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Abstract.
We consider the Symmetric Simple Exclusion, SEP(α), α ∈ N, and Inclusion, SIP(α), α ∈ R+, with

open boundary. These processes have duals that substitute the open boundary by absorbing boundary,
where each process and its dual are linked by their corresponding classical duality functions. As a con-
sequence of duality, starting all processes from their invariant measure, we obtain explicit formulas for
the density profile and 2-points correlation function for SEP(α) and SIP(α), and also for the 3-points
correlation function for SEP(1). These are found by computing absorption probabilities for the dual
processes. The limit of such functions is shown to be connected with Green functions that are solutions
of an initial value problem with different boundary conditions depending on the value of θ.
Keywords: Symmetric Simple Exclusion Process, Symmetric Simple Inclusion Process, Duality, Ab-
sorption Probabilities, Stationary Correlations.

1. Introduction
Introduced in the mathematics community by Spitzer
[9] in the 70’s and further developed by Liggett [7],
Interacting Particle Systems (IPS) focus on under-
standing the time evolution of physical quantities
observed at the macroscopic level - for example,
temperature, density, pressure - by analyzing the
long time behavior of particle systems whose dy-
namics is defined at the microscopic level and with
assumed random behavior. At a first level, every
time a continuous time Markov process is defined
it is natural to start by characterizing, if they ex-
ist, its invariant measures. These measures are also
called stationary and are characterized by, starting
at time zero from any of them, at anytime t, the
system will have the same distribution. When this
invariant measure is unique, it represents the distri-
bution for which the system converge, as time goes
to infinity. From here, studying physical quantities
of the system, becomes a two side way problem:
finding their profile once (that we will follow here)
or before the stationary state is attained.

Motivated by these and many other questions,
IPS combines different mathematical tools, such as
stochastic duality, or simply, duality, to extract in-
formation about its objects of study. Introduced in
1948 by Levy [8] and in 1957 by Karlin and McGre-
gor for birth and death processes [6], duality theory
allows us to connect some Markov processes to oth-
ers that in general are of simpler analysis. Two im-
portant simplifications that can be done when the
duality property is satisfied are: we can relate parti-
cle systems with boundary reservoirs that allow cre-
ation and annihilation of particles - open boundary
- with processes that only allow death of particles
- absorbing boundary ; and we can put in a duality
relationship systems that can have numerous par-
ticles, with processes that evolve with only a few.
Besides these simplifications, duality also provides

an algebraic approach to study Interacting Parti-
cle Systems, due to its strong connection with Lie
algebra’s theory. This new point of view about du-
ality has been developed in [1], [3] and [5] and many
other articles, providing a useful way to obtain new
duality functions for two dual processes.

Here is a description of the content of these notes.
In Section 2, we define the Symmetric Simple Ex-
clusion Process with open boundary, SEP(α), with
α ∈ N, and the Symmetric Simple Inclusion Process
also with open boundary, SIP(α), with α ∈ R+,
and discuss the existence and uniqueness of sta-
tionary measure for the defined models. Section
3 is dedicated to duality theory. We recall the ba-
sic tools to construct the classical duality function
that provides a connection between our models with
their corresponding versions conserving the bulk’s
dynamics and changing the boundary into absorb-
ing boundary points. In Section 4, we provide appli-
cations of the duality relationships given in Section
3. For SEP(α), the case α = 1 has been very well
studied in the literature since here there is avail-
able other tools besides duality, namely, the Matrix
Product Ansatz Method (MPA). Also in this notes,
in Section 4, we give it a special attention from a du-
ality point of view. We obtain explicit formulas and
study the corresponding limits, depending on the
value of the parameter θ, for the stationary density
and 2-points stationary correlation functions for the
models SEP(α) and SIP(α) (for SEP(1), also the 3-
points stationary correlation function), by obtain-
ing first explicit formulas for the absorption prob-
abilities for at most three dual particles. Finally,
in Section 5, we compare the obtained results in
Section 4, summarize the conclusions of the present
work and leave some remarks for future work.
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2. The models: SEP(α) and SIP(α)
On the microscopic space ΛN := {1, . . . , N − 1},
called bulk, we define two different models - the
SEP(α) and the SIP(α), where the boundary points
0 and N , called left and right reservoir, respec-
tively, are consider as reservoirs with an arbitrary
number of particles. Both models are continuous
time Markov Process where particles jump with the
same elementary rate only to nearest left and right
neighbors - this is why are called symmetric and
simple. For SEP(α), the state space is ΩEx

N :=

{0, 1, ..., α}ΛN , while, for SIP(α), is ΩIn
N := NΛN

0 .
These models are characterized by the superposi-
tion of two dynamics: the Kawasaki dynamics, that
describe the interaction of the particles inside the
bulk; and the Glauber dynamics, that describes the
interaction of the reservoirs with the particles on the
bulk (allows creation and annihilation of particles
from the endpoints of the bulk) - this is why we say
that the considered processes have open boundary.
In both models, the points in ΛN are occupation
sites for particles that have to wait a certain time
before a jump can occur. The waitting time is expo-
nentially distributed with parameter 1, to have the
Markov property of memory loss. Between any two
sites x and x+ 1, with x ∈ {0, . . . , N − 1}, we allo-
cate an independent Poisson clock such that, every
time the clock rings, a particle that is placed at site
x (resp. x + 1) can jump to the site x + 1 (resp.
x). For SEP(α), this jump only occurs if the arrival
site is not occupied with more than α− 1 particles
- exclusion rule. This means that there is an upper
bound, α, for the number of particles allowed per
site for the SEP(α). In contrast, for SIP(α), on the
bulk, the jump rate of particles increases as much as
more particles are at the arrival site and any number
of particles is allowed at each site - inclusion rule.
In SIP(α), particles tend to create piles and stay
close to each other, while in SEP(α), they tended
to be apart and be repelled by each other. The in-
finitesimal Markov generator of each of the models,
that we will denote by LA

α , where A ∈ {Ex, In} (if
A = Ex, we have the generator for SEP(α), and, if
A = In, we have the generator for SIP(α)), is de-
fined, for all η ∈ ΩA

N and f ∈ D(LA
α ) ⊂ F(ΩA

N )1, as
LA
αf(η) = LA

l,αf(η)+LA
bulk,αf(η)+LA

r,αf(η), where,
denoting, for every x, y ∈ {0, . . . , N},
∇x,yf(η) := f(ηx,y)− f(η),

LA
l,αf(η)= γ

Nθ η(1)∇1,0f(η)+
ϵ

Nθ [α±η(1)]∇0,1f(η),

LA
bulk,αf(η)=

N−2∑
x=1

cx,x+1(η)∇x,x+1f(η)+cx+1,x(η)∇x+1,xf(η),

with cx,y(η) := η(x)[α± η(y)] and

LA
r,αf(η)= β

Nθ η(N−1)∇N−1,Nf(η)+ δ

Nθ [α±η(N−1)]∇N,N−1f(η),

1For any set A we define F(A) as the set of functions
f : A → R.

where, when A = Ex, the rates for SEP(α) must
be taken with the minus sign, while for SIP(α) we
take the plus sign. The parameters γ, ϵ, β and δ
are positives and the parameter θ ∈ R tunes the
strength of the interaction between the bulk and
the boundary. The elements of ΩA

N given by η1,0,
η0,1, ηx,x+1, ηx+1,x, ηN−1,N and ηN,N−1 represent
the change of configuration after the jump, injection
or extraction of one particle. The following picture
represent the dynamics of the models.
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A natural question that we should ask every time
we define an interacting particle system, is about
its invariant measures: do they exist? Since any re-
versible probability measure µ with respect to the
Markov generator L defined in a countable space Ω
is a stationary measure for L, in order to find the in-
variant measures for the models, it is easier to start
by looking for reversible measures - Proposition 3.2
of [1].

Theorem 2.1. If
ϵ

ϵ+ γ
=

δ

δ + β
= ρ, (1)

then, the reversible measure for SEP(α) is given by

µSEP (α)(η) =

N−1∏
x=1

(
α

η(x)

)
ρη(x)(1− ρ)α−η(x).

Recalling that every irreducible continuous time
Markov chain with finite state space has a unique
non-zero invariant probability measure, independently
if (1) is satisfied or not, there always exists a unique
non-zero invariant measure for SEP(α), which is
only completely characterized under the conditions
of Theorem 2.1.

Theorem 2.2. If
ϵ

γ
=

δ

β
= ρ (2)

with ϵ < γ and δ < β, then, the reversible measure
for SIP(α) is given by

µSIP (α)(x) =

N−1∏
x=1

Γ(α+ x)

Γ(α)x!
ρx(1− ρ)α.

Even if condition (2) is not satisfied, as pointed
out in Appendix A of [2], there still exists a unique
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non-zero invariant measure for SIP(α). When con-
sidering SEP(α) and SIP(α) without reservoirs, the
measures presented above describe a family of re-
versible measures with free parameter ρ ∈ (0, 1).

When conditions (1), for SEP(α), and (2), for
SIP(α) (both with open boundary) are satisfied, we
say that the system is in equilibrium, otherwise, we
say the system to be out of equilibrium. Defining ρ0
and ρN , that are called the “densities of the left and
right reservoirs", respectively, by the values given in
the following table (taken from [1]), saying that the
system is in equilibrium (resp. out of equilibrium)
is the same as asking the density of the left and
right reservoirs to be equal (resp. different).

Model ρ0 ρN
SEP(α) α ϵ

γ+ϵ α δ
β+δ

SIP(α) α ϵ
γ−ϵ α δ

β−δ

Even though it is not known a complete charac-
terization of the unique invariant measure of any of
our models out of equilibrium, using duality, we can
still find explicit expressions and the corresponding
limit of functions of interest.

3. Duality
Definition 3.1. Two continuous time Markov pro-
cesses X and Y with state spaces Ω and Ωdual, re-
spectively, are said to be dual if there exists a func-
tion D : Ω × Ωdual → R, the duality function,
such that, for all (η, η̂) ∈ Ω× Ωdual and t ≥ 0,

Eη[D(Xt, Y )] = Eη̂[D(X,Yt)]. (3)

When everything is well defined, duality can also
be defined using the infinitesimal Markov generators
of the processes. If L and Ldual represent the infin-
itesimal Markov generators of two continuous time
Markov processes X and Y, respectively, then dual-
ity can be defined by replacing condition (3) by, for
every η ∈ Ω and η̂ ∈ Ωdual,

[LD(·, η̂)] (η) =
[
LdualD(η, ·)

]
(η̂).

The goal of this chapter is to recall basic tools
for the construction of the classical duality func-
tion that puts in a duality relation SEP(α) (resp.
SIP(α)) with open boundary with its corresponding
version keeping the bulk dynamics and replacing the
boundary reservoirs by only absorbing points. This
construction requires a series of steps.

Theorem 3.1. A continuous time Markov process
X with countable state space Ω that admits a re-
versible measure µ is always self-dual with self-duality
function D, called the cheap self-duality func-
tion, given by D(η, η̂) = (µ(η̂))−11η=η̂, for all η, η̂ ∈
Ω, where 1η=η̂ is one if η = η̂ and zero otherwise.

Using the fact that SEP(α) (resp. SIP(α)) with-
out reservoirs has a family of reversible measures

that are independent from the choice of γ, ϵ, β
and δ, we can prove self-duality for SEP(α) (resp.
SIP(α)) without reservoirs using Theorem 3.1. From
the cheap self-duality functions, for SEP(α) and
SIP(α), one can construct new duality functions in-
spired on the next result.

Theorem 3.2. Let d be a duality function for a
self-dual process X with state space Ω and infinites-
imal Markov generator L. Let S be a symmetry of
L, i.e., LS = SL. Then, D = Sd and DT = dST

are again self-duality functions for X.

This means that new duality functions for our
processes, when considered without reservoirs, can
be constructed by using, for example, the cheap self-
duality function, and finding symmetries of the in-
finitesimal Markov generator, when this is an ele-
ment of the universal enveloping algebra of some Lie
algebra. For our models, the Lie algebras consid-
ered are su(2) and su(1, 1), for SEP(α) and SIP(α),
respectively. By looking at representation of these
Lie algebras, we can obtain the classical self-duality
function for SEP(α) (resp. SIP(α)), that can be
modified to provide the desired duality relation-
ship between our models with open boundary and
themselves but now with only absorbing boundary
points.

Theorem 3.3. SEP(α) (resp. SIP(α)) with open
boundary and SEP(α) (resp. SIP(α)) with only
absorbing boundary points are dual processes with
classical duality function D given, for every η ∈ ΩA

N

and η̂ ∈ Ωdual
N , with A ∈ {Ex, In}, by

D(η, η̂) = ρ
η̂(0)
0

N−1∏
x=1

dbulk(η(x), η̂(x))ρ
η̂(N)
N , (4)

where dbulk is defined by

dbulk(n,m) =

{
n!

(n−m)!
(α−m)!

α! 1n≥m, for SEP(α)
n!

(n−m)!
Γ(α)

Γ(α+m)1n≥m, for SIP(α)

for every n,m ∈ {0 . . . , α}, for SEP(α), and n,m ∈
N0, for SIP(α), where

Ωdual
N =

{
N0 × {0, . . . , α}|ΛN | × N0, for SEP(α),
N0 × N|ΛN |

0 × N0, for SIP(α).

The jump rates associated to the dynamics for the
dual processes are illustrated on the following pic-
ture, where αL = γ±ϵ and αR = β±δ (for SEP(α),
we should take the plus sign, and, for SIP(α), the
minus).

In the next section, we will use these duality re-
lations to find explicit formulas for some functions
of interest.
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4. Density and correlations via duality
Let η ∈ ΩA

N , with A ∈ {Ex, In} represent the ini-
tial configuration of each of the process and µss be
the unique stationary measure of each of the stud-
ied processes. Define the discrete stationary density
profile ρNss:

ρNss(x) = Eµss [η(x)]. (5)
For k ∈ N2, define the k-points stationary corre-

lation function φN
ss by

φN
ss(x1, . . . , xk) = Eµss [η̄(x1) . . . η̄(xk)], (6)

where η̄(x) = η(x) − Eµss
[η(x)] and xj ∈ ΛN , for

any j ∈ {1, . . . , k}. We are now interested in finding
explicit expressions for each one of these functions.
To do that, we follow a duality approach that allow
us to prove the identity (that is true for all our
models), if x1 < · · · < xk,

Eµss [η(x1)...η(xk)]=
k∑

m=0
ρm
0 ρk−m

N pN
x1,...,xk

(m), (7)

where pNx1,...,xk
(m) represents the probability that,

starting from the dual configuration η̂ = δx1
+ · · ·+

δxk
(meaning that, we start the dual process with

one particle at each site x1, . . . , xk ∈ ΛN ) m of the
k dual particles are absorbed on the left reservoir
and the remaining k−m are absorbed on the right
reservoir on a lattice of size N 2. For SEP(α) and
SIP(α), using the expression of the the duality func-
tion, we obtain

Eµss [η(x1)...η(xk)]±Eµss [η(x2)...η(xk)]

=α±1
α

k∑
m=0

ρm
0 ρk−m

N Pη(η̂∞(0)=m,η̂∞(N)=k−m)︸ ︷︷ ︸
=pNx1,...,xk

(m)

,

where we take the minus sign for SEP(α) and the
plus sign for SIP(α), if x1 = x2 < x3 < · · · < xk. It
becomes clear now that to find the functions that
we are interested in, we need to compute absorp-
tion probabilities on the dual process. Here, we
will choose the parameters γ, ϵ, δ and β satisfying:
for SEP(α), γ + ϵ = β + δ = α, and, for SIP(α),
γ − ϵ = β − δ = α. The previous choices, called
Liggett condition, still gives us enough freedom to
choose two of the four parameters and, therefore,
find the stationary density profile and the 2-points

2By this we mean that, when we extend the bulk to the
points 0 and N , the point with higher coordinate is N even
thought we have N + 1 possible positions to place a particle
on the dual system.

(for SEP(1), also 3-points) stationary correlation
functions out of equilibrium.

4.1. SEP(1) - Absorption Probabilities

4.1.1 Case k = 1: This case not only gives us the
absorption probabilities for SEP(1) with one dual
particle, but also for SEP(α) and SIP(α) since they
describe the same model, with the jump rates on
the bulk that we have for SEP(1) rescaled by α for
SEP(α) and SIP(α). This rescale does not affect
the computations of the absorption probabilities.

Choosing k = 1 means that our dual process
will start with just one dual particle that can ei-
ther be absorbed at 0 or N , therefore m ∈ {0, 1}.
Let x ∈ ΛN represent the site where the dual par-
ticle is initially placed, i.e., we start from the dual
configuration η̂ = δx. Observe that, if we extend
the possible values of x to include 0 and N , then
pN0 (m) and pNN (m) represent boundary terms.

To compute pNx (m), for each fixed m, we con-
dition on the first jump and use the Markov prop-
erty to get a system of linear equations that pNx (m)
solves: 

Bθ
NpNx (m) = 0, if x ∈ ΛN ,

pN0 (m) = 1m=1,

pNN (m) = 1m=0,

(8)

where the operator Bθ
N is defined, for every function

f ∈ F({0, . . . , N}) and for all x ∈ ΛN , as

Bθ
Nf(x)=ax[f(x−1)−f(x)]+bx[f(x+1)−f(x)], (9)

with ax = N2

Nθ 1x=1+N21x̸=1 and bx = N2

Nθ 1x=N−1+

N21x̸=N−1. For every x ∈ {2, . . . , N − 2}, pNx (m)
is solution to the one-dimensional discrete Laplace
equation, i.e., ∆1D

N pNx (m) = 0 where the one-dimensional
discrete Laplace operator ∆1D

N is defined, for every
f ∈ F({0, . . . , N}) and for all x ∈ ΛN , as

∆1D
N f(x) = N2[f(x− 1)− 2f(x) + f(x+ 1)]. (10)

Then, for every x ∈ ΛN , pNx (m) = Amx+Bm, with
Am, Bm ∈ R to be determined. Note that Am and
Bm do not represent the power m of some real num-
bers A and B, but it is just a notation to recall that
the coefficients depend on m. Solving the previous
system and including the boundary conditions, for
every x ∈ {0, . . . , N}, we get{

pN
x (1)=

Nθ−1+N−x
N+2Nθ−2

+ Nθ−1
N+2Nθ−2

[
1{x=0}−1{x=N}

]
,

pN
x (0)=

Nθ−1+x
N+2Nθ−2

− Nθ−1
N+2Nθ−2

[
1{x=0}−1{x=N}

]
.

(11)

4.1.2 Case k = 2: Now the dual process starts
with 2 particles that can be absorbed at 0 or N .
So, we can have both particles absorbed at 0, one
absorbed at 0 and the other at N or both absorbed
at N , i.e., m ∈ {0, 1, 2}. Let x, y ∈ ΛN , with x < y
where now the initial configuration of the dual pro-
cess is η̂ = δx+ δy. Again, if we extend the possible
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values for x and y to the boundary points, then
pN0,y(m) and pNx,N (m) represent boundary terms.

Observe that the dual of SEP(1) with just two
particles represents a particle performing a two-
dimensional random walk on a triangle (jumps can
only occur to points that are left, right, upward or
downward nearest-neighbor of the initial position of
the random walk) with absorbing cathetuses, mean-
ing that, once a particle reaches a cathetus, it can
not leave it, restricting the particle to continue to
perform a one-dimensional random walk, as in the
case k = 1 (on a line segment with absorbing bound-
ary). Due to the exclusion rule, for SEP(1), we can
not consider on the triangle the points of the form
(x, x) with x ∈ ΛN . These points have to be consid-
ered when repeating this strategy for SEP(α) and
SIP(α). The particles’ jump rates are given as in
the following picture.

x

y

0 1 2 N − 1N
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N − 1

N

1

1

1

1

1

Nθ 1

Nθ
1 1

Nθ

In what follows, the 2-dimensional discrete Lapla-
cian operator, that we will denote by ∆2D

N , will be
a central object. This operator is defined, for ev-
ery f ∈ F(BT N ) and (x, y) ∈ T N , where BT N =
{(x, y) ∈ {0, . . . , N}2 | x < y} and T N = {(x, y) ∈
(ΛN )2 | x < y}, as

∆2D
N f(x, y) =

{
∆2D

N,fullf(x, y), if y ̸= x+ 1,

∆2D
N,reff(x, x+ 1), if y = x+ 1.

If y ̸= x+ 1, ∆2D
N,fullf(x,y):=(∆1D

N )xf(x,y)+(∆1D
N )yf(x,y),

and, if y = x + 1, ∆2D
N,reff(x,x+1):=N2[f(x−1,x+1)+

f(x,x+2)−2f(x,x+1)], where (∆1D
N )x and (∆1D

N )y de-
note the 1-dimensional Laplacian operator acting
on the first and second variable, respectively.

As in the case k = 1, to compute pNx,y(m), we
condition on the first jump and get a system of
equations for which pNx,y(m) is the unique solution:

Oθ
NpN

x,y(m)=0, if (x,y)∈T N

pN
0,y(m)=pN

y (m−1)1{m̸=0}, if y=0,...,N,

pN
x,N (m)=pN

x (m)1{m̸=2}, if x=0,...,N.

where the operator Oθ
N is defined, for every f ∈

F(BT N ) and for all (x, y) ∈ T N , by Oθ
Nf(x,y)=

ax[f(x−1,y)−f(x,y)]+by [f(x,y+1)−f(x,y)]+cx,y[f(x+1,y)+

f(x,y−1)−2f(x,y)], where ax = N2

Nθ 1x=1 + N21x̸=1,
by = N2

Nθ 1y=N−1+N21y ̸=N−1 and cx,y = N21y ̸=x+1.
If x, y ∈ {2, . . . , N − 2} with x < y, then pNx,y(m)
is solution to the two-dimensional discrete Laplace
equation, meaning that pNx,y(m) = Amx + Bmy +
Cmxy+Dm. Solving the previous system with this
ansatz, defining p̃N−1

x (0) := Nθ−1+x
N+2Nθ−3

and p̃N−1
x (1) :=

Nθ−2+N−x
N+2Nθ−3

, recalling the formulas for pNx (0) and
pNy (1) given in (11), we get

pN
x,y(0)=pN

x (0)−pN
y (1)p̃N−1

x (0), if (x,y)∈T N ,

pN
x,y(1)=pN

x (1)+pN
y (1)[p̃N−1

x (1)−p̃N−1
x (0)], if (x,y)∈T N ,

pN
x,y(2)=pN

y (1)p̃N−1
x (1), if (x,y)∈T N ,

pN
0,y(m)=pN

y (m−1)1{m̸=0}, if y=0,...,N and m=0,1,2,

pN
x,N (m)=pN

x (m)1{m ̸=2}, if x=0,...,N and m=0,1,2.

(12)

4.1.3 Case k = 3: Now the dual process starts
with k = 3 particles that can be absorbed at 0 or
N . We can have k possible scenarios: three parti-
cles are absorbed at 0, one is absorbed at 0 and two
at N , two at 0 and one at N or all three absorbed
at N , i.e., m ∈ {0, 1, 2, 3}. Let x, y, z ∈ ΛN , where
x < y < z, represent the position where each par-
ticle started. If we extend the possible values for
x and z to 0 or N , then pN0,y,z(m) and pNx,y,N (m)
represent boundary terms. It is very important to
remark that, since, in SEP(1), we do not allow par-
ticles to be on top of each other, it does not make
sense to define pNx,y,z(m) on the line x = y = z
nor on the planes x = y and y = z. Remark that
SEP(1) with 3 dual particles can be though as a
random walk of just one particle on the discrete
simplex SN := {(x, y, z) ∈ (ΛN )3 | x < y < z}
and planes SN

0 := {(0, y, z) ∈ (ΛN )3 |y < z} and
SN
N := {(x, y,N) ∈ (ΛN )3 | x < y}. In the follow-

ing picture, the set SN correspond to the interior
points (excluding the boundary) of a discretization
(in the points with positive integer coordinates) of
the simplex here presented and SN

0 and SN
N may

be interpreted as the points of the same discretiza-
tion that lie on the face painted in green and in
blue, respectively. Here, the 3-dimensional discrete

y

x

z

N

N0

N

Laplacian operator, denoted by ∆3D
N , will play a
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central role. It is defined, for every f ∈ F(BSN ),
where BSN =SN ∪ SN

0 ∪ SN
N , as

∆3D
N f(x,y,z)=



∆3D
N,fullf(x,y,z), if y ̸=x+1 and z ̸=y+1,

(∆2D
N,ref )x,yf(x,y,z)+(∆1D

N )zf(x,y,z),

if y=x+1 and z ̸=y+1,

(∆2D
N,ref )y,zf(x,y,z)+(∆1D

N )xf(x,y,z),

if y ̸=x+1 and z=y+1,

∆3D
N,reff(x,y,z), if y=x+1 and z=x+2,

where, ∆3D
N,full :=(∆1D

N )x+(∆1D
N )y+(∆1D

N )z,
∆3D

N,reff(x, x+1, x+2):=N2[f(x−1, x+1, x+2)+

f(x, x+1, x+3)−2f(x, x+1, x+2)], and (∆2D
N,ref )x,y

(resp. (∆2D
N,ref )y,z) represents the 2-dimensional re-

flected discrete Laplacian acting on the first and
second (resp. second and third) arguments of f .

As above, conditioning on the first jump, we get
a system of linear equations for pNx,y,z(m), that can
be compacted in

Rθ
NpN

x,y,z(m)=0, for (x,y,z)∈SN

pN
0,y,z(m)=pN

y,z(m−1)1{m̸=0}, if (y,z)∈BT N ,

pN
x,y,N (m)=pN

x,y(m)1{m̸=3}, if (x,y)∈BT N ,

where the operator Rθ
N is defined, for every function

f ∈ F(BSN ) and for all (x, y, z) ∈ SN , by

Rθ
Nf(x,y,z)=ax[f(x−1,y,z)−f(x,y,z)]+bz [f(x,y,z+1)−f(x,y,z)]

+cy,z [f(x,y+1,z)+f(x,y,z−1)−2f(x,y,z)]

+cx,y[f(x+1,y,z)+f(x,y−1,z)−2f(x,y,z)],

where ax = N2

Nθ 1x=1 +N21x ̸=1, bz = N2

Nθ 1z=N−1 +

N21z ̸=N−1, cy,z=N21y ̸=z−1 and cx,y=N21x ̸=y−1.
Since pNx,y,z(m) is solution of the three-dimensional
discrete Laplace equation if 2 ≤ x < y < z ≤ N−2,
it can be written again in polynomial form. Solv-
ing the previous system and, for every (x, y) ∈ T N ,
defining p̃N−1

x,y (0) := (Nθ−1+x)(Nθ−2+y)
(N+2Nθ−3)(N+2Nθ−4)

,

p̃N−1
x,y (2) := (Nθ−2+N−y)(Nθ−3+N−x)

(N+2Nθ−3)(N+2Nθ−4)
and p̃N−1

x,y (1) :=

1− p̃N−1
x,y (0)− p̃N−1

x,y (2) and recalling the expressions
of pNx,y(0) and pNy,z(1) given in (12), we get

pN
x,y,z(0)=pN

x,y(0)−pN
z (1)p̃N−1

x,y (0), if (x,y,z)∈SN ,

pN
x,y,z(1)=pN

x,y(1)+pN
z (1)[p̃N−1

x,y (1)−p̃N−1
x,y (0)], if (x,y,z)∈SN ,

pN
x,y,z(2)=pN

x,y(2)+pN
z (1)[p̃N−1

x,y (2)−p̃N−1
x,y (1)], if (x,y,z)∈SN ,

pN
x,y,z(3)=pN

z (1)p̃N−1
x,y (2), if (x,y,z)∈SN ,

pN
0,y,z(m)=pN

y,z(m−1)1{m̸=0}, if (y,z)∈BT N and m∈{0,1,2,3},

pN
x,y,N (m)=pN

x,y(m)1{m ̸=3}, if (x,y)∈BT N and m∈{0,1,2,3}.

(13)

4.2. SEP(1) - Density and correlations

4.2.1 Discrete stationary density profile: Using
equation (7) with k = 1 (and, therefore, m ∈ {0, 1}),
we can use the absorption probabilities above with

one dual particle to obtain an explicit expression
for (5) as:

ρNss(x) = ρ0p
N
x (1) + ρNpNx (0). (14)

Substituting in (14) the results obtained in (11),
we get that, for any x ∈ ΛN ,

ρNss(x) =
(ρ0+ρN )(Nθ−1)+ρ0(N−x)+ρNx

N+2Nθ−2
. (15)

Then, if, for any x ∈ ΛN , we assume x
N → u ∈

[0, 1], as N goes to infinity, the limit in N of (11),
defining ρ1 := ρN , is given by

lim
N→∞

ρNss(x) = ρ̄(u) :=


ρ0+ρ1

2 , if θ>1,

ρ0+ρ1+ρ0(1−u)+ρNu

3 , if θ=1,

ρ0(1−u)+ρNu, if θ<1.

Remark that, independently from the value of θ,
the limit lim

N→∞
ρNss(x) is a linear function of u with

different coefficients depending on the value of θ and

lim
N→∞

max
x∈ΛN

∣∣ρNss(x)− ρ̄
(

x
N

)∣∣ = 0. (16)

4.2.2 2-points stationary correlation function: Com-
bining equation (6) with k = 1, the identity in (7)
and equations (12) and (11), a simple, but long,
computation gives us, for (x, y) ∈ T N ,

φss(x, y) = − (ρN − ρ0)
2

N + 2Nθ − 3
pNx (0)pNy (1).

Observe that, for any (x, y) ∈ TN , since pNx (0),
pNy (1) > 0, if ρN ̸= ρ0, then φN

ss(x, y) is nega-
tive. This is due to the repelling of the particles
caused by the exclusion rule. Also, for any θ ∈ R,
lim

N→∞
φN
ss(x, y) = 0, meaning that this function de-

cays to zero when we pass to the macroscopic space.
The question now is, what is the order of its decay?
For any x, y ∈ ΛN with x < y, assuming x

N → u

and y
N → v as N → ∞, the limit lim

N→∞
NφN

ss(x, y)

now depends on the value of θ, which means that,
depending on the strength of the reservoirs, we will
obtain different limit functions of parameters u and
v, which are non-identically zero if θ ≤ 1.

Case 1 - θ < 1:

lim
N→∞

NφN
ss(x, y) = −(ρ1 − ρ0)

2G2,Dir(u, v), (17)

where ρ1 is the same as for the limit of the station-
ary density profile and G2,Dir(u, v) := u(1 − v) is
the Green function of the 2-dimensional Laplacian
on the upper triangle

T = {(u, v) ∈ [0, 1]2 | u ≤ v}, (18)

which is reflected on the diagonal u = v, and with
homogeneous Dirichlet boundary conditions, i.e., G2,Dir

is solution of the initial value problem{
∆2DG2,Dir(u, v) = δu=v, if (u, v) ∈ int T,

G2,Dir(0, v) = G2,Dir(u, 1) = 0, if u, v ∈ [0, 1],

(19)
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with int T={(u, v)∈(0, 1)2 |u≤v} and

∆2D=

{
d2

du2 + d2

dv2 , in (int T ) \DT
∂
∂u − ∂

∂v , in DT
, where

DT ={(u, u) | u∈(0, 1)}.
Case 2 - θ = 1:

lim
N→∞

NφN
ss(x, y) = − (ρ1 − ρ0)

2

9
G2,Rob(u, v),

where G2,Rob(u, v) :=
(u+ 1)(2− v)

3
is the Green

function of the 2-dimensional Laplacian (as above)
on the upper triangle T , defined in (18), which is
reflected on the line u = v and with homogeneous
Robin boundary conditions, i.e., G2,Rob is solution
of the initial value problem

∆2DG2,Rob(u,v)=δu=v, if (u,v)∈int T,

∂
∂uG2,Rob(0,v)=G2,Rob(0,v), if v∈[0,1],

∂
∂vG

2,Rob(u,1)=−G2,Rob(u,1) if u∈[0,1],

where int T and ∆2D are defined as above. In this
regime, the limit lim

N→∞
NφN

ss(x, y) is again a mul-
tiple of the solution of the 2-dimensional Laplace
equation on T but with the homogeneous Dirich-
let boundary conditions replaced by homogeneous
Robin boundary conditions.

Case 3 - θ > 1:

lim
N→∞

NφN
ss(x, y) = 0.

This means that, for slow boundary (θ > 1), the 2-
points stationary correlation function has an order
of decay higher than a linear function of N . In fact,
the correct order to see a non-trivial limit in this
case is Nθ. Then, if instead of assuming x

N → u
and y

N → v as N → ∞, we assume x
Nθ → u and

y
Nθ → v as N → ∞, we obtain

lim
N→∞

NθφN
ss(x, y) = − (ρN − ρ0)

2

8
(u+ 1)(1− v).

A summary of these results can be found in [4].

4.2.3 3-points stationary correlation function: Com-
bining the results obtained in (12) and equation
(13), performing long computations, we get an ex-
plicit formula for the 3-points stationary correlation
function that is written in terms of the one particle
absorption probabilities as we had for the 2-points
stationary correlation function:

φN
ss(x,y,z)=2

ρN−ρ0
N+2Nθ−4

[φN
ss(x,y)p

N
z (1)−pN

x (0)φN
ss(y,z)].

Observe that, for any x, z ∈ ΛN , pNx (0), pNz (1) >
0, then, the sign of φN

ss(x, y, z) will depend on y and
the difference between ρN and ρ0. Also, for any
θ ∈ R, lim

N→∞
NφN

ss(x, y, z) = 0, meaning that, at
the macroscopic level, the 3-points stationary cor-
relation function decays to zero faster than a linear
function of N , and, therefore, faster than the 2-
points stationary correlation function. We expect

that, as k increases, the corresponding k-th point
stationary centered correlation function converges
faster to zero. In the current case, its order of decay
is quadratic, i.e., N2, if θ ≤ 1, and N2θ, if θ > 1.
For any x, y, z ∈ ΛN with x < y < z, assuming
x
N → u ∈ [0, 1], y

N → v ∈ [0, 1] and z
N → w ∈ [0, 1]

as N → ∞, then, the limit lim
N→∞

N2φN
ss(x, y, z),

similarly to what to have for the 2-points station-
ary correlation function, depends on the value of
θ.

Case 1 - θ < 1:

lim
N→∞

N2φN
ss(x, y, z) = −2(ρ1 − ρ0)

3G3,Dir(u, v, w),

where G3,Dir(u, v, w) = u(1−2v)(1−w) is the Green
function of the 3-dimensional Laplacian on the sim-
plex

S = {(u, v, w) ∈ [0, 1]3 | u ≤ v ≤ w}, (20)

which is reflected on the planes S1, S2 and on the
line S3, where S1 = {(u, v, w) ∈ S |u = v}, S2 =
{(u, v, w) ∈ S |v = w} and S3 = {(u, v, w) ∈ S |u =
v = w}, and with homogeneous Dirichlet boundary
conditions, i.e., G3,Dir is solution of the initial value
problem{

∆3DG3,Dir(u,v,w)=(1−w)δu=v+uδw=v, if (u,v,w)∈int S,

G3,Dir(0,v,w)=G3,Dir(u,v,1)=0, if (u,v),(v,w)∈Q,

where int S = {(u, v, w) ∈ (0, 1)3 | u ≤ v ≤ w},

∆3D=



d2

du2 + d2

dv2 + d2

dw2 , in (int S)\( int S1∪ int S2),

d2

du2 + d
dv−

d
dw , in (int S1)\( int S3),

d2

dw2 + d
du− d

dv , in (int S2)\( int S3),

d
du− d

dw , in int S3,

and int Sj = (int S) ∩ Sj , for j ∈ {1, 2, 3}.
Case 2 - θ = 1:

lim
N→∞

N2φN
ss(x, y, z) = −2(ρ1 − ρ0)

3

9
G3,Rob(u, v, w),

where G3,Rob(u, v, w) = (1+u)(1−2v)(2−w)
27 is the Green

function of the 3-dimensional Laplacian (as above)
on the simplex S, defined in (20), which is reflected
on the same planes and line and with homogeneous
Robin boundary conditions, i.e., G3,Rob is solution
of the initial value problem

∆3DG3,Dir(u,v,w)=(1−w)δu=v+uδw=v, if (u,v,w)∈int S,

∂
∂uG3,Rob(0,v,w)=G3,Rob(0,v,w), if (v,w)∈T,

∂
∂wG3,Rob(u,v,1)=−G3,Rob(u,v,1) if (u,v)∈T,

Case 3 - θ > 1:

lim
N→∞

N2φN
ss(x, y, z) = 0.

As we had for the 2-points correlation function, this
means that, for slow boundary, the 3-points station-
ary correlation function has an order of decay higher
than a quadratic function of N . In fact, the correct
order to see a non-trivial limit is N2θ.
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Then, if instead of assuming x
N → u, y

N → v and
z
N → w as N → ∞, we assume x

Nθ → u, y
Nθ → v

and z
Nθ → w as N → ∞, we obtain

lim
N→∞

N2θφN
ss(x, y, z) = − (ρ1 − ρ0)

3

2

(1 + u)v(1− w)

8
.

Remark 4.1. By using the forward Kolmogorov’s
equation, one can also find a system of equations for
which the 2-points and 3-points stationary correla-
tion function are solution and, passing to the limit
in N , recover the solutions above.

4.3. SEP(α) with α ≥ 2 - Absorption Proba-
bilities

4.3.1 Case k = 2: Let us keep the same notation
we used in SEP(1) for the absorption probabilities.
Since in SEP(α), with α ≥ 2, we allow more than
one particle per site, we are also interested in com-
puting pNx,x(m). Here pNx,x(m) denotes the probabil-
ity that, starting from a dual configuration with 2
particles at site x (in a pile), m particles being ab-
sorbed at the left reservoir. Analogous to SEP(1),
conditioning on the first jump, we get a system
of ten equations with two boundary conditions for
pNx,y(m) that can be compacted in

Uθ
NpN

x,y(m)=0, for x=1,...,N−2, y=x+1,...,N−1,

pN
0,y(m)=pN

y (m−1)1{m̸=0}, if y=0,...,N,

pN
x,N (m)=pN

x (m)1{m̸=2}, if x=0,...,N,

(21)

where the operator Uθ
N is defined, for every function

f ∈ F(BCT N ) and for every (x, y) ∈ CT N , as

Uθ
Nf(x,y)=ax[f(x−1,y)−f(x,y)]+by [f(x,y+1)−f(x,y)]

+dx,y [f(x+1,y)+f(x,y−1)−2f(x,y)], (22)

where ax = N2

Nθ 1x=1 +N21x ̸=1, by = N2

Nθ 1y=N−1 +

N21y ̸=N−1 and dx,y = −N2

α 1y=x+1 +N21y ̸=x,x+1,
with BCT N := {(x, y) ∈ {0, . . . , N}2 | x ≤ y} and
CT N := {(x, y) ∈ (ΛN )2 | x ≤ y}. For every
x, y ∈ {2, . . . , N − 2}, if x < y and |x − y| ≥ 2,
Uθ
N = ∆2D

N,full, and if y = x, Uθ
N = ∆2D

N,ref , where
∆2D

N,full and ∆2D
N,ref have the exact same meaning as

in SEP(1). Also, if x ∈ {2, . . . , N−2} and y = x+1,

Uθ
NpN

x,x+1(m)=∆2D
N,fullp

N
x,x+1(m)+ 1

α−1∆
2D
N,refp

N
x,x+1(m).

This shows that if α ≥ 2, the operator that we
obtain for x ∈ {2, . . . , N − 2} and y = x + 1 is
no longer the 2-dimensional reflected Laplacian as
we had for SEP(1). Instead, over the line {(x, x +
1) | x ∈ ΛN}, we will observe a super position of
the operators that act above and over this line.

As we did for SEP(1), can we find pNx,y(m) by
starting with an ansatz? The natural ansatz to take

is, for every (x, y) ∈ CT N ,

pN
x,y(m)=


Amx+Bmy+Cmxy+Dm, if |x−y|≥2,

Ãmx+B̃my+C̃mxy+D̃m, if y=x+1,

Amx+Bmx2+Cm, if y=x,

(23)

with Am, Bm, Cm, Dm, Am, Bm, Cm, Dm, Ãm,
B̃m, C̃m, D̃m ∈ R to be determined.

If θ = 0, using the ansatz in equation (23) to
solve the system in (21), performing long (but, again,
simple) computations, for every x, y ∈ {0, . . . , N}
with x ≤ y, we obtain

pN
x,y(0)=

−1+αy
−1+αN pN

x (0)+ 1
2N(−1+αN)

1y=x,

pN
x,y(1)=

(αN+1)x+(αN−1)y−2αxy
N(−1+αN)

− 1
N(−1+αN)

1y=x,

pN
x,y(2)=

−1+α(N−x)
−1+αN pN

y (1)+ 1
2N(−1+αN)

1y=x.

(24)

Remark that, for θ = 0, we don’t need to consider
different coefficients for the diagonal y = x+1, but
only for the points on the diagonal y = x. We could
not obtain the analogous expressions for θ ̸= 0 since
in this case we have more “discontinuities of the
coefficients" of pNx,y(m), meaning that the ansatz in
(23) do not solve the system in (21).

4.4. SEP(α) - Density and correlations

4.4.1 Discrete stationary density profile: Since the
absorption probabilities for one dual particle are the
same for SEP(1) and SEP(α), by equation (7), the
stationary density profile for SEP(α) is ρNss, where
ρNss is as in (15) but now ρ0 and ρ1 are the density
of the left and right reservoirs of SEP(α).

4.4.2 2-points stationary correlation function: Ob-
serve that φN

ss(x, y) is symmetric on the discretized
square (ΛN )2, so we only care about finding its
value on x, y ∈ ΛN with x ≤ y. As in SEP(1), com-
bining equation (6), the identity in (7) with k = 2
and also the previous formulas for the absorption
probabilities, if θ = 0, then, for every (x, y) ∈ CT N ,

φN
ss(x,y)=− (ρ0−ρN )2

−1+αN pN
x (0)pN

y (1)+
(ρ0−ρN )2

2N(−1+αN)
1y=x

+

{
ρN
ss(x)−

ρ20
α pN

x,x(2)−
ρ0ρN

α pN
x,x(1)−

ρ2N
α pN

x,x(0)

}
1y=x. (25)

Observe that, for any x, y ∈ ΛN , since pNx (0), pNy (1)>
0, if ρN ̸= ρ0, then, for x ̸= y, φN

ss(x, y) < 0. For
y = x, we have that φN

ss(x, x) < ρNss(x), if N ≥ 2
(which is clearly the case). As we had for SEP(α),
lim

N→∞
φN
ss(x, y) = 0, meaning that the 2-points sta-

tionary correlation function for SEP(α) decays to
zero when we pass to the macroscopic space. The
question now is, what is the order of its decay? Like
we had for SEP(1), it has decay of order N . For any
(x, y) ∈ CT N , assuming that x

N → u and y
N → v as

N → ∞, then

lim
N→∞

N

[
φN

ss(x,y)−ρN
ss(x)

α−ρNss(x)

α 1y=x

]
=−(1− 1

α1v=u) (ρ0−ρ1)2

α G2,Dir(u,v),
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where G2,Dir is the same as in (19). Observe that
the difference between this case and the previous
(α = 1) is the multiplicative constant 1/α. This
means that, macroscopically, changing the parame-
ter α from 1 to any natural number, only rescales
the limit function of NφN

ss(x, y) obtain in (17) by
a factor of 1/α. The ρ0 and ρN = ρ1 appearing in
these sections are as in the table on Section 2.

In the next section, we will apply the same strate-
gies for SIP(α).

4.5. SIP(α) - Absorption Probabilities

4.5.1 Case k = 2: Like in SEP(α), in SIP(α), we
allow more than one particle per site, and therefore,
it makes sense to consider the absorption probabil-
ity pNx,y(m) with y = x, with the same meaning
as in SEP(α), with α ≥ 2. Then, conditioning on
the first jump, we get a system of 10 equations for
pNx,y(m) with two boundary conditions that can be
compacted in:

Wθ
NpN

x,y(m)=0, for x=1,...,N−2, y=x+1,...,N−1,

pN
0,y(m)=pN

y (m−1)1{m̸=0}, if y=0,...,N,

pN
x,N (m)=pN

x (m)1{m̸=2}, if x=0,...,N,

(26)

where the operator Wθ
N is defined, for every func-

tion f ∈ F(BCT N ) and for all (x, y) ∈ CT N , by

Wθ
Nf(x,y)=ax[f(x−1,y)−f(x,y)]+by [f(x,y+1)−f(x,y)]

+ex,y [f(x+1,y)+f(x,y−1)−2f(x,y)],

where ax = N2

Nθ 1x=1 +N21x ̸=1, by = N2

Nθ 1y=N−1 +

N21y ̸=N−1 and ex,y = N2

α 1y=x+1 + N21y ̸=x,x+1.
For every x, y ∈ {2, . . . , N−2}, if x < y and |x−y| ≥
2, Wθ

N = ∆2D
N,full, and if y = x, Wθ

N = ∆2D
N,ref .

Also, if x ∈ {2, . . . , N − 2} and y = x+ 1,

Wθ
NpN

x,x+1(m)=∆2D
N,fullp

N
x,x+1(m)+ 1

α+1∆
2D
N,refp

N
x,x+1(m).

This shows that, like in SEP(α), over the line {(x, x+
1) | x ∈ ΛN}, we observe an overlap of the operators
that act above and over this line. Then, the natu-
ral ansatz to take to solve the system of equations
is the same as in (23).

If θ = 0, using that ansatz to solve the system
in (26), if x, y ∈ {0, . . . , N} with x ≤ y, we get

pN
x,y(0)=

1+αy
1+αN pN

x (0)− 1
2N(1+αN)

1y=x,

pN
x,y(1)=

(αN−1)x+(1+αN)y−2αxy
N(1+αN)

+ 1
N(1+αN)

1y=x,

pN
x,y(2)=

1+α[N−x]
1+αN pN

y (1)− 1
2N(1+αN)

1y=x.

(27)

Like in SEP(α), this means that on the diagonal
y = x, the expression of pNx,y(m) changes from the
one inside the triangle, i.e., for (x, y) ∈ T N , by a
constant that depends on α, N and m. Also, in this
case, Ãm = Am, B̃m = Bm, C̃m = Cm and D̃m =
Dm. We could not obtain the explicit expressions
for the absorption probabilities for θ ̸= 0, by the
same reasons presented in SEP(α).

4.6. SIP(α) - Density and correlations

4.6.1 Discrete stationary density profile: SEP(α)
and SIP(α), with only one dual particle, describe
the same model - equal density profile.

4.6.2 2-points stationary correlation function: As
for SEP(α), if θ = 0, for every (x, y)∈CT N ,

φN
ss(x,y)=

(ρ0−ρN )2

−1+αN pN
x (0)pN

y (1)− (ρ0−ρN )2

2N(−1+αN)
1y=x

+

{
−ρN

ss(x)+
ρ20
α pN

x,x(2)+
ρ0ρN

α pN
x,x(1)+

ρ2N
α pN

x,x(0)

}
1y=x. (28)

Observe that, for any x, y ∈ ΛN , since pNx (0),
pNy (1)>0, then, if ρN ̸= ρ0, for x ̸= y, φN

ss(x, y) > 0.
Also, we have that φN

ss(x, x) > ρNss, if N ≥ 2. We
observe that the expression obtain in (25) and in
(28) are very similar with a small change of signs.

For SIP(α), we still have that lim
N→∞

φN
ss(x, y) =

0, meaning that the 2-points stationary correlation
function for SIP(α) decays to zero when we pass to
the macroscopic space. Its order of decay of order
is N . Finally, for any x, y ∈ ΛN , assuming x

N → u
and y

N → v as N → ∞, then

lim
N→∞

N

[
φN

ss(x,y)+ρN
ss(x)

α+ρNss(x)

α 1y=x

]
=(1+ 1

α1v=u) (ρ0−ρ1)2

α G2,Dir(u,v)

where G2,Dir has the same interpretation as in SEP(1)
and SEP(α). Observe that the difference from the
analogous result obtained for SEP(α) is the change
of sign from a minus to a plus.

5. Conclusions and comparing results
Here is a summary of the main conclusion of the
present work. In Section 2, we concluded that, for
each model, there exists a unique invariant measure,
which is also reversible and of homogeneous prod-
uct form when the left and right reservoirs have
equal densities. In Section 3, we saw that both
models introduced in Section 2 have a dual process
that conserves the bulk dynamics exchanging the
reservoir’s dynamics to absorbing boundary points.
We recalled that, to construct the classical dual-
ity function connecting the models with their du-
als, it is very important to remark that, once a
reversible measure is available for a given contin-
uous time Markov process with a countable state
space, self-duality comes for free using the cheap
self-duality function and that we can generate dual-
ity functions by applying symmetries of the Markov
generator to a known duality function. At last, in
Section 4, we obtained explicit expressions for the
absorption probabilities with k = 1, 2, 3 dual parti-
cles for SEP(1) with θ ∈ R and with k = 1, 2 dual
particles for SEP(α) and SIP(α) with θ = 0. Let
us now compare the results. For m ∈ {0, 1, 2}, for
every (x, y) ∈ T N , pNx,y(m), for all models, can be
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factorized, as pNx,y(m) = pNx (m)+pNy (1)Fx(m), with

Fx(m) =


pN−1
x (m) − pN−1

x (m − 1), for SEP(1)

pN−α−1

x (m) − pN−α−1

x (m−1), for SEP(α)

pN+α−1

x (m) − pN+α−1

x (m−1), for SIP(α)

(29)

where pN+r
x (m) := x

N+r1m=0 + N+r−x
N+r 1m=1, for

every r ∈ R. So, if α−1 ∈ N, then pN+α−1

x (1) (resp.
pN+α−1

x (0)) represents the probability that, starting
from one dual particle at site x on a lattice of size
N+α−1 (the size increases), one particle is absorbed
at 0 (resp. N). On the other hand, if α−1 /∈ N, then
pN±α−1

x (1) and pN±α−1

x (0) are no longer absorption
probabilities since to see them as that we would
need to consider a lattice of non-integer size (the
size N decreases by α−1, for SEP(α), and increases
by α−1, for SIP(α)) that, by our construction of the
microscopic space from the macroscopic space, it is
not allowed.

Comparing now the absorption probabilities on
the main diagonal points, i.e., pNx,x(m), with x ∈
ΛN : taking θ = 0, for SEP(α) and SIP(α) (recall
that it does not make sense to talk about pNx,x(m)
for SEP(1), since only one particle is allowed per
site), we see that, for SEP(α) and SIP(α), for m ∈
{0, 1, 2}, pNx,x(m) can be factorized, for every x ∈
ΛN as pNx,x(m) = pNx (m) + pNx (1)Fx(m) + H(m),
where Fx(m) is as in (29) and H(m) is a real number
that depends on m, but not on x, and is defined,
for m ∈ {0, 1, 2}, as

H(m) :=


(−1)mα−1

2N(N−α−1)
[1m̸=0 + 1m̸=2], for SEP(α),

(−1)m+1α−1

N(N+α−1)
[1m̸=0 + 1m̸=2], for SIP(α).

(30)

Summarizing, for SEP(α) and SIP(α), if θ = 0,
for m ∈ {0, 1, 2}, pNx,y(m) can be factorized, for ev-
ery x, y ∈ ΛN with x ≤ y, as

p
N
x,y(m) = p

N
x (m) + p

N
y (1)Fx(m) + H(m)1y=x, (31)

where Fx(m) and H(m) are the ones defined above.
As we saw in Section 4, the stationary density

profiles of SEP(α) and SIP(α) are given by the same
expression, since with only one particle, these pro-
cesses describe the same dynamics. Comparing the
results for the 2-points stationary correlation func-
tion of both processes, for the choice θ = 0, we
observe that φN

ss(x, y), with x, y ∈ ΛN , factorizes as

φ
N
ss(x, y) + Cαρ

N
ss(x)

α + CαρN
ss(x)

α
1y=x

=
(ρ0 − ρN )2

α

{
NH(1)p

N
x (0)p

N
y (1) + H(0)1y=x

}
+

+
Cα(ρ0 − ρN )2

α2

[
NH(1)p

N
x (0)p

N
y (1) + H(0)

]
1y=x, (32)

where H(0) and H(1) are the same as in (30) and
Cα = −1, for SEP(α), and Cα = 1 for SIP(α).
Also, for SEP(α), we have φN

ss(x, y) < 0, while for
SIP(α), φN

ss(x, y) > 0, for all x, y ∈ ΛN with y ̸= x.
Finally, by the methods presented in this section, we
concluded that solving systems of equations with
some boundary conditions, with patience (due to
the extensive computations that are involved), we

can obtain the same results known for SEP(1) with
θ = 0 and with general θ that were obtained in
the literature using Matrix Product Ansatz Method
(MPA). Moreover, note that, even thought MPA
is only available for SEP(1) and not for SEP(α)
or SIP(α), our strategy also work for these models
and we expect to work for other interacting particle
systems. The results obtained in Section 4 that
involved extensive computations were checked using
Mathematica.

As future work, we want to obtain the solution
for the system of equations that the absorption prob-
abilities for 2 dual particles with θ ∈ R for SEP(α)
and SIP(α) solve and from here obtain explicit ex-
pressions for the 2-points stationary correlation func-
tion for SEP(α) and SIP(α) and study its corre-
sponding limiting function at the macroscopic level.
An alternative approach could be to apply Kol-
mogorov’s equation to obtain (and then solve) the
equation satisfied by the 2-points correlation func-
tion for these models. We expect that the operators
that will appear will be related to the ones obtained
for the absorption probabilities pNx,y(m) with an ex-
tra error function taking values only on the diagonal
y = x. From here, we would also like to see if the
stationary correlation functions for higher order can
also be written in a factorized form as in (32) using
absorption probabilities of just one dual particle or
even recursively like it is known for SEP(1).
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