −λN−2I SN−2,N−2


︸ ︷︷ ︸

LM


C(0)

...
C(k)

...
C(N−2)

 .

(29)
Additionally, from the assumption of the form of ma-

trices L and M, as previously defined, we get LM =



Λ0 S01 0 0 0 0 0

S01 Λ1 +Ω1 S12
...

...
...

...
...

.
...

...
...

...
... Sk,k−1 Λk +Ωk Sk,k+1

...
...

...
...

...
.

...
...

...
...

... SN−4,N−3 ΛN−3 +ΩN−3 SN−3,N−2
0 0 0 0 0 SN−2,N−3 ΛN−2 +ΩN−2


(30)

yielding the results we stated in the formulation of the
problem by making it equal to (29). Hence, we prove
that the problem can be solved by a LU factorization
and that solving equation (5), taking into account the nu-
ances of the k-th instants, is equivalent to solving (28).
For the complexity result, we analyze the multiplication
operations involved in the presented algorithm as fol-
lows.

For the forward pass we need to invert all N− 1 Λk
matrices. If we use traditional inversion methods, the
number of operations for each inversion is (p + q)3.
Multiplications by a scalar involve 2(p+q)2. The mul-
tiplication of the two matrices in Step 11 of Algorithm 1,
Λ
−1
k , with a matrix (p+q)× p costs p(p+q)2, gives a

total number of operations for all N−1 steps of

cfwd = (N−1)
(
(p+q)3 +(p+2)(p+q)2) ,

6

while the backward pass demands multiplication of a
scalar by a matrix of size (p+ q)× (p+ q) accounting
for (p+ q)2 operations, and a multiplication between a
matrix of size (p+ q)× (p+ q), and one of size (p+
q)× p, yielding p(p+ q)2 operations. Thus, the total
number of backward pass operations is

cbwd = (N−1)
(
(p+1)(p+q)2) .

3.1. COSMIC validation
To demonstrate previous stated theoretical results, a
simulation and testing environment was developed. A
classical spring-mass-damper system is first simulated
and excited in a Simulink model to allow for data col-
lection both in LTI and LTV setups, and to guarantee
sufficient data we input a sine function with different
amplitude for each run of the simulation. It is also worth
noting that in each simulation run, the initial conditions
take a different value.

The validation is performed with parameter λk con-
stant throughout the trajectory, thus being represented
by λ . Afterwards, this data is used as input into COS-
MIC and multiple models are trained, in a Python en-
vironment, to understand the behavior of the proposed
algorithm in different settings, by varying the λ or the
noise that disturbs the state.

Finally, the estimated model is excited with previ-
ously selected inputs from which we know the expected
result, and we are able to evaluate the performance. The
metrics used are the estimation error and the prediction
error.

Taking into account the spring-mass-damper system,
considered the ground truth, the estimation error, i.e.
how close the model is to the true system, is defined
as ‖Ĉ−Cgt‖F . Regarding the prediction power of COS-
MIC, we propose the evaluation of the predicted state
error when compared to the true state from a simulated
trajectory that was not part of the training data set. As
such, we address the metric by defining the norm of the
error as ‖x̂(k+1)−x(k+1)‖2, allowing for the assess-
ment of the error propagation. Moreover, for the follow-
ing validation study, we assumed that the measurements
were disturbed by noise, which can be characterized by
ω ∼N (µ, σ2) with µ = 0 and variance σ2.

To infer how the performance of the algorithm de-
pends on the measurement noise and parameter λ , we
opted to develop a parametric study where, for each
noise variance, we tested the estimation for a reason-
able range of values for parameter λ . Figure 2 exposes
the variation of the estimation error with the noise added
to the measurements for the LTV system and it is clear
that for a noise standard deviation of about 10% of the
maximum initial conditions, the algorithm is heavily af-
fected. Reducing this value, the estimation error drops
significantly. It is evident that smaller values for the
parameter λ lead to a worse performance of the algo-
rithm, as the variation between instants is not significant

0 1 2 3 4 5
log10()

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g 1

0(
2)

Parametric evolution of the LTV model
 estimation error ||C Cgt||2F

25

50

75

100

125

150

175

Figure 2: State estimation performance of the multiple
methods tested, compared with the true state.

enough to allow such values, resulting much better with
higher values of λ .

As part of the validation process, we can also evalu-
ate what is the λ that best adapts the estimated model to
the true system characteristics. To do so, we evaluate the
system in the previous conditions, choosing an appropri-
ate value for the noise, in this case a standard deviation
of about 10% of the initial. From a simple analysis of
the plots in Figure 3, we can say that the λ that best fits
the system we are trying to estimate is λ = 105, as the
lowest errors occur at this value.

0 2 4 6 8 10
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

 o
f t

he
 e

rro
r

Error between the estimated and true state
= 104

= 105

= 106

= 107

(a) Estimation error.

0 2 4 6 8 10
Time (s)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Fr
ob

en
iu

s n
or

m
 o

f t
he

 e
rro

r

Error between the estimated system and the ground truth
= 104

= 105

= 106

= 107

(b) Prediction error.

Figure 3: Evaluation metrics evolution with time to infer
the optimal λ = 105.

3.2. Benchmark
The novelty of the algorithm presented comes from its
efficiency, mainly when compared to other approaches
to the same problem. As we are solving a convex op-
timization problem, we can obtain a solution through
cvxpy, a domain specific language that allows for easy
problem syntax to express convex optimization prob-
lems in Python and is widely used [3]. For this spe-
cific use case, the ECOS solver [5], an interior-point
solver for second-order cone programming, is automati-
cally invoked. Hence, we evaluate the problem agnostic
approach, as in (6) with this strategy.

In addition, we are also going to be evaluating the
solution of (18) through a Stochastic Block Coordinate
Descent (SBCD) algorithm. This approach allows for
a simplification of cvxpy perspective, as it treats each
C(k) as an independent optimization variable for an it-
eration of the algorithm, while keeping all the other val-
ues constant, simplifying the calculations and allowing

7

for an easier derivative verification. By evaluating the
value of the derivative at the new C, we can infer if
the optimality condition was reached or not. However,
this approach is iterative, which means that it may not
be able to reach a solution if the proper limits are not
found. Nevertheless, the SBCD approach enables dif-
ferent loss functions for the data fidelity term, like, e.g.,
the Huber M-estimator, robust to outlier measurements.
Finally, we run again the COSMIC algorithm. These
simulations, as all the ones run in a Python environment,
were made in Google Colab development setting, with
13GB of RAM available and the Intel(R) Xeon(R) CPU
@ 2.20GHz processor.

Table 1: Performance comparison of different system
identification solutions.

Instants cvxpy SBCD Closed form
Time Time Time

100 2.929 0.031 0.014
1000 42.588 0.273 0.106
10000 * 3.531 1.017
100000 * 21.055 9.696
*Session crashed after using all available RAM.

To perform the comparison in Table 1, as we are
studying the performance of the methods against cost
and time, we simulated a 1/10 sampling rate trajectory
and varied its length between 10 s, 100 s, 1000 s and
10000 s with λ = 0.001 and stopping the SBCD at 1
million iterations, while using the setting presented pre-
viously.

The cvxpy approach tries to solve the problem for
all time steps simultaneously, leading to a solution that
requires the machine to invert a (N− 1)(p+ q)× (N−
1)(p + q) matrix, as stated in (6). As the number
of instances per trajectory increases, the complexity
also increases and the cvxpy approach can no longer
compute a solution in due course, while both SBCD
and closed form approaches continue to perform as ex-
pected. Moreover, for more disturbed data, the compu-
tation needed to reach this solution becomes more diffi-
cult. Regarding the cost function, no significant changes
are observed from one method to another

This leads to the conclusion that the closed form al-
gorithm is the best option to solve (18), as it can achieve
minimal cost values with an efficient use of compu-
tational resources, reaching a solution for all cases
tested, performing significantly better than the other ap-
proaches. Moreover, analyzing Table 1, we can exper-
imentally observe the linearity with the number of in-
stances per trajectory that is stated in Theorem 3.

4. Controller design for estimated model
To follow up on the system identification from data, we
derive an optimal control law for the LTV estimated
model based on a dynamic programming setup, as de-
tailed in [18] for discrete-time LTV LQR. Algorithm 2

summarizes the approach.

Algorithm 2 Dynamic Programming for LTV controller
design
Input: H, Q, R, A, B, x
Output: K

1: PN−1← H

2: for k ∈ [N−2, ...,0] do
3: Kk←

(
Rk +BT (k)Pk+1B(k)

)−1 BT (k)Pk+1A(k)
4: Pk ← Qk + KT

k RkKk +

(A(k)−B(k)Kk)
T Pk+1 (A(k)−B(k)Kk)

5: end for
return K

Regarding the estimated model, we used the param-
eters found to be the most suiting to develop and save
a model, i.e. λ = 105, and the measurements were dis-
turbed by noise with standard deviation σ = 0.06. Then,
we load the new model into another Python environment
to allow for it to be used in the dynamic programming
algorithm that results in an optimal control path. After-
wards, the solution is returned to Simulink and tested in
the original spring-mass-damper system.

For the design phase of the controller, we develop a
tuning framework taking into account the LQR needs,
keeping matrices Qk and Rk constants throughout the
trajectory and depending only on the elements from
their diagonals, entailing that the most suiting design
parameters are qv

qx
= 10−1, r

qx
= 10−3 and qx = 1.

0 2 4 6 8 10
Time (s)

4

2

0

2

4

6

Po
sit

io
n

(m
)

Tracking of a sinusoidal position reference

0 2 4 6 8 10
Time (s)

0

1

2

3

4

5

6

Po
sit

io
n

Tracking of a constant position reference

Figure 4: System position response from different initial
conditions.

Figure 4 shows the system response to different in-
puts when controlled by the LTV LQR drawn from the
estimated model. After performing a statistical analysis
of the tracking error, we can confidently say that the es-
timated model is a good approximation of the system,
as shown by the close values of the statistical metrics
in Table 2. Moreover, it allows for a better controller
synthesis than previously used techniques, performing
better than the LTI LQR, presenting a smaller mean and
sum of squared error, once again from Table 2. Thus, we
can be stated that the estimated model from COSMIC is
a good approximation of the spring-mass-damper sys-
tem used throughout this work and the dynamic pro-
gramming strategy worked well for the problem posed.

8

Hence, this system identification and controller design
framework is validated and we can further test it in more
complex environments.

Table 2: Statistical comparison of the controller design
methods.

Control Mean σ ∑error2

Estimated model 0.1050 0.7346 0.5506
Ground truth 0.0994 0.7441 0.5635
Time invariant 0.1218 0.7425 0.5661

5. Comet Interceptor as a Case Study
5.1. Attitude dynamics and kinematics
The attitude dynamics and kinematics of the spacecraft
are described by the general representation of these phe-
nomenons, i.e.q̇(t) = 1

2 q(t)⊗
[
0 ω(t)

]T

Jω̇(t) = [Jω(t)]×ω(t)−u(t)+T(t)
(31)

The attitude is represented by the quaternion q =[
q0 qx qy qz

]T , with norm 1 and {q0,qx,qy,qz} ∈
R, and it transforms a vector represented in the the body
fixed frame, centered in the spacecraft, in a vector in the
inertial frame centered in the target. The angular veloc-
ity is ω ∈ R3. Then, to complete the attitude dynamics,
we also define torque input as u ∈ R3 and the external
disturbances T ∈ R3, which can be caused by multiple
factors but are not going to be considered for the first
stage of this application. J represents the inertia in the
spacecraft body frame. This system is nonlinear. The
pointing error is defined as the angle between the di-
rection that the camera is truly pointing at, r`, and the
direction of the comet, dc, both in the body fixed frame.
Thus, the cosine of the pointing error is cos(θPE) = rT

` rc.
The latter direction can be obtained from the position

of the spacecraft represented in the inertial frame, us-
ing the attitude information that can be retrieved from
the attitude kinematics and the translation information,
which entails

[
0 dT

c
]T

= q∗⊗
[
0 IdT

c
]T ⊗q, where Irc

a the unitary vector.
As we wish to drive the error to zero, the system that

is taken into account for the controller present in the data
collection environment is

˙δθ(t) =−[ω̄(t)]×δθ(t)+δω(t)
˙δω(t) = J−1Aω δω(t)− J−1δu(t)

δ̇ ι(t) = δθ(t),
(32)

here representing the integral of the attitude error as∫
δθ = δι .
We are performing this implementation in a Low Fi-

delity Simulator for the Comet Interceptor mission, with
representations of separate dynamical properties of the
system, which result in first solutions for the problems

encountered that can then be tuned and adapted to the
full overview of the system. Thus, the work presented
here is an approach to the first step of the design process,
where the nonlinear system is represented, without ex-
ternal perturbations, to allow for a deeper knowledge of
the system behavior to the control inputs that may be
given to it and then possibly use the solutions found as
the first approach to more complicated scenarios. We
follow the work flow of the previous validation, start-
ing with the learning phase, then deriving an optimal
controller and finalizing with the testing in the original
simulation.

For the purpose of this proof of concept, and consid-
ering the motivation of this work, we opt to address the
problem with varying λk. Taking into account the previ-
ously knowledge about the system, i.e. the angular ve-
locity over the y axis that is desired, we establish that the
work can be performed considering two different values
for λk and three zones of the trajectory where this value
will be maintained constant.

2 0 2 4 6 8
log10(borders)

2

0

2

4

6

8

lo
g 1

0(
m

id
dl

e)

Error

2

4

6

8

10

Figure 5: Parametric results for the variation of λk along
the trajectory.

Analyzing Figure 5 (a), we can infer that the lowest
estimation error from the previous estimated state oc-
curs for λmiddle = 102 and λborders = 108. For the in-
stantaneous estimation error, the error decreases as the
λk increases. We choose the best pair to be the one with
the lowest mean estimation error, from estimated state,
as it also appears to have a low error when calculated
with the true state.

This result is in line with the analysis of the system
and its expected behavior. For the zones further away
from the closest approach point, the system dynamics
is much slower and the variations between instants are
less disruptive, which is in line with a higher value of
λk, that imposes a narrower difference between the op-
timal variable variation in consecutive instants. In the
middle of the trajectory, the spacecraft is at its closest
point to the target and its attitude needs to change much
faster to maintain a pointing error small enough, thus the
system changes much faster and the difference between
to instants needs to be larger, which is allowed by the
smaller value of λk.

Applying the same dynamic programming frame-
work, we also developed a new controller and we are

9

now able to input the optimal gains calculated for each
distinct instant into the Low Fidelity Simulator, instead
of the constant gain that had been used to collect the
data. Figure 6 shows the results from varying initial con-
ditions and it is clear that the controller from the linear
system identification performed by COSMIC is able to
control the nonlinear system and is a good option for the
first approach to the GNC framework of the mission.

-100 -50 0 50 100

Time to CA [s]

0

5

10

15

20

25

30

35

40

45

50

 [d
eg

]

Pointing Error

Figure 6: Pointing error resulting from the designed
controller application.

6. Conclusions
The main breakthrough of this work was the devel-
opment of COSMIC, a closed form system identifica-
tion algorithm from data for linear time-variant systems,
formulating the identification problem as a regularized
least squares, with a regularization term that imposes a
constrained variation between the solution consecutive
instances. Moreover, we derived a condition on data
to guarantee a solution. COSMIC performs consider-
ably better than oher conventional solutions. The vali-
dation and testing, including in a Low Fidelity Simula-
tor of Comet Interceptor, proved that this approach is a
fair solution for the attitude control problem presented
as motivation and should be accounted for in the initial
phases of engineering projects to derive valid controllers
and ease the design process. In the future, COSMIC can
be tested in simulators with more detailed environments
and can be taken advantage of for possible online learn-
ing and adaptive control solutions.

References
[1] S. Boyd and L. Vandenberghe. Convex optimiza-

tion. Cambridge University Press, 2004.

[2] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu.
On the sample complexity of the linear quadratic
regulator. Foundations of Computational Mathe-
matics., 2018.

[3] S. Diamond and S. Boyd. Cvxpy: A python-
embedded modeling language for convex opti-
mization. The Journal of Machine Learning Re-
search, 17(1):2909–2913, 2016.

[4] R. Dobbe, S. Liu, Y. Yuan, and C. Tomlin. Blind
identification of fully observed linear time-varying
systems via sparse recovery. Automatica, 100,
2019.

[5] A. Domahidi, E. Chu, and S. Boyd. Ecos: An
SOCP solver for embedded systems. In 2013 Eu-
ropean Control Conference (ECC). IEEE, 2013.

[6] S. Dudul and A. Ghatol. Identification of linear
dynamical time-variant systems using feedforward
neural network. IE (I) Journal, 2004.

[7] ESA. Assessment of Mission to Intercept a Long
Period Comet or Interplanetary Object. CDF Study
Report, ESA, Dec. 2019.

[8] S. Formentin and A. Chiuso. Control-oriented reg-
ularization for linear system identification. Auto-
matica, 127, 2021.

[9] M. Hardt, T. Ma, and B. Recht. Gradient descent
learns linear dynamical systems. Journal of Ma-
chine Learning Research, 2016.

[10] E. Isaacson and H. B. Keller. Analysis of Numer-
ical Methods. Dover Publications, New York, 06
1994.

[11] S. N. Kumpati, P. Kannan, et al. Identification
and control of dynamical systems using neural net-
works. IEEE Transactions on Neural Networks,
1(1):4–27, 1990.

[12] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. En-
gell, A. Isaksson, P. Khargonekar, R. M. Murray,
H. Nijmeijer, T. Samad, D. Tilbury, and P. Van den
Hof. Systems & control for the future of humanity,
research agenda: Current and future roles, impact
and grand challenges. Annual Reviews in Control,
43, 2017.

[13] S. Lin, H. Wang, and J. Zhang. System identifica-
tion via meta-learning in linear time-varying envi-
ronments. arXiv:2010.14664, 2020.

[14] L. Ljung. System identification. In Signal Anal-
ysis and Prediction, pages 163–173. Birkhäuser
Boston, 1998.

[15] T. Sarkar and A. Rakhlin. Near optimal finite
time identification of arbitrary linear dynamical
systems. In International Conference on Machine
Learning, pages 5610–5618. PMLR, 2019.

[16] J. Schoukens and L. Ljung. Nonlinear system
identification: A user-oriented road map. IEEE
Control Systems Magazine, 39(6):28–99, 2019.

[17] L. Vanbeylen, E. Louarroudi, and R. Pintelon.
How nonlinear system identification can benefit
from recent time-varying tools: the time-varying
best linear approximation. In 52nd IEEE Confer-
ence on Decision and Control. IEEE, 2013.

[18] S. H. Zak. Systems and control, volume 198. Ox-
ford University Press, 2003.

10

	Introduction
	Related work

	Problem Statement
	Closed form discrete LTV system identification
	COSMIC validation
	Benchmark

	Controller design for estimated model
	Comet Interceptor as a Case Study
	Attitude dynamics and kinematics

	Conclusions

