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Tenho também de agradecer à GMV pelo apoio à realização deste trabalho. Em especial, um obri-

gada ao João Branco pela oportunidade e ao João Franco pelo apoio prestado ao longo dos meses de

trabalho e pelas contruibuições para a sua realização.
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Resumo

O presente trabalho apresenta um método em forma fechada para identificação de sistemas lin-

eares variantes no tempo a partir de dados, em tempo discreto. O problema de aprendizagem é formu-

lado como um problema de mı́nimos quadrados regularizado, onde o regularizador promove transições

suaves entre instantes de uma trajetória. Além disso, desenvolvemos um algoritmo em forma fechada

com garantias de que a solução encontrada é ótima e uma complexidade que varia linearmente com

o número de instantes considerados por trajetória. O algoritmo COSMIC atinge o resultado desejado

mesmo na presença de grandes volumes de dados, o que não é verdade para solvers de uso general-

izado e até para um método de coordinate descent especialmente projetado para este problema. Para

provar a viabilidade de aplicação a sistemas reais, começamos por realizar a validação num sistema

sintético massa-mola-amortecedor e verificamos que o modelo de sistema estimado pode ser usado

para encontrar o controlo ótimo ao longo da trajetória. O nosso algoritmo é ainda implementado num

simulador de baixa fidelidade da missão Comet Interceptor da ESA, cujo objetivo exige que as câmaras

que leva a bordo estejam apontadas numa direção extremamente precisa. Assim, concluı́mos que esta

tese fornece uma nova e melhor abordagem a técnicas clássicas de identificação de sistemas para

sistemas lineares variantes no tempo, provando ainda que o algoritmo desenvolvido é uma base sólida

para aplicações na indústria espacial e um passo em frente para a incorporação de algoritmos que

beneficiam dos dados num ambiente cientı́fico onde as garantias de segurança são essenciais.

Palavras-chave: forma fechada, identificação de sistemas, linear variante no tempo, Espaço
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Abstract

The present work introduces a closed-form method for identification of discrete-time linear time-

variant systems from data. We formulate the learning problem as a regularized least squares problem

where the regularizer favors smooth solutions within a trajectory. Further, we develop a closed-form

algorithm with guarantees of optimality and a complexity that varies linearly with the number of instants

considered per trajectory. The COSMIC algorithm achieves the desired result even in the presence of

large volumes of data, too large for general purpose solvers and for a specially designed coordinate

descent method to reach a valid solution. To prove its applicability to real world systems, we start by

performing the validation in synthetic spring-mass-damper systems and guarantee that the estimated

system model can be used to find the optimal control path for such systems. Our algorithm was im-

plemented in a Low Fidelity Simulator for a simplified version of the Comet Interceptor mission from

European Space Agency (ESA), that requires precise pointing of the on-board cameras in a fast dynam-

ics environment. Thus, we conclude that this thesis provides a new and better approach to classical

system identification techniques for linear time-variant systems, while proving to be a solid base for ap-

plications in the Space industry and a step forward to the incorporation of algorithms that leverage data

in such a safety-critical scientific environment.

Keywords: closed-form, system identification, linear time-variant, Space
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Chapter 1

Introduction

1.1 Motivation

Aerospace industry is at the forefront of innovation, being one of the precursors of multiple tech-

nologies that have made life on Earth better. However, this does not come without a cost, be it human,

environmental or monetary. Therefore, the Space industry tends to demand strong guarantees and proof

of work from new technologies to be used in Space missions.

Guidance, Navigation and Control (GNC) and Attitude and Orbital Control Systems (AOCSs) are

crucial to any Space mission, thus being subject to intensive research efforts [1]. Nevertheless, several

new tools used daily in other industries have yet to come through as standard in Space missions.

Artificial Intelligence (AI) and Machine Learning (ML) techniques are now commonplace in our day

to day lives but have yet to make a lasting impression in the Space industry, considerably due to the

inherent difficulty to validate in the context of safety-critical activities and the lack of explainable and

verifiable methods to be presented to a more cautious audience.

In order to keep up with new advances in the industry and with the disruption caused by the democra-

tization of Space, new applications and the emergence of new private entities challenging governmental

players, it is urgent to bridge the differences between control theory and ML, to exploit the potential of

faster and better control algorithms, which make use of data to enhance their performance and adapt to

the environment. The integration of ML techniques and GNC can be helpful in a broad set of problems,

from building robust control frameworks that address parameter varying systems to applying verification

and validation techniques to a system in a more efficient way.

We focus on identifying a system’s behavior, which constitutes a problem in many areas of engineer-

ing, from biological relations to physical systems’ dynamics, and is the first step to any control design. It

is imperative to have a system model that correctly represents its interaction with the environment and

allows for more accurate predictions of its response to external stimuli.

Typically, this issue is addressed by considering previous knowledge about the system, applying

first principles of physics and measuring whenever possible. However, for more intricate systems, this

approach fails because it may become impossible to measure all the parameters needed to characterize
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a behavior completely or the system is too complex to be modeled by simple equations. In order to

address these limitations, a data-driven approach to the system identification problem, where input-

output data is used to find a model that describes a particular system, has become more common [2].

Finding more efficient and comprehensive universal algorithms to deal with a large amount of data is

essential to derive reasonable data-driven solutions and constitutes a pressing issue.

Moreover, system modeling represents a significant cost in complex engineering projects, sometimes

up to 50% of the total cost, whether it be because of the obvious cost of the hours dedicated to this

problem by specialized professionals or the length and expenses of the experiments needed to obtain a

good model. Thus, it is essential to create practical system identification tools that adapt to a wide range

of problems and achieve a solution in a time-constrained setting. Such tool can be especially useful in a

Space mission project that represents huge cost efforts for entire countries and agencies [3].

1.2 Mission overview

The Comet Interceptor mission aims to explore a comet entering the Solar System for the first time

by obtaining precise images of the celestial body that will allow its chemical characterization, the assess-

ment of its structure and the interaction of its components [4]. The Closest Approach (CA) between the

spacecraft and the comet will happen at 1000 km and the relative velocity of the bodies will be between

10 km/s and 70 km/s, which evidences the need for a control system that can maintain the pointing of the

comet cameras within a reasonable range for image collection and is robust to unknown disturbances.

Comet

S
p
a
c
e
c
ra
ft

Figure 1.1: Comet Interceptor Scenario. The spacecraft is represented in different moments of the

trajectory, with the scientific instruments pointed at the comet.

Although the solution proposed in the Concurrent Design Facility Study Report for the Comet Inter-

ceptor is different, we are going to analyze a mission profile that regards the pointing as a function of the

attitude of the spacecraft, without the aid of external pointing correction structures, as these might get

blocked by the spacecraft body. Thus, the pointing requirement becomes an attitude control problem,

where we wish to achieve a spacecraft orientation in relation to the comet that allows it to be in the

main camera line of sight constantly. The expected trajectory of the spacecraft in relation to the target

is shown in Figure 1.1, where the red body axis must be aligned with the direction of the comet. This
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requirement gets harder to meet the closer the spacecraft gets to the target, as the dynamics become

faster and the actuation needed to maintain the attitude increases.

A couple of problems could arise, from the lack of actuator power to deficiencies in the control to

accompany the movement, or even external perturbations that impact the spacecraft and have such an

impact that render the mission unfeasible. In order to prevent the scenarios referred, a robust GNC

framework must be built and deployed, which can be done by resorting to optimal control schemes and

new methodologies for the estimation of the disturbances. The previously described system can be

modeled, for controller design purposes, as a linear time-variant.

1.3 Problem statement

The present work aims to address the shortcomings of classical system identification techniques for

Linear Time-Variant (LTV) systems in order to create models that are simultaneously accurate enough

to represent a wide range of phenomena while being simple enough to use with well-known and widely

used control techniques, leading to a more robust control algorithm. The main challenges of this pro-

posal are the amount of data needed to characterize one trajectory due to its changing dynamics and

guaranteeing a solution for the problem in a finite-time setting.

1.4 Related work

A large body of work has been developed in order to incorporate information provided by measure-

ments in system identification and controller synthesis, whether these come from more traditional sen-

sors, such as inertial measurement units, or image and video [5], providing guarantees and robustness.

The results described in [6] establish the grounds for system identification from observed data. Ear-

lier, the work of Kumpati et al. [7] already proposed a system identification strategy based on Neural

Networks. Nevertheless, data availability and computational and algorithmic tools were limited, so per-

formance and speed were constrained.

Recently, there has been more focus on providing guarantees that a problem can be solved to a

given precision in finite time, which is crucial to bridge the gap to optimal control. Hardt et al. [8] pro-

vides a solution to a linear dynamical system identification learning problem through gradient descent

techniques, for a Linear Time-Invariant (LTI) system, with a polynomial number of samples. On Dean et

al. [9], a three-step controller design method is proposed. The first step corresponds to the identification

of an LTI system through ordinary least squares, allowing the estimation error characterization and its

employment in a robust controller design, through System Level Synthesis [10]. Oymak et al [11] take

it a step further by proposing to learn a realization of an LTI system from a single input/output trajectory.

Sarkar et al. [12] detail a new statistical analysis of the ordinary least squares estimator for LTI systems

while achieving near-optimal finite time solutions, providing finite time guarantees for LTI systems. Al-

though these works present significant achievements, not many real world systems can be represented

3



as linear time-invariant systems and generalizing these findings to LTV systems is essential for a broader

application of the results.

The literature is not as extensive regarding the direct application of data-driven system identification

to linear time-variant systems. However, this problem has been a concern for many years. Dudul et

al [13] apply Feedforward Neural Networks to identify an LTV system, assuming a transfer function

characterization. Lin et al. [14] proposes an episodic block model for an LTV system, where parameters

within a block are kept constant, followed by the exploration of a meta-learning approach for system

identification divided into two steps: an offline initialization process and online adaptation. The solution

establishes an error bound for both initialization and online learning, while the simulations outperform a

least squares estimator without regularization for small samples.

Formetin et al [15] have recently proposed a system identification procedure that takes control spec-

ifications into account in the form of regularization. Although following a different representation of the

system that the one we adopt to follow, the solution presented in their work derives a model for the

system and a controller by the minimization of a cost function that accounts for the controller error and

the authors study a Bayesian control design to upgrade from the nominal version achieved by using the

convex optimization for the best estimation of the model. Validation of the controller is then performed

from a probabilistic perspective. The model estimated is intended to be used solely for the model-based

controller, in a setting very similar to the one we are proposing.

Additionally, when linear systems no longer satisfy the users’ and system’s needs, nonlinear system

identification comes into play. This class of problems presents many new challenges that may not be

common in linear system identification, for example, the need for thorough experimental processes for

data collection to guarantee that all behaviors are covered or even the difficulty of proposing a model

structure to represent the system [16].

Mania et al [17] states the difficulties of learning or estimating nonlinear systems with continuous-

time states and inputs due to insufficient data. They present an active learning methodology for data

collection and results production that guarantees a solution in finite time. Given past observations, a

system is estimated, then the system is run and more data is collected. In the end, using the data

collected, the system is re-estimated. This result is particularly interesting due to its online application

and incorporation of new data in the learning process.

However, when presented with a nonlinear model, one can decide to go forward to identify the best

linear approximation if it is taken into account the error associated with this assumption. We can choose

to implement a linear system identification for nonlinear systems due to its simplicity and reasonably

good approximation for many applications or even as just an initial estimation [16] [18]. When choosing

how to proceed with the system identification, we must recognize the trade-off between the versatility of

nonlinear models and the simplicity of linear ones. It is important to refer that LTV systems, in particular

discrete-time, are a powerful class of models and perform well when used to approximate nonlinear dy-

namics and can be very useful for controller design and analysis, as we propose to do in this thesis [19].

Going more profound in the domain literature, we can find work from the Advanced Concepts Team at

ESA that regards a direct application of Machine Learning algorithms to classical Space problems, such
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as autonomous landing [20] or interplanetary transfers [21]. Both of these works build on deep learning

algorithms, such as deep neural networks, and can be acknowledged as a step forward in integrating

these technologies in the Space industry. However, we can also recognize that simpler models, which

allow for a better common knowledge understanding, would be beneficial for more acceptance in the

community.

Izzo et al. [21] introduces a novel method for the generation of optimal trajectories, which allows

for the training of optimal control trajectories and presents a possible solution to one of the biggest

challenges of direct application of ML to optimal control: the need to solve the optimal control problem

to generate an optimal trajectory before training a new model. Additionally, this work once again uses

G&CNETS, previously proposed by the same team and with already proven results and stability [22]. We

opt out of this approach and design a generic algorithm for system identification that does not propose

to learn the optimal control path directly, but that can be applied to optimal controller design and is not

domain specific, offering a generic approach to LTV system identification.

1.5 Contributions

We present a closed-form solution for the LTV system identification problem, with a complexity that

varies linearly with the number of instants considered for the modeling. We formulate the problem as

a regularized least squares optimization problem and build the solution and its demonstration on the

grounds of the convex optimization framework. The constrained variation of the system’s dynamics con-

stitutes the perfect setting for smoothness imposing regularization, which to the best of our knowledge

has never been done, and we can then tune the learning model to adapt to different characteristics

throughout the trajectory.

This solution represents the main contribution of this work and we wish to emphasize its benefits,

when compared to generic tools, such as cvxpy, and iterative minimization algorithms, based on coordi-

nate descent, especially for large-scale problems, and its integration with well studied controller design

structures, such asLinear Quadratic Regulator (LQR). To support our work, we use simulation environ-

ments and apply our findings to simple systems, such as a spring-mass-damper LTV, and to real world

case studies from the Space industry, such as the Comet Interceptor mission that we presented before.

1.6 Thesis outline

To support the work we intend to accomplish throughout this thesis, we present the theoretical basis

needed to thoroughly comprehend the results in Chapter 2 as well as the validation system we intend

to use in the following chapters.

With this background set, Chapter 3 presents the problem we wish to address and the possible

solutions, from a problem agnostic application to more specific ones that leverage on the problem rep-

resentation. Here, we derive a necessary and sufficient condition to guide data collection to guarantee

a solution and we prove to have a closed-form solution for the LTV system identification problem and
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validate it. Additionally, we prove that it is a better option than other well-known methods to solve convex

optimization problems, mainly when applied to large scale cases.

Chapter 4 states the solution the optimal control problem for the discrete LTV and we implement it

using the model estimated in the previous Chapter to prove that it can be used to feed classical controller

design structures, such as the LQR.

In Chapter 5, to complete the analysis of the closed-form solution and its applicability to real world

problems, we employ it in a Low Fidelity Simulator of the Comet Interceptor mission, after discussing the

functionalities of the simulator.

Finally, Chapter 6 provides a summary of the main achievements of this work and suggests possible

future applications.
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Chapter 2

Background

This Chapter sets the basis for the work we perform in the following chapters regarding the notation

that we intend to use and the theoretical background needed to fully understand the developments. Also,

we present the validation model that is used throughout this thesis to complete multiple performance

assessments.

2.1 Notation

For the fulfillment of this work, vectors are going to be found in bold non-italic lowercase a ∈ Rn,

while matrices are to be found in bold non-italic uppercase A ∈ Rn×m. Scalar constants, A ∈ R, and

scalar variables, a ∈ R, are represented in italic uppercase and italic lowercase, respectively.

The identity matrix is represented by I and a matrix or vector of zeros is 0. We assume that their

dimensions are clear from the context.

Throughout this work, whenever we use the operator ∇, we refer to it as an expanded gradient with

respect to matrix quantities, such that for matrix X ∈ Rm×n, we have

∇X =


∂

∂X11
· · · ∂

∂X1n

...
. . .

...
∂

∂Xm1
· · · ∂

∂Xmn

 . (2.1)

The Frobenius norm of matrix X ∈ Rm×n is

‖X‖F =
(
Tr(XTX)

)1/2
=

 m∑
i=1

n∑
j=1

x2
ij

1/2

(2.2)

with xij being the element of line i and column j. From [23], its derivative is

d‖X‖F
dX

= 2AT (AX). (2.3)
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2.2 Theoretical background

2.2.1 Convex optimization

A function is defined as a convex function if its domain is a convex set and, for all x and y, with

0 ≤ θ ≤ 1, we have

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.4)

Generically, we can derive first and second order conditions to evaluate the convexity of a function. If f

is differentiable, f is convex if and only if, with a convex domain and for all x and y in this domain, we

have the first order condition as

f(y) ≥ f(x) +∇f(x)T (x− y). (2.5)

If we get ∇f(x) = 0, then f(y) ≥ f(x), which proves that x is a global minimizer of f . This results

proves to be one of the strongest properties of convex functions, as we can get global information from

local information [24].

An optimization problem has the form

minimize
x

f0(x)

subject to fi(x) ≤ 0

hi(x) = 0

(2.6)

with f0 as the objective function, for what we wish to find a minimum, while subject to strict rules we call

constrains, addressed as fi. Essentially, an optimization problem consists on making the best choice

out of a set of possible choices. If no constraints are present, the problem is said to be unconstrained.

If the problem is a minimization and the objective function and constraints are convex, we have

a convex optimization problem. When the convex optimization problem is unconstrained, for x to be

optimal, the first-order condition reduces to the necessary and sufficient condition [24]

∇f0(x) = 0. (2.7)

The second order condition can be stated as

∇2f0(x) � 0. (2.8)

2.2.2 Least squares estimation

The least squares problem is a particular case of unconstrained convex optimization and it can be

used in multiple settings and variations. For the purpose of this work, we will detail the regularized least

squares. The ordinary least squares is formulated as

minimize
x

‖Ax− b‖22, (2.9)
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and it can be reduced to solving a set of linear equations x∗ = (ATA)−1Ab [24].

The regularized least squares is defined by adding extra terms to the cost function that penalize

or emphasize special characteristics of the problem. Let g(x) be the regularization function and λ the

coefficient that regulates the influence g has in the estimation. We can rewrite (2.9) as

minimize
x

‖Ax− b‖22 + λg(x). (2.10)

2.2.3 Linear systems

When presented with the same input, a linear time-invariant system will always output the same

response, independently of the time. In practice, both dynamics and control matrices are constant. In

contrast, a linear time-variant system response will depend on time, as the dynamics and control matrix

will vary with time. Taking a time-bounded trajectory as an example, we can consider that we only need

to find the system characterization once for the LTI but as many times as the time steps encapsulated

by the trajectory for the LTV. In essence, a system identification problem for a linear time-variant setting

is significantly computationally more demanding.

2.2.4 Linear Quadratic Regulator

A feedback control system can use state feedback to regulate the system’s output and track a refer-

ence input in the presence of disruptions and uncertainty. The design of the controller can be addressed

from different viewpoints and one of the most common and beneficial in the Space industry is an optimal

control setup. This approach tries to find the control inputs that best fit a given criteria. To accomplish

the objectives of the present work, we address the controller design from an optimization perspective, by

attempting to minimize a cost function and focus our analysis on the LQR for a discrete LTV system [25].

Considering a discrete-time LTV system

x(k + 1) = A(k)x(k) + B(k)u(k), (2.11)

the LQR problem resides in finding the control signal u∗(k) = −Kkx(k) that minimizes the LQR cost,

which is defined, for LTV discrete systems, as

J =
1

2
xT (N − 1)Hx(N − 1) +

1

2

N−2∑
k=0

xT (k)Qkx(k) + uT (k)Rku(k), (2.12)

with H ≥ 0, Qk ≥ 0 and Rk > 0.

Additionally, let us represent ck(x(k),u(k)) as

ck(x(k),u(k)) =
1

2

(
xT (k)Qkx(k) + uT (k)Rku(k)

)
. (2.13)

Matrices Qk and Rk allow for the adjustment of the solution to better adapt to the objectives of

the system. The terms regulated by these matrices represent the output energy and the control signal
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energy, respectively. Although the LQR intends to find a controller that minimizes both energies, they

vary inversely, which means that decreasing one energy will increase the other. The function of Qk and

Rk is to allow for a tuning of the trade-off [26]. One of the key challenges of the LQR is the choice of

these matrices.

It is important to understand the implications of varying Qk and Rk to ease the tuning phase of the

controller design. On the one hand, when we define Rk much larger than Qk, the optimal value of

the cost can be achieved by employing smaller control inputs, while the state response will be more

significant. On the other hand, when we define Rk much smaller than Qk, the optimal solution is found

for smaller outputs, even at the control input expense. Moreover, we can individually define the entries

of the matrices to manipulate how much a state variable is regarded or not and the influence they have

on the control input.

2.2.5 Metrics for closed-loop performance evaluation

Closed-loop performance can be evaluated through multiple perspectives. We introduce five metrics

used to address the controller performance for the various design parameters so that the best ones can

be chosen [27]. The error is the difference between the state at a given time instant and the desired

value.

The metrics used in this work are:

• Rise time, tr: Rise time is defined as the time it takes for the output to reach an error that is less

than 10% and it is usually required to be small;

• Sum of the steady state error: Stands for the error accumulated along the trajectory, since the

point where rise time is reached until the end and it must be minimized;

• Maximum control input: The maximum value demanded from the actuators, it is crucial for phys-

ical systems with actuator constraints. We want to reduce it whenever possible;

• Sum of the control input energy: The quantity that stems directly from the cost function of the

LQR and it must be as small as possible;

• Percentage of overshoot Defined as the peak value divided by the final value and should be kept

below 20%.

2.3 Models for validation: spring, mass and damper systems

To validate the methods that are proposed, a spring-mass-damper system is reproduced, first as LTI

and then as LTV. Let us consider a classical spring-mass-damper system as

z̈ = −Cs
m
ż − Cd

m
z +

1

m
f (2.14)
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with z as the mass position in relation to the resting point at z = 0, Cs is the spring constant, Cd is the

damping coefficient and f represents the effects of external inputs on the system.

If we denote x =

z
ż

 as the state, the continuous time state space system can be addressed as

ẋ(t) =

 0 1

−Cs

m −Cd

m


︸ ︷︷ ︸

Ac

x(t) +

 0

1
m


︸ ︷︷ ︸

Bc

u(t), (2.15)

To represent this scenario as a discrete-time linear system, a discretization of the problem was

performed, assuming piecewise-constant inputs u(k), with m and ∆t constants, resulting in

x(k + 1) = eAc∆t︸ ︷︷ ︸
A(k)

x(k) + A−1
c (eAc∆t − I)Bc︸ ︷︷ ︸

B(k)

u(k), (2.16)

which is comparable to (2.11). We can approach this system as a LTI, by maintaining parameters Cs

and Cd constants, and as LTV, by varying these same parameters with time. For this particular case, we

defined Csk = cos
(
1.5ω0k + π

4

)2
Cs

Cdk = [1.5 + cos (ω0k)]Cd

. (2.17)
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Chapter 3

System identification from data

The present Chapter addresses the main contributions of this work. We start by formulating the

problem as a regularized least squares, supporting the formulation with the mission characteristics,

deriving a necessary and sufficient condition on data to achieve a solution. We then proceed to prove

that we can solve the problem in a closed-form, achieving a linear complexity of the number of data

points per trajectory. To support the claims made, we provide a validation study and a benchmarking

analysis.

3.1 Model for realistic LTV systems

As a first approach to the attitude modeling problem for the Comet Interceptor mission, we analyzed

the angular velocity profile that the spacecraft must meet to perform its mission correctly, Figure 3.1(a).

This reference angular velocity is the nominal trajectory as explained later, on Section 5.2.3. This can

be used to derive a time-variant linearization of the attitude dynamics, thus allowing the analysis of the

variation between instants, as in Figure 3.1(b).
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(a) Angular velocity evolution.
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(b) Variation between instants.

Figure 3.1: System variation throughout the trajectory.

It is clear that the closer the body is to the point of CA, the faster it needs to change its attitude.

Moreover, it can be observed that the variation of the system characterization, C, between consecutive
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instants, in a discrete-time setting, is constrained and does not vary indefinitely. This key observation

induces a requirement on our model such that, in consecutive time instants, the model does not vary too

much.

Let us address a discrete linear time-variant system defined as

x(k + 1) = A(k)x(k) + B(k)u(k), (3.1)

such that k ∈ [0, ..., N − 2], with N being the total number of instants considered to be part of one

trajectory. In a given instant k, the state is x(k) ∈ Rp and the control input is u(k) ∈ Rq. System

parameters A(k) ∈ Rp×p and B(k) ∈ Rp×q are, respectively, the dynamics and control matrices that

define the system’s response and the unknown variables we aim to derive from the data.

Taking into account all the data available, we need to additionally define the matrices that contain the

state information, X(k) ∈ Rp×L as

X(k) =
[
x1(k) x2(k) ... xL(k)

]
and the control information, U(k) ∈ Rq×L as

U(k) =
[
u1(k) u2(k) ... uL(k)

]
,

of all the L different simulations for the k-th instant of the trajectory. Moreover, we define X′(k) as

X′(k) = X(k + 1).

To find the proper solution for system (3.1), we start by defining the optimization variable C(k) ∈

R(p+q)×p as

C(k) =

AT (k)

BT (k)

 ,
with C = [C(k)]

k=N−2
k=0 , such that C ∈ R(N−1)(p+q)×p.

Additionally, to allow for a least squares representation of the identification problem, we also need to

define D(k) ∈ RL×(p+q) as

D(k) =
[
XT (k) UT (k)

]
,

with D = [D(k)]
k=N−2
k=0 , allowing to have

V =



D(0) 0 ... 0 0

0 D(1) ... 0 0

... ... ... ... ...

0 0 ... D(N − 3) 0

0 0 ... 0 D(N − 2)


,
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which results in V ∈ R(N−1)L×(N−1)(p+q) and ultimately the problem can be formulated as

minimize
C

1

2
‖VC−X′‖2F . (3.2)

According to the key observation in the beginning of the Chapter, to limit the variation of the system

between instants, thus encoding the domain knowledge that a system will not change drastically from

one time step to the next, we add a term to the cost function, with regularization parameters λk >

0, turning problem (3.2) into the regularized problem. By allowing for the λk to vary throughout the

trajectory, we impose more flexibility to the problem formulation, covering a wider range of problems.

As such, we are solving

Problem 1.

minimize
C

f(C) :=
1

2
‖VC−X′‖2F +

1

2

N−2∑
k=1

‖λ1/2
k (C(k)−C(k − 1))‖2F . (3.3)

Remark 1. The problem we are solving can be seen as a trade off between how close the optimization

variable is to the data and how much we allow for it to change between instants. Thus, we can address

the tuning of parameter λk as the tuning of the relative importance of each objective. Higher values of

λk are congruent with little variation of the system behavior between instants and will emphasize the

weight of the second term has in the cost function and lower values will allow for more drastic changes

between k and k + 1.

Moreover, to aid the analysis, we can define the second term of f writing all the weighted difference

equations λ
1/2
k (C(k)−C(k − 1)) as a matrix product



λ
1/2
1 0 ... 0 0

0 λ
1/2
2 ... 0 0

... ... ... ... ...

0 0 ... λ
1/2
N−3 0

0 0 ... 0 λ
1/2
N−2


︸ ︷︷ ︸

Υ1/2



−I I 0 ... 0 0 0

0 −I I ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... −I I 0

0 0 0 ... 0 −I I


︸ ︷︷ ︸

F


C(0)

C(1)

...

C(N − 2)

 , (3.4)

allowing Problem 1 to be written as

Problem 2.

minimize
C

f(C) :=
1

2
‖VC−X′‖2F +

1

2
‖Υ1/2FC‖2F . (3.5)

This statement makes explicit that we are solving an unconstrained convex optimization problem. As

Problem 2 is an unconstrained minimization of a quadratic function, a solution is proven to exist and is

well-defined [24]. In order to lighten the notation, we use ∇ to refer to ∇C and ∇k to refer to ∇C(k).

Solving problem (3.5) amounts to solving the equation

∇f(C) = 0. (3.6)
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As for 2.3, the following linear equation solves the problem,

∇f(C) = VT (VC∗ −X′) + FTΥFC∗ = 0

⇔
(
VTV + FTΥF

)
C∗ = VTX′

⇔ C∗ =
(
VTV + FTΥF

)−1
VTX′

. (3.7)

We now derive a condition on data that guarantees that the information collected is enough to reach

a solution and correctly identify the system.

Informal statement of Theorem 1 [When is the dataset large enough?] When the collected data is

sufficiently varied, there is a unique solution to Problem 1. Further, after each collected trajectory, it is

possible to identify if there is enough information for attaining a unique solution by computing the sum of

the required trajectories covariances and testing it for positive definiteness.

To prove Theorem 1, we will require two lemmas.

Lemma 1. Let B � 0, B ∈ Rm×m and x 6= 0. If x ∈ Im(B) then xTBx > 0.

Proof. If the result of the Lemma does not hold, we would have that x ∈ Im(B) and x ∈ Ker(B).

However, since Im(B)∩Ker(B) = ∅, the only option would be to have x = 0, which violates the conditions

of the Lemma, thus proving that the inference holds.

Lemma 2. The following two expressions are equivalent:

(i) Both (a) and (b) hold:

(a) A � 0, B � 0;

(b) ∀v ∈ Ker(B) \ {0} vTAv > 0;

(ii) A + B � 0.

Proof. The proof that (ii) implies (i) follows trivially from the fact that both A and B are positive semidef-

inite.

To prove the other way around, we first remember that if B � 0, then Im(B) ⊥ Ker(B).

Let v = vI + vK , x 6= 0, with vI ∈ Im(B) and vK ∈ Ker(B).

If vI 6= 0, then

(vI + vK)T (A + B)(vI + vK) = (vI + vK)TA(vI + vK) + (vI + vK)TB(vI + vK). (3.8)

From the conditions of the Lemma, we know that the first term of the sum holds, as vTAv > 0. For the

second term, we recall Lemma 1, yielding that vTBv > 0, thus we infer that the LHS product is greater

than zero. From this, we get

A + B � 0.

If vI = 0, (3.8) is turned into

vK(A + B)vK = vKAvK > 0. (3.9)
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Thus, we prove that A + B � 0.

Theorem 1. [Existence and uniqueness of the solution of Problem 2] Let the collected dataset D be

comprised of L trajectories drawn independently

D = {(x`(k),ul(k)) : k ∈ {0, ..., N − 2}, ` ∈ {1, ..., L}}

and let Σ` be the empirical covariance of trajectory `, i.e.,

Σ` =
1

N

N−1∑
k=0

x`(k)

u`(k)

x`(k)

u`(k)

T , (3.10)

with ` ∈ {1, ..., L}.

Then, the following statements are equivalent:

(i) the solution of Problem 1 exists and is unique;

(ii) the empirical covariance of the data, Σ = Σ1 +Σ2 +...+ΣL, as defined in (3.10), is positive definite.

Proof. Initially, let us define x̄(k) = vec(X(k)) and c̄(k) = vec(C(k)) and rewrite Problem 1

minimize
c̄

f(c̄) :=
1

2

N−2∑
k=0

‖x̄(k + 1)− (D(k)⊗ I)c̄(k)‖2+

1

2

N−2∑
k=1

‖λ1/2
k (c̄(k)− c̄(k − 1))‖2.

(3.11)

Thus, applying the second-order condition (2.8), which states that a function f is convex if and only

if its domain is convex and its Hessian is positive semidefinite. The Hessian of the cost function of our

problem as stated in (3.11) is

∇2f(c̄) =


. . .

DT (k)D(k)⊗ I

. . .


︸ ︷︷ ︸

Π

+



λ1I −λ1I · · · 0 0

−λ1I (λ1 + λ2)I
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . (λN−3 + λN−2)I −λN−2I

0 0 · · · −λN−2I λN−2I


︸ ︷︷ ︸

Γ

(3.12)

and we must guarantee that ∇2f(c̄) � 0, which is equivalent to say that the solution exists and is unique.

From here on, we will use this knowledge to infer about the conditions on data.

Let us define the kernel of Γ as

Ker(Γ) =




c̄

...

c̄

 : c̄

 . (3.13)
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From Lemma 2, if we have Π + Γ � 0, then we know that

[
c̄T · · · c̄T

]
Π


c̄
...

c̄

 > 0. (3.14)

Therefore,

c̄T

(
N−2∑
k=1

DT (k)D(k)⊗ I

)
c̄ > 0⇔

N−2∑
k=1

DT (k)D(k) � 0

⇔
N−2∑
k=1

[
XT (k) UT (k)

]T [
XT (k) UT (k)

]
� 0

⇔
N−2∑
k=1

( [
xT1 (k) uT1 (k)

]T [
xT1 (k) uT1 (k)

]
+

· · ·+
[
xT` (k) uT` (k)

]T [
xT` (k) uT` (k)

] )
� 0

⇔ Σ1 + Σ2 + · · ·+ ΣL � 0

(3.15)

Thus, we found the necessary and sufficient conditions on the data and proved that statements (i) and

(ii) are equivalent.

Theorem 1 allows to efficiently collect data, as we can address the covariance of the data as we col-

lect it and verify its positive definiteness. When this condition is verified, we can stop the data collection

and advance for the training.

Equation (3.7) makes evident that in order to find the optimal value for C, it is required to invert a

matrix

A := VTV + FTΥF,

A ∈ R(N−1)(p+q)×(N−1)(p+q). This result shows that the approach requires the computation of a matrix

heavily dependent on the number of instants considered in the trajectory being studied and the dimen-

sion of the system, meaning the result will become harder to obtain with an increased sampling rate

and system complexity. When presented with a high sampling rate system, the size of matrices involved

in the calculations can be very high, so solving directly the regularized least squares problem is not

feasible. Regardless of this shortcoming, it is still important to understand the conditions in which the

matrix A is invertible, since it will impact the numerical solution of the optimization problem. Theorem 2

addresses this point.

Theorem 2. Let Υ 6= 0. Then, matrix A is invertible if there exists a set of p+ q pairs (`, k) ∈ {1, ..., L}×

{0, ..., N − 2} such that the corresponding
[
xT` (k) uT` (k)

]
are all linearly independent.

Proof. The proof is made by contraposition, by proving that if the problem does not have a unique

solution, then conditions of the theorem do not hold.
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Let us consider then that A is not invertible. Then

∃η :
‖η‖=1

ηTAη = 0⇔ ηTVTVη + ηTFTΥFη = 0

⇔ ‖Vη‖2 + ‖Υ1/2Fη‖2 = 0

⇔ Vη = 0 ∧Υ
1/2Fη = 0

. (3.16)

Defining η(k) =
[
ηTA(k) ηTB(k)

]T
and η = [η(k)]

k=N−2
k=0 , it is possible to write, for all k,

Υ
1/2Fη = 0⇔

ηA(k)− ηA(k − 1) = 0⇔ ηA(k) = ηA(k − 1) := η̄A

ηB(k)− ηB(k − 1) = 0⇔ ηB(k) = ηB(k − 1) := η̄B

(3.17)

where the fact that Υ1/2 is invertible was used. This yields

η∗ :=


I

...

I


︸ ︷︷ ︸
N

η̄A
η̄B


︸ ︷︷ ︸
η̄

(3.18)

denoting the null space of F. In order for (3.16) to hold, η∗ has to be contained by the null space of V

whenever λ 6= 0, i.e.

Vη∗ = 0⇔ VN η̄ = 0 (3.19)

that can be reduced to

∀k∀` xT` (k)η̄A + uT` (k)η̄B = 0. (3.20)

The solution of (3.20) implies that either η̄ = 0, contradicting the hypothesis of the proof (‖η‖ = 1),

or that the vectors
[
xT` (k) uT` (k)

]
in the dataset are linearly dependent, i.e., it is not possible to find

p+ q linearly independent vectors for all ` = 1, ..., L and k = 0, ..., N − 2. Thus, if λk 6= 0 for all k and the

matrix A is singular, the condition of the Theorem cannot hold and, by contraposition, if it holds, then A

is invertible and there exists a unique solution to Problem 2.

This concludes the proof of sufficiency of the conditions to the existence of solution.

Remark 2. The conditions for the existence and uniqueness of solution set forth by Theorem 1 can be

clearly seen as equivalent to this new result, as both require the complete set of
[
xT` (k) uT` (k)

]
vectors

within the dataset to span Rp+q.

Solving (3.7) is the path adopted by classic solvers to perform its operations, which becomes a

disadvantage of this technology, as it is not capable of keeping up with the complexity of the estimation.

Hence, addressing this shortcoming is essential to configure the system identification problem of linear

time-variant systems as a regularized least squares problem and is the main objective of this Chapter. To

this end, as made explicit by the diagram in 3.2, we present two distinct methods that exploit the specific
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Figure 3.2: Possible approaches for the system identification problem in a convex optimization setting.

characteristics of this problem, representing a step above in terms of formal complexity, as they will

require more mathematical manipulation, but will also decrease the computational resources required to

find the solution.

3.2 Further analysis

We can regard (3.5) for each k instant independently, such that it can be formulated as

Problem 3.

minimize
C

f(C) :=
1

2

N−2∑
k=0

‖D(k)C(k)−X′T (k)‖2F︸ ︷︷ ︸
h(C)

+
1

2

N−2∑
k=1

‖λ1/2
k (C(k)−C(k − 1))‖2F︸ ︷︷ ︸

g(C)

. (3.21)

Accordingly, let us once again think of the derivative of the cost function as a sum of the derivatives

of its parcels and have for the k-th instant

∇kf(C) = ∇kh(C) + ∇kg(C), (3.22)

knowing that the gradient at each instant k is ∇kf(C). The gradient of h(C) at k is

∇kh(C) = DT (k)(D(k)C(k)−X′T (k)). (3.23)

The gradient of g(C) is

∇g(C) = FTΥFC. (3.24)
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With F as in (3.4), we can compute FTΥF

FTΥF =



λ1I −λ1I 0 ... 0 0 0

−λ1I (λ1 + λ2)I −λ2I ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... −λN−3I (λN−3 + λN−2)I −λN−2I

0 0 0 ... 0 −λN−2I λN−2I


. (3.25)

Replacing (3.23) in (3.22) and solving (3.24), we get ∇kf(C) =


DT (k)(D(k)C(k)−X′T (k)) + λk+1C(k)− λk+1C(k + 1) = 0, for k = 0

DT (k)(D(k)C(k)−X′T (k))− λkC(k − 1) + (λk + λk+1)C(k)− λk+1C(k + 1) = 0, for k ∈ [1, ..., N − 3]

DT (k)(D(k)C(k)−X′T (k))− λkC(k − 1) + λkC(k) = 0, for k = N − 2

.

(3.26)

We have, thus, to solve a linear system of equations.

3.2.1 Stochastic Block Coordinate Descent

The first approach to solve (3.26) is a coordinate descent procedure. Given an optimization variable

ε ∈ Rm×n, the block coordinate descent proposes that, instead of optimizing the cost function for the

whole variable, the variable is divided into blocks, εi, and the problem is solved for that block, maintaining

the other blocks constant [28]. This process should be repeated until a solution is reached, selecting dif-

ferent blocks for each update of the optimization variable. The stopping criteria requires for the derivative

of the cost function to be below a predefined threshold.

The block selection can be performed sequentially or randomly. For the purpose of this work, we opt

to randomize the instants of a trajectory and select one from such random order, up until all instances are

updated. From then on, we restart the update step with a new random order. This approach guarantees

that all instances are updated before repeating the process for an instant without updating the instances

immediately before or after, reducing the potential excessive use of computational resources.

The Stochastic Block Coordinate Descent (SBCD) algorithm shortcomings are linked to the difficulty

to update the cost function derivative efficiently: after a sharp decrease in the first iterations, the deriva-

tive update tends to reach a plateau, while the cost function is still decreasing, but at an unsuitable rate

to achieve a solution in due course. Moreover, the update of the derivative is heavily dependent on the

regularization parameter.

This method can be adapted to solve (3.26), by solving the equations to find the optimal value of a
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particular block in those specific conditions and getting

C+(k) =
(
DT (k)D(k) + λk+1I

)−1 (
DT (k)X′T (k) + λk+1C(k + 1)

)
for k = 0(

DT (k)D(k) + (λk + λk+1)I
)−1 (

DT (k)X′T (k) + λkC(k − 1) + λk+1C(k + 1)
)

for k ∈ [1, ..., N − 3](
DT (k)D(k) + λkI

)−1 (
DT (k)X′T (k) + λkC(k − 1)

)
for k = N − 2

.

(3.27)

In each iteration of the SBCD, C(k) is updated by a small amount δ ∈ R(p+q)×p and its new value

can be written as

C+(k) = C(k) + δi. (3.28)

By replacing the previous value of C(k) with the new one in (3.26), we can get a new value of ∇kf(C)

in terms of a much simpler quantity δ, by updating the terms ∇kh(C) and ∇kg(C).

Algorithm 1 describes in detail the implementation of this approach. By evaluating the value of the

derivative at the new C, we can infer if the optimality condition was reached or not. However, this

approach is iterative, which means that it may not be able to reach a solution if the proper limits are not

found. Nevertheless, the SBCD approach enables different loss functions for the data fidelity term, like,

e.g., the Huber M-estimator, robust to outlier measurements.

3.3 Closed-form solution

Taking into account the drawbacks of the SBCD approach, we opted to go even deeper in the evalua-

tion of (3.6) and (3.26) and propose a closed-form solution to the problem. Given the previously defined

D, let us have the following auxiliary variables



S00 = DT (0)D(0) + λ1I

SN−2,N−2 = DT (N − 2)D(N − 2) + λN−2I

Skk = DT (k)D(k) + (λk + λk+1)I

Sk,k−1 = Sk−1,k = −λkI

Sk,k+1 = −λk+1I

Θk = DT (k)X′T (k)

. (3.29)

Remark 3. Our closed-form solution, with a complexity that scales linearly with the number of time steps

considered stems, from the key observation that the linear system of equations to be solved in (3.26) is

in fact a block tridiagonal linear system. By considering the LU factorization method, our problem has a

closed-form solution with linear complexity [29].

In the next section, we apply the LU factorization to (3.26). In general, it consists on a forward pass

and then a backward pass, in this case with a complexity that scales linearly with the number of time
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Algorithm 1 Stochastic Block Coordinate Descent

Input: D, X′, [λk]k=N−2
k=1 , ε

Output: C∗

1: C0 ← initialized with random values
2: S00 ← DT (0)D(0) + λ1I
3: SN−2,N−2 ← DT (N − 2)D(N − 2) + λN−2I
4: for k ∈ [1, ..., N − 3] do
5: Skk ← DT (k)D(k) + (λk + λk+1)I
6: end for

7: for k ∈ [0, ..., N − 2] do
8: Θk ← DT (k)X′T (k)
9: ∇h0(k)← DT (k)(D(k)TC0(k)−X′T (k))

10: end for

11: ∇g0 ← FTΥFC0

12: ∇f0 ←∇h0 + ∇g0

13: t← 0

14: while ‖∇f(Ct)‖2F > ε do
15: RndOrd = random(0, ..., N − 2)
16: for i ∈ RndOrd do
17: if i is 0 then
18: Ct+1(i)← Θ−1

ii (Θi + λi+1Ct(i+ 1))
19: else if i is N − 2 then
20: Ct+1(i)← Θ−1

ii (Θi + λiCt(i− 1))
21: else
22: Ct+1(i)← Θ−1

ii (Θi + λiCt(i− 1) + λi+1Ct(i+ 1))
23: end if

24: δ(i)← Ct+1(i)−Ct(i)

25: ∇ht+1(i)←∇ht + DT (i)D(i)δ(i)
26: if i is 0 then
27: ∇gt+1(i)←∇gt(i) + λi+1δ(i)
28: ∇gt+1(i+ 1)←∇gt(i+ 1)− λi+1δ(i)
29: else if i is N − 2 then
30: ∇gt+1(i− 1)←∇gt(i− 1)− λiδ(i)
31: ∇gt+1(i)←∇gt(i) + λiδ(i)
32: else
33: ∇gt+1(i− 1)←∇gt(i− 1)− λiδ(i)
34: ∇gt+1(i)←∇gt(i) + (λi + λi+1)δ(i)
35: ∇gt+1(i+ 1)←∇gt(i+ 1)− λi+1δ(i)
36: end if

37: for i ∈ [i− 1, i, i+ 1] do
38: ∇ft+1 ←∇ht+1 + ∇gt+1 . Only the necessary
39: end for
40: t← t+ 1
41: end for
42: end while

return C∗ ← Ct
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steps considered in the system model.

Forward pass

For the forward pass, we solve LY = Θ, where L is

L =



Λ0 0 · · · 0 0

S1,0 Λ1 · · · 0 0
...

. . . . . .
...

...

0 0 · · · ΛN−3 0

0 0 · · · SN−2,N−3 ΛN−2


,

and Λk and Θk,` are square submatrices of size (p + q) × (p + q). To start the process, the unknown

variables are initialized with Λ0 = S00

Y0 = Λ−1
0 Θ0

,

and for the subsequent time steps k = 1, ..., N − 2, we incrementally compute


Ωk = Sk,k−1Λ

−1
k−1Sk−1,k

Λk = Skk −Ωk

Yk = Λ−1
k (Θk − Sk,k−1Yk−1).

(3.30)

Backward pass

Given the results of the forward pass, we can address the backward propagation by solving MC = Y,

with

M =



I Λ−1
0 S0,1 · · · 0 0

0 I · · · 0 0
...

...
. . . . . .

...

0 0 · · · I Λ−1
N−3SN−3,N−2

0 0 · · · 0 I


. (3.31)

The optimization variable in the last instant is initialized with C(N − 2) = YN−2. For i = N − 3, ..., 0,

C(k) = Yk −Λ−1
k Sk,k+1C(k + 1). (3.32)

Next, we state the main result of this work, about the convergence in a fixed, finite number of algebraic

operations enumerated in Algorithm 2, i.e., as a closed-form.

Theorem 3. [Algorithm 2 solves (3.21) in closed-form with linear complexity]

Algorithm 2 yields a closed-form solution for the system identification problem of the linear time-

variant system from data, with linear complexity on the number of time steps. Namely, the number of
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Algorithm 2 COSMIC - closed-form system identification

Input: D, X′, [λk]k=N−2
k=1

Output: C∗

1: S00 ← DT (0)D(0) + λ1I
2: SN−2,N−2 ← DT (N − 2)D(N − 2) + λN−2I
3: for k ∈ [1, ..., N − 3] do
4: Skk ← DT (k)D(k) + (λk + λk+1)I
5: end for

6: for k ∈ [0, ..., N − 2] do
7: Θk ← DT (k)X′T (k)
8: end for

9: Λ00 ← S0

10: Y0 ← Λ−1
0 Θ0

11: for k ∈ [1, ..., N − 2] do . forward pass
12: Λk ← Skk − λ2

kΛ
−1
k−1

13: Yk ← Λ−1
k (Θk + λkYk−1)

14: end for

15: C(N − 2)← YN−2

16: for k ∈ [N − 3, ..., 0] do . backward pass
17: C(k)← Yk + λk+1Λ

−1
k C(k + 1)

18: end for
return C∗ ← C

multiplication operations to be performed by Algorithm 2 is

c = (N − 1)
(
(p+ q)3 + (2p+ 3)(p+ q)2

)
, (3.33)

which is linear on the number of time steps N , and cubic on the size of state space and control space,

and does not depend on L, the size of the dataset used for learning matrices [A(k),B(k)]N−2
k=0 .

Proof. We must prove that solving ∇f(C) = 0 is equivalent to solving

LMC = Θ, (3.34)

where L is a lower triangular matrix with non zero diagonal and first subdiagonal blocks, and M is an

upper triangular matrix with diagonal identity submatrices and first superdiagonal non-zero.

Let us assume a system starting from the results in (3.26). We can rearrange the system of linear

equations to address it as
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DT (0)D(0)C(0) + λ(−C(0) + C(1))
...

DT (k)D(k)C(k) + λ(−C(k − 1) + 2C(k)−C(k + 1))
...

DT (N − 2)D(N − 2)C(N − 2) + λ(−C(N − 3) + C(N − 2)


︸ ︷︷ ︸

LMC

=



DT (0)X′T (0)
...

DT (k)X′T (k)
...

DT (N − 2)X′T (N − 2)


︸ ︷︷ ︸

Θ

,

which directly yields the definition of Θ, just like it was defined in (3.29). Decomposing the LHS of the

previous definition, we can identify the dependence on C and single it out. Thus, we get



S00 −λ1I 0 0 0

. . . . . .
...

. . . −λkI Skk −λk+1I
. . .

...

0 0 0 −λN−2I SN−2,N−2


︸ ︷︷ ︸

LM



C(0)
...

C(k)
...

C(N − 2)


. (3.35)

Additionally, from the assumption of the form of matrices L and M, as previously defined, we get

LM =



Λ0 S01 0 0 0 0 0

S01 Λ1 + Ω1 S12

...
...

...
...

...
. . . . . . . . .

...
...

...
...

... Sk,k−1 Λk + Ωk Sk,k+1

...
...

...
...

...
. . . . . . . . .

...
...

...
...

... SN−4,N−3 ΛN−3 + ΩN−3 SN−3,N−2

0 0 0 0 0 SN−2,N−3 ΛN−2 + ΩN−2



, (3.36)

yielding the results we stated in the formulation of the problem by making it equal to (3.35). Hence, we

prove that the problem can be solved by a LU factorization and that solving equation (3.6), taking into

account the nuances of the k-th instants, is equivalent to solving (3.34).

For the complexity result, we analyze the multiplication operations involved in the presented algorithm

as follows. For the forward pass we need to invert all N − 1 Λk matrices. If we use traditional inversion

methods, the number of operations for each inversion is (p + q)3. Multiplications by a scalar involve

2(p+ q)2. The multiplication of the two matrices in Step 11 of Algorithm 2, Λ−1
k , with a matrix (p+ q)× p

costs p(p+ q)2, gives a total number of operations for all N − 1 steps of

cfwd = (N − 1)
(
(p+ q)3 + (p+ 2)(p+ q)2

)
,

while the backward pass demands multiplication of a scalar by a matrix of size (p+q)×(p+q) accounting
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for (p + q)2 operations, and a multiplication between a matrix of size (p + q) × (p + q), and one of size

(p+ q)× p, yielding p(p+ q)2 operations. Thus, the total number of backward pass operations is

cbwd = (N − 1)
(
(p+ 1)(p+ q)2

)
.

3.3.1 Preconditioning

To account for eventual irregularities in the data collected that may difficult the mathematical opera-

tions needed to compute a solution, namely the multiple matrices inverses that need to be calculated,

we perform a preconditioning process when necessary. The proposed procedure can be compacted

by a new definition of matrices S and Θ that regulate the formulation of the upper and lower triangular

matrices [30]. As such, indicated with the superscript PC, we redefine (3.29) and get


SPC

kk = I

SPC
i,j = S−1

ii Si,j for i 6= j

ΘPC
k = S−1

kkΘk

. (3.37)

Applying these new formulation to Algorithm 2, we get a more robust solution to the problem, circum-

venting numerical destabilization caused by large matrix condition numbers. For the purpose of this

work, we found that it was not necessary to apply preconditioning to the data. We note that applying

preconditioning will change the result of Theorem 3, although not changing the linear complexity in N .

3.4 COSMIC performance evaluation

3.4.1 Setup

To demonstrate previous stated theoretical results, a simulation and testing environment was devel-

oped, using Simulink and Python. The schematic in 3.3 presents the flow of the tests performed and the

validation process. The green blocks represent previous knowledge the user generates, while the yellow

blocks are collected and then fed to the COSMIC. In blue blocks we have the outputs that are feasible to

be analyzed and will dictate the performance of the algorithm.

The system is first simulated and excited in a Simulink model to allow for data collection and it is the

one described in Section 2.3, both in LTI and LTV setups, and to guarantee sufficient data we input a sine

function with different amplitude for each run of the simulation, as shown in Figure 3.4. It is also worth

noting that in each simulation run, the initial conditions take a different value. For the purpose of these

tests, state variables could take any value between 0 m and 6 m and 0 m/s and 6 m/s, respectively. The

validation is performed with parameter λk constant throughout the trajectory, as it would yield a heavy

parametric study and, for this particular system, we found the usage of different conditions for different
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Figure 3.3: Schematic representing the validation procedure for performance evaluation.

parts of the trajectory not to be particularly constructive, thus being represented by λ.

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

st
at

e

0 1 2 3 4 5 6 7 8 9 10

-50

0

50

st
at

e

0 1 2 3 4 5 6 7 8 9 10
simulation time (s)

-1000

0

1000

in
pu

t

Figure 3.4: Example of the data collected, each color is one of the different L simulations.

Afterwards, this data is used as input into COSMIC and multiple models are trained, in a Python en-

vironment, to understand the behavior of the proposed algorithm in different settings, by varying multiple

parameters, such as the λ or the noise that disturbs the state.

Finally, presented in the schematic 3.3 as the real time component of the workflow, the estimated
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model is excited with previously selected inputs from which we know the expected result, and we are

able to evaluate the performance. The metrics used are the estimation error and the prediction error.

Taking into account the formerly defined system, once again from Section 2.3, we have a ground

truth that we can compare our results to, both for the LTI system, which is known for all instants, and for

the LTV system, that is also computed in the Simulink model and then input to the Python environment.

The estimation error is defined as

‖Ĉ−Cgt‖F (3.38)

and indicates how close the model is to the true system. We can also verify the evolution of this metric

over time.

Regarding the prediction power of COSMIC, we propose the evaluation of the predicted state error

when compared to the true state from a simulated trajectory that was not part of the training data set.

As such, we address the metric by defining the norm of the error as

‖x̂(k + 1)− x(k + 1)‖2 = ‖Â(k)XT (k) + B̂(k)UT (k)−
(
A(k)XT (k) + B(k)UT (k)

)
‖2, (3.39)

allowing for the assessment of the error propagation. Moreover, for the following validation study, we

assumed that the measurements were disturbed by noise, which can be characterized by ω ∼N (µ, σ2)

with µ = 0 and variance σ2.

3.4.2 Parametric study

To infer how the performance of the algorithm depends on the measurement noise and parameter λ,

we opted to develop a parametric study where, for each noise variance, we tested the estimation for a

reasonable range of values for parameter λ.

To characterize COSMIC’s effectiveness, we start by the estimation error, from (3.38), for each pair

of parameter λ and variance. We perform this experiment for the LTI and LTV settings and the results

are expressed in tables 3.1 and 3.2.

λ 1 10 100 103 104 105

σ2

0.602 190.230 108.367 63.092 35.751 9.403 0.826
0.102 62.131 41.223 16.489 1.806 0.042 0.0007
0.062 44.659 24.618 5.672 0.343 0.006 7.826×10−5

0.032 22.258 6.518 0.688 0.026 0.0004 4.256×10−6

0.012 2.200 0.209 0.012 0.0004 5.654×10−6 5.844×10−7

Table 3.1: Error between estimated Ĉ and the ground truth evolution with noise and parameter λ for the
LTI system.

Comparing the results from each experiment, it is clear that there is not much difference between the

results for the LTI and the LTV trials, which indicates the good performance of the algorithm but also that

the noise interferes with the invariance of the LTI system. It is interesting to verify that as the parameter

λ increases, the estimation error for the LTI becomes smaller than the estimation error of the LTV, which
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λ 1 10 100 103 104 105

σ2

0.602 185.009 107.004 63.007 35.703 9.642 0.871
0.102 64.301 42.793 16.992 1.982 0.053 0.003
0.062 47.144 25.508 5.860 0.385 0.008 0.002
0.032 23.376 6.611 0.701 0.031 0.001 0.001
0.012 2.275 0.206 0.012 0.0007 0.0003 0.001

Table 3.2: Error between estimated Ĉ and the ground truth evolution with noise and parameter λ for the
LTV system.

confirms the theoretical inferences, because higher values of λ implicate less variation between instants,

which is closer to the dynamics of the time-invariant system. The evaluation from this point forward is

only presented for the LTV system, even if it was performed for both settings.
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Figure 3.5: State estimation performance of the multiple methods tested, compared with the true state.

Figure 3.5 exposes the variation of the estimation error with the noise added to the measurements for

the LTV system, summarizing the results from Table 3.2, and it is clear that for a noise standard deviation

of about 10% of the maximum initial conditions, the algorithm is heavily affected. Reducing this value,

the estimation error drops significantly. Once again, it is evident that smaller values for the parameter λ

lead to a worse performance of the algorithm, as the variation between instants is not significant enough

to allow such values, resulting much better with higher values of λ.

Regarding the prediction power, we used the models estimated to derive the results from Table 3.2

and Figure 3.5 to compute a new trajectory and evaluate the state error, by inputting a previously known

trajectory not disturbed by noise, to assess how much it disturbed the prediction. As expected, the

results show higher prediction errors for the higher variance, as evident in Figure 3.6.

Moreover, this test made explicit certain areas where the prediction power decreases (because the

state error increases) and these are congruent for all the tests performed. From the a priori knowledge
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(c) σ2 = 0.062
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(d) σ2 = 0.102
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(e) σ2 = 0.602

Figure 3.6: Prediction error variation with noise variance, for different variances, with λ, considering the
LTV system.

we have about the simulated system, it can be inferred that these peaks appear around the point the

transition between the transient state and the steady state occurs. Increasing the variance of the noise,

the value for said peaks increases significantly.

Taking the previous conclusions into account, the following evaluations will be performed considering

that the measurements noise follows a Gaussian distribution with zero mean and variance σ2 = 0.062,

representing about 1% of the initial values for the state, which is a fair assumption.

As part of the validation process, we can also evaluate what is the λ that best adapts the estimated

model to the true system characteristics. To do so, we evaluate the system in the previous conditions,

31



with the chosen value for the noise variance. Once again the estimation error and the prediction power

were evaluated and the statistical measures were used to make a choice of most fitting λ.
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Figure 3.7: Evaluation metrics evolution with time to infer the optimal λ = 105.

From a simple analysis of the plots in Figure 3.7, we can say that the λ that best fits the system we

are trying to estimate is λ = 105, as the lowest errors occur at this value.

3.5 Benchmark

The novelty of the algorithm presented comes from its efficiency, mainly when compared to other

approaches to the same problem.

As we are solving a convex optimization problem, we can obtain a solution through cvxpy, a domain

specific language that allows for easy problem syntax to express convex optimization problems in Python

and is widely used [31]. For this specific use case, the ECOS solver [32], an interior-point solver for

second-order cone programming, is automatically invoked. Hence, we evaluate the problem agnostic

approach with this strategy.

In addition, we are also going to be evaluating the solution of (3.21) through a SBCD algorithm, as

presented in Algorithm 1. Finally, we run again the COSMIC algorithm. These simulations, as all the

ones run in a Python environment, were made in Google Colab development setting, with 13GB of RAM

available and the Intel(R) Xeon(R) CPU @ 2.20GHz processor.

Table 3.3: Performance comparison of different system identification solutions.

Instances cvxpy SBCD closed-form
per Cost Time Cost Time Cost Time
trajectory (s) (s) (s)
100 100.960 2.929 100.960 0.031 100.960 0.014
1000 971.070 42.588 971.070 0.273 971.070 0.106
10000 * * 9710.431 3.531 9710.431 1.017
100000 * * 97303.028 21.055 97303.028 9.696
*Session crashed after using all available RAM.
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The benchmarking metrics are the cost function and the computation time. The cost function repre-

sents how close the solution found by an algorithm is to the information collected from the data and the

time it takes to achieve a solution is a direct indicator of the computational power needed to make the

calculations. To perform the comparison in Table 3.3, as we are studying the performance of the meth-

ods against cost and time, we simulated a 1/10 sampling rate trajectory and varied its length between

100 s, 1000 s, 10000 s and 100000 s with λ = 0.001 and stopping the SBCD at 1 million iterations, while

using the setting presented previously.

The cvxpy approach tries to solve the problem for all time steps simultaneously, leading to a solution

that requires the machine to invert a (N − 1)(p + q) × (N − 1)(p + q) matrix, as stated in (3.7). As the

number of instances per trajectory increases, the complexity also increases and the cvxpy approach can

no longer compute a solution in due course, while both SBCD and closed-form approaches continue to

perform as expected.

Moreover, for more disturbed data, the computation needed to reach this solution becomes more

difficult. Regarding the cost function from Table 3.3, no significant changes are observed from one

method to another, indicating that all are reaching the desired solution, different only on the time that it

takes to reach it.
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Figure 3.8: Computation time comparison of different system identification solutions.

This leads to the conclusion that the closed-form algorithm is the best option to solve (3.21), as it

can achieve minimal cost values with an efficient use of computational resources, reaching a solution for

all cases tested, performing significantly better than the other approaches. Moreover, from Figure 3.8,

which takes into account a logarithmic scale in the x axis to ease the plot interpretation we can experi-

mentally observe the linearity with the number of instances per trajectory that is stated in Theorem 3.

Furthering the analysis, to account for the optimal λ, we performed the previous analysis for λ = 105,

which led to new findings regarding the high dependence of the convergence of the SCBD on the value

of λ. As the results for the problem agnostic approach are the same, we opt to analyze the SBCD in
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detail, in comparison to our proposed closed-form solution.

Table 3.4: Performance comparison to make evident SBCD dependence on λ.

Instances SBCD limited closed-form
per Cost Time Cost Time
trajectory (s) (s)
100 170.094 90.626 150.403 0.011
1000 2663.71690 61.905 1521.0506 0.120

As presented in Table 3.4, when the λ is too high, the SBCD does not compare to the performance

of the closed-form algorithm, as it is to be expected, given the dependence on the derivative calculation,

which ends up always being too big to end the loop. To overcome this interference, we could adjust ac-

cordingly the stopping criterion. However, this would not guarantee an optimal solution, as the derivative

would not be equal to zero.

To better understand this behavior, we can notice than on 3.27, if the value of λ is big enough, the

data dependent terms can become very small and the update of the optimization variable will just be the

propagation of the neighboring values. Thus, the solution will be heavily dependent on the initialization

of the optimization variable. In conclusion, we can state that the SBCD is too dependent on previous

knowledge of the behavior of the data, given that we need to adjust the value of ε and the initialization

of C accordingly to have a viable solution.
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Chapter 4

Controller design for estimated model

To follow up on the system identification from data, we derive an optimal control law for the LTV

estimated model based on a dynamic programming setup. We start with the presentation of the dynamic

programming algorithm we chose to apply. Then, regarding the evaluation of its application, we study

the design parameters that best fit the system and address the advantages of the controller developed

against the ground truth of the spring-mass-damper system and the previously used controller, built

from an LTI system. We regard the N time instants trajectory from the previous chapter and all relevant

variables are to be considered as defined before.

4.1 Proposed solution

The optimal controller design for the LTV system estimated in Chapter 3 can be addressed as a

dynamic programming problem. As an LTV system, we need to consider different optimal control laws

for all instants, reaching an optimal control path. This requirement fits perfectly with the Principle of

Optimality, which states that, given a set of initial conditions, if the optimal solution for a problem passes

through a point, the solution with the said point as the initial condition must also be the optimal one [33].

The Principle of Optimality is the basis for the dynamic programming setting and the work presented in

this Chapter.

With the goal of minimizing the cost function (2.12), we start by addressing the issue from the last

point of the optimal solution and state that the minimal cost for this time step is J∗N−1 = 1
2xTN−1HxN−1.

Then, we go backwards by addressing one more step of the optimal path each time step.

Once again considering a convex optimization problem, the optimal control input for a trajectory at

N − 2 is the one that leads to a solution to the problem

Problem 4.

minimize
u(N−2)

JN−2 = c(x(N − 2),u(N − 2)) + J∗N−1. (4.1)

It is then derived directly from (3.6) and the knowledge about the system, i.e.

x(N − 1) = A(N − 2)x(N − 2) + B(N − 2)u(N − 2)
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that the solution is

u∗(N − 2) = −
(
RN−2 + BT (N − 2)HB(N − 2)

)−1
BT
N−2HA(N − 2)x(N − 2). (4.2)

From (4.2), we can define a new variable that will be referred to as the optimal gain, in this particular

statement for instant N − 2

KN−2 =
(
RN−2 + BT (N − 2)HB(N − 2)

)−1
BT (N − 2)HA(N − 2). (4.3)

u∗N−2 is the best control action at time N − 2 and the optimal cost associated with it is

J∗N−2[x(N − 2)] =
1

2
xT (N − 2)[QN−2 + KT

N−2RN−2KN−2+

(A(N − 2)−B(N − 2)KN−2)
T

PN−1 (A(N − 2)−B(N − 2)KN−2)]x(N − 2)

=
1

2
xT (N − 2)PN−2x(N − 2),

. (4.4)

From (4.4), we can additionally outline

PN−2 =QN−2 + KT
N−2RN−2KN−2+

(A(N − 2)−B(N − 2)KN−2)
T

PN−1 (A(N − 2)−B(N − 2)KN−2) .
(4.5)

If we represent PN−1 = H, we can then find the link between K and P and, by induction, solve for

the whole length of the problem. We opt not to expand on the induction formulation, as it can be found

on [33].

The dynamic programming problem is initialized with PN−1 = H and the following statements hold

true for k ∈ [0, ..., N − 2], starting from the last point of the trajectory

Kk =
(
Rk + BT (k)Pk+1B(k)

)−1
BT (k)Pk+1A(k)

Pk = Qk + KT
kRkKk + (A(k)−B(k)Kk)

T
Pk+1 (A(k)−B(k)Kk)

. (4.6)

Algorithm 3 Dynamic Programming for LTV controller design
Input: H, Q, R, A, B, x
Output: K

1: PN−1 ← H

2: for k ∈ [N − 2, ..., 0] do
3: Kk ←

(
Rk + BT (k)Pk+1B(k)

)−1
BT (k)Pk+1A(k)

4: Pk ← Qk + KT
kRkKk + (A(k)−B(k)Kk)

T
Pk+1 (A(k)−B(k)Kk)

5: end for
return K

For the purpose of this work, we opt to output the optimal gain sequence and not the optimal control

input path, to allow for more flexibility to test the possible applications of the controller designed and
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to ease the input in our previously designed simulation environment. Algorithm 3 derives from the

adaptation of the work developed in [33] to our scenario.

4.2 Performance evaluation

With the result from Algorithm 3, we can modify the simulation environment described before to

account for the new controller at each instant. The main difference stands in the application of the model

estimated by COSMIC. While we used it in the control loop to validate throughout Chapter 3, in this

setting we input it in the dynamic programming algorithm and use the results in a new control loop with

the ground truth system, to validate the controller performance. Figure 4.1 represents the new version

of the workflow of the simulations.

Regarding the estimated model, we used the parameters found to be the most suiting in Chapter 3 to

develop and save a model, i.e. λ = 105, and the measurements were disturbed by noise with standard

deviation σ = 0.06. Then, we load the new model into another Python environment to allow for it to

be used in the dynamic programming algorithm that results in an optimal control path. Afterwards, the

solution is returned to Simulink and tested in the original system.
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Figure 4.1: Schematic representing the validation procedure for the controller designed.

4.2.1 Design parameters

The design of the controller resides in finding matrices Qk and Rk that best suit the system modeled

and result in a better fit concerning the metrics previously defined in Section 2.2.5. Regarding these

matrices and to ease controller analysis, we are assuming, without severe loss of performance, that
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they are constant throughout the trajectory, from now on just referred to as Q and R, which significantly

reduces the number of design parameters necessary to solve for the optimal control path.

Additionally, we are also going to define Q and R as diagonal matrices, which translates in indepen-

dent weighting for each state variable and control input. Thus, we have, for the problem addressed in

this Chapter, 

Q =

qx 0

0 qv


R = r

H = Q

. (4.7)

Leaving the definition of the design parameters Q and R like this, we can rewrite the cost function as

J =
1

2

N−1∑
k=0

xTk

qx 0

0 qv

xk + uTk ruk

=
1

2

N−2∑
k=0

zkqxzk + żkqv żk + ukruk

=
1

2

N−2∑
k=0

qx

(
z2
k +

qv
qx
ż2
k +

r

qx
u2
k

)
. (4.8)

From (4.8), we conclude that the cost function minimum is independent from the value of qx, which

for the purpose of the design choices can be assigned as a constant, and the design parameters are

reduced to the values of qv
qx

and r
qx

. With this setup, qx was left as qx = 1 and the ratios were looped

through with values from 10−6 to 1 to compute multiple control laws, that were then fed to the real time

phase of the schematic in 4.1. The results for each pair
{
qv
qx
, rqx

}
are then studied to evaluate the

controller performance metrics and the results of this exercise are represented in Figure 4.2.

For this part of the work, we study the position tracking effectiveness of the system, while feeding it

a null velocity reference. From the previous knowledge of the system, as presented in Section 2.3, we

have z = 1 m and ż = 0 m/s, such that xref =

1

0

 entailing the following state equation, regarding Kk

as the output of Algorithm 3,

x(k + 1) = AGT(k)x(k) + BGT(k)Kk(xref − x(k)). (4.9)

For the purpose of evaluating the best design parameters, initial conditions were kept constant and equal

to zero.
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Figure 4.2: Controller evaluation metrics for different qvqx and r
qx

.
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To find the controller that maximizes the performance, we need to minimize all five metrics. However,

from the visual inspection of 4.2 (red and blue representing low and high values, respectively) it comes

up that this is a contradictory objective for some of the metrics. Rise time and steady state error present

lower values when the maximum control input, sum of the control energy and overshoot percentage

have higher values.

The rise time presents optimal behavior for small values of qv and r, increasing as both quantities

increase, while the steady state error does not present such a linear conduct, showing its minimum for

the lowest value of r but for an increased qv. Contrarily, the maximum control input and the sum of the

control energy have the same evolution with the evolution of qv and r, having its lowest values for high

ratios of qv
qx

and r
qx

, as expected as more focus is given to the control in such setting. Regarding the

percentage of overshoot, it is clear that its behavior differs from all the other metrics, having its lowest

values for high values of qv and low values of r, due to the extra focus we give to the velocity in this case,

while maintaining a smaller ratio control and output, which results in smaller outputs.

As all overshoot values are below the desired margin, we can establish this metric as less significant

for this particular case, given that all values present acceptable margins, as any pair
{
qv
qx
, rqx

}
could

work. Thus, we wish to find a compromise between the rise time and steady state error optimal design

parameters and the maximum input control and sum of control energy ones. To have such a result, we

opt to follow the analysis and, as such, design the optimal controller for the spring-mass-damper system

with qv
qx

= 10−1, r
qx

= 10−3 and qx = 1.

4.2.2 Results

Having found the optimal control law by solving the discrete LTVLQR with dynamic programming, the

results are now analyzed and compared to previously used controller design techniques. To perform

these tests, random initial conditions are set and vary between 0 and 6, both for position and velocity

and the measured state is affected by noise.

For a first approach to the new controller, we test the system ability to do reference tracking, by

feeding the system with two different types of inputs:



xsin
ref =

5 sin(0.5× k∆t)

cos(0.5× k∆t)


xcte

ref =

1

0


. (4.10)

Figure 4.3 presents the results of this experiment and it can be stated that the controller designed tak-

ing into account the estimated model performs as expected and is a good option to control this system,

being able to track references easily, converging in less than 10% of the trajectory time and presenting

smaller oscillations. Moreover, the changing initial conditions do not affect the final result and the system

is able to perform regardless. Furthermore, we can evaluate the system performance comparing it to
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two other controllers, to infer about the quality of the model and the quality of the controller.
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Figure 4.3: System position response from different initial conditions.

At first, we generate one additional controller from the ground truth system, which is then fed to the

system and its output is evaluated in contrast with the controller designed with the estimated model,

having the same initial conditions. A qualitative assessment from Figure 4.4 shows that the system

responds similarly to both controllers and the optimal control path has the same behavior for both op-

tions. Hence, the estimated system is able to display the system behavior as well as the ground truth,

which once again proves that the COSMIC algorithm is a good option for system identification leading

to controller design.
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Figure 4.4: System position response to controller generated by the ground truth system and the esti-

mated model.

The last comparison is performed against the controller used for the data collection phase, that is

constant throughout the trajectory and does not consider the system specific characteristics, in contrast

with the system model estimated by COSMIC or the ground truth. Although presenting a similar system

response, as observed in Figure 4.5, we can observe that the controller was not optimal for this system,

presenting a considerable difference to the optimal control path that should have been followed. The
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control input plot indicates that there might be a compensation from the over performance at the begin-

ning of the trajectory, with smaller than expected inputs from 3.5 s onwards, even if this is not visible

in the system reference tracking. We consider that the controller derived from the COSMIC estimated

model is a better option for the control of the spring-mass-damper system than the LTILQR.
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Figure 4.5: System position response to controller generated by the LTILQR and the estimated model.

Finally, after performing a statistical analysis of the tracking error of the system when controlled by

controllers designed from the three different strategies formerly presented, we can confidently say that

the estimated model is a good approximation of the system, as shown by the close values of the statisti-

cal metrics in Table 4.1, which refer to the error between the true trajectory and the trajectories resulting

from the application of all three controllers. Moreover, it allows for a better controller synthesis than

previously used techniques, performing better than the LTI LQR, presenting a smaller mean and sum of

squared error, once again from Table 4.1, which was expected given that the LTI is an approximation for

the slowly varying LTV.

Table 4.1: Statistical comparison of the controller design methods by addressing the mean, standard
deviation and sum of squared error of the prediction error.

Control Mean Standard deviation Sum of squared error
Estimated model 0.1050 0.7346 0.5506
Ground truth 0.0994 0.7441 0.5635
Time invariant 0.1218 0.7425 0.5661

To conclude this Chapter, it can be stated that the estimated model from COSMIC is a good approx-

imation of the spring-mass-damper system used throughout this work and the dynamic programming

strategy worked well for the problem posed. Hence, this system identification and controller design

framework is validated and we can further test it in more complex environments.
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Chapter 5

Comet Interceptor as a Case Study

This Chapter presents the application of previously discussed solutions to a Space mission envi-

ronment, namely the Comet Interceptor, in the context it was introduced in Chapter 1. We start by

describing the Low Fidelity Simulator where the mission is simulated, from the theoretical properties of

the system representation to the functionalities it has. Then, the COSMIC algorithm is used to identify

the attitude error dynamics with respect to the nominal mission trajectory and we apply the proceedings

from Chapter 4 to develop a new attitude controller and test it in the simulation environment.

Throughout this Chapter, we represent the inertial frame centered in the target as {I} and the body

fixed frame, centered in the spacecraft, as {B}. This indication is given as a superscript before the

variable and when omitted we consider it to be represented in the body frame {B}.

5.1 Background

5.1.1 Attitude representation

The representation of the spacecraft attitude is done using unit quaternions, usually represented as

q =

qw
qv

 =


qw

qx

qy

qz

 , (5.1)

allowing for the use of well-known algebraic manipulation to be used with this quantity. qw is the scalar

part and qv is the vector one.

In order to understand the importance of this representation, we first need to address the definition

of some basic quaternion operations. The statements made in this section are based on Solá et al [34]

and we are only going to present the operations important for the understanding of the work done here

and are not straightforward from common mathematical background.
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Let us have two unit quaternions

q =

qw
qv

 and p =

pw
pv

 .
The quaternion product is

p⊗ q =


pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx

pwqz + pxqy − pyqx + pzqw

 =

 pwqw − pTv qv

pwqv + qwpv + [pv]×qv

 .

The skew operator is defined as

[a]× =


0 −az ay

az 0 −ax
−ay ax 0

 ,

representing a skew-symmetric matrix. This encodes the cross-product as in [a]×b = a× b and can be

particularly useful for multiplication operations.

The quaternion conjugate is

q∗ =

 qw

−qv

 ,
the identity is

q1 = 1 =

 1

0v


and the unit quaternion presents a norm equal to 1, calculated as for a usual vector.

5.1.2 Attitude dynamics and kinematics

The attitude dynamics and kinematics of the spacecraft are described by the general representation

of these phenomenons, i.e.


q̇(t) = 1

2q(t)⊗
[
0 ω(t)

]T
Jω̇(t) = [Jω(t)]× ω(t)− u(t) + T(t)

(5.2)

The attitude is represented by the quaternion q =
[
q0 qx qy qz

]T
, with norm 1 and {q0, qx, qy, qz} ∈

R, and it transforms a vector represented in the the body fixed frame, centered in the spacecraft, in a

vector in the inertial frame centered in the target. The angular velocity is ω ∈ R3. Then, to complete the

attitude dynamics, we also define torque input as u ∈ R3 and the external disturbances T ∈ R3, which

can be caused by multiple factors but are not going to be considered for the first stage of this application.
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J represents the inertia in the spacecraft body frame. This system is nonlinear.

The pointing error is defined as the angle between the direction that the camera is truly pointing at,

dLOS , and the direction of the comet, dc, both in the body fixed frame. Thus, the cosine of the pointing

error is

cos(θPE) = dTLOSdc. (5.3)

The latter direction can be obtained from the position of the spacecraft represented in the inertial

frame, using the attitude information that can be retrieved from the attitude kinematics and the translation

information, which entails

 0

dc

 = q∗ ⊗

 0

Irc

⊗ q, (5.4)

where Irc is a unitary vector [35].

5.1.3 Control engineering approach

As stated before, the work of this thesis intends to focus on the system identification to aid the

controller design of a Space mission. The main objective of the Comet Interceptor is to keep the target

within the cameras Field of View (FoV), in order to obtain high quality images of the comet. Thus, the

GNC and AOCS are to be designed with this objective in mind, which requires an intense process of

design, validation and verification. In a control engineering project, the build up to the most detailed

simulator of the mission is performed in multiple steps, each requiring proof of work and guarantees of

safety.

In this sense, Low Fidelity Simulators are of extreme importance and generate multiple findings that

are then incorporated in High Fidelity Simulators, such as Functional Engineering Simulators. The main

differences between Low and High Fidelity Simulators lie in the imposition and design of external per-

turbations, which are much more detailed for the more complex version and represent more accurately

the environment where the body we are studying is going to be integrated and perform its mission. Ad-

ditionally, High Fidelity Simulators include a comprehensive design of the interaction between different

parts of the on board software for guidance, navigation and control purposes, which is critical for mission

success.

The main take away from the Low Fidelity Simulator is its approach to separate dynamical properties

of the system, which result in first solutions for the problems encountered that can then be tuned and

adapted to the full overview of the system. Thus, the work presented here is an approach to the first

step of the design process, where the nonlinear system is represented, without external perturbations,

to allow for a deeper knowledge of the system behavior to the control inputs that may be given to it.

Figure 5.1 represents the general structure that we work with and the data flow between the different

blocks. Generally, a mission simulator is composed by a representation of the real world, which can con-

tain only a representation of the Dynamics and Kinematics Environment (DKE), with or without external
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Computer

Functional Engineering Simulator

Data

Figure 5.1: Low Fidelity Simulator structure.

disturbances, or go even further and address the actuators and sensors that are going to be present in

the physical system, simulating its limitations (e.g. the reaction wheel saturation) and the perturbations

they may introduce (e.g. sensor noise and imperfections).

Figure 5.2 represents the usual structure of the real world block. For the purpose of this work, in

the Low Fidelity Simulator, the actuators and sensors are not going to be implemented, with the data

available for the on board computer being available from a perfect DKE.

Actuators
Dynamics and

kinematics
environment

Sensors

Real world

Represents the true
behavior of the spacecraft

From the on
board

computer
To the on board

computer

Figure 5.2: Details of the real world implementation.

The on board computer has the implementation of all the computation that is needed for the guidance,

navigation and control of the mission. In here, the estimation of the true state of the spacecraft is

computed, along with the reference path it might follow and the commands it should receive to achieve

its objectives, with the links between each part being explicitly described in the diagram 5.3. We assume,

for this trial, that the navigation and guidance are perfect. The output of this block results from the

coordination of all parts and will be then input into the real world component of the Low Fidelity Simulator

as it would occur in the true spacecraft.

Translational
navigation

Guidance

Control

On board computer

From the Real
World

Commands to
actuators

Figure 5.3: Details of the software implementation.

To be performed correctly, the connection between all systems must be seamless and as close to

46



reality as possible. This simulator is the basis of the work from here on, allowing for the data collection

and validation of the results.

5.2 Design approach to the nonlinear attitude control problem

As the simulator is working in an approximate continuous time, we will be considering a continuous

linearization and then performing the discretization of the achieved system to have a basis to be com-

pared with the expected COSMIC result. The controller present in the data collection phase is based on

a LTI LQR developed for continuous-time.

As stated previously, we expect the spacecraft to perform a well established trajectory for the fly-

by mission, here considered in a linear trajectory that passes right in front of the target, perpendicular

to it. The reference is computed in the simulator and the control objective is to achieve a zero error

between the reference and the true attitude of the spacecraft. As such, we intend to control the attitude,

the angular velocity, i.e. the derivative of the attitude, and the attitude integral, which is a proportional,

derivative and integral setting, allowing for a more precise control and a fair comparison to the new

controller we wish to synthesize, through the dynamic programming approach presented in Chapter 4.

5.2.1 Linearization

The nonlinear attitude dynamics and kinematic system can be linearized around a nominal trajectory,

when assuming that the states can be represented as its nominal value, here the reference, disturbed

by an error, i.e. the variable that we intend to control and drive to zero. Thus, we can take into account

that the angular velocity, the dynamics component we intend to control, can be represented as

ω(t) = ω̄(t) + δω(t). (5.5)

The nominal angular velocity is obtained by imposing a nominal input profile u(t), such that the total

input torque is

u(t) = ū(t) + δu(t). (5.6)

If we disregard the terms of second and higher order, we can compute the linearized dynamics equations

as

J ˙δω(t) = ([Jω̄(t)]× − [ω̄(t)]×J)︸ ︷︷ ︸
Aω(t)

δω(t)− δu(t). (5.7)

Due to its properties, writing the true quaternion as the sum of the nominal one and an error quater-

nion is not feasible as this does not hold true. However, following the same reasoning and using the

properties of unit quaternions, the quaternion error can be written as the composition of two rotations,

given that

q̄(t) = δq(t)⊗ q(t) (5.8)
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δq can be seen as enconding a small rotation, and hence we can write 0

δθ

 = 2δq, (5.9)

where δθ represents the angular displacement, which entails that we can calculate it from the rotational

kinematics. From [34], we know that the linearized dynamics are

δ̇θ(t) = −[ω̄(t)]×δθ(t) + δω(t). (5.10)

Furthermore, we will add an integral term to allow for a more robust control, helping the system reject

low frequency disturbances and mitigate the steady state error, where we integrate the angular variation

over time.

Hence, representing the integral of the attitude error as
∫
δθ = δι, we define the system used for the

controller design as 
δ̇θ(t) = −[ω̄(t)]×δθ(t) + δω(t)

˙δω(t) = J−1Aω(t)δω(t)− J−1δu(t)

δ̇ι(t) = δθ(t),

(5.11)

which can be simplified to the linear time-variant system


δ̇θ(t)

˙δω(t)

δ̇ι(t)

 = A(t)


δθ(t)

δω(t)

δι(t)

+ B(t)δu(t). (5.12)

Matrices A and B are then given by

A(t) =


−[ω̄(t)]× I 0

0 J−1Aω(t) 0

I 0 0

 and B(t) =


0

−J−1

0


with A ∈ R(3+3+3)×(3+3+3) and B ∈ R(3+3+3)×3 and the torque input considered in the three directions of

the body frame and not divided by the reaction wheels. The nominal values of the states, the reference,

are obtained by an analytical solution that will be presented in a section further ahead.

5.2.2 Discretization

In order to fairly compare the system we intend to estimate with the previously described one, we

need to discretize (5.11). From the linear systems theory, we know that the continuous time-variant

system can be discretized as

δx(tk+1) = Φk+1|kδx(tk) + Gk+1|kδu(tk), (5.13)
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where the state transition matrix Φk+1|k, and the input propagation matrix, Gk+1|k solve the dynamical

system, allowing the determination of the state δx at time step k+ 1 as a linear combination of the state

and the input from the previous time step k. We do not compare directly these results with the ones

from COSMIC, as the nonlinearities are not necessarily dealt with in the same way, but compare instead

the ability to predict the state and compare both performances with previously collected data from a test

trajectory.

With respect to the solution of δθ(t), the variation of constants method [36] provides

δθ(tk+1) = Φθ(tk+1, tk)δθ(tk) +

∫ tk+1

tk

δω(tk), (5.14)

where Φθ,k+1|k := Φθ(tk+1, tk).

For the angular velocity, we can also write, assuming that the input is constant within each [tk, tk+1]

interval,

δω(tk+1) = Φω(tk+1, tk)δω(tk) +

∫ tk+1

tk

Φω(tk+1, τ)Bωdτ︸ ︷︷ ︸
Gω(tk+1,tk)

δu(tk), (5.15)

where Φω,k+1|k := Φω(tk+1, tk).

Lastly, for the integral term discretization, the statement is different, directly from the integral defini-

tion, such that

δι(t) = δι(tk) +

∫ t

tk

δθ(tk). (5.16)

Noting that the input is constant within each interval, we can write, for tk ≤ t < tk+1,


δ̇θ(t)

˙δω(t)

δ̇ι(t)

˙δu(t)

 =

A(t) B(t)

0 0


︸ ︷︷ ︸

Ā


δθ(t)

δω(t)

δι(t)

δu(t)

 . (5.17)

Considering that the solution for a linear system is given by the state transition matrix Φ̄(t, tk) that

respects the ordinary differential equation

˙̄Φ(t, tk) = Ā(t)Φ̄(t, tk), (5.18)

with Φ̄(tk, tk) = I, we can extract Φk+1|k and Gk+1|k by integrating (5.18) numerically using the nominal

angular velocity reference. Then,

Φ̄(tk+1, tk) =

Φk+1|k Gk+1|k

0 I

 =


Φθ,k+1|k Φθω,k+1|k 0 Gθ,k+1|k

0 Φω,k+1|k 0 Gω,k+1|k

Φιθ,k+1|k Φιω,k+1|k I Gι,k+1|k

0 0 0 I

 . (5.19)

49



5.2.3 Reference trajectory computation

Although not the focus of this work, the reference trajectory is needed for the system implementation

in the simulator. Thus, we present the study of the desired attitude through the rotation matrix that

defines it, being represented by

Rref =

[
Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖

Ih(t)

‖Ih(t)‖
−

Ir(t)

‖Ir(t)‖

]
(5.20)

where Ir(t) ∈ R3 is the position of the spacecraft with respect to the inertial frame {I} centered on

the comet and Ih(t) ∈ R3 is the angular momentum of the orbit, defined as Ih(t) = Ir(t) × Iv(t) with
Iv(t) ∈ R3 being the linear velocity of the spacecraft with respect to the comet. With this definition, the

z-axis of the spacecraft body frame will point towards the comet, the y-axis will be parallel to the angular

momentum pointing downwards, and the x-axis will complete the right-handed frame.

From [34], we know that the following holds true, in particular for the reference attitude,

Ṙref (t) = Rref (t) [ωref (t)]× ⇔ RT
ref (t)Ṙref (t) = [ωref (t)]× . (5.21)

As such, let us consider the derivative of each column of the rotation matrix.

d

dt

(
Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖

)
=

Iv(t)× Ih(t)

‖Ir(t)× Ih(t)‖
−

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖3
(
Ir(t)× Ih(t)

)T (Iv(t)× Ih(t)
)

d

dt

(
Ih(t)

‖Ih(t)‖

)
= 0

d

dt

(
Ir(t)

‖Ir(t)‖

)
=

Iv(t)

‖Ir(t)‖
−

Ir(t)

‖Ir(t)‖3
Ir(t)T Iv(t)

. (5.22)

The angular momentum of the orbit is considered to be constant, either through the assumption of a

Keplerian orbit or the straight-line fly-by to the comet.

Thus, using (5.20) and (5.22), we can solve (5.21) can lead to

[ωref (t)]× =


0 0 −

(
Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖

)T Iv(t)

‖Ir(t)‖
0 0 0

−
IrT (t)

‖Ir(t)‖

Iv(t)× Ih(t)

‖Ir(t)× Ih(t)‖
0 0

 (5.23)

where the fact that both Ir(t) and Iv(t) are perpendicular to the angular momentum vector was used

to remove identically zero elements of the matrix. This shows that the spacecraft only needs to rotate

along its y-axis to maintain pointing to the comet, as, from (5.23), it is possible to write

ωref (t) =


0

−
(

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖

)T Iv(t)

‖Ir(t)‖
0

 =


0

IrT (t)

‖Ir(t)‖

Iv(t)× Ih(t)

‖Ir(t)× Ih(t)‖
0

 . (5.24)
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Having the reference angular velocity, the reference attitude quaternion is obtained through the con-

version of (5.20) to quaternions, with the reference quaternion as qref =
[
qwref

qT
vref

]T
regarding each

element of Rref as Rij , with i, j = {x, y, x}, and from [37],



qwref
=
√

1 + Tr Rref

qxref
=
√

Rxx

2 +
1−Tr Rref

4

qyref =
√

Ryy

2 +
1−Tr Rref

4

qzref =
√

Rzz

2 +
1−Tr Rref

4

(5.25)

Advancing the analysis to compute the reference torque, we can start by simplifying (5.24), con-

sidering that the relative velocity can be decomposed in a tangential and radial component as shown

in Figure 5.4. In that case, noting that
∥∥Ir(t)× Ih(t)

∥∥ =
∥∥Ir(t)

∥∥ ∥∥Ih(t)
∥∥ as they are perpendicular, the

angular speed is

Comet

Spacecraft

Figure 5.4: Components of the relative velocity.

ωyref (t) = −
(

Ir(t)

‖Ir(t)‖
×

Ih(t)

‖Ih(t)‖

)T (
vradial(t)

‖Ir(t)‖

Ir(t)

‖Ir(t)‖
− vtangential(t)

‖Ir(t)‖

Ir(t)

‖Ir(t)‖
×

Ih(t)

‖Ih(t)‖

)
=
vtangential(t)

‖Ir(t)‖
=

∥∥Iv(t)
∥∥

‖Ir(t)‖
cosφ(t) =

∥∥Ih(t)
∥∥

‖Ir(t)‖2

(5.26)

where φ(t) is the flight path angle, as shown in Figure 5.4. From close inspection of the results of this

expression, it is clear that this is simply the result of well-known relation for rotational motion, Iv(t) =

Iω(t)× Ir(t), thus validating the approach.

Finally, to obtain the reference angular acceleration (and the associated torques), consider the time

derivative of (5.26), given by

ω̇yref (t) =
d

dt

(
vtangential(t)

‖Ir(t)‖

)
=
v̇tangential(t)

‖Ir(t)‖
− vtangential(t)

‖Ir(t)‖3
IrT (t)Iv(t)

= − 1

‖Ir(t)‖

(
Iv̇T (t)

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖
− IvT (t)

d

dt

(
Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖

))
− vtangential(t)

‖Ir(t)‖2
IrT (t)

‖Ir(t)‖
Iv(t)

(5.27)

where it can be noticed that the last parcel contains the radial velocity. Substituting the first line of (5.22)
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in the above expression and again considering the decomposition of the velocity gives

ω̇yref (t) = − 1

‖Ir(t)‖

(
Iv̇T (t)

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖
− IvT (t)

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖3
(
Ir(t)× Ih(t)

)T (Iv(t)× Ih(t)
))

− vtangential(t)

‖Ir(t)‖
vradial(t)

‖Ir(t)‖

= −
Iv̇T (t)

‖Ir(t)‖

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖
− vtangential(t)

‖Ir(t)‖

(
Iv(t)

‖Ir(t)‖
×

Ih(t)

‖Ih(t)‖

)T Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖

− vtangential(t)

‖Ir(t)‖
vradial(t)

‖Ir(t)‖

= − 1

‖Ir(t)‖
Iv̇T (t)

Ir(t)× Ih(t)

‖Ir(t)× Ih(t)‖︸ ︷︷ ︸
tangential linear acceleration

−2
vtangential(t)

‖Ir(t)‖
vradial(t)

‖Ir(t)‖

.

(5.28)

The value of the first parcel will depend on the actual dynamic model considered. In both the two

body problem and the straight-line flyby model, the tangential acceleration is zero, and, as such, the

angular acceleration is merely dependent on the distance to the central body and the tangential and

radial velocities.

In order to obtain the reference input profile that generates the reference angular acceleration and

velocity, it is necessary to solve the inverse dynamics problem. Generically, not considering reaction

wheel momenta h(t), this becomes the simple algebraic problem

Jω̇ref (t) + ωref (t)× Jωref (t) = τ ref (t). (5.29)

5.3 COSMIC use case and performance assessment

Similarly to what was done for the validation scenario, we had a setup for data collection and a setup

for control validation. The schematic of the simulation is presented in Figure 5.5.

Having established the Low Fidelity Simulator, the data collection procedure can be optimized to ac-

count for the result of Theorem 1, by calculating the sum of the covariances of each run of the simulator,

up until the minimum singular value of the sum is above a certain threshold, a fair amount above zero,

to guarantee that the data is sufficient to characterize the system. For this particular case, we defined

the threshold as 10 and we were able to stop the simulator after 222 runs. Thus, at a sample time of 1/5

s and a total of 200 s, each trajectory had 1001 instants being considered, N = 1001.

5.3.1 Model estimation

For the purpose of this proof of concept, and considering the motivation of this work, we opt to ad-

dress the problem with varying λk. Taking into account the previously knowledge about the system, i.e.

the angular velocity over the y axis that is desired, we establish that the work can be performed con-

sidering two different values for λk and three zones of the trajectory where this value will be maintained

constant. Figure 5.6 makes explicit this decision. To better adjust these values to the systems needs,
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Figure 5.5: Data collection and controller validation in the Low Fidelity Simulator.

we perform a parametric study.
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Figure 5.6: Different λk for different trajectory zones.

With the data collected, we input it in COSMIC and we study the model estimated and run the

algorithm multiple times, considering each iteration the model achieved and comparing the estimated

state, using previously collected control inputs, with the true trajectory. The state used to find x(k + 1)

was the state estimated in k or the true state in k, which allowed us to identify two different performance

metrics, the estimation power that amplifies the linearization error and the estimation power in each

instant, respectively.

Analyzing Figure 5.7 (a), we can infer that the lowest estimation error from the previous estimated

state occurs for λmiddle = 102 and λborders = 108. For the instantaneous estimation error, the error
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Figure 5.7: Parametric results for the variation of λk along the trajectory.

decreases as the λk increases. We choose the best pair to be the one with the lowest mean estimation

error, from estimated state, as it also appears to have a low error when calculated with the true state.

This result is in line with the analysis of the system and its expected behavior. For the zones further

away from the closest approach point, the system dynamics is much slower and the variations between

instants are less disruptive, which is in line with a higher value of λk, that imposes a narrower difference

between the optimal variable variation in consecutive instants. In the middle of the trajectory, the space-

craft is at its closest point to the target and its attitude needs to change much faster to maintain a pointing

error small enough, thus the system changes much faster and the difference between to instants needs

to be larger, which is allowed by the smaller value of λk.

Additionally, to verify if the estimation is an upgrade from the linearization, and thus prove that the

COSMIC algorithm can be an useful tool for the dynamical systems analysis, we plot the evolution of

the estimated states for each case, when calculated with the true state at k, and also the true evolution

of the state. The comparison is available in 5.8 and it the estimated state proves to be an upgrade from

the linearization, although very close to this theoretical approach. The main difference can be observed

for the evolution of δθz, where the linearized system is unable to follow as expected.

This result provides a good basis to follow up our analysis, as it demonstrates the advantage of using

the estimated model in detriment of the linearization output and establishes COSMIC as a step forward

to allow for faster deployment of the first phase analysis of a dynamical system.

Before proceeding to the next phase of the implementation, a reachability and controllability analysis

of the estimated model is performed. Firstly, from [26], we define the reachability Gramian as

WR(k0, k1) :=

k1−1∑
τ=k0

Φ(k1, τ + 1)B(τ)BT (τ)ΦT (k1, τ + 1) (5.30)
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Figure 5.8: Comparison between the performance of the estimated model and the linearization.

and the controllability counterpart as

WC(k0, k1) :=

k1−1∑
τ=k0

Φ(k0, τ + 1)B(τ)BT (τ)ΦT (k0, τ + 1). (5.31)

The backwards transitions are defined as

Φ(k0, τ + 1) = Φ(τ + 1, k0)−1 = {A(τ − 1)A(τ − 2)...A(k0)}

As such, we calculated the minimum singular values of the controllability and reachability Gramians,

to verify if the learned dynamics were in fact retaining these properties necessary for the optimal control

design or if the linearization performed by the COSMIC application was not good enough and was
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unable to characterize certain aspects of the model. The study performed was, however, positive, having

achieved all positive singular values for the Gramians, thus entailing that we can control the estimated

system and proceed with our analysis. If the outcome was not positive, it would be constructive to take

a step back and address the value of λk or even the problem formulation as linear time-variant system.

5.3.2 Controller design

Moving forward to the second phase of the COSMIC applicability to Space missions, we apply the

controller design framework described in Chapter 4 to the estimated model. Thus, we start by describing

the cost function for the LQR for the state and input system we are currently addressing. Once again,

the design matrices are considered constant along the trajectory and H = Q. First, we define Qx = qxI,

Qv = qvI, Qi = qiI and R = rI, yielding

J =
1

2

N−1∑
k=0

xTk


Qx 0 0

0 Qv 0

0 0 Qi

xk + uTkRuk

=
1

2

N−1∑
k=0

qxδθ
T
k δθ + qvδω

T
k xk + qiδθi

T
k Iδθik + ruTk uk

=
1

2

N−1∑
k=0

qi

(
qx
qi
δθTk δθ +

qv
qi
δωTk xk + δθi

T
k δθi +

r

qi
uTk uk

)
.

(5.32)

Similarly to the spring-mass-damper scenario, we can single out a design parameter from which the

tuning will be independent. However, there are now three tunable parameters. To start our analysis,

we define qi and settle it as qi = 102. Regarding the physical limitations of our system, namely the

maximum commanded torque that the actuators can react to, we additionally study a range of values for

r that are within the acceptable range. For the purpose of this study, we admit that the spacecraft can

act accordingly to no more than 2 N.m commanded torque for each frame axis. Thus, after evaluating

the possibilities, the chosen value for r was r = 10. From here on, we can proceed as implemented for

the validation model.

In these conditions, we define the most important metrics as the total sum of the error norm for the

whole trajectory and the percentage of overshoot in the first 50 seconds of the approach, that we wish to

minimize. The rise time was not taken into account. Moreover, as for the choice of r, the most important

metric was the maximum control input, that should not exceed the threshold acceptable for the physical

system, risking the saturation of the reaction wheels and the loss of the mission objective. The additional

metric of the sum of the control energy solidifies the choice that minimizes the control input, which we

also want to reduce.
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Figure 5.9: Attitude controller evaluation metrics for different qv and qx.
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Thus, having analyzed the results from Figure 5.9, the resulting controller was designed with the

previously stated design parameters and qx = 104 and qv = 105. The resulting system is fairly slow

and we could tune it to become faster, however that would come with a control input cost that, for the

specifics of the Comet Interceptor mission, we are willing to accept. The time to stabilize the system to

a reference is around 50 s.
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Figure 5.10: Controller design with the estimated model.

5.3.3 Low fidelity simulator

With the new controller, we are now able to input the optimal gain calculated for each distinct instant

into the Low Fidelity Simulator, instead of the constant gain that had been used to collect the data. To

do so, we once again use a framework corresponding to the analysis phase represented in Figure 5.5.

To achieve a representative variety of results, we modify the initial attitude between each run, while

maintaining the initial angular velocity null. We wish to achieve a pointing error, in relation to the optimal

trajectory given by the reference, as close to zero as possible.

Figure 5.11(a) shows the results from varying initial conditions and it is clear that the controller from

the linear system identification performed by COSMIC is able to control the nonlinear system and is a

good option for the first approach to the GNC framework of the mission. Additionally, in Figure 5.11(b)
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(a) Pointing error from different initial conditions.
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(b) Pointing error in the closest approach.

Figure 5.11: Pointing error resulting from the designed controller application.

we find it interesting to observe pointing error for the faster dynamics, where there are clearly more

oscillations but the error stays well below the maximum allowed threshold for the spacecraft to be able

to perform its mission.

The drawbacks from this implementation come from the lack of disturbances, present in the real

world environment, such as the gravity gradient induced torque, the solar radiation pressure effects, the

comet coma interference, mainly in the closest approach phase, which can also cause random impacts

of large particles, and the solar panel flexible modes perturbations.

The next step from this approach is then to collect data from a High Fidelity Simulator, such as

the Functional Engineering Simulator, and perform the previously described procedure to collect data,

design a controller and validate its use in the real mission software.
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Chapter 6

Conclusions

The main contribution of this work was the development of COSMIC, a closed-form system identi-

fication algorithm from data for linear time-variant systems, formulating the identification problem as a

regularized least squares, with a regularization term that imposes a constrained variation between the

solution consecutive instances. This approach is a result of the collaboration between control systems

theory and theory guided ML.

We started assessing the uniqueness of the solution and derived a necessary and sufficient condition

for the data collection in order for the regularized least squares to output a valid solution, finding that the

sum of the covariances of each run must be positive definite in order to achieve a solution.

The closed-form solution is achieved by cautious mathematical interpretation of the problem, having

been driven by a study from the general purpose solution to a detailed approach to the problem speci-

ficities. We prove that COSMIC can be derived through LU factorization and that the finite time solution

has a complexity that varies linearly with the number of time steps, i.e. the number of multiplications

performed by the algorithm is

c = (N − 1)
(
(p+ q)3 + (2p+ 3)(p+ q)2

)
.

Moreover, when data matrices are ill conditioned, we also proposed a preconditioning step in order to

obtain a stable algorithm.

The validation procedure was performed using a spring-mass-damper problem and, through a para-

metric study, we found that COSMIC performed well in the presence of sensor noise, for different values

of λk, the regularization parameter for each time step k. We found the most fitting λk for this system

and confirmed theoretical predictions that larger values of the tuning parameter derive less varying sys-

tems, as the one we proposed for validation. We achieved a solution that performs significantly better

than more established approaches to the optimization problem, for instance the direct derivation for the

whole trajectory, using cvxpy, and a Stochastic Block Coordinate Descent algorithm designed specifi-

cally for this problem.

Having performed the assessment of COSMIC, we proposed and implemented a dynamic program-

ming approach for the controller design from the estimated model. The proposed setup leverages from

61



the Principle of Optimality to reach an optimal solution for the LTV LQR, followed by a tuning phase

of the design parameters, ending with a controller. To validate the results, we tested different settings,

achieving nominal performance for all cases and concluding that the controller design from COSMIC

estimated systems is feasible and can represent a better solution than well-established techniques, that

leverage for example from the approximation of the system to more well behaved counterparts.

Finally, and fulfilling the motivation that brought us to this problem, COSMIC was tested in a Low

Fidelity Simulator of the Comet Interceptor mission and was used to identify the nonlinear attitude error

dynamics and kinematics of the spacecraft. Then, to demonstrate the practical applicability of the sys-

tem model and its usefulness in an engineering project, we developed a controller from the identified

system, regarding the same dynamical programming framework, and testing the results in the original

Low Fidelity Simulator. We found experimental evidence that the COSMIC method is a good option for

facilitating the system identification phase of the design process and can speed up the controller syn-

thesis, while automating the design process without the need of highly specialized system engineering.

We are confident that the results from this work will help develop the system identification procedure

for LTV systems and the representation as a regularized least squares problem can be an extremely

constructive for multiple settings. Moreover, the application in a real Space mission is a great step

towards an industry that takes advantage of all the data available and we hope it is used in the future

as a tool to expedite the early phases of development of the GNC and AOCS frameworks for different

missions.

6.1 Future work

Regarding the possible adaptations of this work in the future and further developments, we state

the obvious next step as the implementation in a Functional Engineering Simulator, that accounts for

the environment characteristics and possible, difficult to model, disturbances. This would allow for a

more compelling result and provide further guarantees that the nonlinearities of the system can be well

approximated by the linear time-variant dynamics.

We can think about leveraging from the linear complexity with the number of time steps and fast

computation times to possibly apply COSMIC in an online setting, which would entail a more judicious

analysis of robustness and guarantees and an intense testing phase to be able to deploy the solution.

COSMIC can also be used as a first approach to multiple control problem, such as adaptive control and

Model Predictive Control.

Finally, it would be interesting to approach this formulation of the LTV system for more applications,

as the novelty of the variation between instants restriction can be useful in other settings.
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[21] D. Izzo and E. Öztürk. Real-time optimal guidance and control for interplanetary transfers using

deep networks. arXiv:2002.09063, 2020.

[22] D. Izzo, D. Tailor, and T. Vasileiou. On the stability analysis of deep neural network representations

of an optimal state feedback. IEEE Transactions on Aerospace and Electronic Systems, 57(1):

145–154, 2020.

[23] J. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econo-

metrics. Wiley, 1999.

[24] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
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