
Stochastic Duality for Symmetric Simple Exclusion and
Inclusion in contact with reservoirs

Beatriz da Costa Salvador

Thesis to obtain the Master of Science Degree in

Mathematics and Applications

Supervisor(s): Ana Patrícia Carvalho Gonçalves
Chiara Franceschini

Examination Committee

Chairperson: Pedro Simões Cristina de Freitas
Supervisor: Chiara Franceschini
Member of the Committee: Gioia Carinci

José Manuel Vergueiro Monteiro Cidade Mourão

December 2021



ii



To all the people who, living or

dead, left me a little bit of themselves ...

iii



iv



Acknowledgments

This thesis has brought me not only academic knowledge and self-cognition, but helped me open a

small window to my future. I am very thankful for these challenging years studying in Instituto Superior
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Resumo

A dinâmica dos processos de Exclusão, SEP(α), α ∈ N, e de Inclusão, SIP(α), α ∈ R+, Sim-

ples Simétricos com fronteira aberta, consiste em partı́culas efetuando um passeio aleatório em tempo

contı́nuo no espaço {1, . . . , N − 1} (para N ∈ N2 fixado) com os pontos 0 e N identificados como reser-

vatórios. Para SEP(α), apenas α partı́culas são permitidas por sı́tio, enquanto que, para SIP(α), não

há limitação. Na fronteira esquerda (respetivamente, direita), particulas são injetadas e absorvidas com

taxas dependentes de N e parâmetros ϵ, γ > 0 (respetivamente, δ, β > 0) e θ ∈ R.

Estes modelos têm processos duais que substituem a fronteira aberta por fronteira absorvente e

que estão ligados pela sua correspondente função de dualidade clássica. Como consequência da du-

alidade, começando ambos os processos da sua medida invariante, obtemos fórmulas explı́citas para

a densidade e função de correlação centrada de dois pontos para SEP(α) e SIP(α), e também para a

função de correlação centrada de três pontos para SEP(1). Estas são encontradas calculando prob-

abilidades de absorção para uma e duas partı́culas nos duais do SEP(α) e do SIP(α) e também para

três particulas no dual do SEP(1). O limite destas funções mostra-se estar relacionado com funções

de Green que são solução de um probema de valor initial com diferentes condições de fronteira depen-

dendo do valor de θ.

Os resultados mais importantes desta dissertação são: Teorema 3.4.1 e Teorema 3.5.1, as identi-

dades (??) e (4.65) e as funções acima referidas obtidas no Capı́tulo 4.

Palavras-chave: Processo de Exclusão Simples Simétrico, Processo de Inclusão Simples

Simétrico, Dualidade, Probabilidades de Absorção, Correlações Estacionárias.
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Abstract

The dynamics of the Symmetric Simple Exclusion, SEP(α), α ∈ N, and Inclusion, SIP(α), α ∈ R+,

processes with open boundary, consists of particles performing continuous time random walks on the

space {1, . . . , N − 1} (for N ∈ N2 fixed) with points 0 and N identified as boundary reservoirs. For

SEP(α), no more than α particles are allowed per site, while, for SIP(α), there is no upper bound. At the

left (respectively, right) boundary, particles are injected or absorbed with rates that depend on N and the

parameters ϵ, γ > 0 (respectively, δ, β > 0) and θ ∈ R.

These models have dual processes that substitute the open boundary by absorbing boundary points

and that are linked by their corresponding classical duality function. As consequence of duality, starting

all processes from their invariant measure, we obtain explicit formulas for the density profile and 2-

points centered correlation function for SEP(α) and SIP(α), and also for the 3-points centered correlation

function for SEP(1). These are found by computing absorption probabilities for one and two particles on

the dual SEP(α) and SIP(α) and also for three particles on the dual SEP(1). The corresponding limit of

such functions is shown to be connected with Green functions that are solution of an initial value problem

with different boundary conditions depending on the value of θ.

The most important results of this thesis are: Theorem 3.4.1 and Theorem 3.5.1, identities (??) and

(4.65) and the functions mentioned above presented in Chapter 4.

Keywords: Symmetric Simple Exclusion Process, Symmetric Simple Inclusion Process, Dual-

ity, Absorption Probabilities, Stationary Correlations.
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Chapter 1

Introduction

1.1 Motivation

Applying statistical methods and probability theory, Statistical Mechanics tries to characterize equi-

librium and non-equilibrium states of particle systems that evolve at a microscopic level with the goal of

explaining macroscopic physical phenomena. Depending on the type of dynamics prescribed between

particles, this characterization can be a very hard task, especially if the system is out of equilibrium.

Motivated by the intrinsic interesting mathematical properties of such microscopic systems, Interacting

Particle Systems emerged as a branch of Statistical Mechanics. Introduced in the mathematics commu-

nity by Spitzer in the 70’s [19] and further developed by Liggett [14], Interacting Particle Systems have

been in growing development and are subject of vast research.

Studying continuous time Markov processes, this field focus on understanding the time evolution of

physical quantities observed at the macroscopic level - for example, temperature, density, pressure - by

analyzing the long time behavior of systems of particles whose dynamics is defined at the microscopic

level and with assumed random behavior. At a first level, every time a continuous time Markov process

is defined it is natural to start by characterizing, if they exist, what are its invariant measures. Meaning

that, starting at time zero from that distribution, at anytime t, we will have the same distribution. Or even,

when this invariant measure is unique, represent the distribution that, as time goes to infinity, the system

will be closer and closer to. From here, studying, for example, the density, temperature or pressure

of the system, becomes a two side way problem: finding the profile of these physical quantities once

the stationary state is attained (meaning that there is no longer time evolution) or before that state is

reached. In this thesis, we will be following the first path.

Motivated by answering to these and many other questions, Interacting Particle Systems combines

different mathematical tools to extract useful information about its models of study. Among the powerful

probabilistic tools that are used is stochastic duality, or simply, duality. Introduced in 1948 by Levy

[16] and in 1957 by Karlin and McGregor for birth and death processes [12], duality theory allows us

to connect some Markov processes to others that in general are of simpler analysis. Here are two

important simplifications that can be done when the duality property is satisfied by a given process and

1



that we will use in this thesis:

1. From open to absorbing boundaries: using duality, we can relate particle systems with boundary

reservoirs that allow creation and annihilation of particles - open boundary - with processes that

only allow death of particles - absorbing boundary. This simplification allows us to compute exact

formulas of some relevant functions, such as the density profile and the k−th point centered cor-

relation functions, for k ∈ N2, of the initial process using the absorption probabilities of the dual

process. Some examples are the Symmetric Simple Exclusion Process, which appeared in 1985

in Liggett’s book [14] where duality is explored when only one particle is allowed per site, and

the Symmetric Simple Inclusion Process with open boundary. They will be object of study on this

thesis.

2. From many to few: we can put in a duality relationship systems that can have numerous particles,

with processes that evolve with only a few. For example, the case when we convert open to

absorbing boundaries. Also, using self-duality (when a process is dual to itself), we can use a

copy of the initial process to compute the density and k−th point centered correlations, for k ∈ N2,

using only one and k dual particles, respectively. This allows a huge simplification on the study of

correlations for self-dual processes that have a very large number of particles.

Besides these simplifications in terms of applications, duality also provides an algebraic approach

to study Interacting Particle Systems, due to its strong connection with Lie algebra’s Theory and its

representations. This new point of view about duality has been developed in [1], [4] and [9] and many

others, providing a useful way to obtain new duality functions for two dual processes that we will recall

in Chapter 3.

1.2 Topic Overview, Objectives and Deliverables

In this thesis, we will study the consequences of having duality between Markov processes defined

on a lattice with boundary reservoirs and the “same” Markov processes defined on the “same” lattice

extended to the boundary points that now are only absorbing. Namely, we will focus on establishing

duality between the Symmetric Simple Exclusion Process with open boundary, SEP(α), with α ∈ N, and

with absorbing boundary points, of particular interest, the special case where only one particle is allowed

per site, SEP(1), and the Symmetric Simple Inclusion Process with boundary reservoirs, SIP(α), with

α ∈ R+, and absorbing boundary points. In both models, we choose boundary rates that depend on the

size of the lattice and on the value of an additional parameter θ ∈ R, that tunes the boundary reservoirs’

strength. Our aim is to obtain, using the duality property, explicit formulas for the stationary density

profile and the k−th point stationary centered correlation functions, with k at most three (Chapter 4) by

computing absorption probabilities of the dual processes (starting with at most three dual particles), that

are solutions of systems of equations obtained conditioning on the first jump. We also want to obtain a

factorized form for these absorption probabilities and correlation functions, motivated by what it is known

2



for SEP(1) where the Matrix Product Ansatz Method (MPA) is available - see, for example, [2], [18] and

[17]. Up to our knowledge, MPA is not available for SEP(α), with α ≥ 2, nor SIP(α), with α ∈ R+.

1.3 Thesis Outline

Here is a description of the content and main results of this thesis. In Chapter 2, we give the construc-

tion of how to define, starting from the macroscopic space (continuous space), the microscopic space

(discrete space). In the last one, we define two different interacting particle systems: the Symmetric

Simple Exclusion Process with open boundary, SEP(α), with α ∈ N, the special case α = 1, SEP(1),

and the Symmetric Simple Inclusion Process also with open boundary, SIP(α), where here α belongs

to R+. We present a detailed proof of the characterization of the unique reversible measure for SEP(α)

and state the analogous results for the reversible measure of SIP(α), both in the context of equilibrium

(equal density on the left and right reservoirs) and as a closed system (meaning, without reservoirs). We

also remark the differences, in terms of reversible measures, between the models when considered with

or without reservoirs. The chapter ends with the discussion of existence and uniqueness of stationary

measure for SEP(α) and SIP(α) out of equilibrium (different density on the left and right reservoirs).

Chapter 3 is dedicated to duality theory. Here, we review two different ways of defining duality

between two continuous time Markov processes, in terms of expectations and via infinitesimal Markov

generators. We recall in Theorem 3.1.1 the connection between reversibility proved in Chapter 2 and a

first duality relation for processes that are dual to themselves via the so-called cheap self-duality function.

We also give a quick overview on Lie algebra theory, focusing on representations of the Lie algebras

su(2) and su(1, 1). We finish the chapter by using the previous general algebraic results to construct the

classical duality functions, of homogeneous product form, providing, via duality, a connection between

our models with their corresponding versions conserving the bulk’s dynamics and changing the boundary

into absorbing boundary points.

In Chapter 4, we provide applications of the duality relations proved in Chapter 3. Namely, we obtain

explicit formulas and study the corresponding limits, depending on the value of θ, for the stationary den-

sity and 2-points stationary centered correlation functions for the models SEP(α) and SIP(α) (for SEP(1),

also the 3-points stationary centered correlation function), by obtaining first explicit formulas for the ab-

sorption probabilities for at most three dual particles (whose results were checked using Mathematica).

We provide for SEP(1) a different argument for the case θ = 0, motivated by the aim of obtaining a

factorized formula.

Last, in Appendix A, we include the link for the Mathematica files with the code used to obtain the

coefficients for the absorption probabilities of both SEP(α), SEP(1) and SIP(α); in Appendix B we write

the formulas for the absorption probabilities that are also valid for the boundary points 0 and N ; and,

finally, in Appendix C, we give a different way of obtaining the 2-points and 3-points stationary centered

correlation functions based on Kolmogov’s equation.
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Chapter 2

Description of the models and

preliminary results

2.1 From macrospace (continuous) to microspace (discrete)

In Interacting Particle Systems, we are interested in understanding the evolution in time of some

physical quantities, such as density, temperature, pressure, in a system that is defined, macroscopically,

in time and space, by looking at the evolution of the interaction of particles at the microscopic level. We

will consider here that the macroscopic space is the closed interval [0, 1] and define the microscopic

space as the rescaled end points of the intervals of a partition of the macroscopic space, excluding the

boundary points. We will now describe the full construction.

Let N ∈ N be a scaling parameter and consider a discretization of the interval [0, 1] in N subintervals

Ii (i = 0, 1, ..., N−1) where Ii =
[

i
N , i+1

N

)
for i = 0, ..., N−2 and IN−1 =

[
N−1
N , 1

]
. We will denote by ΛN

the set of points ΛN := {1, ..., N − 1}, which we will call bulk and that corresponds to the extreme points

of the intervals Ii rescaled by N , neglecting the boundary points 0 and N (i = 0, 1, . . . , N − 1). The bulk

will be our microscopic space. For the points 0 and N , that we will call boundary points , we will consider

them to be reservoirs with an arbitrary number of particles. We will also frequently call the point 0, left

reservoir , and N , right reservoir . See Figure 2.1 for an illustration of the constructions described above.

Once defined the microscopic space, we will select one type of dynamics to describe the interaction

of the particles inside the bulk, called the Kawasaki dynamics 1, and another for the interaction of the

reservoirs with the particles on the bulk, called the Glauber dynamics . As we will see, the Glauber

dynamics will allow creation and annihilation of particles from the points 1 and N − 1 of the bulk, and, to

remind us of this, we will say that the considered models have open boundary .

We will describe in the next sections the two models that we will be focusing on, and consequently,

these two different types of dynamics.

1Here we will be using an abuse of terminology, since usually Kawasaki dynamics stands for the bulk dynamics in SEP(1).
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[0, 1] Macroscopic space

Discretizing

0 1
N

2
N

. . .
N−2
N

N−1
N

1

Discretization of [0, 1]

I0 I1 IN−2 IN−1

Rescale (×N )

0 1 2
. . .

N − 2 N − 1 N

ΛN Microscopic space
{0, N} Boundary points
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Figure 2.1: Macroscopic space, partition of the interval [0, 1] and the corresponding microscopic space.

2.2 Symmetric Simple Exclusion with open boundary - SEP(α)

Let α ∈ N. We define the space of configurations

ΩEx
N := {η = (η1, ..., ηN−1) | ηi = 0, 1, ..., α for all i = 1, ..., N − 1} = {0, 1, ..., α}ΛN

and interpret η ∈ ΩEx
N also as a function η : ΛN → {0, 1, ..., α} where, for every x ∈ ΛN and j ∈

{0, 1, ..., α}, η(x) = j, if at site x there exists j particles. For every x ∈ ΛN , we will call η(x) the

occupation variable at site x. Given a configuration η ∈ ΩEx
N , we define, for all x, y ∈ ΛN with |x− y| = 1,

ηx,y(z) =



η(z), if z ∈ ΛN \ {x, y}

η(x), if η(x) = 0 and z = x

η(y), if η(y) = α and z = y

η(x)− 1, if z = x and η(x) ≥ 1

η(y) + 1, if z = y and η(y) ≤ α− 1

, (2.1)

η0,1(z) =

 η(z), if z ∈ {2, ..., N − 1} or if η(1) = α and z = 1

η(1) + 1, if z = 1 and η(1) ≤ α− 1

, (2.2)

η1,0(z) =

 η(z), if z ∈ {2, ..., N − 1} or if η(1) = 0 and z = 1

η(1)− 1, if z = 1 and η(1) ≥ 1

, (2.3)

ηN−1,N (z) =

 η(z), if z ∈ {1, ..., N − 2} or if η(N − 1) = 0 and z = 1

η(N − 1)− 1, if z = N − 1 and η(N − 1) ≥ 1

, (2.4)

ηN,N−1(z) =

 η(z), if z ∈ {1, ..., N − 2} or if η(N − 1) = α and z = N − 1

η(N − 1) + 1, if z = N − 1 and η(N − 1) ≤ α− 1

. (2.5)
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The elements of ΩEx
N defined in (2.1), (2.2), (2.3), (2.4), (2.5) represent a change of configuration induced

by the jump, injection of extraction of one particle.

The Symmetric Simple Exclusion Process (sometimes also called in the literature generalized SEP(α)

or Symmetric Simple Partial Exclusion Process) with open boundary - SEP(α) - is a continuous time

Markov Process which is simple (jumps only occur to nearest neighbors) and has an exclusion rule

(we say it is partial if α ≥ 2, meaning that, even though there is an upper bound, α, for the number of

particles allowed per site, we still can have piles with more than one particle). The points in ΛN are

occupation sites for particles that have to wait a certain time, which is exponentially distributed with pa-

rameter 1 (to have the Markov property of memory loss), before a jump can occur. To each interval Ii

(i = 0, . . . , N − 1), we allocate an independent Poisson clock such that, every time the clock rings, a

particle that is placed at one of the extremes of Ii can jump to the other if it is not occupied with more

than α − 1 particles. Since these clocks are all independent, the probability that two of them ring at the

same time is zero, meaning that a configuration η can only change when only one jump, injection or

extraction of a particle occurs.

For the jump rates: fixing a configuration η ∈ ΩEx
N , a particle at site x ∈ ΛN \ {1, N − 1} has rate

p(−1)η(x)[α − η(x− 1)] to jump to site x− 1 and p(1)η(x)[α − η(x+ 1)] to jump to site x+ 1. To define

the complete dynamics at sites 1 and N − 1, we will also consider the boundary points 0 and N , as

left and right reservoir, respectively, with an arbitrary number of particles and that can inject or extract

particles at/from the bulk through the sites 1 and N − 1. The inclusion of these reservoirs adds to the

model a new dynamic (that no longer conserves the total number of particles at each time t) for the sites

1 and N − 1. For the boundary rates, we introduce a parameter θ ∈ R that indicates the strength of

the interaction of the reservoirs with the system: the higher the value of θ, the weaker the interaction.

So, given a configuration η ∈ ΩEx
N , a particle at site 1 (resp. N − 1) has rate p(1)η(1)[α − η(2)] (resp.

p(−1)η(N−1)[α−η(N−2]) to jump to site 2 (resp. N−2), and rate p(−1) γ
Nθ η(1) (resp. p(1) β

Nθ η(N−1)),

with γ, β > 0, to get out of the system from the left (resp. right) reservoir. The left (resp. right) reservoir

has injection rate p(1) ϵ
Nθ [α− η(1)] (resp. p(−1) δ

Nθ [α− η(N − 1)]), with ϵ, δ > 0. We say that this process

is symmetric when p(1) = p(−1) = 1, i.e, a particle at site x ∈ ΛN \ {1, N − 1} has the same elementary

rate p (rate when there is only one particle on the system) to jump to its left or to its right. Thus, the

SEP(α) dynamics is the result of a superposition of the two dynamics explained above. See Figure 2.2

for a summary.

Mathematically, Kawasaki and Glauber’s dynamics are described by the infinitesimal Markov gener-

ator of the process. Recall that, given a continuous time Markov process X with countable state space

Ω, its infinitesimal Markov generator L : D(L) → D(L), is defined as the linear operator that satisfies

Lf = lim
t→0+

Stf − f

t
, for all f ∈ D(L), (2.6)

where, if Ω is finite, D(L) is F(Ω) = {f : Ω → R | f is a function}2; and, if Ω is not finite, D(L) is the set

of local functions for a fixed probability measure νρ in Ω, i.e, functions f : Ω → R that are only different

2 For any set A, we will always define F(A) by F(A) := {f : A → R | f is a function }.
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Figure 2.2: Illustration of Kawasaki and Glauber’s dynamics for SEP(α) with the rates associated to each
particle jump.

from zero in a finite subset of Ω. Above {St}t≥0 denotes the Markov semigroup associated to X which is

a family of linear operators from F(Ω) to itself that satisfy the following properties:

1. S0 = I, where I denotes the identity operator in F(Ω);

2. t → Stf is right continuous, for all f ∈ F(Ω);

3. St+s = StSs, for all s, t ≥ 0;

4. Stid = id, for all t ≥ 0 where id is defined as, for all η ∈ Ω, id(η) = η;

5. Stf ≥ Stg, for all t ≥ 0 and for all f, g ∈ F(Ω) such that, for all η ∈ Ω, f(η) ≥ g(η).

In our case Ω = ΩEx
N and we define the infinitesimal Markov Generator for SEP(α), that we will

denote by LEx
α , as

LEx
α f(η) = LEx

l,αf(η) + LEx
bulk,αf(η) + LEx

r,αf(η), (2.7)

for all η ∈ ΩEx
N and f ∈ F(ΩEx

N ), where

LEx
l,αf(η) =

γ

Nθ
η(1)

{
f(η1,0)− f(η)

}
+

ϵ

Nθ
[α− η(1)]

{
f(η0,1)− f(η)

}
,

LEx
bulk,αf(η) =

N−2∑
x=1

{Lx,x+1f(η) + Lx+1,xf(η)} (2.8)

=

N−2∑
x=1

[
cx,x+1(η)

{
f(ηx,x+1)− f(η)

}
+ cx+1,x(η)

{
f(ηx+1,x)− f(η)

}]
,

where cx,x+1(η) := η(x)[α− η(x+ 1)] and cx+1,x(η) := η(x+ 1)[α− η(x)], and

LEx
r,αf(η) =

β

Nθ
η(N − 1)

{
f(ηN−1,N )− f(η)

}
+

δ

Nθ
[α− η(N − 1)]

{
f(ηN,N−1)− f(η)

}
.
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2.2.1 Reversible Measure

A natural question that we should ask every time we define an interacting particle system, is about

its invariant measures: do they exist? In the next definition, we recall what is a stationary (also called

invariant) measure.

Definition 2.2.1 (Stationary Measure). Let X be a continuous time Markov process with state space Ω,

Markov semigroup (St)t≥0 and infinitesimal Markov generator L with dense domain D(L). We say that

a probability measure µ is a stationary measure if it is invariant under the action of St, meaning that, for

all t ≥ 0, µ = µSt, where µSt is the distribution at time t of the process X, or equivalently, if µL = 0, i.e.

∀f ∈ D(L)
∫
Ω

Lf(η)dµ(η) = 0. (2.9)

One important subset of the set of all probability measures is the set of the reversible measures.

Definition 2.2.2 (Reversible Measure). Let X be a continuous time Markov process with state space Ω

and infinitesimal Markov generator L with dense domain D(L). We say that a probability measure µ

defined in Ω is reversible if, for all f, g ∈ D(L),

∫
Ω

Lf(η)g(η)dµ =

∫
Ω

f(η)Lg(η)dµ, or equivalently, ⟨Lf, g⟩µ = ⟨f,Lg⟩µ, (2.10)

where ⟨·, ·⟩µ is the usual inner product in L2(Ω, µ).

If Ω is countable, then the previous condition is equivalent to the detailed balance equation

µ(η)L(η, ξ) = µ(ξ)L(ξ, η), for every η, ξ ∈ Ω and η ̸= ξ. (2.11)

Remark 2.2.1. From (2.10), it is clear that saying that a probability measure is reversible is the same as

asking L to be a symmetric operator on L2(Ω, µ).

In the next proposition (Remark 2.1 of [4]), we recall what is the relationship between invariant and

reversible measures.

Proposition 2.2.1 (Reversibility implies invariance). Any reversible probability measure µ defined in a

countable space Ω with respect to the Markov generator L is a stationary measure for L.

Proof. Since Ω is countable, in order to prove invariance we need to check that, for every η ∈ Ω,∑
ξ∈Ω

µ(ξ)L(ξ, η) = 0. Since µ is reversible,

∑
ξ∈Ω

µ(ξ)L(ξ, η) = µ(η)L(η, η) +
∑
ξ∈Ω
ξ ̸=η

µ(η)L(η, ξ) = µ(η)
∑
ξ∈Ω

L(η, ξ)︸ ︷︷ ︸
=0

= 0,

where the first equality follows from equation (2.11) and the last is a consequence that the generator of
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a continuous time Markov chain {Xt}t≥0 with a countable state space has the form

Lf(η) =
∑
ξ∈Ω

c(η, ξ)[f(ξ)− f(η)] =
∑
ξ∈Ω

L(η, ξ)f(ξ),

for every η ∈ Ω, where c(η, ξ) represent the transition rate of going from η to ξ and has the properties

c(η, ξ) = L(η, ξ) ≥ 0 and
∑
ξ∈Ω
ξ ̸=η

c(η, ξ) = c(η, η).

(see Subsection 2.1.1 of [4]).

So, to find the invariant measures of the SEP(α), it is easier to start by looking for reversible mea-

sures. In the next theorem, for a special choice of the parameters ϵ, γ, β, δ, we characterize the unique

reversible measure for SEP(α) (Proposition 3.2 of [1]). The proof we present here follows a similar strat-

egy to the one presented in [6], for the case α = 1. An alternative proof can be done using the detailed

balance equations, as in [4], Lemma 2.1, where it is demonstrated for the bulk’s dynamics only. Remark

that, since we are working with a countable (in fact, finite) state space, the integrals that will appear

below should be interpreted as sums in ΩEx
N .

Theorem 2.2.1. If
ϵ

ϵ+ γ
=

δ

δ + β
= ρ, (2.12)

then the reversible measure for SEP(α), denoted by µSEP (α), is given by homogeneous product mea-

sures with marginals Binomial distributions with parameter α ∈ N and ρ ∈ (0, 1), i.e.,

µSEP (α)(η) =

N−1∏
x=1

(
α

η(x)

)
ρη(x)(1− ρ)α−η(x). (2.13)

Proof. To simplify notation, we will use µ instead of µSEP (α).

We want to show that the (generalized) SEP(α) generator is self-adjoint with respect to µ, namely:

for every f, g ∈ F(ΩEx
N ), ⟨LEx

α f, g⟩µ = ⟨f,LEx
α g⟩µ. Expanding the left-hand side of last identity, we get

⟨LEx
α f, g⟩µ =

∫
η∈ΩEx

N

LEx
l,αf(η)g(η)dµ︸ ︷︷ ︸
(⋆)

+

∫
η∈ΩEx

N

LEx
bulk,αf(η)g(η)dµ︸ ︷︷ ︸

(⋆⋆)

+

∫
η∈ΩEx

N

LEx
r,αf(η)g(η)dµ︸ ︷︷ ︸
(⋆⋆⋆)

.

To prove reversibility, it is enough to show that LEx
l,α ,LEx

r,α and LEx
bulk,α are self-adjoint with respect to µ.

First, let us compute µ(η0,1), µ(η1,0), µ(ηx,x+1), µ(ηx+1,x), µ(ηN−1,N ) and µ(ηN−1,N ) (for x = 1, ..., N−2).

Regarding the definition of η0,1 in equation (2.2), we have:

• if η(1) ≤ α−1, then µ(η0,1) = ρ
1+

N−1∑
i=1

η(i)
(1−ρ)

(N−1)α−1−
N−1∑
i=1

η(i) α−η(1)
η(1)+1

N−1∏
i=1

(
α

η(i)

)
. Rearranging the

previous expression, we get that

(1− ρ)η0,1(1)µ(η0,1) = ρ(α− η(1))µ(η). (2.14)
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• if η(1) = α, then µ(η0,1) = µ(η).

Analogously, using (2.5),

• if η(N − 1) ≤ α− 1, then (1− ρ)ηN,N−1(N − 1)µ(ηN,N−1) = ρ(α− η(N − 1))µ(η).

• if η(N − 1) = α, then µ(ηN,N−1) = µ(η).

For every x ∈ {1, ..., N − 2}, taking into account equation (2.1), we know that

• if η(x) ̸= 0 and η(x+ 1) ̸= α, then

µ(ηx,x+1) = ρ

N−1∑
i=1

η(i)
(1− ρ)

(N−1)α−
N−1∑
i=1

η(i) [α− η(x+ 1)]η(x)

[α− η(x) + 1][η(x+ 1) + 1]

N−1∏
i=1

(
α

η(i)

)
,

and, therefore,

[α− ηx,x+1(x)]ηx,x+1(x+ 1)µ(ηx,x+1) = [α− η(x+ 1)]η(x)µ(η). (2.15)

• if η(x) = 0 or η(x+ 1) = α, then µ(ηx,x+1) = µ(η).

By similar computations, for any x ∈ {1, ..., N − 2}:

• if η(x+ 1) ̸= 0 and η(x) ̸= α, then

[α− ηx+1,x(x+ 1)]ηx,x+1(x)µ(ηx+1,x) = [α− η(x)]η(x+ 1)µ(η). (2.16)

• if η(x+ 1) = 0 or η(x) = α, then µ(ηx+1,x) = µ(η).

For µ(η1,0), recalling the definition of η1,0 in (2.3), we have:

• if η(1) ̸= 0, then µ(η1,0) = ρ

N−1∑
i=1

η(i)−1
(1− ρ)

(N−1)α+1−
N−1∑
i=1

η(i) η(1)
α−η(1)+1

N−1∏
i=1

(
α

η(i)

)
. Thus,

ρ[α− η1,0(1)]µ(η1,0) = (1− ρ)η(1)µ(η). (2.17)

• if η(1) = 0, then µ(η1,0) = µ(η).

Similarly, for µ(ηN−1,N ), using (2.4), we get:

• if η(N − 1) ̸= 0, then ρ[α− ηN−1,N (N − 1)]µ(ηN−1,N ) = (1− ρ)η(N − 1)µ(η).

• if η(N − 1) = 0, then µ(ηN−1,N ) = µ(η).

Starting by (⋆), let us decompose ΩEx
N in to the hyper-planes Ωi, for i ∈ {0, . . . , α}, i.e., ΩEx

N =
α⋃

i=0

Ωi,

where Ωi = {η ∈ ΩEx
N : η(1) = i}. Each hyper-plane Ωi fixes the number of particles at site 1 to be equal

to i, where i ∈ {0, . . . , α}.
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• If i ∈ {1, . . . , α− 1}, then

∫
η∈Ωi

LEx
l,αf(η)g(η)dµ =

∫
η∈Ωi

γ

Nθ
η(1)f(η1,0)g(η)dµ+

∫
η∈Ωi

ϵ

Nθ
[α− η(1)]f(η0,1)g(η)dµ

−
∫
η∈Ωi

γ

Nθ
η(1)f(η)g(η)dµ−

∫
η∈Ωi

ϵ

Nθ
[α− η(1)]f(η)g(η)dµ

=

∫
ξ=η1,0∈Ωi−1

γ

Nθ

ρ

1− ρ
[α− ξ(1)]f(ξ)g(ξ0,1)dµ(ξ) +

∫
ξ=η0,1∈Ωi+1

ϵ

Nθ

1− ρ

ρ
ξ(1)f(ξ)g(ξ1,0)dµ(ξ)

−
∫
η∈Ωi

γ

Nθ
η(1)f(η)g(η)dµ−

∫
η∈Ωi

ϵ

Nθ
[α− η(1)]f(η)g(η)dµ,

where the last equality is obtained by changing variables on the first two integrals of the right hand-

side of the first equality, noting that {η0,1}1,0 = η and using (2.14) and (2.17). Since ρ = ϵ
ϵ+γ , then,

ϵ[1−ρ]
ρ = γ, γρ

1−ρ = ϵ and

∫
η∈Ωi

LEx
l,αf(η)g(η)dµ =

∫
ξ∈Ωi−1

ϵ

Nθ
[α− ξ(1)]f(ξ)g(ξ0,1)dµ(ξ) +

∫
ξ∈Ωi+1

γ

Nθ
ξ(1)f(ξ)g(ξ1,0)dµ(ξ)

−
∫
η∈Ωi

γ

Nθ
η(1)f(η)g(η)dµ−

∫
η∈Ωi

ϵ

Nθ
[α− η(1)]f(η)g(η)dµ.

(2.18)

• if i = 0, for the same choice of ρ, we get

∫
η∈Ω0

LEx
l,αf(η)g(η)dµ =

∫
η∈Ω0

ϵ

Nθ
[α− η(1)]f(η0,1)g(η)dµ−

∫
η∈Ω0

ϵ

Nθ
[α− η(1)]f(η)g(η)dµ

=

∫
ξ=η0,1∈Ω1

ϵ

Nθ

1− ρ

ρ
ξ(1)f(ξ)g(ξ1,0)dµ(ξ)−

∫
η∈Ω0

ϵ

Nθ
[α− η(1)]f(η)g(η)dµ

=

∫
ξ∈Ω1

γ

Nθ
ξ(1)f(ξ)g(ξ1,0)dµ(ξ)−

∫
η∈Ω0

ϵ

Nθ
[α− η(1)]f(η)g(η)dµ. (2.19)

• if i = α, also using ρ as above, we get

∫
η∈Ωα

LEx
l,αf(η)g(η)dµ =

∫
η∈Ωα

γ

Nθ
η(1)f(η1,0)g(η)dµ−

∫
η∈Ωα

γ

Nθ
η(1)f(η)g(η)dµ

=

∫
ξ=η1,0∈Ωα−1

γ

Nθ

ρ

1− ρ
[α− ξ(1)]f(ξ)g(ξ0,1)dµ(ξ)−

∫
η∈Ωα

γ

Nθ
η(1)f(η)g(η)dµ

=

∫
ξ∈Ωα−1

ϵ

Nθ
[α− ξ(1)]f(ξ)g(ξ0,1)dµ(ξ)−

∫
η∈Ωα

γ

Nθ
[α− η(1)]f(η)g(η)dµ. (2.20)

Since

∫
ξ∈Ωα

ϵ

Nθ
[α− ξ(1)]f(ξ)g(ξ0,1)dµ(ξ) =

∫
ξ∈Ω0

γ

Nθ
ξ(1)f(ξ)g(ξ1,0)dµ(ξ) = 0, (2.21)

then, putting (2.18), (2.19), (2.20) and (2.21) together in (⋆) and noting that the decomposition of Ω is

with disjoint sets, we get that

∫
η∈Ω

LEx
l,αf(η)g(η)dµ =

∫
η∈Ω

f(η)LEx
l,αg(η)dµ. (2.22)
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Analogously, expanding (⋆⋆) and decomposing ΩEx
N , for each fixed x ∈ {1, . . . , N − 2}, as ΩEx

N =
α⋃

i,j=0

Ωi,j
x , where Ωi,j

x = {η ∈ ΩEx
N | η(x) = i and η(x + 1) = j} (these sets, for each i, j ∈ {0, . . . , α}, fix

the number of particles at x to be i and at x+ 1 to be j), we have that

∫
η∈ΩEx

N

LEx
bulk,αf(η)g(η)dµ

=

N−2∑
x=1

α∑
i,j=0

{∫
η∈Ωi,j

x

η(x)[α− η(x+ 1)]f(ηx,x+1)g(η)dµ+

∫
η∈Ωi,j

x

η(x+ 1)[α− η(x)]f(ηx+1,x)g(η)dµ
}

−
N−2∑
x=1

{∫
η∈ΩEx

N

η(x)[α− η(x+ 1)]f(η)g(η)dµ−
∫
η∈ΩEx

N

η(x+ 1)[α− η(x)]f(η)g(η)dµ
}
. (2.23)

For every x ∈ {1, . . . , N − 2}:

• if i ∈ {1, . . . , α} and j ∈ {0, . . . , α−1}, then, changing variables to ξ = ηx,x+1 and using (2.15) and

(2.1), we obtain

∫
η∈Ωi,j

x

η(x)[α− η(x+ 1)]f(ηx,x+1)g(η)dµ =

∫
ξ=ηx,x+1∈Ωi−1,j+1

x

ξ(x+ 1)[α− ξ(x)]f(ξ)g(ξx+1,x)dµ.

Since, for every i, j ∈ {0, . . . , α},

∫
η∈Ω0,j

x

η(x)[α− η(x+ 1)]f(ηx,x+1)g(η)dµ =

∫
η∈Ωi,α

x

η(x)[α− η(x+ 1)]f(ηx,x+1)g(η)dµ = 0

and

∫
ξ∈Ωi,0

x

ξ(x+ 1)[α− ξ(x)]f(ξ)g(ξx+1,x)dµ =

∫
ξ∈Ωα,j

x

ξ(x+ 1)[α− ξ(x)]f(ξ)g(ξx+1,x)dµ = 0,

it is clear that

∫
η∈ΩEx

N

η(x)[α− η(x+ 1)]f(ηx,x+1)g(η)dµ =

∫
ξ=ηx,x+1∈ΩEx

N

ξ(x+ 1)[α− ξ(x)]f(ξ)g(ξx+1,x)dµ.

(2.24)

• if i ∈ {0, . . . , α−1} and j ∈ {1, . . . , α}, then, changing variables to ξ = ηx+1,x and using (2.16) and

(2.1), we get that

∫
η∈Ωi,j

x

η(x+ 1)[α− η(x)]f(ηx+1,x)g(η)dµ =

∫
ξ=ηx+1,x∈Ωi+1,j−1

x

ξ(x)[α− ξ(x+ 1)]f(ξ)g(ξx,x+1)dµ.

Since, for every i, j ∈ {0, . . . , α},

∫
η∈Ωα,j

x

η(x+ 1)[α− η(x)]f(ηx+1,x)g(η)dµ =

∫
η∈Ωi,0

x

η(x+ 1)[α− η(x)]f(ηx+1,x)g(η)dµ = 0

and
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∫
ξ∈Ω0,j

x

ξ(x)[α− ξ(x+ 1)]f(ξ)g(ξx,x+1)dµ =

∫
ξ∈Ωi,α

x

ξ(x)[α− ξ(x+ 1)]f(ξ)g(ξx,x+1)dµ = 0,

we obtain

∫
η∈ΩEx

N

η(x+ 1)[α− η(x)]f(ηx+1,x)g(η)dµ =

∫
ξ=ηx+1,x∈ΩEx

N

ξ(x)[α− ξ(x+ 1)]f(ξ)g(ξx,x+1)dµ.

(2.25)

Therefore, combining (2.24) and (2.25) and replacing in (2.23), we get that

∫
η∈ΩEx

N

LEx
bulk,αf(η)g(η)dµ. =

∫
η∈ΩEx

N

f(η)LEx
bulk,αg(η)dµ. (2.26)

Observe that last computation holds independently of the parameter ρ. At last, expanding (⋆ ⋆ ⋆) and

using the same kind of arguments as we did for the operator LEx
l,α , since ρ = δ

δ+β , then

∫
η∈ΩEx

N

LEx
r,αf(η)g(η)dµ =

∫
η∈ΩEx

N

f(η)LEx
r,αg(η)dµ. (2.27)

Finally, putting together (2.22), (2.26) and (2.27), the proof is completed.

Remark 2.2.2. In the proof of Theorem 2.2.1, we also showed that:

• for any ρ ∈ (0, 1), SEP(α) without reservoirs always admits reversible measures which are homo-

geneous products of Binomial(α,ρ) distributions - Lemma 2.1, [4];

• LEx
l,α (resp. LEx

r,α) is a self-adjoint operator for the inner product taken with respect a product form

measure with marginals Binomial(α, ϵ
ϵ+γ ) (resp. Binomial(α, δ

δ+β )) distributions.

In the previous result, we have characterized the unique reversible measure of SEP(α) for a specific

choice of the parameters ϵ, γ, δ, β ≥ 0. But what can we say about the invariant measures for the other

possible values for ϵ, γ, δ and β? The existence and uniqueness of these measures will be discussed at

the end of this chapter.

Motivated by this lack of information on the invariant measures, we will use stochastic duality to

obtain results on Chapter 4 about some relevant functions (this will be made clear later on) with the aim

of obtaining important information on the invariant measure.

2.2.2 The special case α = 1

The case α = 1 has been intensively study in the literature (see [13] for a scaling limit perspective)

and here additional tools are available, such as the Matrix Product Ansatz Method (MPA) (see for ex-

ample [17], [18] and [2]). In this context, it is important to note that now we only allow one particle per

site, and therefore, the exclusion rule does not permit the system to have piles of particles at any site

x ∈ ΛN . Also, if a particle at site x starts on the left-hand side of another particle at site y (with x < y),

14



as time evolves, they cannot switch places. Thus, given an initial configuration, there is an order for

the particles on the bulk that cannot be changed through time while they are on the bulk. We will use

the binary notation, 0 or 1, for the occupation variables, to say if, given a configuration η ∈ ΩEx
N (taking

α = 1), a point in ΛN is empty or full, respectively.

0 1 2
left

reservoir

. . .

1
γ

Nθ η(1)

ϵ

Nθ (1 − η(1))

x - 1 x x + 1 . . .

1

y-1 y y+1

1 1

N-2 N-1 N. . .

right
reservoir

1
β

Nθ η(N − 1)

δ

Nθ (1 − η(N − 1))

Figure 2.3: SEP(1) dynamics.

Observe that, for α = 1, for every x ∈ {1, . . . , N − 1}, η(x)2 = η(x), ηx,x+1(x) = η(x+1) = ηx+1,x(x),

ηx,x+1(x+1) = η(x) = ηx+1,x(x+1), η0,1(1) = 1−η(1) = η1,0(1), ηN,N−1(1) = 1−η(N−1) = ηN−1,N (1).

This implies that here it does not matter the order of the jump since the resulting configuration is going to

be the same. So, even though, we defined SEP(1) with a jump dynamics, by the previous observation,

the same process can be defined with a flip dynamics (see Section 2.3 of [6]).

It is an immediate consequence of Theorem 2.2.1 that SEP(1) admits a unique reversible measure,

µSEP (1), which is given by homogeneous product measures with marginals Binomial(1,ρ) ≡ Bernoulli(ρ)

distributions, where ρ ∈ (0, 1) depends on ϵ, γ, δ and β.

One of the advantages of using the flip dynamics for this model is that we no longer have to dis-

tinguish between a jump to the left or to the right, simplifying a lot the computations for the proof of

Theorem 2.2.1 in this special case.

2.3 Symmetric Simple Inclusion in contact with reservoirs - SIP(α)

Let α ∈ R+. In contrast to what we had in the first model, in the Symmetric Simple Inclusion Process,

SIP(α), we do not have an upper bound on the total number of particles per site on the bulk. Therefore,

for this model, we define a new space of configurations

ΩIn
N := {η = (η1, ..., ηN−1) | ηi ∈ N0 for all i = 1, ..., N − 1} = N0

ΛN

and interpret η ∈ ΩIn
N also as a function η : ΛN → N0 where, for every x ∈ ΛN and j ∈ N0, η(x) = j,

if on the bulk at site x exists j particles. As above, we will call, for every x ∈ ΛN , η(x) the occupation

variable at site x. We also define the change of configurations (not fearing confusion, we will keep the
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same notation that we used in SEP(α)3): given η ∈ ΩIn
N , for all x, y ∈ ΛN with |x− y| = 1,

ηx,y(z) =


η(z), if z ∈ ΛN \ {x, y}, or , if η(x) = 0 and z = x,

η(x)− 1, if z = x and η(x) ≥ 1,

η(y) + 1, if z = y,

η0,1(z) =

 η(z), if z ∈ {2, ..., N − 1},

η(1)+1, if z = 1,

ηN,N−1(z) =

 η(z), if z ∈ {1, ..., N − 2},

η(N − 1) + 1, if z = N − 1,

η1,0(z) =


η(z), if z ∈ {2, ..., N − 1},

η(1), if z = 1 and η(1)=0,

η(1)−1, if z = 1 and η(1)≥1,

ηN−1,N (z)=


η(z), if z∈{1, ..., N − 2},

η(N − 1), if z=N − 1 and η(N − 1)=0,

η(N − 1)−1, if z=N − 1 and η(N − 1)≥1.

The Symmetric Simple Inclusion Process in contact with reservoirs, SIP(α), is a continuous time

Markov Process which is symmetric and simple (with the same meaning as for SEP(α)). The points

in ΛN are occupation sites that can have any number of particles and, as above, all particles have to

wait a certain time, which is exponentially distributed with parameter 1, to jump to its nearest left or right

neighbor. We use here the same construction with the Poisson clocks that we used for SEP(α). The

main difference from SEP(α) is that we replace the exclusion rule by an inclusion rule, so that, on the

bulk, the jump rate of particles increases as much as more particles are at the arrival site. Thus, they

tend to create piles and stay close to each other, while in SEP(α), particles tended to be apart and be

repelled by each other.

Given a configuration η ∈ ΩIn
N , a particle at site x ∈ ΛN \ {1, N − 1} has rate p(1)η(x)[α + η(x + 1)]

to jump to site x + 1 and rate p(−1)η(x)[α + η(x − 1)] to jump to site x − 1. Remark that these rates

differ from the rates for SEP(α) by the change of a minus sign into a plus. As above, we will also

consider the (boundary) points 0 and N as left and right reservoirs, respectively, that can absorb and

inject particles on the system at the points 1 and N − 1. We define the jump rates for a particle starting

at 1 (respectively, N − 1) as, fixing a configuration η ∈ ΩIn
N , the rate to jump out of the system from the

left (respectively, right) reservoir is p(−1) γ
Nθ η(1) (respectively, p(1) β

Nθ η(N − 1)), with γ, β > 0, and to

jump to 2 (respectively, N − 2) is p(1)η(1)[α + η(2)] (respectively, p(−1)η(N − 1)[α + η(N − 2)]). We

define the injection rates of the left and right reservoirs as p(1) ϵ
Nθ [α+ η(1)] and p(−1) δ

Nθ [α+ η(N − 1)],

respectively, with ϵ, δ > 0. Since we are considering the process to be symmetric, this means that we

choose p(1) = p(−1) = 1. See Figure 2.4 for a summary.

We can also describe this dynamics by the infinitesimal Markov generator for SIP(α), that we denote

by LIn
α . We define LIn

α with domain D(LIn
α ) ⊂ F(ΩIn

N ) as

LIn
α f(η) = LIn

l,αf(η) + LIn
bulk,αf(η) + LIn

r,αf(η), (2.28)

3Let us keep in mind that every time we want to compare SEP(α) with SIP(α), we must think that we are restricting α to the
natural numbers.
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Figure 2.4: SIP(α) dynamics.

for all η ∈ ΩIn
N and f ∈ D(LIn

α ), where

LIn
l,αf(η) =

γ

Nθ
η(1)

{
f(η1,0)− f(η)

}
+

ϵ

Nθ
[α+ η(1)]

{
f(η0,1)− f(η)

}
,

LIn
bulk,αf(η) =

N−2∑
x=1

cx,x+1

{
f(ηx,x+1)− f(η)

}
+ cx+1,x

{
f(ηx+1,x)− f(η)

}
, (2.29)

defining here cx,x+1 = η(x)[α+ η(x+ 1)] and cx+1,x = η(x+ 1)[α+ η(x)],

LIn
r,αf(η) =

β

Nθ
η(N − 1)

{
f(ηN−1,N )− f(η)

}
+

δ

Nθ
[α+ η(N − 1)]

{
f(ηN,N−1)− f(η)

}
.

Here θ has the same meaning as before, namely, it tunes the strength of the interaction between the

bulk and the boundary. We remark that there is a change of sign in cx,x+1 and in cx+1,x from SEP(α) to

SIP(α).

2.3.1 Reversible Measure

Analogously to what we have for SEP(α), SIP(α) also admits a unique reversible stationary measure

when ϵ
γ = δ

β . The proof of reversibility for the generator of the bulk’s dynamics can be found in [4],

Lemma 2.2, with the approach using detailed balance equations. For the proof including the reservoirs’

dynamics, one could follow the same strategy as in the proof of Theorem 2.2.1 or Proposition 3.2 of [1].

Theorem 2.3.1. If
ϵ

γ
=

δ

β
= ρ (2.30)

with ϵ < γ and δ < β, then, the reversible stationary measure for SIP(α), µSIP (α), is given by homo-

geneous product measures with marginals Negative Binomials distributions with parameters α > 0 and

ρ ∈ (0, 1), i.e.,

µSIP (α)(x) =

N−1∏
x=1

Γ(α+ x)

Γ(α)x!
ρx(1− ρ)α. (2.31)
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2.4 Equilibrium and non-equilibrium invariant measures

As we saw above, for a special choice of the parameters ϵ, γ, β and δ, the reversible measure

that we found for SEP(α), in particular SEP(1), and for SIP(α) is of product form and it is completely

characterized. Since every reversible measure is invariant, then we know that for this same special

choice, there is an invariant measure of product form for each one of our models. But, what if we choose

different values for ϵ, γ, β and δ? Can we guarantee existence and uniqueness of an invariant measure

for SEP(α) and SIP(α) with open boundary?

2.4.1 Existence and uniqueness for SEP(α)

In what follows, we will give a general sufficient condition for the existence and uniqueness of invariant

measures for continuous time Markov processes, that we will apply to SEP(α). Recall the definitions of

irreducibility and recurrence (Definition 2.47 and 2.49 of [15]) of a continuous time Markov chain.

Definition 2.4.1 (Irreducibility). A continuous time Markov chain {Xt}t≥0 defined on a probability space

(Ω,F , P ) with state space Ω is irreducible if, for all η, ξ ∈ Ω and t > 0, P η[Xt = ξ] > 0, where

P η[Xt = ξ] denotes the probability that, starting at time t = 0 from the configuration η, the chain has the

configuration ξ at time t.

Definition 2.4.2 (Recurrence). Let {Xt}t≥0 be a continuous time Markov chain defined on a probability

space (Ω,F , P ) with state space Ω. We say that a state η ∈ Ω is recurrence if P η[Xt = η i.o. ] = 1,

where P η[Xt = η i.o. ] represents the probability of, starting at time t = 0 from the configuration η, the

chain returns to the configuration η an infinite number of times. If this condition is not satisfied, we say

that η ∈ Ω is a transient state. If all states of {Xt}t≥0 are recurrent we say that the chain is recurrent

and, if all are transient, we call it transient.

Remark 2.4.1. It is known that for continuous time Markov chains, either all states are recurrent or all

are transient (Proposition 2.52 of [15]).

The next result (Proposition 2.59 and 2.61 of [15]) gives us sufficient conditions for the existence and

uniqueness of invariant measures for a given continuous time Markov process.

Theorem 2.4.1. Every irreducible recurrent continuous time Markov chain has a unique non-zero invari-

ant probability measure.

An irreducible continuous time Markov chain with finite state space Ω is always recurrent. In fact,

if it was transient, that would mean that it could only visit each state a finite number of times. In other

words, for every η ∈ Ω, there would exist Iη1 , . . . , I
η
kη

finite intervals of time, for some kη ∈ N, such that

for every t ∈ R+
0 \

kη⋃
i=1

Iηi , Xt ̸= η. Since Ω is finite, if we took t ∈ R+
0 \

⋃
η∈Ω

kη⋃
i=1

Iηi (that exists because if

not, then this would mean that R+
0 could be covered with a finite union of intervals, which is impossible

since R+
0 is non-compact for the usual topology), then, we would have that, for every η ∈ Ω, Xt ̸= η.

This is clearly impossible, since {Xt}t≥0 has state space Ω and because the chain is irreducible, there
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always exists a non-zero probability of starting from any configuration, at time t the chain to be in any

other state. Therefore, the chain has to be recurrent.

Corollary 2.4.1. Every irreducible continuous time Markov chain with finite state space has a unique

non-zero invariant probability measure.

Note that, for each fixed N ∈ N, SEP(α) defined in ΛN can be seen as describing a continuous

time Markov process {Xt}t≥0 with finite state space ΩEx
N . Since {Xt}t≥0 is clearly irreducible, then, by

Corollary 2.4.1, we know that SEP(α) admits a unique non-zero invariant measure. This means that

independently of γ, ϵ, β and δ (that we ask to be non-zero), there always exists a unique non-zero

invariant measure for SEP(α).

2.4.2 Existence and uniqueness for SIP(α)

For SIP(α), we will apply a different argument, following Appendix A of [3]. The proof uses a strategy

based on duality and on the knowledge of what is the classical duality function between SIP(α) with open

boundary and SIP(α) with absorbing boundary. Therefore, we encourage now the reader to continue

reading this chapter and, at the end of Chapter 3, with all the tools available, see the proof of this fact in

Proposition 3.5.1.

2.4.3 Density of the reservoirs

Let µl
ss (resp. µr

ss) be the unique reversible measure for which Ll,α (resp. Lr,α) is a self-adjoint oper-

ator. As we saw in the proof of Theorem 2.2.1, even if ϵ
γ+ϵ ̸= δ

β+δ , for SEP(α), and ϵ
γ ̸= δ

β , for SIP(α),

µl
ss (resp. µr

ss) is of product form with marginals with Binomial
(
α, ϵ

γ+ϵ

) (
resp. Binomial

(
α, δ

β+δ

))
dis-

tribution, for SEP(α), and Binomial
(
α, ϵ

γ−ϵ

) (
resp. Binomial

(
α, δ

β−δ

))
distribution, for SIP(α).

Denote by Eµl
ss

(resp. Eµr
ss

) the expectation in ΩN taken with respect to µl
ss (resp. Eµr

ss
). Let us

define

ρ0 := Eµl
ss
[η(1)] and ρN := Eµr

ss
[η(N − 1)], (2.32)

where ρ0 and ρN are called “left and right densities”, respectively, and represent the average number of

particles at sites 1 and N − 1. The following table, taken from [1], determine ρ0 and ρN for SEP(α) and

SIP(α).

Model ρ0 ρN
SEP(α) α ϵ

γ+ϵ α δ
β+δ

SIP(α) α ϵ
γ−ϵ α δ

β−δ

Table 2.1: Definition of ρ0 and ρN for SEP(α) and SIP(α).

From (2.32) and Table 2.1, two immediate questions arise:

1. How can we compute ρ0 and ρN?
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2. Neglecting the factor α, why do these quantities are related with the ones that restricted the pos-

sible values of ϵ, γ, β and δ in Theorems 2.2.1 and 2.3.1 (remark that asking ρ0 = ρN in SIP(α) is

the same as asking γ
ϵ = β

δ )?

For the first question: to obtain ρ0 and ρN one only needs to observe that ρ0 and ρN are just the

expectation of a discrete random variable whose law is µl
ss and µr

ss, respectively. To answer the second

question, we will introduce two important concepts: equilibrium and non-equilibrium in the stationary

state. Physically, we say that our system is in equilibrium if the density of the left and right reservoirs

are equal. For us, these densities represent the average number of particles at sites 1 and N − 1,

respectively. Therefore, saying that a system is in equilibrium is the same as saying that ρ0 = ρN . On

the other hand, if the densities are different, then, physically, this means that there is a flux of particles in

the system from the reservoir with higher density to the one with lower density. In this case, the system

is said to be out of equilibrium, or equivalently, in non-equilibrium. Keeping the physical nomenclature,

we will say that our system is in the non-equilibrium stationary state if ρ0 ̸= ρN and the system is taken

starting from the stationary measure. For us, stationary will always represent that we are considering the

expectation with respect to the invariant measure, that as we saw, always exists. So, recalling Theorems

2.2.1 and 2.3.1, the conditions that restricted the possible values of ϵ, γ, β and δ are equivalent to

requiring the system to be in equilibrium. From now on, we will use this nomenclature with the meaning

explained above.
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Chapter 3

Stochastic Duality

Stochastic duality, or simply, duality, is a probabilistic tool that allows studying some Markov pro-

cesses. This very useful property is based on extracting information about a given Markov process X

by analysing another, Y - its dual - that, in general, is simpler. The link between these two processes

is given by what is called a duality function (that is not unique). Besides making use of probabilis-

tic concepts, duality also has a strong connection with the Lie Algebras’ theory, giving us an algebraic

approach to study Markov processes.

In this chapter we will introduce the basic definitions regarding duality, recall some Lie algebra’s

important definitions and results that we will use to study and prove duality for SEP(α) and SIP(α). We

finish this chapter obtaining the expressions for the classical duality functions connecting SEP(α) and

SIP(α) with open boundary with their corresponding duals that have absorbing boundary and use the

classical duality function to prove existence and uniqueness of an invariant measure for SIP(α).

3.1 Basic Definitions and Results

In this section, we follow [4]. For a good survey on duality, see also [11].

Definition 3.1.1 (Duality via expectation). Let X = {Xt}t≥0 and Y = {Yt}t≥0 be two continuous time

Markov processes with state spaces Ω and Ωdual, respectively. We say that the process Y is dual of X if

there exists a function D : Ω× Ωdual → R, which is called duality function, such that

Eη[D(Xt, Y )] = Eη̂[D(X,Yt)] (3.1)

for all (η, η̂) ∈ Ω× Ωdual and for all t ≥ 0. If X has as dual process itself, we say that X is self-dual.

From the definition above, it is immediate that, if Y is dual to X, then X is dual to Y. Using (3.1), we

can relate the Markov semigroups and the infinitesimal Markov generators of two dual continuous time

Markov processes (recall the definitions of Chapter 2).

Proposition 3.1.1. Let X = {Xt}t≥0 and Y = {Yt}t≥0 be two dual continuous time Markov processes

with state spaces Ω and Ωdual, respectively, and with duality function D. Let {St}t≥0 and {Sdual
t }t≥0 be
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the Markov semigroups of X and Y, respectively. Then,

[StD(·, η̂)] (η) =
[
Sdual
t D(η, ·)

]
(η̂), for all t ≥ 0, η ∈ Ω and η̂ ∈ Ωdual. (3.2)

Also, if L and Ldual are the infinitesimal Markov generators of X and Y and have dense domain D(L)

and D(Ldual), respectively, we have that

[LD(·, η̂)] (η) =
[
LdualD(η, ·)

]
(η̂), for all η ∈ Ω and η̂ ∈ Ωdual, (3.3)

assuming that everything is well-defined, i.e.

for all η ∈ Ω, D(η, ·) ∈ D(Ldual) and, for all η̂ ∈ Ωdual, D(·, η̂) ∈ D(L). (3.4)

Usually, the relationship in equation (3.3) is helpful to find duality relations; while equation (3.1) will

be useful for applications.

Under some conditions (that we state in Proposition 3.1.2), we can also define duality for two contin-

uous time Markov processes using condition (3.3).

Definition 3.1.2 (Duality of processes via Markov generators). Let X = {Xt}t≥0 and Y = {Yt}t≥0 be two

continuous time Markov processes with state spaces Ω and Ωdual, respectively, and Markov generator L

and Ldual, respectively. We say that the process Y is dual of X if there exists a function D : Ω×Ωdual → R,

a duality function, such that (3.3) is satisfied.

The following proposition gives us the conditions where we have equivalence between the two defi-

nitions of duality.

Proposition 3.1.2. Let X = {Xt}t≥0 and Y = {Yt}t≥0 be two continuous time Markov processes with

state spaces Ω and Ωdual, respectively. Consider the Markov semigroups of X and Y, (St){t≥0} and

(Sdual
t ){t≥0}, respectively, and its Markov generators, L and Ldual, respectively. Suppose that for all

η ∈ Ω, η̂ ∈ Ωdual and t ≥ 0, StD(·, η̂) ∈ D(L) and Sdual
t D(η, ·) ∈ D(Ldual). Then, Definitions 3.1.1 and

3.1.2 are equivalent.

The proof of the previous result can be found in Proposition 1.2 of [11].

From the definitions above, some natural questions emerge:

1. Given a continuous time Markov process X, can we find a continuous time Markov process Y and

a function D that satisfies (3.3)?

2. Given two dual processes, how can we generate different duality functions?

Until the end of this chapter, we will be concerned with answering to these questions for SEP(α) and

SIP(α).
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Remark 3.1.1. If Ω and Ωdual are countable sets, then condition (3.3) can be written as:

∀(η, η̂) ∈ Ω× Ωdual
∑
ξ∈Ω

L(η, ξ)D(ξ, η̂) =
∑
ξ̂∈Ω

Ldual(η̂, ξ̂)D(η, ξ̂)

⇔ ∀(η, η̂) ∈ Ω× Ωdual
∑
ξ∈Ω

L(η, ξ)D(ξ, η̂) =
∑
ξ̂∈Ω

D(η, ξ̂)(Ldual)T (ξ̂, η̂) ⇔ LD = D(Ldual)T , (3.5)

where L is the rate matrix for the initial process and Ldual is the transpose of the rate matrix of the dual

process.

In the next proposition, we give a sufficient condition for a Markov process to be self-dual (Lemma

5.1 of [4]).

Theorem 3.1.1. Suppose Ω is countable. Then, a continuous time Markov process X = {Xt}t≥0 with

state space Ω that admits a reversible measure µ is always self-dual with self-duality function D given

by

D(η, η̂) =
1η=η̂

µ(η̂)
(3.6)

for all η, η̂ ∈ Ω, where 1η=η̂ is one if η = η̂ and zero otherwise. The function defined in (3.6) is called the

cheap self-duality function.

Proof. Since µ is reversible for X, we have that, for all η, η̂ ∈ Ω,

LD(·, η̂)(η) =
∑
ξ∈Ω

L(η, ξ)D(ξ, η̂) =
∑
ξ∈Ω

L(η, ξ)1ξ(η̂)

µ(y)
=

L(η, η̂)
µ(η̂)

=
L(η̂, η)
µ(η)

=
LT (η, η̂)

µ(η)

=
∑
ξ∈Ω

1η(ξ)

µ(ξ)
LT (ξ, η̂) =

∑
ξ∈Ω

D(η, ξ)LT (ξ, η̂) = DLT (η, ·)(η̂)

where we used the detailed balance equation (2.11) on the fourth equality. This proves that X is a

self-dual process with respect to D.

The previous theorem shows us that, at least for the subclass of continuous time Markov processes

that admit a reversible measure, the answer to question 1. is affirmative.

Remark 3.1.2. Recall that, if we choose ϵ, γ, δ, β such that they do not satisfy the condition (2.12), for

SEP(α), and (2.30), for SIP(α), then, the product measures in (2.13), for SEP(α), and (2.13), for SIP(α),

are no longer reversible and therefore we can not prove self-duality for SEP(α) and SIP(α) with open

boundary. But, as we observed, without reservoirs, there is always available a collection of reversible

measures that are of product form independently from the choice of the parameters ϵ, γ, δ, β. This

observation suggests us to study self-duality for SEP(α) and SIP(α) without reservoirs. The idea now

will be to use the self-duality of SEP(α) and SIP(α) without reservoirs that is available due to Theorem

3.1.1, and try to find a new duality function, constructed from the cheap self-duality function, that not only

satisfies (3.3) with L = Ldual = Lbulk where, Lbulk stands for the bulk generator of each model, but also

with L = Ll,α (resp. Lr,α) and Ldual = Ldual
l,α (resp. Ldual

r,α ), for some operators Ldual
l,α (resp. Ldual

r,α ) that

describe the dynamics of the left (resp. right) reservoirs on the dual processes of SEP(α) and SIP(α).
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Our goal will be to construct such a duality function, as described above, connecting SEP(α) and SIP(α)

with open boundary to SEP(α) and SIP(α) with only absorbing boundary points, respectively.

Remark 3.1.3. Observe that, if there exists a matrix S such that SLbulk = LbulkS, where here Lbulk

denotes the rate matrix associated to the infinitesimal Markov generator of the bulk, then, denoting by

D the cheap self-duality function associated to Lbulk, then SD is again a self-duality function, since

LbulkSD = SLbulkD = SDLbulk. As already pointed out in [5], the previous observation can be made

for any infinitesimal Markov generator and gives us a way to find new duality functions for a self-dual

process: by finding symmetries of the infinitesimal Markov generator, when this is an element of the

universal enveloping algebra of some Lie algebra, and apply these symmetries to a known self-duality

function - the general case can be seen in Theorem 3.3.1. Therefore, duality theory is strongly connected

to Lie algebras’ theory. At this point, it is crucial to remind the reader some basic notions on Lie algebras’

theory so we can clearly understand the previous statements.

3.2 Lie Algebras and its representations

For this section, we will be following [7] and [10].

Definition 3.2.1. Let V a finite dimensional linear vector space under some field K (which we will

consider to be R or C) and define in V a bilinear operation [·, ·] : V × V → V , called Lie bracket or

simply bracket, that satisfies

1. [X,Y ] = −[Y,X] (anti-symmetry)

2. [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 (Jacobi’s Identity).

We will denote the pair (V, [·, ·]), by g, and we call g a real or complex Lie algebra, depending on whether

K = R or K = C, respectively. The dimension of the vector space V under the field K is called the

dimension of the Lie Algebra g.

Example 3.2.1.

1. Denoting by [·, ·] the usual matrix commutator operator and by tr the trace of a matrix, we have

that (sl(2,R), [·, ·]) is a real Lie algebra, given by sl(2,R) = {A ∈ M2(R) : trA = 0}, where M2(R)

denotes the usual set of two by two matrices with real entries; and (sl(2,C), [·, ·]) is a real or complex

Lie algebra, where sl(2,C) = {A ∈ M2(C) : trA = 0}, and M2(C) denotes the set of two by two

matrices with complex entries;

2. su(2) is a three-dimensional real Lie algebra with basis {sx, sy, sz} and commutation relations given

by [sx, sy] = 2sz, [sx, sz] = 2sy and [sy, sz] = 2sx.

3. su(1, 1) is a three-dimensional real Lie algebra with basis {tx, ty, tz} and commutation relations

given by [tx, ty] = 2tz, [tx, tz] = 2ty and [ty, tz] = −2tx.
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Remark 3.2.1. As we will see through this chapter, the Lie algebras su(2) and su(1, 1) will play a central

role. Namely, we will be interested in specific representations for each one of these Lie algebras that will

allow us to write Lbulk as products and sums of elements of these two Lie algebras. In the next definition

we introduce a very important concept in Lie algebra’s theory - Lie algebra’s representation.

Definition 3.2.2 (Lie Algebra Representation). Let g be a real (resp. complex) Lie algebra. We say

that (π, U) is a representation of g if U is a real (resp. complex) vector space and π : g → gl(U) is a

Lie algebra homomorphism, i.e., for every X,Y ∈ g, π([X,Y ]) = π(X)π(Y ) − π(Y )π(X), where gl(U)

represents the set of all linear maps from U to U .

Remark 3.2.2.

• In concrete, consider the following two by two matrices, known as Pauli Matrices,

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

.

If we consider the real vector space A generated by {iσ1, iσ2, iσ3}, then, the linear map π : su(2) →

A defined by π(sw) = −iσw, for w ∈ {x, y, z}, is a faithfull (injective) representation of su(2).

In fact, by direct computations, we have that [σ1, σ2] = 2iσ3, [σ1, σ3] = −2iσ2 and [σ2, σ3] =

2iσ1, where here the bracket should be interpret as the commutator operator between matrices,

then π([sx, sy]) = π(2sz) = −2iσ3 = [−iσ1,−iσ2] = [π(sx), π(sy)], and, similarly, one shows that

π([sy, sz]) = [π(sy), π(sz)] and π([sx, sz]) = [π(sx), π(sz)].

• Similarly, consider

τx =

 0 1

−1 0

 = iσ2 τy =

0 i

i 0

 = iσ1 τz =

1 0

0 −1

 = σ3.

Taking V as the complex vector space generated by {iτx, iτy, iτz}, then π : su(1, 1) → V defined

by π(tx) = −iτz, π(ty) = −iτy and π(tz) = −iτx, is a faithful representation of su(1, 1). Using the

commutation relations above for σ1, σ2 and σ3 and the bi-linearity of the Lie bracket, then [τx, τy] =

2iτz, [τx, τz] = 2iτy and [τy, τz] = −2iτx, we easily observe that π([tx, ty]) = π(2tz) = −2iτx =

[−iτz,−iτy] = [π(tx), π(ty)], and, similarly, π([ty, tz]) = [π(ty), π(tz)] and π([tx, tz]) = [π(tx), π(tz)].

To study representations of a real semisimple Lie algebra g (which is the case of su(2) and su(1, 1)),

it is convenient to consider its complexification, detonated by gC. Then, from the basis of su(2) and

su(1, 1), we want now to construct a basis of (su(2))C and (su(1, 1))C. From the matrices introduced in

the previous remark, set

J0 = 1
2σ3 = 1

2

1 0

0 −1

 , J+ = 1
2 (σ1 + iσ2) =

0 1

0 0

 , J− = 1
2 (σ1 − iσ2) =

0 0

1 0

 (3.7)

and

K0 = 1
2 t3 = 1

2

1 0

0 −1

 , K+ = 1
2 (t2 + it1) =

0 i

0 0

 , K− = 1
2 (t2 − it1) =

0 0

i 0

 . (3.8)
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The representations introduced before can be naturally extended to the complexification of each of

the corresponding Lie algebras. Since these new representations are faithful and the dimension of

their domain is finite and equal to the dimension of their image (both three), then, it is well defined

their inverse. Not fearing confusion, let us identify J0, J+ and J− (resp. K0, K+ and K−) with the

corresponding image of the matrices in (3.7) (resp. (3.8)) through the inverse function of π.

Since {sx, sy, sz} is a basis for su(2), then {J0, J+, J−} is a basis for (su(2))C with the commutation

relations given by

[J0, J+] = J+, [J0, J−] = −J−, [J+, J−] = 2J0. (3.9)

Analogously, since {tx, ty, tz} is a basis for su(1, 1), then {K0,K+,K−} is a basis for (su(1, 1))C with the

commutation relations given by

[K0,K+] = K+, [K0,K−] = −K−, [K+,K−] = −2K0. (3.10)

Observe that, for these new basis, the backet between any two elements of the basis gives a real

multiple of another basis element. This implies that we can talk about real representations of (su(2))C

and (su(1, 1))C that are completely determined if we define its value for the basis that we constructed.

Remark that {J0, J+, J−} is also basis for the real Lie algebra sl(2,R) and for the complex Lie algebra

sl(2,C). On the other hand, {K0,K+,K−} is a basis for the complex Lie algebra sl(2,C) but not for the

real Lie algebra sl(2,R). In fact, su(2) and su(1, 1) are two real forms of sl(2,C) that are not isomorphic

(su(2) and sl(2,R) are isomorphic but su(1, 1) and sl(2,R) are not).

Recalling that our aim is to show how to construct a new duality function starting from one that it is

known, we will need to recall the definition of the center of a Lie algebra and symmetries of a Lie algebra

element.

Definition 3.2.3 (Center of a Lie Algebra). Given a Lie algebra (V, [·, ·]), we define its center as the set

{A ∈ V : [A,X] = 0 for all X ∈ V }.

In other words, it is the set of all the elements that commute with every element of (V, [·, ·]).

Definition 3.2.4 (Symmetry). Let (V, [·, ·]) be a Lie algebra and consider two elements A,B ∈ V . We

say that A is a symmetry of B if [A,B] = 0.

Remark 3.2.3.

• Elements in the center of a Lie algebra are symmetries of all the elements of the Lie algebra.

• If (V, [·, ·]) is a Lie algebra of matrices with the commutator as the corresponding Lie bracket, then,

an element of V is a symmetry of another one if they commute.

Finding symmetries of a given element A of a Lie algebra g,in general, is not easy, specially if the Lie

bracket is not the usual commutator operator. So, can we avoid working with brackets that are not the
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commutator operator? This would no longer be a question if one can embed g as a subspace of some

associative algebra A in such a way that the bracket on g may be computed as [X,Y ] = XY − Y X,

where XY and Y X are computed in A. In other words, we would like to find an injective map i : g → A

such that, for every X,Y ∈ g, i[X,Y ] = i(X)i(Y )− i(Y )i(X). For matrix Lie groups G ⊂ Gl(n;C), where

Gl(n;C) denotes the set of all invertible square matrices of dimension n × n as coefficients in C, it is

known that their corresponding Lie algebra g is a subspace of the associative algebra Mn(C) and the

bracket on g is indeed given by [X,Y ] = XY − Y X (see Section 9.3 of [10]). The universal enveloping

algebra is exactly this associative algebra that we are trying to find.

Definition 3.2.5 (Universal Enveloping Algebra). For any Lie algebra g, the universal enveloping al-

gebra of g is an associative algebra U(g) with identity and an injective map i : g → U(g) such that:

(1) The Lie algebra g is embedded in U(g) by i;

(2) For every X,Y ∈ g, i[X,Y ] = i(X)i(Y ) − i(Y )i(X), meaning that the Lie bracket in U(g) can be

identified with the usual commutator operator and the map i is an homomorphism of Lie algebras.

Indeed, the universal envelopping algebra U(g) is a Lie algebra with Lie bracket given by the

commutator operator.

With this, we can extend the definition of symmetry given in Definition 3.2.4 by asking to exist an

element B ∈ A such that B and A commute. We will now introduce a special element, when exists, of

the universal enveloping algebra.

Definition 3.2.6 (Casimir). Suppose that g is an n-dimensional Lie algebra. Let B be a nondegenerate

bilinear form on g for which the adjoint action of g on itself is skew-symmetric, meaning that, for all

X,Y, Z ∈ g, B(adXY,Z) = −B(Y, adXZ), where adX : g → g is defined, for every U,W ∈ g, by

adWU = [W,U ]. Let {Xi}ni=1 be a basis of g and {Xi}ni=1 be the corresponding dual basis with respect

to B, i.e., for every i, j ∈ {1, . . . , n}, B(Xi, X
j) = 1i(j), where 1i(j) is the indicator function associated

to i. Then, the Casimir element C is an element of the Universal Enveloping Algebra of g that is defined

by

C :=

n∑
i=1

XiX
i. (3.11)

We remark that the definition of the Casimir is independent from the choice of basis, and it is a

central element of the Universal Enveloping Algebra of g (Proposition 10.5 of [10]). Before going any

further, we provide two examples below, where the Casimir is explicitly computed. This will be useful in

the algebraic description of our interacting particle systems.

Example 3.2.2.

1. Casimir for (su(2))C :

Take g = (su(2))C and the bilinear form B, called the Killing form, in g defined, for every X,Y ∈ g,

by

B(X,Y ) =
1

4
tr(adXadY ). (3.12)
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Since {J0, J+, J−} is a basis for (su(2))C, to completely determine B, we only have to compute

B(J0, J0), B(J0, J+), B(J0, J−), B(J+, J+), B(J+, J−) and B(J−, J−).

First, remark that, for X ∈ {J0, J+, J−}, adX can be identified as a 3× 3 matrix âdX , if we use the

bijection ϕ : g → C3 which is given, for any Z ∈ g, by ϕ(Z) = (a, b, c), where Z = aJ0 + bJ+ + cJ−,

for unique a, b, c ∈ C, in the sense that, adX = ϕ−1 ◦ âdX ◦ ϕ. Then,

adJ0 ≡


0 0 0

0 1 0

0 0 1

 adJ+ ≡


0 0 2

−1 0 0

0 0 0

 adJ− ≡


0 −2 0

0 0 0

1 0 0

 . (3.13)

By direct computations,

B(J0, J0) =
1

2
, B(J0, J+) = 0, B(J0, J−) = 0,

B(J+, J0) = 0, B(J+, J+) = 0, B(J+, J−) = 1,

B(J−, J0) = 0, B(J−, J+) = 1, B(J−, J−) = 0.

Therefore, choosing the basis {J0, J+, J−} of g, the corresponding dual basis with respect to the

Killing form is {2J0, J−, J+}, and the Casimir element of su(2) is

C = 2J0J0 + J+J− + J−J+. (3.14)

2. Casimir for (su(1, 1))C :

Consider now in g = (su(1, 1))C the Killing form B in g with the same definition as in (3.12).

Since {K0,K+,K−} is a basis for (su(1, 1))C, as before, to completely determine B, we only have

to determine B(K0,K0), B(K0,K+), B(K0,K−), B(K+,K+), B(K+,K−) and B(K−,K−). By

direct computations,

B(K0,K0) =
1

2
, B(K0,K+) = 0, B(K0,K−) = 0

B(K+,K0) = 0, B(K+,K+) = 0, B(K+,K−) = −1

B(K−,K0) = 0, B(K−,K+) = −1, B(K−,K−) = 0,

and, therefore, B is non-degenerate. Therefore, choosing the basis {K0,K+,K−} of g, the corre-

sponding dual basis with respect to the Killing form is {2K0,−K−,−K+}, and the Casimir element

of su(1, 1) is

C = 2K0K0 −K+K− −K−K+. (3.15)

It will be also helpful for our construction of the classical duality function to recall the definition of

coproduct of a Lie algebra element.

Definition 3.2.7 (Coproduct). The coproduct of a Lie algebra element X is denoted by ∆(X) and defined

28



via the tensor product ⊗, as

∆(X) = id⊗X +X ⊗ id, (3.16)

and that it can be extended as an algebra homomorphism to the universal enveloping algebra, i.e., for

every elements X,Y of the Lie algebra,

∆(XY ) = ∆(X)∆(Y ) = (id⊗X+X⊗id)(id⊗Y +Y ⊗id) = X⊗Y +id⊗(Y X)+id⊗(XY )+Y ⊗X. (3.17)

The next result shows us how to construct symmetries for the coproduct of two elements (Lemma

5.2 of [4]).

Lemma 3.2.1. Given a Lie algebra g, if S is a symmetry of C, where C can be an element in g or in the

universal enveloping algebra of g, then ∆(S) is a symmetry for ∆(C).

Proof. Since S is a symmetry for C, then [S,C] = 0 (here [·, ·] is interpreted as the commutator operator

on the level of the universal enveloping algebra). We want to prove that [∆(S),∆(C)] = 0. Then, using

that the coproduct is an algebra homomorphism, we get that [∆(S),∆(C)] = ∆(S)∆(C)−∆(C)∆(S) =

∆(SC − CS) = ∆([S,C]) = ∆(0) = 0.

With this last result, we can finally comeback to understanding the connection between duality and

Lie algebras.

3.3 Self-duality and symmetries: an overview

As we saw in Theorem 3.1.1, every continuous time Markov process with a countable state space

that admits a reversible measure is always self-dual via the cheap self-duality function. But starting

from the cheap self-duality function, can we construct other non-trivial duality functions? Yes! The next

theorem shows that the composition of a symmetry of the generator with any duality function of a self-

dual process is always a self-duality function for the same process. Therefore, taking in particular the

cheap duality function, using different symmetries, one can construct new duality functions.

Theorem 3.3.1. Let d be a duality function for a self-dual process X defined in Ω with infinitesimal Markov

generator L. Let S be a symmetry of L. Then,

D = Sd (3.18)

is again a self-duality function for X.

Proof. Using (3.18), we get LD = LSd = SLd = SdLT = DLT , which completes the proof.

Remark 3.3.1. For the applications in the cases of SEP(α) and SIP(α), we will see that their corre-

sponding infinitesimal Markov generators will not be written as linear combinations, but sum of products,

of elements of a given Lie algebra, which, in general, do not belong to the Lie algebra. Yet, we will be

able to identify them as elements of the center of the universal enveloping algebra of some Lie algebras.
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Since each of these elements is central, they commute with all the elements of the Lie algebra, and

therefore, every element of the Lie algebra will be a symmetry, in the more general definition, of the

infinitesimal Markov generators.

3.4 Duality for SEP(α)

We will always work under the assumption that we want to find a duality function of product form, i.e.

D(η, η̂) =

N−1∏
i=1

d(η(x), η̂(x))

where d will be called the single site duality function. Using the fact that SEP(α) without reservoirs has

a family of reversible measures that are independent from the choice of γ, ϵ, β and δ (recall Remark

2.2.2), we can prove self-duality for SEP(α) without reservoirs using Theorem 3.1.1.

Corollary 3.4.1. SEP(α) without reservoirs is a self-dual process with self-duality function dcheapbulk given,

for every η, η̂ ∈ ΩEx
N , by

dcheapbulk (η, η̂) =

N−1∏
x=1

dbulk(η(x), η̂(x)), (3.19)

where, dbulk : {0, . . . , α} × {0, . . . , α} → R is defined, for every n,m ∈ {0, . . . , α}, as

dbulk(n,m) =
n![α− n]!

α!
1n=m, (3.20)

where 1n=m is one if n = m and zero otherwise.

Proof. By Theorem 3.1.1, if µρ denotes the reversible measure of product form for SEP(α) without

reservoirs associated to the parameter ρ, then

D(η, η̂) =
1η(η̂)

µρ(η̂)
=

N−1∏
x=1

(
1− ρ

ρ

)η(x)
η(x)![α− η(x)]!

α!
(1− ρ)−α1η(η̂)

is a self-duality function. Choosing ρ = 1
2 and noting that independently from η, in SEP(α) without

reservoirs, the total quantity of particles is conserved
N−1∑
x=1

η(x) = k for fixed k ∈ N , we can neglect the

constant terms
N−1∏
x=1

(
1−ρ
ρ

)η(x)

and (1− ρ)−α to obtain (3.19) and (3.20).

Why do we need the previous result? As we already mentioned, we want to prove that SEP(α) with

open boundary has SEP(α) with absorbing boundary points as dual process. To do that, we will find a

self-duality function using a symmetry for the bulk generator, as in [4], proving (3.1), or equivalently, (3.5)

with L substituted by the respective generator of the bulk. Then, we will modify the obtained self-duality

function to extend it to the reservoirs.

30



Self-duality for SEP(α) without reservoirs using symmetries and real representations of (su(2))C:

Consider the following real representation of (su(2))C:

π : (su(2))C → gl(F({0, . . . , α}))

π(aJ0 + bJ+ + cJ−) = −aJ0 + bJ− + cJ+ for every a, b, c ∈ R,

where, for every f ∈ F({0, . . . , α}) and for all n ∈ {0, . . . , α}, defining f(−1) := 0 and f(α+ 1) := 0,

[J0f ](n) =
1

2
(2n− α)f(n), [J−f ](n) = [α− n]f(n+ 1), [J+f ](n) = nf(n− 1).

Indeed, by direct computations, recalling (3.9), we have that

J−J+ − J+J− = −2J0 ⇔ [π(J+), π(J−)] = 2π(J0) = π[J+, J−],

J+J0 − J0J+ = J+ ⇔ [π(J−), π(−J0)] = π(J−) = π[J−,−J0],

J0J− − J−J0 = −J− ⇔ [π(−J0), π(J+)] = π(−J+) = π[−J0, J+],

which shows that π is a Lie algebra homomorphism, and, therefore, a representation. We should also

remark that when we write, for a, b ∈ {0,+,−}, [π(Ja), π(Jb)], we are making an abuse of notation, and

we should interpret this as [π(Ja), π(Jb)] := π(Ja)π(Jb)− π(Jb)π(Ja) (composition of functions).

Now we want to extend the previous representation to act on functions in F({0, . . . , α}ΛN ) using the

tensor product. For every x ∈ ΛN and for every f ∈ F({0, . . . , α}ΛN ), we define

J0
xf(y1, . . . , yN−1) := [id⊗ · · · ⊗ π(−J0)⊗ · · · ⊗ id]f(y1, . . . , yx, . . . , yN−1)

=
1

2
(2yx − α)f(y1, . . . , yx, . . . , yN−1)

J−
x f(y1, . . . , yN−1) := [id⊗ · · · ⊗ π(J+)⊗ · · · ⊗ id]f(y1, . . . , yx, . . . , yN−1)

= (α− yx)f(y1, . . . , yx + 1, . . . , yN−1)

J+
x f(y1, . . . , yN−1) := [id⊗ · · · ⊗ π(J−)⊗ · · · ⊗ id]f(y1, . . . , yx, . . . , yN−1)

= yxf(y1, . . . , yx − 1, . . . , yN−1).

Using J0
x , J

+
x and J−

x , for x ∈ ΛN , we can write

LEx
bulk,α =

N−2∑
x=1

J+
x J−

x+1 + J−
x J+

x+1 + 2J0
xJ

0
x+1 −

α2

2
id︸ ︷︷ ︸

=Lx,x+1+Lx+1,x

. (3.21)
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In fact, for every f ∈ F(ΩSEP
N ) and η = (η(1), . . . , η(N − 1)) ∈ ΩSEP

N , if x ∈ {1, . . . , N − 2},

[J+
x J−

x+1 + J−
x J+

x+1 + 2J0
xJ

0
x+1 −

α2

2
id]f(η)

=η(x)[α− η(x+ 1)]f(η − δx + δx+1) + [α− η(x)]η(x+ 1)f(η + δx − δx+1)+

+ 2
(
η(x)− α

2

)(
η(x+ 1)− α

2

)
f(η)− α2

2
f(η)

=η(x)[α− η(x+ 1)][f(ηx,x+1)− f(η)] + η(x+ 1)[α− η(x)][f(ηx+1,x)− f(η)] = [Lx,x+1 + Lx+1,x]f(η),

where η ± δx := (η(1), . . . , η(x)± 1, η(x+ 1), . . . , η(N − 1)). Summing over x, we obtain (3.21).

Let us now find a symmetry for LEx
bulk,α. We start by finding, for each x ∈ {1, . . . , N − 2}, a symmetry

for Lx,x+1 + Lx+1,x. Observe that,

J+
x J−

x+1+J−
x J+

x+1+2J0
xJ

0
x+1−

α2

2
id = id⊗ · · · ⊗ id︸ ︷︷ ︸

x−1 times

⊗[J+⊗J−+J−⊗J++2J0⊗J0−α2

2
id⊗id]⊗id⊗ · · · ⊗ id︸ ︷︷ ︸

N−x−2 times

.

Therefore, finding a symmetry for Lx,x+1 + Lx+1,x is equivalent to find a symmetry A for J+ ⊗ J− +

J− ⊗ J+ + 2J0 ⊗ J0 − α2

2 id ⊗ id, since, then, id⊗ · · · ⊗ id︸ ︷︷ ︸
x−1 times

⊗A ⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
N−x−2 times

is again a symmetry for

J+
x J−

x+1 + J−
x J+

x+1 + 2J0
xJ

0
x+1 − α2

2 id. Recall from (3.14) that the Casimir element for su(2) is C =

2J0J0 + J−J+ + J+J−, and its coproduct, ∆(C) = id⊗ C+ C⊗ id+ 4J0 ⊗ J0 + 2J+ ⊗ J− + 2J− ⊗ J+.

Since, for every f ∈ F({0, . . . , α} × {0, . . . , α}) and n,m ∈ {0, . . . , α},

[id⊗ C+ C⊗ id]f(n,m) = [α−m+ 1]mf(n,m) + [m+ 1][α−m]f(n,m) + 2[m− 1

2
α]2f(n,m)+

[α− n+ 1]nf(n,m) + (n+ 1)[α− n]f(n,m) + 2[n− 1

2
α]2f(n,m)

= α
(α
2
+ 1

)
f(n,m),

then,

∆(C) = 2

[
2J0 ⊗ J0 + J+ ⊗ J− + J− ⊗ J+ +

α2

2
id⊗ id

]
+ α

(
1− α

2

)
id⊗ id. (3.22)

Equation (3.22) implies that, A is a symmetry of 2J0 ⊗ J0 + J+ ⊗ J− + J− ⊗ J+ + α2

2 id ⊗ id if,

and only if, A is a symmetry of ∆(C). Since the co-product is a Lie algebra homomorphism that can be

extended, still respecting the bracket, to elements of the universal enveloping algebra, if B is a symmetry

for the element of the universal enveloping algebra of (su(2))C, C = J−J+ + J+J− + 2J0J0, then, by

Lemma 3.2.1, A = ∆(B) is a symmetry for ∆(C). Because C is a central element, this means that all

the elements of (su(2))C are symmetries for C. Therefore, we can take B = J+, J− or J0, compute

its coproduct to construct a symmetry for ∆(C) and, finally, obtain a symmetry for Lx,x+1 + Lx+1,x.

We choose B = J+ so we can obtain the classical single site self-duality function for SEP(α) without

reservoirs, as in [4], Section 5.3, Proposition 5.1. Therefore, ∆(J+) = J+ ⊗ id+ id⊗ J+ is a symmetry

of ∆(C), and so, every power of ∆(J+) is also a symmetry of ∆(C). We consider the exponential to have
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a duality result in product form. Thus,

e∆(J+) = eJ
+⊗id+id⊗J+

= eJ
+⊗ideid⊗J+

(3.23)

=

 ∞∑
j=0

(J+ ⊗ id)j

j!

 ∞∑
j=0

(id⊗ J+)j

j!

 =

 ∞∑
j=0

(J+)j

j!
⊗ id

id⊗ ∞∑
j=0

(J+)j

j!


=

[
eJ

+

⊗ id
] [

id⊗ eJ
+
]
= eJ

+

⊗ eJ
+

.

Therefore, e∆(J+) is a symmetry for 2J0⊗J0+J+⊗J−+J−⊗J++ α2

2 id⊗ id, where the second equality

in (3.23) is a consequence of [J+ ⊗ id][id⊗ J+]− [id⊗ J+][J+ ⊗ id] = J+ ⊗ J+ − J+ ⊗ J+ = 0.

Now, denoting

id⊗ · · · ⊗ id︸ ︷︷ ︸
x−1 times

⊗eJ
+

⊗ eJ
+

⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
N−x−2 times

by eJ
+

x eJ
+

x+1, we know that eJ
+

x eJ
+

x+1 is a symmetry for Lx,x+1 + Lx+1,x, for each x ∈ {1, . . . , N − 2}.

Remark 3.4.1.

• The operator eJ
+

is well-defined, because, for every f ∈ F({0, . . . , α}) and n ∈ {0, . . . , α},

J+

f(n) =

n∑
j=0

(J+)jf(n)

j!︸ ︷︷ ︸
finite sum

, since, f(m) = 0, for every m ∈ Z \ {0, . . . , α}.

• The following property holds:

eJ
+
y =

n∑
j=0

(id⊗ · · · ⊗ id⊗ J+ ⊗ id⊗ . . . id)j

j!
=

n∑
j=0

id⊗ · · · ⊗ id⊗ (J+)j ⊗ id⊗ . . . id

j!
= eJ

+

y

where J+ is placed in position y, with y ∈ ΛN .

Remark 3.4.2. Observe that, for every x, y ∈ {1, . . . , N − 1}, if y ̸= x, then, for every a, b ∈ {0,+,−},

Ja
xJ

b
y = Jb

yJ
a
x , which implies that, if y ̸= x, x+1, J+

y is a symmetry for Lx,x+1 +Lx+1,x and so eJ
+
y = eJ

+

y

is a symmetry of Lx,x+1 + Lx+1,x. Therefore, for every x ∈ {1, . . . , N − 2},

S+ =

N−1∏
y=1

eJ
+

y = eJ
+

⊗ · · · ⊗ eJ
+︸ ︷︷ ︸

N−1 times

(3.24)

is a symmetry of Lx,x+1 + Lx+1,x and also of LIn
bulk,α. Because of this homogeneous factorized form of

the symmetry of LIn
bulk,α using the tensor product and that dcheapbulk is also of homogeneous product form,

we can obtain a new self-duality function for SEP(α) without reservoirs that keeps this property.

Corollary 3.4.2. SEP(α) without reservoirs is self-dual with duality function DSEP
bulk given, for every η, η̂ ∈

ΩSEP
N , by,

DSEP
bulk (η, η̂) =

N−1∏
x=1

dSEP
bulk (η(x), η̂(x)) (3.25)
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where dSEP
bulk : {0, . . . , α} × {0, . . . , α} → R is defined, for every n,m ∈ {0, . . . , α}, by

dSEP
bulk (n,m) =

n!(α−m)!

(n−m)!α!
1n≥m. (3.26)

Proof. Since S+ is a symmetry for LEx
bulk,α and dcheapbulk is a duality function for SEP(α) without reservoirs,

this result is a consequence of Theorem 3.3.1. Indeed, for every η, η̂ ∈ ΩN ,

[S+dcheapbulk (·, η̂)](η) =
N−1∏
x=1

[
eJ

+

dbulk(·, η̂(x))
]
[η(x)] (3.27)

is a self-duality function for SEP(α) without reservoirs. Now, for each x ∈ {1, . . . , N − 1},

[
eJ

+

dbulk(·, η̂(x))
]
[η(x)] =

∞∑
j=0

1

j!
(J+)jdbulk(·, η̂(x))[η(x)] =

η(x)∑
j=0

1

j!

η(x)!

[η(x)− j]!
dbulk(η(x)− j, η̂(x))

=

η(x)∑
j=0

1

j!
η(x)!

[α− η(x) + j]!

α!
1η(x)−j(η̂(x))︸ ︷︷ ︸

is only different from 0 if 0≤j=η(x)−η̂(x)

=
η(x)!(α− η̂(x))!

(η(x)− η̂(x))!α!
1η(x)≥η̂(x)

= dSEP
bulk (η(x), η̂(x)).

Therefore, DSEP
bulk (η, η̂) = [S+dcheapbulk (·, η̂)](η) is a self-duality function for SEP(α) without reservoirs.

Remark 3.4.3. Denoting eJ
−

by S−, since [S+dcheapbulk (·, η̂)](η) = [S−dcheapbulk (η, ·)](η̂), we could get the

same duality function using eJ
−

as a symmetry for LIn
bulk,α

dual = LIn
bulk,α. Indeed,

[S−dcheapbulk (η, ·)](η̂) =
N−1∏
x=1

[
eJ

−
dbulk(η(x), ·)

]
[η̂(x)] =

N−1∏
x=1

 ∞∑
j=0

1

j!

[α− η̂(x)]!η(x)!

α!
1η(x),η̂(x)+j


=

N−1∏
x=1

 ∞∑
j=0

1

j!

[α− η(x) + j]!η(x)!

α!
1η(x)−j,η̂(x)

 = [S+dcheapbulk (·, η̂)](η).

The choice of the duality function DSEP
bulk given in (3.25) forces, for each configuration η of the initial

process, the configurations η̂ of the dual process to have at each site at most the same number of

particles that were at that site on the configuration η. This duality function allows converting the study of

the dynamics of SEP(α) without reservoirs, starting from configurations with many particles, to study the

same dynamics but starting with only few particles. This simplification will turn out to be very important

specially for SEP(α) with open boundary. In particular, this will tell us that, to understand the evolution

of some quantities, like the density function, we can consider configurations of SEP(α) with absorbing

boundary points with only few particles and, instead of a possible increase of the number of particles on

the system that could happen in SEP(α) with open boundary, in the dual, the number of particles can

only decrease with time. Also remark that, if we had chosen B = eJ
−

and had considered as duality

function

[S−dcheapbulk (·, η̂)](η) =
N−1∏
x=1

[α− η(x)]!η̂(x)!

[η̂(x)− η(x)]!α!
1η̂(x)≥η(x),
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(which is the transpose self-duality function) we would be relating SEP(α) without reservoirs with itself,

but the configurations for the dual process would have, at each site, at least, the same number of

particles as the configurations in the initial process, which make the dynamics’ study even harder since

we can be considering more particles on the dual system. This is because J− increases the number of

particles at the site it is acting. On the other hand, if we had considered B = eJ
0

, we would obtain a

duality function that it is just a multiple of the cheap duality function. Indeed, since we are considering

SEP(α) without reservoirs, fixing the initial number of particles, m ∈ N0, on the system independently

from the initial configuration η, we get that

[S0dcheapbulk (·, η̂)](η) =
N−2∏
x=1

∞∑
j=0

(α− η(x)
2 )j

j!
dbulk(η(x), η̂(x))

=

N−2∏
x=1

eα−
η(x)
2 dbulk(η(x), η̂(x)) = e

(N−1)α−
N−1∑
x=1

η(x)
2

N−2∏
x=1

dbulk(η(x), η̂(x))

= e(N−1)α−m
2︸ ︷︷ ︸

constant

dcheapbulk (η(x), η̂(x)).

This is because J0 doesn’t change the number of particles at the site it is acting. This duality function

does not give us any new information that we did not know already about the system.

Now, we can state and prove duality between SEP(α) with open and with absorbing boundary.

Theorem 3.4.1. SEP(α) with absorbing boundary points, with infinitesimal Markov generator LEx,dual
α :

F(Ωdual
N ) → F(Ωdual

N ), given by

LEx,dual
α = Ldual

l,α + LEx
bulk,α + Ldual

r,α , (3.28)

where

Ωdual
N = N0 × {0, . . . , α}ΛN × N0, (3.29)

and, for every f ∈ F(Ωdual
N ) and η̂ ∈ Ωdual

N ,

Ldual
l,α f(η̂) =

αL

Nθ
η̂(1)[f(η̂1,0)− f(η̂)] (3.30)

Ldual
r,α f(η̂) =

αR

Nθ
η̂(N − 1)[f(η̂N−1,N )− f(η̂)], (3.31)

and LEx
bulk(α) is extended to F(Ωdual

N ) with the same expression as in (2.8), is dual to SEP(α) with open

boundary defined in Section 2.2 with classical duality function DSEP (α) given, for every (η, η̂) ∈ ΩN ×

Ωdual
N , by

DSEP (α)(η, η̂) =

[
ϵ

ϵ+ γ

]η̂(0) N−1∏
x=1

dSEP
bulk (η(x), η̂(x))︸ ︷︷ ︸
=D

SEP (α)
bulk

[
δ

δ + β

]η̂(N)

(3.32)

where dSEP
bulk is the same as in (3.26), if αL = ϵ+ γ and αR = δ+ β. Here, η̂1,0 and η̂N−1,N are given, for

every x ∈ ΛN ∪ {0, N}, by
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η̂1,0(x) =


η̂(x), if x = 2, . . . , N

η̂(1)− 1, if x = 1

η̂(0) + 1 if x = 0,

and η̂N−1,N (x) =


η̂(x), if x = 0, . . . , N − 2

η̂(N − 1)− 1, if x = N − 1

η̂(N) + 1 if x = N.

(3.33)

0 1 2
absorbing

point

. . .

α
γ+ϵ

Nθ η̂(1)

x - 1 x x + 1 . . .

η̂(x)[α − η̂(x + 1)]

α

y-1 y y+1

η̂(y)[α − η̂(y − 1)] η̂(y)α

N-2 N-1 N
absorbing

point

α
β+δ

Nθ η̂(N − 1)

Figure 3.1: The dual of SEP(α) with open boundary is SEP(α) with only absorbing boundary.

Proof. Since, LIn
bulk,α does not change the value of η̂(0) or η̂(N), then

LEx
bulk,αD

SEP (α)(·, η̂)(η) =
[

ϵ

ϵ+ γ

]η̂(0)
LEx
bulk,αD

SEP
bulk (·, η̂)(η)

[
δ

δ + β

]η̂(N)

(3.34)

and we already know that the duality function in (3.25) is a self-duality function for SEP(α) without reser-

voirs. Then, it comes for free, from Corollary 3.4.2, that LEx
bulk,αD

SEP (α)(·, η̂)(η) = LEx
bulk,αD

SEP (α)(η, ·)(η̂).

For the generator of the left reservoir, we have

Ll,αD
SEP (α)(·, η̂)(η)

=
γ

Nθ
η(1)[DSEP (α)(η1,0, η̂)−DSEP (α)(η, η̂)] +

ϵ

Nθ
[α− η(1)][DSEP (α)(η0,1, η̂)−DSEP (α)(η, η̂)]

=
γ

Nθ
DSEP (α)(η, η̂)

[
[η(1)− η̂(1)]1η(1)≥η̂(1)+1 − η(1)1η(1)≥η̂(1)

]
+

ϵ

Nθ

[α− η(1)]

η(1)− η̂(1) + 1
DSEP (α)(η, η̂)

[
[η(1) + 1]1η(1)≥η̂(1)−1 − [η(1)− η̂(1) + 1]1η(1)≥η̂(1)

]
.

Since [η(1)− η̂(1)]1η(1)≥η̂(1)+1 − η(1)1η(1)≥η̂(1) = −η̂(1)1η(1)≥η̂(1) and, similarly, [η(1) + 1]1η(1)≥η̂(1)−1 −

[η(1)− η̂(1) + 1]1η(1)≥η̂(1) = η̂(1)1η(1)≥η̂(1)−1, then,

Ll,αD
SEP (α)(·, η̂)(η) = 1

Nθ
DSEP (α)(η, η̂)

[
−γη̂(1)1η(1)≥η̂(1) + ϵ

[α− η(1)]η̂(1)

η(1)− η̂(1) + 1
(η, η̂)1η(1)≥η̂(1)−1

]
=

η̂(1)

Nθ[η(1)− η̂(1) + 1]
DSEP (α)(η, η̂)[−[γ + ϵ][η(1)− η̂(1) + 1]1η(1)≥η̂(1)+

ϵ[η(1)− η̂(1) + 1]1η(1)≥η̂(1) + ϵ[α− η(1)]1η(1)≥η̂(1)−1].
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Since [η(1) − η̂(1) + 1]1η(1)≥η̂(1) + [α − η(1)]1η(1)≥η̂(1)−1 = [α − η̂(1) + 1]1η(1)≥η̂(1)−1, combining the

previous results, we get

Ll,αD
SEP (α)(·, η̂)(η)

=
η̂(1)

Nθ[η(1)− η̂(1) + 1]
DSEP (α)(η, η̂)[−[γ + ϵ][η(1)− η̂(1) + 1]1η(1)≥η̂(1) + ϵ[α− η̂(1) + 1]1η(1)≥η̂(1)−1]

=− [ϵ+ γ]η̂(1)

Nθ
DSEP (α)(η, η̂) +

[ϵ+ γ]η̂(1)

Nθ

ϵ

ϵ+ γ

[α− η̂(1) + 1]

η(1)− η̂(1) + 1
1η(1)≥η̂(1)−1D

SEP (α)(η, η̂)︸ ︷︷ ︸
=DSEP (α)(η,η̂1,0)

=
ϵ+ γ

Nθ
η̂(1)[DSEP (α)(η, η̂1,0)−DSEP (α)(η, η̂)] = Ldual

l,α DSEP (α)(η, ·)(η̂).

By similar arguments, we obtain Lr,αD
SEP (α)(·, η̂)(η) = Ldual

r,α DSEP (α)(η, ·)(η̂).

Combining the previous results, we can finally write LEx
α DSEP (α)(·, η̂)(η) = LEx,dual

α DSEP (α)(η, ·)(η̂),

namely, SEP(α) with open boundary and SEP(α) with absorbing boundary points are dual processes

with duality function DSEP (α).

Remark 3.4.4. Observe that the duality function in (3.35) does not dependent on θ.

3.4.1 The special case α = 1

Remark 3.4.5. If α = 1, then, for every η ∈ ΩN and x ∈ {1, . . . , N−1}, η(x) ∈ {0, 1}, and η(x)![1−η(x)]!
1! = 1

As we did for SEP(α), we can also get a self-duality result for SEP(1) without reservoirs.

Corollary 3.4.3. SEP(1) without reservoirs is a self-dual process with cheap self-duality function given,

for any η, η̂ ∈ ΩN , by
N−1∏
x=1

1{η(x)=η̂(x)}.

Proof. Follows immediately from Remark 3.4.5 and Corollary 3.4.1 taking α = 1.

Corollary 3.4.4. The open SEP(1) defined as in (2.7), taking α = 1, and absorbing SEP(1) defined as

in (3.28), setting α = 1, are dual processes with duality function DSEP (α) given, for every η, η̂ ∈ ΩN , by,

DSEP (1)(η, η̂) =

[
ϵ

ϵ+ γ

]η̂(0) N−1∏
x=1

1{η(x)≥η̂(x)}

[
δ

δ + β

]η̂(N)

, (3.35)

if αL = ϵ+ γ and αR = δ + β.

Proof. This result follows by combining Remark 3.4.5 with Theorem 3.4.1 taking α = 1.
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3.5 Duality for SIP(α)

Analogously to what we did for SEP(α), we will always work under the assumption that we want to

find a duality function of product form, i.e,

D(η, η̂) =

N−1∏
i=1

d(η(x), η̂(x)),

where d is called the single site duality function. We want to obtain a similar duality result connecting

SIP(α) with boundary reservoirs and SIP(α) with absorption boundary points, as we did for SEP(α).

Following the same strategy as in the previous sections, we start by proving self-duality for SIP(α)

without reservoirs, then, finding a symmetry for the bulk’s generator using a representation of a given

Lie algebra and, with it, find a new self-duality function for SIP(α) without reservoirs. Finally, we use

the obtained results for SIP(α) without reservoirs to construct a duality function that is now connecting,

via duality, SIP(α) with boundary reservoirs and SIP(α) with absorption boundary points. Recalling that,

for SIP(α) without reservoirs, the reversible measures were of product form with marginals Negative

Binomial(α, ρ) with arbitrary ρ ∈ (0, 1), the next result is a consequence of Theorem 3.1.1.

Corollary 3.5.1. SIP(α) without reservoirs is a self-dual process with duality function dcheapBulk given, for

any η, η̂ ∈ ΩIn
N , by

dcheapBulk (η, η̂) =

N−1∏
x=1

dBulk(η(x), η̂(x)), (3.36)

where dBulk : N0 × N0 → R is defined, for every n,m ∈ N0, as

dBulk(n,m) =
Γ(α)n!

Γ(α+ n)
1n=m. (3.37)

Proof. By Theorem 3.1.1, D(η, η̂) =

N−1∏
x=1

Γ(α)η(x)!

Γ(α+ η(x))
ρ−η(x)(1− ρ)−α1η(x)=η̂(x) is a self-duality function.

Since, independently of η, in SIP(α) without reservoirs, the total number of particles is conserved, i.e.,
N−1∑
x=1

η(x) = k for fixed k ∈ N, we can neglect the constant term
N−1∏
x=1

ρ−η(x)(1− ρ)−α to obtain (3.36) and

(3.37).

Self-duality for SIP(α) without reservoirs using symmetries and real representations of (su(1, 1))C:

Consider the following representation of (su(1, 1))C:

σ : (su(1, 1))C → gl(F(N0))

σ(aK0 + bK+ + cK−) = aK0 + bK+ + cK− for every a, b, c ∈ R,

where, for every f ∈ F(N0) and for all n ∈ N0,

[K0f ](n) =
1

2
(2n+ α)f(n), [K−f ](n) = [α+ n]f(n+ 1), [K+f ](n) = nf(n− 1).
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Indeed, by direct computations, we have that

K−K+ −K+K− = 2K0 ⇔ [σ(K−), σ(K+)] = 2σ(K0) = σ[K−,K+],

K+K0 −K0K+ = −K+ ⇔ [σ(K+), σ(K0)] = −σ(K+) = σ[K+,K0],

K0K− −K−K0 = K− ⇔ [σ(K0), σ(K−)] = −σ(K−) = σ[K0,K−],

which shows that, in fact, π is a Lie algebra homomorphism, and, therefore, a representation. As for

SEP(α), we extend the previous representation to act on functions in F(NΛN
0 ) using the tensor product.

For every x ∈ ΛN , we define, for every f ∈ F(NΛN
0 ),

K0
xf(y1, . . . , yN−1) := [id⊗ · · · ⊗ σ(K0)⊗ · · · ⊗ id]f(y1, . . . , yx, . . . , yN−1)

=
1

2
(2yx + α)f(y1, . . . , yx, . . . , yN−1)

K−
x f(y1, . . . , yN−1) := [id⊗ · · · ⊗ σ(K−)⊗ · · · ⊗ id]f(y1, . . . , yx, . . . , yN−1)

= (α+ yx)f(y1, . . . , yx + 1, . . . , yN−1)

K+
x f(y1, . . . , yN−1) := [id⊗ · · · ⊗ σ(K+)⊗ · · · ⊗ id]f(y1, . . . , yx, . . . , yN−1)

= yxf(y1, . . . , yx − 1, . . . , yN−1).

Using K0
x,K

+
x and K−

x , for x ∈ ΛN , we can write

LIn
bulk,α =

N−2∑
x=1

K+
x K−

x+1 +K−
x K+

x+1 − 2K0
xK

0
x+1 +

α2

2
id︸ ︷︷ ︸

=Lx,x+1+Lx+1,x

. (3.38)

In fact, for every f ∈ F(ΩN ) and η = (η(1), . . . , η(N − 1)) ∈ ΩN , if x ∈ {1, . . . , N − 2},

[K+
x K−

x+1 +K−
x K+

x+1 − 2K0
xK

0
x+1 +

α2

2
id]f(η(1), . . . , η(N − 1))

=η(x)[α+ η(x+ 1)]f(η(1), . . . , η(x)− 1, η(x+ 1) + 1, . . . , η(N − 1))+

[α+ η(x)]η(x+ 1)f(η(1), . . . , η(x) + 1, η(x+ 1)− 1, . . . , η(N − 1))−

− 2
(
η(x) +

α

2

)(
η(x+ 1) +

α

2

)
f(η(1), . . . , η(N − 1)) +

α2

2
f(η(1), . . . , η(N − 1))

=η(x)[α+ η(x+ 1)][f(ηx,x+1)− f(η)] + η(x+ 1)[α+ η(x)][f(ηx+1,x)− f(η)] = [Lx,x+1 + Lx+1,x]f(η).

Summing over x, we obtain (3.38).

Let us now find a symmetry for LIn
bulk,α. First, for each x ∈ {1, . . . , N − 2}, finding a symmetry for

Lx,x+1 + Lx+1,x. Note that,

K+
x K−

x+1 +K−
x K+

x+1 − 2K0
xK

0
x+1 +

α2

2
id

= id⊗ · · · ⊗ id︸ ︷︷ ︸
x−1 times

⊗[K+ ⊗K− +K− ⊗K+ − 2K0 ⊗K0 +
α2

2
id⊗ id]⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸

N−x−2 times

.
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Therefore, finding a symmetry A for Lx,x+1 + Lx+1,x is equivalent to find a symmetry A for K+ ⊗K− +

K−⊗K+−2K0⊗K0+ α2

2 id⊗id, since id⊗ · · · ⊗ id︸ ︷︷ ︸
x−1 times

⊗A⊗id⊗ · · · ⊗ id︸ ︷︷ ︸
N−x−2 times

is again a symmetry for K+
x K−

x+1+

K−
x K+

x+1− 2K0
xK

0
x+1+

α2

2 id. Recall from (3.15) that the Casimir element for (su(1, 1))C is C = 2K0K0−

K−K+ −K+K−, and its coproduct, ∆(C) = id ⊗ C + C ⊗ id + 4K0 ⊗K0 − 2K+ ⊗K− − 2K− ⊗K+.

Since, for every f ∈ F(N0 × N0) and n,m ∈ N0,

[id⊗ C+ C⊗ id]f(n,m) = −[α+m][m+ 1]f(n,m)−m[α+m− 1]f(n,m) + 2[m+
1

2
α]2f(n,m)−

− [α+ n][n+ 1]f(n,m)− n[α+ n− 1]f(n,m) + 2[n+
1

2
α]2f(n,m)

= α
(α
2
− 1

)
f(n,m).

Then,

∆(C) = −2

[
K+ ⊗K− +K− ⊗K+ − 2K0 ⊗K0 +

α2

2
id⊗ id

]
+ α

(
3α

2
− 1

)
id⊗ id. (3.39)

Equation (3.39) implies that, A is a symmetry of K+ ⊗K− +K− ⊗K+ − 2K0 ⊗K0 + α2

2 id ⊗ id if,

and only if, A is a symmetry of ∆(C). Therefore, by Lemma 3.2.1, if B is a symmetry for the element

of the universal enveloping algebra of (su(1, 1))C, C = 2K0K0 − K−K+ − K+K−, then A = ∆(B) is

a symmetry for ∆(C). Since C is a central element, this means that all the elements of (su(1, 1))C are

symmetries for C. Therefore, we can take B = K+,K− or K0 to compute its coproduct and construct a

symmetry for ∆(C) to finally obtain a symmetry for Lx,x+1 + Lx+1,x. As in SEP(α), we chose B = K+

so we can obtain the classical single site duality function for SIP(α) without reservoirs, as in [4], Section

5.3, Proposition 5.2. Therefore, ∆(K+) = K+⊗id+id⊗K+ is a symmetry of ∆(C), and so, every power

of ∆(K+) is also a symmetry of ∆(C). Thus, by similar computations as the ones we did for SEP(α),

e∆(K+) = eK
+⊗id+id⊗K+

= eK
+⊗ideid⊗K+

= eK
+

⊗ eK
+

, (3.40)

is a symmetry for 2K0 ⊗K0 −K+ ⊗K− −K− ⊗K+ + α2

2 id⊗ id, where the second equality in (3.40) is

a consequence of [K+ ⊗ id][id⊗K+]− [id⊗K+][K+ ⊗ id] = K+ ⊗K+ −K+ ⊗K+ = 0. Now, denoting

id⊗ · · · ⊗ id︸ ︷︷ ︸
x−1 times

⊗eK
+

⊗ eK
+

⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
N−x−2 times

by eK
+

x eK
+

x+1, we know that eK
+

x eK
+

x+1 is a symmetry for Lx,x+1 + Lx+1,x, for each x ∈ {1, . . . , N − 2}.

Remark 3.5.1. The operator eK
+

is well-defined, because, eJ
+

is also well-defined and K+ = iJ+.

Remark 3.5.2. Observe that, for every x, y ∈ {1, . . . , N − 1}, if y ̸= x, then, for every a, b ∈ {0,+,−},

Ka
xK

b
y = Kb

yK
a
x , which implies that, if y ̸= x, x + 1, K+

y is also a symmetry for Lx,x+1 + Lx+1,x and so

eK
+
y = eK

+

y (replace J+ with K+ in point 2 of Remark 3.4.1) is a symmetry of Lx,x+1+Lx+1,x. Therefore,
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for every x ∈ {1, . . . , N − 2},

C+ =

N−1∏
y=1

eK
+

y = eK
+

⊗ · · · ⊗ eK
+︸ ︷︷ ︸

N−1 times

(3.41)

is a symmetry of Lx,x+1 + Lx+1,x and also of LIn
bulk,α. Like in SEP(α), because of this homogeneous

factorized form of the symmetry of LIn
bulk,α, using the tensor product and also because dcheapBulk is of

homogeneous product form, we can obtain a new-duality function for SIP(α) without reservoirs that

keeps this property.

Corollary 3.5.2 (Self-duality for SIP(α) without reservoirs using symmetry). SIP(α) without reservoirs is

self-dual with duality function DSIP
Bulk given, for every η, η̂ ∈ ΩN , by,

DSIP
Bulk(η, η̂) =

N−1∏
x=1

dSIP
Bulk(η(x), η̂(x)) (3.42)

where dSIP
Bulk : N0 × N0 → R is defined, for every n,m ∈ N0, by

dSIP
Bulk(n,m) =

n!

(n−m)!

Γ(α)

Γ(α+m)
1n≥m, (3.43)

and it is called the single site classical duality function for SIP(α) without reservoirs.

Proof. Since C+, defined in (3.41), is a symmetry for LIn
bulk,α and dcheapBulk is a duality function for SIP(α)

without reservoirs, this result is a consequence of Theorem 3.3.1. Indeed, for every η, η̂ ∈ ΩN ,

[C+dcheapBulk (·, η̂)](η) =
N−1∏
x=1

[
eK

+

dBulk(·, η̂(x))
]
[η(x)] (3.44)

is a self-duality function for SIP(α) without reservoirs. Now, for each x ∈ ΛN ,

[
eK

+

dBulk(·, η̂(x))
]
[η(x)] =

∞∑
j=0

1

j!
(K+)jdBulk(·, η̂(x))[η(x)] =

η(x)∑
j=0

1

j!

η(x)!

[η(x)− j]!
dBulk(η(x)− j, η̂(x))

=

η(x)∑
j=0

1

j!
η(x)!

Γ(α)

Γ(α+ η(x)− j)
1η(x)−j,η̂(x)︸ ︷︷ ︸

is only different from 0 if 0≤j=η(x)−η̂(x)

=
η(x)!

(η(x)− η̂(x))!

Γ(α)

Γ(α+ η̂(x))
1η(x)≥η̂(x) = dSIP

Bulk(η(x), η̂(x)).

Therefore, DSIP
Bulk(η, η̂) = [C+dcheapBulk (·, η̂)](η) is a duality function for the self-dual process SIP(α) without

reservoirs.

Finally, we can state duality between SIP(α) with open boundary and SIP(α) with only absorbing

boundary points, whose proof, for θ = 0, can be found in Theorem 4.1 of [1] noticing that, for x ∈ ΛN , if

η(x) < η̂(x), then 1
(η(x)−η̂(x))! := 0. The proof for general θ is analogous to what we did in Theorem 3.4.1

for SEP(α), and we leave the details to the reader.
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Theorem 3.5.1. The SIP(α) with only absorbing boundary points, with infinitesimal Markov generator,

LIn,dual
α : L2(ΩIn,dual

N ) → L2(ΩIn,dual
N ), given by

LIn,dual
α = Ldual

l,α + LIn
bulk,α + Ldual

r,α , (3.45)

where L2(ΩIn,dual
N ) represents the set of local L2 functions with domain ΩIn,dual

N = NΛ̄N
0 where Λ̄N =

{0, . . . , N}, and LIn
bulk,α, Ldual

l,α and Ldual
r,α are extended to L2(ΩIn,dual

N ) with the same definition as in

(2.29), (3.30) and (3.31), respectively, is dual to SIP(α) with open boundary, defined as in (2.28), with

classical duality function DSIP (α) given, for every (η, η̂) ∈ ΩIn
N × ΩIn,dual

N , by,

DSIP (α)(η, η̂) =

[
ϵ

γ − ϵ

]η̂(0) N−1∏
x=1

dSIP
Bulk(η(x), η̂(x))︸ ︷︷ ︸
=D

SIP (α)
bulk

[
δ

β − δ

]η̂(N)

, (3.46)

where dSIP
Bulk is the same as in (3.43), if αL = γ − ϵ and αR = β − δ.

0 1 2
left

reservoir

. . .

α
γ−ϵ

Nθ η(1)

x - 1 x x + 1 . . .

η(x)[α + η(x + 1)]

α

y-1 y y+1

η(y)[α+ η(y − 1)] η(y)α

N-2 N-1 N. . .

right
reservoir

α
β−δ

Nθ η(N − 1)

Figure 3.2: The dual of SIP(α) with open boundary is SIP(α) with only absorbing boundary.

Remark 3.5.3. As in SEP(α), the duality function in (3.46) does not dependent on θ.

Remark 3.5.4. Observe that, in Theorems 3.4.1 and 3.5.1, we do not ask any restrict on the parameters

γ, ϵ, δ and β. So, duality between SEP(α) (respectively, SIP(α)) with open boundary and SEP(α) (respec-

tively, SIP(α)) with absorbing boundary points is valid for equilibrium and non-equilibrium states. This

will be very important because it will allow finding the stationary density profile and stationary centered

correlations out of equilibrium.

We are now in position to prove the existence and uniqueness of invariant measure for SIP(α),

following Appendix A of [3].

Proposition 3.5.1. SIP(α) with open boundary has a unique invariant measure.

Proof. To show that a probability measure µ on a countable space Ω is the unique stationary measure

for the particle system {ηt}t≥0, it is enough to prove that, for all probability measures µ′ on Ω, µ′St
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converge weakly to µ as t goes to infinity, i.e, for all bounded functions f : Ω → R,

lim
t→∞

Eµ′ [f(ηt)] = Eµ[f(η)] (3.47)

(in fact, this is an equivalent characterization of a unique invariant probability measure of an irreducible

Markov chain - see Theorem 2.66. of [15]). The idea is to prove that there exists a unique probabil-

ity measure µ that is characterized by its factorial moments and, consequently, characterized by the

integrals ∫
ΩN

DSIP (α)(η, η̂)dµ(η), (3.48)

for every η̂ ∈ Ωdual
N (to a measure that has this property we will call a tempered measure ). As we saw

above,

DSIP (α)(η, η̂) =

[
ϵ

γ − ϵ

]η̂(0) N−1∏
x=1

η(x)!

(η(x)− η̂(x))!

Γ(α)

Γ(α+ η̂(x))
1η(x)≥η̂(x)

[
δ

β − δ

]η̂(N)

is the classical duality function between SIP(α) with open boundary and SIP(α) with absorbing bound-

ary, Ωdual
N = N1+|ΛN |+1

0 is the state space of SIP(α) with absorbing boundary and, for every fixed η̂,

DSIP (α)(η, η̂) is written in terms of products of factorial moments of the variables {η(x) : x ∈ ΛN} with

some weights (since η̂ is fixed, then
[

ϵ
γ−ϵ

]η̂(0) [
δ

β−δ

]η̂(N) N−1∏
x=1

Γ(α)
Γ(α+η̂(x)) is constant). To finish the proof,

we will need to show that the same probability measure will also satisfy (3.47), and, therefore, we have

found the unique invariant measure of SIP(α). By duality, for every η ∈ ΩN and η̂ ∈ Ωdual
N such that

|η̂| :=
N∑

x=0

η̂(x) = k (the total number of dual particles is k),

lim
t→∞

Eη[D
SIP (α)(ηt, η̂)] = lim

t→∞
Eη̂[D

SIP (α)(η, η̂t)] =

k∑
m=0

(ρN )k−m(ρ0)
mpNη̂ (m) (3.49)

where the last equality is a consequence that, as time goes to infinity, all the particles on the bulk will

eventually be absorbed by one of the boundary points. Here pNη̂ (m) represents the probability that,

starting from the dual configuration η̂, m of the k particles are absorbed at 0, Eη and Eη̂ represent the

expectation in ΩN and Ωdual
N taken with respect to the measures δη and δη̂, respectively, and ρ0 and ρN

have the interpretation as in Chapter 2. Now, taking C = max{ρN , ρ0} ∈ (0,∞), we have

k∑
m=0

(ρN )k−m(ρ0)
mpNη̂ (m) ≤

k∑
m=0

Ck−mCmpNη̂ (m) = Ck
k∑

m=0

pNη̂ (m)︸ ︷︷ ︸
=1

= C |η̂|. (3.50)

Now applying Lemma A.1 of [3], defining µ∗ by lim
t→∞

δηSt, then, µ∗ is tempered and therefore, it is the

unique probability measure for which

Eµ∗ [DSIP (α)(ηt, η̂)] =

k∑
m=0

(ρN )k−m(ρ0)
mpNη̂ (m). (3.51)
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We remark that, since µ∗ is uniquely determined by (3.51), choosing a different configuration η, we would

obtain exactly same measure.

Since everything we did until now was independent from η̂ and µ∗ is uniquely characterized by the

limiting moments in (3.49), then, for every bounded function f : ΩN → R and η ∈ ΩN , lim
t→∞

Eη[f(ηt)] =

Eµ∗ [f ]. Finally, for every probability measure µ in ΩN , Eµ[f(ηt)] = Eµ[Eη[f(ηt)]] and, since, for every

η ∈ ΩN , lim
t→∞

Eη[f(ηt)] = Eµ∗ [f ] and |Eη[f(ηt)]| ≤ sup
η∈ΩN

|f(η)| ≤ C, for some C = C(f) > 0 and for every

t ∈ R+
0 , by the dominated convergence theorem,

lim
t→∞

Eµ[f(ηt)] = lim
t→∞

Eµ[Eη[f(ηt)]] = Eµ[ lim
t→∞

Eη[f(ηt)]] = Eµ[Eµ∗ [f ]] = Eµ∗ [f ],

where the last equality follows from the fact that µ is a probability measure. Therefore, µ∗ is the unique

invariant measure of SIP(α).
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Chapter 4

Applications of Duality

As we saw in the last chapter, SEP(α) and SIP(α) with open boundary have as dual processes

SEP(α) and SIP(α) with absorbing boundary, respectively – recall Theorems 3.4.1, 3.4.4 (for the special

case α = 1) and 3.5.1. Once a particle reaches any of the boundary points, it can not leave that state

(and we say that the particle has been absorbed at that point). So, it makes sense to talk about ab-

sorption probabilities in the dual processes, i.e., starting from a given configuration with k dual particles,

what is the probability that m of those k will be absorbed at 0 and the remaining k −m will be absorbed

at N?

In this chapter, we will start by computing absorption probabilities for the dual processes of SEP(α),

with special interest for the case α = 1, and SIP(α), starting from a configuration with k particles (in

our computations, k will be at most 3). It will become clearer in Section 4.2.1 why do we need these

absorption probabilities and how can duality make use of them to obtain other important results.

We will make the simplification of choosing the parameters γ, ϵ, δ and β satisfying:

• for SEP(α), with α ∈ N, γ + ϵ = β + δ = α;

• for SIP(α), with α ∈ R+, γ − ϵ = β − δ = α.

The previous choices, called Liggett conditions, still gives us enough freedom to choose two of the four

parameters (γ, ϵ, δ and β) and, therefore, find the stationary density profile and the 2-points (for SEP(1),

also 3-points) stationary correlation functions out of equilibrium. This choice simplifies the computations

that will be done in the following sections and it allows us to obtain explicit expressions for the absorption

probabilities for SEP(α) and SIP(α). We could drop this restriction in all the models for the case k = 1

and still obtain analogous results with similar computations, but, as k increases, dropping this restriction

would create an extra asymmetry on the models that is reflected on the lost of “continuity” (even in the

case θ = 0) in the coefficients of the polynomials that will describe the absorption probabilities that we

want to find.
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4.1 SEP(1) - Absorption Probabilities

4.1.1 Case k = 1

• Notation and conventions

Recall that choosing k = 1 means that our dual process will start with just one dual particle that can

either be absorbed at 0 or N . Therefore, the number of particles absorbed at 0, represented here by m,

can either be 0 or 1, i.e., m ∈ {0, 1}. Let x ∈ ΛN (the definition of ΛN was introduced in Section 2.1) that

represents the site where the dual particle is initially placed, i.e., we start from the dual configuration

η̂ = δx := (0, 0, . . . , 0︸ ︷︷ ︸
x−1 zeros

, 1, 0, . . . , 0, 0). Denote by pNx (1) (resp. pNx (0)) the probability that, started from

the configuration with one particle placed at site x, one (resp. zero) dual particle (resp. particles) being

absorbed at 0. Observe that, if we extend the possible values of x to include 0 and N , then pN0 and pNN

represent boundary terms. Let us keep in mind that, for each m, pNx (m) can be though as the image at

x of a function pN (m) : {0, . . . , N} → [0, 1] where pN (m)(x) := pNx (m).

We will write P(x → y), with x ∈ ΛN and y ∈ {x − 1, x + 1}, to represent the transition probability of

a particle going from x to y in one step. In what follows, the 1-dimensional discrete Laplacian operator,

that we will denote by ∆1D
N , will be a central object. This operator ∆1D

N : F({0, . . . , N})1 → F(ΛN ) is

defined, on a function f ∈ F({0, . . . , N}), for every x ∈ ΛN , as

∆1D
N f(x) = N2[f(x− 1)− 2f(x) + f(x+ 1)]. (4.1)

• Conditioning and results

Observe that SEP(1) with absorbing boundary points with just one particle represents a particle per-

forming a continuous time one-dimensional random walk (that is symmetric on the bulk) with absorbing

boundary and jump rates given as in Figure 4.1. This picture is a simplification of Figure 3.2, for SEP(1)

with absorbing boundary points and just one particle.

0 1 2
absorbing

point

. . .

1
1

nθ η̂(1)

x - 1 x x + 1 . . .

11

N-2 N-1 N
absorbing

point

1
1

nθ η̂(N − 1)

Figure 4.1: Jump rates for SEP(1) with absorbing boundary points with just one particle.

To compute pNx (m), for each fixed m, we will condition on the first jump to get a system of equations

that pNx (m) has to satisfy. Then:

1Recall that for any set A we defined F(A) as the set of functions f : A → R.
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• If x = 1, meaning that we start with a particle at site x = 1, then, for its first jump, the particle has

two possibilities: either it jumps to the right, i.e., to the point 2 with rate 1, or it jumps to the left,

i.e., to the boundary point 0 with rate 1
Nθ . Therefore, we get the following formula

pN1 (m) =P(m particles are absorbed at 0 starting with one particle at 1|1 → 0)P(1 → 0)+

P(m particles are absorbed at 0 starting with one particle at 1|1 → 2)P(1 → 2)

To obtain the transition probability P(1 → 0) (resp. P(1 → 2)), one has to recall that we only have

to make the ratio between the rate of going from 1 to 0 (resp. from 1 to 2) and the sum of the rates

for every possible jumps at the present position.

As a consequence of the Markov property, the probability that, starting with one particle at site

1, that particle is absorbed at 0 given that the first jump was to the right, i.e., to 2, is equal to

the probability that, starting with one particle at 2, that one is absorbed at 0. Analogously, the

probability that, starting with one particle at site N − 1, that particle is absorbed at N given that

the first jump was to the left, i.e., to N − 2, is equal to the probability that, starting with one particle

at N − 2, that one is absorbed at N . Also, the probability that, starting with one particle at 1, that

particle is absorbed at 0 (resp. at N ) given that the first jump was to the left, i.e., to 0 (resp. to N ),

is interpreted as the boundary value pN0 (1) (resp.pN0 (0)). Here, pN0 (1) represents the probability

that a particle, that is at the point 0, being absorbed at 0 and pN0 (0) represents the probability that

a particle, that is at the point 0, being absorbed at N . Since, once a particle reaches any of the

points 0 or N , it has to stay there forever, we have that pN0 (0) = 0 and pN0 (1) = 1. Therefore, we

obtain the following equation

pN1 (m) =
1

Nθ

1 + 1
Nθ

pN0 (m) +
1

1 + 1
Nθ

pN2 (m) ⇔ (1 +Nθ)pN1 (m) = pN0 (m) +NθpN2 (m).

• Analogously, if x ∈ {2, ..., N − 2}, then 2pNx (m) = pNx+1(m) + pNx−1(m), i.e., ∆1D
N pNx (m) = 0.

• Finally, if x = N−1, then (1+Nθ)pNN−1(m) = pNN (m)+NθpNN−2(m), where here, analogously to the

case x = 1, pNN (1) represents the probability that a particle that is at the point N being absorbed

at 0 and pNN (0) represents the probability that a particle that is at the point N being absorbed at N .

By the same arguments as in the case x = 1, we conclude that pNN (0) = 1 and pNN (1) = 0.

Putting together the boundary conditions for each value of m and the previous results, we obtain a

system of equations that can be summarized, like in [7], as:


Bθ

NpNx (m) = 0, for x = 1, . . . , N − 1,

pN0 (m) = 1m=1,

pNN (m) = 1m=0,

(4.2)
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where the operator Bθ
N : F({0, . . . , N}) → F(ΛN ) is defined, for every function f ∈ F({0, . . . , N}), as

Bθ
Nf(x) = ax[f(x− 1)− f(x)] + bx[f(x+ 1)− f(x)], (4.3)

with ax = N2

Nθ 1x=1 +N21x ̸=1 and bx = N2

Nθ 1x=N−1 +N21x ̸=N−1.

For every x ∈ {2, . . . , N − 2}, pNx (m) is solution to the one-dimensional discrete Laplace equation

(∆1D
N pNx (m) = 0). Then, for every x ∈ ΛN ,

pNx (m) = Amx+Bm, (4.4)

with Am, Bm ∈ R to be determined. Note that Am and Bm do not represent the power m of some

real numbers A and B, but it is just a notation to recall that the coefficients depend on m. Using the

remaining equations (that use the boundary conditions) given in (4.2) by taking x = 1 and x = N − 1,

we get, for m = 1,

 (1 +Nθ)(A1 +B1) = Nθ(2A1 +B1) + 1

(1 +Nθ)[A1(N − 1) +B1] = Nθ[A1(N − 2) +B1]

⇔

A1 = − 1
N+2Nθ−2

B1 = Nθ+N−1
N+2Nθ−2

.

We could easily adapt the previous computations to m = 0, however, by the total law, pNx (0) =

1− pNx (1), we do not need to compute the remaining coefficients. Replacing in (4.4), we get



pNx (0) = Nθ−1+x
N+2Nθ−2

, if x ∈ ΛN ,

pNx (1) = Nθ−1+N−x
N+2Nθ−2

, if x ∈ ΛN ,

pN0 (m) = 1m=1,

pNN (m) = 1m=0.

(4.5)

Remark that, if θ ̸= 0, the first and second equations in (4.5) can not include the points x = 0 or

x = N , since what we obtain does not coincide with the boundary conditions pNx (1) and pNx (0). This

means that we lose “continuity” of the coefficients 2 when we get to the boundary points 0 and N . This is

due to the fact that at x = 1 and x = N−1, pNx (m) is no longer a solution to the one-dimensional discrete

Laplace equation, since the factor Nθ creates a distortion on the operator (which is only eliminated when

θ = 0). In any case, using indicator functions at x = 0 and x = N , we can rewrite (4.5) in a compact

form that is valid for every x ∈ {0, . . . , N} (see Appendix B).

If θ = 0, for every x ∈ {0, . . . , N},

pNx (1) = 1− x

N
and pNx (0) =

x

N
, (4.6)

where here we no longer have the “continuity” until the boundary issue, since, in this case, pNx is solution

to the one-dimensional discrete Laplace equation in the whole ΛN .

2We will use the term “continuity” to say that the coefficients Am and Bm do not have dependence in x, i.e., they are the same
for every x ∈ {0, . . . , N}.
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Remark 4.1.1. The computations with only one dual particle are relatively simple. As the number of

particles increase, we get more and more extensive computations. Therefore, we will make use of

Mathematica to verify our results for 2 and 3 particles (see Appendix A for the code).

4.1.2 Case k = 2

• Notation and conventions

Note that now the dual process starts with k = 2 particles that can be absorbed at 0 or N . So, we

can have both particles absorbed at 0, one absorbed at 0 and the other at N or both absorbed at N , i.e.,

m ∈ {0, 1, 2}. Let x, y ∈ ΛN , with x < y represent the position where each particle started, i.e., the initial

configuration of the dual process is η̂ = δx + δy. Denote by pNx,y(m) the probability that m dual particles

are absorbed at the left reservoir knowing that one of the k = 2 particles started at position x and the

other at position y. Observe that, if we extend the possible values for x and y to x = 0 or y = N , then

pN0,y(m) and pNx,N (m) represent boundary terms, and we can also think about pN0,0(m) and pNN,N (m) with

the natural meaning. Let us also keep in mind here that, for each m, pNx,y(m) can be though as the image

at (x, y) of a function pN (m) : T N → [0, 1] where pN (m)(x, y) := pNx,y(m) which can be extended to the

cathetus T N
0 and T N

N . Here T N is a discretized triangle defined as T N = {(x, y) ∈ Λ2
N | x < y}, and the

cathetus T N
0 and T N

N are defined by T N
0 = {(0, y) | y ∈ {0, . . . , N}} and T N

N = {(x,N) | x ∈ {0, . . . , N}}.

It is very important to remark here that it does not make sense to consider pNx,y(m) at the diagonal

points (x, x) with x ∈ ΛN (we will denote by Diag the set of these diagonal points). This is due to the

fact that, in SEP(1), we do not allow particles to be on top of each other. This simple observation clearly

distinguishes the special case α = 1 in the analysis of SEP(α). As we will see, if α ≥ 2, we will have to

look at what happens to pNx,y(m) at these diagonal points, creating an extra difficulty. See Figure 4.5 for

a geometric representation of the sets defined above.

x

y

0 1 2 N − 1 N

1

2

N − 1

N

Color interpretation:

V1 = (0, 0)

V2 = (0, N)

V3 = (N,N)

T N
N \ {V2, V3}

T N
0 \ {V1, V2}

T N ; Diag

Figure 4.2: Geometric representation of T , T0, TN and Diag.

In what follows, the 2-dimensional discrete Laplacian operator, that we will denote by ∆2D
N , will be a

central object. This operator ∆2D
N : F(BT N ) → F(T N ), where BT N = {(x, y) ∈ {0, . . . , N}2 | x < y}, is
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defined, for every f ∈ F(BT N ) and (x, y) ∈ T N , as

∆2D
N f(x, y) =

∆2D
N,fullf(x, y), if y ̸= x+ 1,

∆2D
N,reff(x, x+ 1), if y = x+ 1,

, where

∆2D
N,fullf(x, y) := N2[f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y)], if y ̸= x+ 1,

∆2D
N,reff(x, x+ 1) := N2[f(x− 1, x+ 1) + f(x, x+ 2)− 2f(x, x+ 1)], if y = x+ 1.

To ∆2D
N,ref we call the 2-dimensional discrete reflected Laplacian. Remark that ∆2D

N,full = (∆1D
N )x +

(∆1D
N )y, where (∆1D

N )x and (∆1D
N )y denote the 1-dimensional Laplacian operator acting on the first and

second variable, respectively, of a function in F(BT N ). This notation will be helpful later on.

• Conditioning and results

Observe that SEP(1) with absorbing boundary points with just two particles represents a particle

performing a two-dimensional random walk on a triangle (jumps can only occur to points that are left,

right, upward or downward nearest-neighbor of the initial position of the random walk) with absorbing

cathetuses, meaning that, once a particle reaches a cathetus, it can not leave it, restricting the particle

to continue to perform a one-dimensional random walk, as in the case k = 1 (on a line segment with

absorbing boundary) and jump rates given as in Figure 4.3.

As we did for the case k = 1, to compute pNx,y(m), we condition on the first jump and we get a system

of equations that pNx,y(m) has to satisfy, for each fixed m. Then:

• If x = 1 and y = 2, because of the exclusion rule, there are only two possible jumps: either the

particle at 1 is absorbed at 0 or the particle at 2 jumps to the right, i.e., to site 3. In Figure 4.3, this

represents on the triangle either a jump from the point (1, 2) to the point (0, 2), which occurs with

rate 1
Nθ , or, from the point (1, 2) to the point (1, 3), which occurs with rate 1.

Then, again by the Markov property, we obtain the identity (1+Nθ)pN1,2(m) = pN0,2(m)+NθpN1,3(m).

• If x = 1 and y ∈ {3, ..., N − 2}, following the same type of arguments as before, we get

(3Nθ + 1)pN1,y(m) = pN0,y(m) +NθpN2,y(m) +NθpN1,y+1(m) +NθpN1,y−1(m).

• If x = 1 and y = N − 1,

(2Nθ + 2)pN1,N−1(m) = pN0,N−1(m) +NθpN2,N−1(m) +NθpN1,N−2(m) + pN1,N (m).

• If x ∈ {2, ..., N − 3} and y = x+ 1,

2pNx,x+1(m) = pNx−1,x+1(m) + pNx,x+2(m), i.e., ∆2D
N,refp

N
x,x+1(m) = 0.
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0 1 2 . . .

η̂(1)[1 − η̂(2)]
1

nθ η̂(1)

x - 1 x x + 1 . . .

1 − η̂(x + 1)1 − η̂(x − 1)

y-1 y y+1

1 − η̂(y − 1) 1 − η̂(y + 1)

N-2 N-1 N

η̂(N − 1)[1 − η̂(N − 2)]
1

nθ η̂(N − 1)

Interpreting as a
two-dimensional

random walk

x

y

0 1 2 N − 1 N

1

2

N − 1

N

1

1

1

1

1

Nθ 1

Nθ
1 1

Nθ

Figure 4.3: Geometric interpretation of SEP(1) with absorbing boundary points with two particles. Rep-
resentation of some of the jump rates (in blue, we represent the random walk).

• If x ∈ {2, ..., N − 4} and y ∈ {x+ 2, ..., N − 2},

4pNx,y(m) = pNx−1,y(m) + pNx+1,y(m) + pNx,y−1(m) + pNx,y+1(m), i.e., ∆2D
N,fullp

N
x,y(m) = 0.

• If x ∈ {2, ..., N − 3} and y = N − 1,

(3Nθ + 1)pNx,N−1(m) = NθpNx−1,N−1(m) +NθpNx+1,N−1(m) +NθpNx,N−2(m) + pNx,N (m).

• Finally, if x = N − 2 and y = N − 1, (1 +Nθ)pNN−2,N−1(m) = NθpNN−3,N−1(m) + pNN−2,N (m).

Thus, we get a system of equations with boundary conditions given, for every (x, y) ∈ T N
0 , by

pNx,y(m) = pNy (m− 1)1{m̸=0} and, for every (x, y) ∈ T N
N , pNx,y(m) = pNx (m)1{m̸=2}.

Let us briefly explain the expression for pNx,y(m), when (x, y) ∈ T N
0 (for (x, y) ∈ T N

N , it is analogous).

Recall that pN0,y(m) represents the probability that m particles are absorbed at 0 knowing that one particle

is already at site 0 and the other one is at site y. So, if m = 0, it means that all particles were absorbed at

site N . Since one of the dual particles is already at zero and can not leave that state, then pN0,y(0) = 0. If

m ∈ {1, 2}, this means that at least one particle was absorbed at 0. Again, since one of the dual particles

is already at zero, that same particle already counts as an absorbed particle. Then, the value of pN0,y(m),

for m = 1 and m = 2, only depends on what happens to the particle at y. Therefore, pN0,y(1) = pNy (0)
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and pN0,y(2) = pNy (1).

The previous equations jointly with the boundary conditions can be summed up, like in [7], as:


Oθ

NpNx,y(m) = 0, for x = 1, . . . , N − 2 and y = x+ 1, . . . , N − 1,

pN0,y(m) = pNy (m− 1)1{m̸=0}, if y = 0, . . . , N,

pNx,N (m) = pNx (m)1{m̸=2}, if x = 0, . . . , N.

(4.7)

where the operator Oθ
N : F(BT N ) → F(T N ) is defined, for every function f ∈ F(BT N ) and for every

(x, y) ∈ T N , i.e., x, y ∈ ΛN with x < y, by

Oθ
Nf(x, y) = ax[f(x− 1, y)−f(x, y)] + by[f(x, y + 1)−f(x, y)] + cx,y[f(x+ 1, y)+f(x, y − 1)−2f(x, y)],

(4.8)

where ax = N2

Nθ 1x=1 +N21x ̸=1, by = N2

Nθ 1y=N−1 +N21y ̸=N−1 and cx,y = N21y ̸=x+1.

For every x, y ∈ {2, . . . , N − 2} with x < y, ∆2D
N pNx,y(m) = 0. Thus, pNx,y(m) is solution to the discrete

Laplace equation on the triangle T N and, therefore, can be written in polynomial form

pNx,y = Amx+Bmy + Cmxy +Dm (4.9)

with Am, Bm, Cm, Dm ∈ R to be determined3 by the remaining equations and boundary conditions

compacted in (4.7). One possible way of finding these coefficients is by solving it with the ansatz given

in (4.9). Here are the results that we checked using Mathematica (see Appendix A for Mathematica’s

code): denoting by p̃N−1
x (0) := Nθ−1+x

N+2Nθ−3
and p̃N−1

x (1) := Nθ−2+N−x
N+2Nθ−3

, we get



pNx,y(0) = pNx (0)− pNy (1)p̃N−1
x (0), if (x, y) ∈ T N ,

pNx,y(1) = pNx (1) + pNy (1)
[
p̃N−1
x (1)− p̃N−1

x (0)
]
, if (x, y) ∈ T N ,

pNx,y(2) = pNy (1)p̃N−1
x (1), if (x, y) ∈ T N ,

pN0,y(m) = pNy (m− 1)1{m̸=0}, if y = 0, . . . , N and m = 0, 1, 2,

pNx,N (m) = pNx (m)1{m̸=2}, if x = 0, . . . , N and m = 0, 1, 2,

(4.10)

where pNx (0) and pNy (1) correspond to the expressions given in (4.5). We observe that, if θ = 0, then

p̃N−1
x (0) = pN−1

x (0) and p̃N−1
x (1) = pN−1

x (1).

Again, if we try to replace x and y in the expressions for pNx,y(0), pNx,y(1) and pNx,y(2) given in (4.10) by

0 or N , we immediately see that what we get does not match with the correct boundary conditions. This

is related to the fact that if x = 1 or y = N − 1, pNx,y(m) is no longer a solution for the two-dimensional

discrete Laplace equation, since, like for the one particle case, the factor Nθ creates a distortion on the

operator. However, using indicator functions, we can still get compacted expressions for pNx,y(0), pNx,y(1)

and pNx,y(2) that are valid for any x, y ∈ {0, . . . , N} with x < y (see Appendix B).

3Remark here that Am and Bm are not the same coefficients as the ones in the case k = 1, but we will use the same notation
to remind the reader that they are new coefficients that still depend on m.
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For θ = 0, we can use a different argument: instead of starting with the ansatz (4.9), we write pNx,y(m),

for every (x, y) ∈ BT N , as

pNx,y(m) = Am
x Bm

y + Cm
x , (4.11)

where Wm
x := Wm(x) and Wm : {0, . . . , N} → R, for W ∈ {A,C}, and Bm

y := Bm(y) and Bm :

{0, . . . , N} → R. Instead of finding 12 coefficients, we now have to find the expression of 9 functions.

This strategy allow us to find a recursive (in m and N ) formula for pNx,y(m) and also write pNx,y(m) in terms

of the absorption probabilities of just one particle.

This strategy is particularly useful in this case, because we have “continuity” of the coefficients of

pNx,y(m) until the boundary and the system in (4.7) is reduced to two different types of equations:

∆2D
N,fullp

N
x,y(m) = 0, x = 1, . . . , N − 3 and y = x+ 2, . . . , N − 1

∆2D
N,refp

N
x,y(m) = 0, x = 1, . . . , N − 2 and y = x+ 1

. (4.12)

This means that pNx,y(m) is a solution to the discrete Laplace equation (that is reflected at y = x+1), but

now with x, y ∈ ΛN and x < y. Since we have “continuity” until the boundary, the expression for pNx,y(m)

given in (4.11) is valid even if x = 0 and y = N . So, using the boundary condition for y = N and defining

pNx (2) := 0 4, we get that Cm
x = −Am

x Bm
N + pNx (m). Therefore, pNx,y(m) = Am

x [Bm
y − Bm

N ] + pNx (m).

Observe that if θ ̸= 0, this first step is no longer valid since pNx,y(m) given in (4.11) would not be valid

with the same coefficients in x = 0 and y = N . Using the other boundary condition, for x = 0, we get

that

Am
0 [Bm

y −Bm
N ] + pN0 (m) =

 pNy (m− 1), if m = 1, 2

0, if m = 0

.

If m = 1, 2, then, Am
0 ̸= 0 (since pNy (m− 1) ̸= pN0 (m), if y ̸= N ) and Bm

y −Bm
N =

pN
y (m−1)−pN

0 (m)

Am
0

.

Then,

pNx,y(m) =

Am
x

pN
y (m−1)−pN

0 (m)

Am
0

+ pNx (m), if m = 1, 2

A0
x[B

0
y −B0

N ] + pNx (0), if m = 0

.

Now using (4.12) and that ∆1D
N pNx (m) = 0 (the same holds replacing x by y), we get, for m = 1, 2,

 (∆1D
N )xp

N
x,y(m) + (∆1D

N )yp
N
x,y(m) = 0

∆2D
refp

N
x,y(m) = 0

⇔

∆1D
N Am

x = 0, x = 1, . . . , N − 3

Am
x =

Am
x−1[p

N
x+1(m−1)−pN

0 (m)]+Am
0 [pN

x−1(m)−pN
x (m)]

pN
x (m−1)−pN

0 (m)
, x ∈ ΛN \ {N − 1}

. (4.13)

Then, using recursively (4.13), we get:

4From now on, every time the reader sees pNx (m) for some value of m that is not 0 or 1, it should be interpreted as zero.
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• For m = 2

A2
x = A2

x−1

pNx+1(1)

pNx (1)
= A2

0

pNx+1(1)

pNx (1)

pNx (1)

pNx−1(1)

pNx−1(1)

pNx−2(1)
. . .

pN2 (1)

pN1 (1)
= A2

0

pNx+1(1)

pN1 (1)
.

Using (4.6), we see that pN
x+1(1)

pN
1 (1)

= 1 − x
N−1 = pN−1

x (1), which corresponds to the absorption

probability for a particle, starting at site x, being absorbed at 0 on a lattice of size N − 1.

• For m = 1, since, for every x ∈ {1, . . . , N − 1}, ∆1D
N pNx (m) = 0, applying recursively the second

equation in (4.13), we get

A1
x

A1
0

=
A1

x−1

A1
0

pNx+1(1)

pNx (1)
+

pNx (1)− pNx−1(1)

pNx (1)

=
pNx+1(1)

pNx (1)

[
A1

x−2

A1
0

pNx (1)

pNx−1(1)
+

pNx−1(1)− pNx−2(1)

pNx−1(1)

]
+

pNx (1)− pNx−1(1)

pNx (1)

=
A1

x−2

A1
0

pNx+1(1)

pNx−1(1)
+

[2pNx (1)− pNx−1(1)][p
N
x−1(1)− pNx−2(1)] + pNx−1(1)[p

N
x−1(1)− pNx−2(1)]

pNx (1)pNx−1(1)

=
A1

x−2

A1
0

pNx+1(1)

pNx−1(1)
+ 2

pNx−1(1)− pNx−2(1)

pNx−1(1)

= · · · =
A1

x−x

A1
0

pNx+1(1)

pNx−(x−1)(1)
+ x

pNx−(x−1)(1)− pNx−x(1)

pNx−(x−1)(1)
=

pNx+1(1)

pN1 (1)
+ x

pN1 (1)− 1

pN1 (1)
.

Again, using (4.6) and the fact that pN1 (1) = 1− pN1 (0), we obtain

A1
x

A1
0

= 1− x

N − 1︸ ︷︷ ︸
pN−1
x (1)

− x

N − 1︸ ︷︷ ︸
pN−1
x (0)

= pN−1
x (1)− pN−1

x (0). (4.14)

We are only missing now the expression of pNx,y(0).

• If m = 0, then A0
0 = 0 otherwise B0

y was constant (Bm
y = Bm

N ), which is absurd since that would

imply that pNx,y(0) would not depend on y (we would get that pNx,y(0) = pNx (0)). To obtain the

expression for pNx,y(0), we can try a similar (but harder) approach as before, but it is much simpler

to use total law of probability. Then,

pNx,y(0) = 1− pNx (1)︸ ︷︷ ︸
=pN

x (0)

+[pN−1
x (1)− pN−1

x (0)]pNy (1)− pN−1
x (1)pNy (1) = −pN−1

x (0)pNy (1) + pNx (0).

Summarizing, for every (x, y) ∈ BT N , we have


pNx,y(0) = −pNy (1)pN−1

x (0) + pNx (0),

pNx,y(1) = −pNy (1)[pN−1
x (1)− pN−1

x (0)] + pNx (1),

pNx,y(2) = pNy (1)pN−1
x (1),

(4.15)
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or equivalently, for m = 0, 1, 2 and θ = 0,

pNx,y(m) = pNx (m) + pNy (1)[pN−1
x (m− 1)− pN−1

x (m)]. (4.16)

Remark 4.1.2. Observing the solutions in (4.10), even for θ ̸= 0, the absorption probabilities factorize

as a function of y times a function of x. Therefore, we expect that the argument that we did for θ = 0

can be generalized for θ ̸= 0, but now the boundary conditions will have to be taken into account on the

system of equations and not used directly on the ansatz, as we did.

4.1.3 Case k = 3

• Notation and conventions

Now the dual process starts with k = 3 particles that can be absorbed at 0 or N . So, we can have

k possible scenarios: three particles are absorbed at 0, one is absorbed at 0 and two at N , two at 0

and one at N or all three absorbed at N , i.e., m ∈ {0, 1, 2, 3}. Let x, y, z ∈ ΛN , where x < y < z,

represent the position where each particle started, i.e., the initial configuration of the dual process is

η̂ = δx + δy + δz. Denote by pNx,y,z(m) the probability that, knowing that the three particles started,

each one, on positions x, y and z, m of them being absorbed at the left reservoir on a lattice of size

N5. Observe that, if we extend the possible values for x and z to x = 0 or z = N , then pN0,y,z(m)

and pNx,y,N (m) represent boundary terms. Let us keep in mind here that pNx,y,z(m) can be though as

the image at (x, y, z) of a function pN (m) : SN → [0, 1] (pN (m)(x, y, z) := pNx,y,z(m)), where SN is a

discretized simplex defined as SN = {(x, y, z) ∈ Λ3
N | x < y < z}. Also, pNx,y(m) can be extended to

the faces SN
0 and SN

N , i.e., SN
0 = {(0, y, z) | (y, z) ∈ BT N} and SN

N = {(x, y,N) | (x, y) ∈ BT N}, where

BT N = {(x, y) ∈ {0, . . . , N}2 | x < y} as it was in the case k = 2.

It is very important to remark that, since, in SEP(1), we do not allow particles to be on top of each

other, it does not make sense to define pNx,y(m) on the line x = y = z nor on the planes x = y and y = z.

These sets have to be considered when repeating this strategy for SEP(α) and SIP(α). The discrete

simplex SN corresponds to the interior points (excluding the boundary) of a discretization (in the points

with positive integer coordinates) of the simplex presented in Figure 4.4; the sets SN
0 and SN

N may be

interpreted as the points of the same discretization that lie on the face painted in green and the face

painted in blue, respectively, also in Figure 4.4.

In what follows, the 3-dimensional discrete Laplacian operator, that we will denote by ∆3D
N , will be

a central object. This operator ∆3D
N : F(BSN ) → F(SN ), is defined, for every f ∈ F(BSN ), where

5By this, we mean here that, when we extend the bulk to the points 0 and N , the point with higher coordinate is N even thought
we have N + 1 possible positions to place a particle on the dual system.
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Figure 4.4: Geometric representation of the simplex.

BSN = {(x, y, z) ∈ (ΛN )3 | 0 ≤ x < y < z ≤ N}, and (x, y, z) ∈ SN , as

∆3D
N f(x, y, z) =



∆3D
N,fullf(x, y, z), if y ̸= x+ 1 and z ̸= y + 1,

(∆2D
N,ref )x,yf(x, y, z) + (∆1D

N )zf(x, y, z), if y = x+ 1 and z ̸= y + 1,

(∆2D
N,ref )y,zf(x, y, z) + (∆1D

N )xf(x, y, z), if y ̸= x+ 1 and z = y + 1,

∆3D
N,reff(x, y, z), if y = x+ 1 and z = x+ 2,

where, ∆3D
N,fullf(x, y, z) :=(∆1D

N )xf(x, y, z)+(∆
1D
N )yf(x, y, z)+(∆

1D
N )zf(x, y, z), ∆3D

N,reff(x, x+1, x+2):=

N2[f(x − 1, x + 1, x + 2)+f(x, x + 1, x + 3)−2f(x, x + 1, x + 2)], and (∆2D
N,ref )x,y (resp. (∆2D

N,ref )y,z)

represents the 2-dimensional reflected discrete Laplacian acting on the first and second (resp. second

and third) arguments of f . We call ∆3D
N,ref the 3-dimensional discrete reflected Laplacian.

• Conditioning and results

As above, conditioning on the first jump, we get a system of linear equations, that can be compacted in

the following system:


Rθ

NpNx,y,z(m) = 0, for x = 1, . . . , N − 3, y = x+ 1, . . . , N − 2 and z = y + 1, . . . , N − 1,

pN0,y,z(m) = pNy,z(m− 1)1{m ̸=0}, if (y, z) ∈ BT N ,

pNx,y,N (m) = pNx,y(m)1{m ̸=3}, if (x, y) ∈ BT N ,

(4.17)

where BT N is the set that we introduced in the case k = 2 and the operator Rθ
N : F(BSN ) → F(SN ) is

defined, for every function f ∈ F(BSN ) and for every x, y, z ∈ Λ3
n with x < y < z, by

Rθ
Nf(x, y, z) = ax[f(x− 1, y, z)− f(x, y, z)] + bz[f(x, y, z + 1)− f(x, y, z)]+

cy,z[f(x, y + 1, z) + f(x, y, z − 1)− 2f(x, y, z)] + cx,y[f(x+ 1, y, z) + f(x, y − 1, z)− 2f(x, y, z)],

where ax = N2

Nθ 1x=1 +N21x ̸=1, bz = N2

Nθ 1z=N−1 +N21z ̸=N−1, cy,z = N21y ̸=z−1 and cx,y = N21x ̸=y−1.

For every x, y, z ∈ {2, . . . , N − 2} such that x < y < z, Rθ
NpNx,y,z(m) = ∆3D

N pNx,y,z(m) = 0. Therefore,

pNx,y,z(m) is solution to the discrete Laplace equation on the simplex S and can be described by a
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polynomial of the form

pNx,y,z(m) = Amx+Bmy + Cmz +Dmxy + Emxz + Fmyz +Gmxyz +Hm, (4.18)

with Am, Bm, Cm, Dm, Em, Fm, Gm, Hm ∈ R to be determined by the remaining equations and boundary

conditions.

Again, we can use the ansatz (4.18) to solve the system compacted in (4.17) and compare our results

with Mathematica. The solution is the following (see Appendix A for the links for the code): denoting by

p̃N−1
x,y (0) := (Nθ−1+x)(Nθ−2+y)

(N+2Nθ−3)(N+2Nθ−4)
, p̃N−1

x,y (2) := (Nθ−2+N−y)(Nθ−3+N−x)
(N+2Nθ−3)(N+2Nθ−4)

and p̃N−1
x,y (1) := 1 − p̃N−1

x,y (0) −

p̃N−1
x,y (2), we get



pNx,y,z(0) = pNx,y(0)− pNz (1)p̃N−1
x,y (0), if (x, y, z) ∈ SN ,

pNx,y,z(1) = pNx,y(1) + pNz (1)
[
p̃N−1
x,y (1)− p̃N−1

x,y (0)
]
, if (x, y, z) ∈ SN ,

pNx,y,z(2) = pNx,y(2) + pNz (1)
[
p̃N−1
x,y (2)− p̃N−1

x,y (1)
]
, if (x, y, z) ∈ SN ,

pNx,y,z(3) = pNz (1)p̃N−1
x,y (2), if (x, y, z) ∈ SN ,

pN0,y,z(m) = pNy,z(m− 1)1{m ̸=0}, if (y, z) ∈ BT N and m ∈ {0, 1, 2, 3},

pNx,y,N (m) = pNx,y(m)1{m̸=3}, if (x, y) ∈ BT N and m ∈ {0, 1, 2, 3},

(4.19)

where pNx,y(0) and pNy,z(1) are as in (4.10). Like for the case k = 2, we observe that the absorption

probabilities can be written in a factorized form, where, for m ∈ {0, 1, 2}, p̃N−1
x,y (m) = pN−1

x,y (m) if ,and

only if, θ = 0.

As we had for one and two particles, the first four expressions in the system (4.19) are not valid for

x, y, z ∈ {0, N}, if θ ̸= 0, since they do not match with the correct boundary conditions. Again, this is

a result of the distortion on the Laplacian operator caused by θ, which is only eliminated when θ = 0.

Nevertheless, we can still write explicit expressions for pNx,y,z(0), pNx,y,z(1), pNx,y,z(2) and pNx,y,z(3) that

include the boundary conditions, and, therefore, valid for any x, y, z ∈ {0, . . . , N} with x < y < z (see

Appendix B).

For θ = 0, as we did for the case k = 2, we can get the same probabilities using a different argument

that is based on, instead of starting with the ansatz (4.18), decomposing the absorption probabilities for

three dual particles pNx,y,z as

pNx,y,z(m) = Am
x,yB

m
z + Cm

x,y, (4.20)

where Wm
x,y := Wm(x, y) and Wm : {0, . . . , N}2 → R, for W ∈ {A,C}, and Bm

z := Bm(z) and Bm :

{0, . . . , N} → R. If θ = 0, we have “continuity” of the coefficients of pNx,y,z(m) until the boundary.

Therefore, the expression for pNx,y,z(m) in (4.20) is valid for every x, y, z ∈ {0, . . . , N}. Also, the system
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in (4.17) is reduced to four different types of equations:



∆3D
N,fullp

N
x,y,z(m) = 0, x = 1, . . . , N − 5, y = x+ 2, . . . , N − 3 and z = y + 2, . . . , N − 1,

(∆2D
N,ref )x,yp

N
x,y,z(m) + (∆1D

N )zp
N
x,y,z(m) = 0, x = 1, . . . , N − 4, y = x+ 1 and z = x+ 3, . . . , N − 1,

(∆2D
N,ref )y,zp

N
x,y,z(m) + (∆1D

N )zp
N
x,y,z(m) = 0, x = 1, . . . , N − 4, y = x+ 2, . . . , N − 2 and z = y + 1,

∆3D
N,refp

N
x,y,z(m) = 0, x = 1, . . . , N − 3,

with the same boundary conditions.

Using the boundary condition for z = N and defining pNx,y(3) := 0, we get that Cm
x,y = −Am

x,yB
m
N +

pNx,y(m). Therefore, pNx,y,z(m) = Am
x,y[B

m
z −Bm

N ]+pNx,y(m). By a similar argument as the one for the case

k = 2, we can only do this first step on the case θ = 0. Using the other boundary condition, for x = 0,

we obtain

Am
0,y[B

m
z −Bm

N ] + pN0,y(m) =

 pNy,z(m− 1), if m = 1, 2, 3,

0, if m = 0.

If m = 1, 2, 3, then, Am
0,y ̸= 0 (since pNy,z(m− 1) ̸= pNy (m− 1) = pN0,y(m), if z ̸= N ) and

Bm
z −Bm

N =
pNy,z(m− 1)− pN0,y(m)

Am
0

=
pNy,z(m− 1)− pNy (m− 1)

Am
0

.

Using the recurrence formula in (4.16) and that pNz (1) ̸= 0, if z ̸= N , we get that

Bm
z −Bm

N =
pNz (1)[pNy (m− 2)− pNy (m− 1)]

Am
0,y

⇐⇒ Bm
z −Bm

N

pNz (1)︸ ︷︷ ︸
function of z

=
pN−1
y (m− 2)− pN−1

y (m− 1)

Am
0,y︸ ︷︷ ︸

function of y

=⇒

Bm
z −Bm

N = CpNz (1),

Am
0,y = 1

C [pN−1
y (m− 2)− pN−1

y (m− 1)],

where the last implication follows from a separation of variables argument, i.e., if we have an equality

between two functions, one of the y variable and the other of the z variable, that is true for every y ∈

{1, . . . , N − 3} and z ∈ {y+2, . . . , N − 1}, then, those functions must be constant. In other words, there

must exist some non-zero constant C ∈ R satisfying the identities above. Then,

pNx,y,z(m) =

CAm
x,yp

N
z (1) + pNx,y(m), if m = 1, 2, 3,

A0
x,y[B

0
z −B0

N ] + pNx,y(0), if m = 0.

We are now missing Am
x,y for m = 1, 2, 3 and, as we did for the 2 particles case, for m = 0, we can

use total law to easily get a formula for pNx,y,z(0) avoiding harder computations. Then, for m = 1, 2, 3:
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• For every x ∈ {1, . . . , N − 5}, y ∈ {x+ 2, . . . , N − 3} and z ∈ {y + 2, . . . , N − 1},

∆3D
N,fullp

N
x,y,z(m) = C[∆2D

N,fullA
m
x,y] p

N
z (1)︸ ︷︷ ︸
̸=0

+CAm
x,y [∆

1D
N pNz (1)]︸ ︷︷ ︸

=0

+∆2D
N,fullp

N
x,y(m)︸ ︷︷ ︸

=0

.

Therefore, ∆2D
N,fullA

m
x,y = 0.

• For every x ∈ {1, . . . , N − 4}, and z ∈ {x+ 3, . . . , N − 1}, if y = x+ 1, then

[(∆2D
N,ref ) + (∆1D

N )z]p
N
x,y,z(m) = C[∆2D

N,refA
m
x,y] p

N
z (1)︸ ︷︷ ︸
̸=0

+CAm
x,y (∆

1D
N pNz (1))︸ ︷︷ ︸

=0

+∆2D
N,refp

N
x,y(m)︸ ︷︷ ︸

=0

.

Therefore, ∆2D
N,refA

m
x,y = 0.

• For every x ∈ {1, . . . , N − 4} and y ∈ {x+ 2, . . . , N − 2}, if z = y + 1, then

[(∆1D
N )x+(∆2D

N,ref )y,z]p
N
x,y,z(m)=0 ⇔ Am

x,y−1=

[
Am

x,y

pNy (1)

pNy+1(1)
−(∆1D

N )xA
m
x,y

]
+
pNx,y+1(m)−pNx,y(m)

CpNy+1(1)
.

If x ∈ {1, . . . , N−5} and y ∈ {x+2, . . . , N−3}, then, using that ∆2D
N,fullA

m
x,y = 0, i.e., (∆1D

N )xA
m
x,y =

−(∆1D
N )yA

m
x,y, we can simplify the previous identity to get

CAm
x,y+1 = CAm

x,y

pNy+2(1)

pNy+1(1)
+

pNx,y(m)− pNx,y+1(m)

pNy+1(1)
.

• For all x ∈ {1, . . . , N − 3}, if y = x+ 1 and z = x+ 2, then

∆3D
N,refp

N
x,y,z(m) = 0 ⇔ CAm

x,x+1 = CAm
x−1,x+1

pNx+2(1)

pNx+1(1)
+

pNx−1,x+1(m)− pNx,x+1(m)

pNx+1(1)
.

Therefore, Em
x,y := CAm

x,y is solution of the following system of equations



∆2D
N,fullE

m
x,y = 0, x ∈ {1, . . . , N − 5} and y ∈ {x+ 2, . . . , N − 3} (4.21)

∆2D
N,refE

m
x,y = 0, x ∈ {1, . . . , N − 4} and y = x+ 1 (4.22)

Em
x,y+1 = Em

x,y

pNy+2(1)

pNy+1(1)
+

pNx,y(m)− pNx,y+1(m)

pNy+1(1)
, x ∈ {1, . . . , N − 5} and y ∈ {x+ 2, . . . , N − 3} (4.23)

Em
x,x+1 = Em

x−1,x+1

pNx+2(1)

pNx+1(1)
+

pNx−1,x+1(m)− pNx,x+1(m)

pNx+1(1)
, x ∈ {1, . . . , N − 3} and y = x+ 1 (4.24)

Em
0,y = pN−1

y (m− 2)− pN−1
y (m− 1), y ∈ {0, . . . , N − 1} (4.25)

Also, combining (4.22) and (4.24) we get that, for every x ∈ {1, . . . , N − 4}, if y = x+ 1, then

Em
x,x+2 = 2Em

x,x+1 − Em
x,x−1 =

2pNx+2(1)− pNx+1(1)

pNx+2(1)
Em

x,x+1 +
pNx,x+1(m)− pNx−1,x+1(m)

pNx+1(1)

= Em
x,x+1

pNx+3(1)

pNx+2(1)
+

pNx,x+1(m)− pNx,x+2(m)

pNx+2(1)
, (4.26)
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where the last equality comes from the fact that pNx (1) a discrete harmonic function. Therefore, (4.23) is

also true for y = x+ 1.

Remark that every solution of the last system of equations is solution of the problem
Em

x,y+1 = Em
x,y

pN
y+2(1)

pN
y+1(1)

+
pN
x,y(m)−pN

x,y+1(m)

pN
y+1(1)

, x ∈ {1, . . . , N − 5} and y ∈ {x+ 1, . . . , N − 3},

Em
x,x+1 = Em

x−1,x+1
pN
x+2(1)

pN
x+1(1)

+
pN
x−1,x+1(m)−pN

x,x+1(m)

pN
x+1(1)

, x ∈ {1, . . . , N − 3} and y = x+ 1,

Em
0,y = pN−1

y (m− 2)− pN−1
y (m− 1), y ∈ {0, . . . , N − 1}.

(4.27)

Therefore, if we guarantee existence and uniqueness of the solution for (4.27), then, the original problem

has to have at most one solution.

The system in (4.27) allows us to completely determine CAm
x,y, for every x ∈ {1, . . . , N − 3} and

y ∈ {x + 1, . . . , N − 2}. We will give now a geometric way to interpret this last statement. Remark

that, if y = N − 1, by the exclusion rule, z = N . Therefore, pNx,N−1,N (m) is completely determined.

So, we only care about finding pNx,y,z(m) for y ≤ N − 2. This implies that CAm
x,y can be thought of as

a function CAm defined in T N−2, where T N−2 = {(x, y) ∈ (ΛN−2)
2 | x < y}, with boundary values in

BT N−2 := {(0, y) | y ∈ {1, . . . , N − 2}}. The next picture represents geometrically the sets T N−2 and

BT N−2.

x

y

0 1 2 N − 2

1

2

N − 2

Color interpretation:

T N−2

BT N−2

Figure 4.5: Geometric representation of T N−2 and BT N−2.

How can we interpret the system of equations solved by CAm
x,y using its domain? Starting from a

point (x0, y0) ∈ {1, . . . , N − 5} × {x0 + 2, . . . , N − 2}, equation (4.23) allow us to recursively go down on

the line {(x0, z) | z ∈ {x0 + 1, . . . , N − 2}} until we reach the point (x0, x0 + 2). Then, equation (4.26)

allows us to go from (x0, x0 + 2) to the point (x0, x0 + 1). Now we can use equation (4.24) to change to

the closest left vertical line, i.e., to {(x0 − 1, z) | z ∈ {x0, . . . , N − 2}}. Repeating the same argument,

we can reach the point (x0 − 1, x0) and then, using again equation (4.24) we can move to the new

closest left vertical line. Iterating this process a finite number of movements, we will reach the boundary

BT N−2 where we know the exact value of CAm. If we start from any point of the form (x0, x0 +1) where

x0 ∈ {1, . . . , N − 4}, we can use equation (4.24) to get to the point (x, y) = (x0 − 1, x0 + 1). Then, since

now x0 ∈ {1, . . . , N − 5} and y = x0 + 1, we have reached a point that is in the previous situation, and

therefore, we can repeat the same argument to reach one point on the line x = 0, where CAm is well
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defined. If we start from (N − 3, N − 2), we can use equation (4.24) to move to (N − 4, N − 2), from

here use equation (4.26) to go to (N − 4, N − 2) and repeat the same order of application of these two

equations until we reach the point (0, 2) where CAm is completely determined. Finally, the cases starting

from (N − 4, N − 2) or (N − 4, N − 3) are contained in the last case described above. See Figure 4.6 for

an example of the previous arguments. Therefore, there is uniqueness of the solution for the previous

system of discrete equations with one boundary condition (which implies that C = 1, by the restriction of

the boundary condition). One possible way of finding CAm
x,y, for every (x, y) ∈ T N−2, is going through

the reverse path, i.e., starting from a point that can be computed directly from the boundary condition

(such as (1, 2)), use it to compute all the others in the same vertical line, and, starting from the left most

vertical column, move in the triangle, by going up and right to get all the values of CAm in the triangle

T N−2. Alternatively, if, for each m ∈ {1, 2, 3}, we find a function fm
x,y that solves the same system of

equations, then, by uniqueness of solution, Am
x,y = fm

x,y.

x

y

0 1 2 N − 2

1

2

N − 2

Figure 4.6: Example of how to use the system of equations to walk on the domain of CAm and compute
CAm

x,y. The arrows in green represent the use of the equation (4.24) and the ones in magenta represent
an application of the equation (4.23).

Then, CAm
0,y = pN−1

y (m−2)−pN−1
y (m−1) = pN−1

0,y (m−1)−pN−1
0,y (m). Since by the previous argument,

we have uniqueness of the solution to the system of equations (4.27), if we show that pN−1
x,y (m − 1) −

pN−1
x,y (m) is also solution to the same system, then CAm

x,y has to coincide with pN−1
x,y (m− 1)− pN−1

x,y (m),

for every (x, y) ∈ T N−2 ∪ BT N−2.

Since, for every k, j ∈ N and y, x ∈ ΛN ,

pN+j
y (1)pN+k

x (1) = pN+k
y−j+k(1)p

N+j
x+j−k(1), if y − j + k, x+ j − k ∈ ΛN , (4.28)

we have that:

• If m = 3, using (4.16) and (4.28), we get, for every x ∈ {1, . . . , N − 5} and y ∈ {x+ 1, . . . , N − 3},

pN−1
x,y (2)pNy+2(1) = pNy+2(1)p

N−1
y (1)pN−2

x (1) = pN−1
y+1 (1)pN−2

x (1)pNy+1(1) = pN−1
x,y+1(2)p

N
y+1(1),

and, for every x ∈ {1, . . . , N − 3} and y = x+ 1,

pN−1
x−1,x+1(2)p

N
x+2(1) = pNx+2(1)p

N−1
x+1 (1)pN−2

x−1 (1) = pNx+1(1)p
N−1
x+1 (1)pN−2

x (1) = pN−1
x,x+1(2)p

N
x+1(1).
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Then, pN−1
x,y (2)− pN−1

x,y (3) 6 solves (4.24) and (4.23).

• If m = 2, for every x ∈ {1, . . . , N − 5} and y ∈ {x+ 1, . . . , N − 3}, we get

[pN−1
x,y (1)− pN−1

x,y (2)]pNy+2(1) + pNx,y(2) = [pNy+2(1) + pNy (1)]pN−1
x (1) + pN−1

y (1)pNy+2(1)[1− 3pN−2
x (1)]

= 2pN−1
x (1)pNy+1(1) + pNy+1(1)p

N−1
y+1 (1)[1− 3pN−2

x (1)] = [pN−1
x,y+1(1)− pN−1

x,y+1(2)]p
N
y+1(1) + pNx,y+1(2),

where, on the first and third equality, we used (4.16) and that, for every N ∈ N and x ∈ ΛN ,

pNx (0) = 1 − pNx (1) and, on the second equality, we used (4.28) and that, for every N ∈ N and

x ∈ ΛN , ∆1D
N pNx (1) = 0. Also, for every x ∈ {1, . . . , N − 3} and y = x+ 1, we get that

[pN−1
x,x+1(1)− pN−1

x,x+1(2)]p
N
x+1(1) + pNx,x+1(2)

= pN−1
x+1 (1)pNx+1(1) + 2pN−1

x (1)pNx+1(1) +−3pNx+1(1)p
N−1
x+1 (1)pN−2

x (1)

= pN−1
x−1 (1)p

N
x+1(1) + pN−1

x+1 (1)pNx+1(1)− pN−1
x (1)[pNx (1)− 2pNx+1(1)]− 3pNx+1(1)p

N−1
x+1 (1)pN−2

x (1)

= pNx+1(1)p
N−1
x−1 (1) + 2pN−1

x (1)pNx+2(1)− 3pNx+2(1)p
N−1
x+1 (1)pN−2

x−1 (1)

= [pN−1
x−1,x+1(1)− pN−1

x−1,x+1(2)]p
N
x+2(1) + pNx−1,x+1(2),

where, on the first and fourth equality, we used (4.16) and that, for every N ∈ N and x ∈ ΛN ,

pNx (0) = 1 − pNx (1), on the second equality, we used that pN−1
x−1 (1)p

N
x+1(1) = pN−1

x (1)pNx (1), and,

finally, on the third equality, we used (4.28) and that, for every N ∈ N and x ∈ ΛN , ∆1D
N pNx (1) = 0.

Therefore, pN−1
x,y (1)− pN−1

x,y (2) solves (4.24) and (4.23).

• If m = 1 or m = 0, performing similar computations, we verify that pN−1
x,y (m− 1)− pN−1

x,y (m) solves

(4.24) and (4.23).

Then, pN−1
x,y (m − 1) − pN−1

x,y (m) is the unique solution of the system (4.27). Also, we already knew

that, independently from m,

∆2D
N,fullp

N−1
x,y (m) = ∆2D

N−1,fullp
N−1
x,y (m) = 0, x ∈ {1, . . . , N − 5} and y ∈ {x+ 2, . . . , N − 3}

∆2D
N,refp

N−1
x,y (m) = ∆2D

N−1,refp
N−1
x,y (m) = 0, x ∈ {1, . . . , N − 4} and y = x+ 1

,

which means that the solution we found for the system (4.27) is also a solution of the original problem,

meaning that, Em
x,y = CAm

x,y = pN−1
x,y (m− 1)− pN−1

x,y (m). Then, if m = 1, 2, 3,

pNx,y,z(m) = pNx,y(m) + pNz (1)[pN−1
x,y (m− 1)− pN−1

x,y (m)]. (4.29)

Finally, using total law of probability,

pNx,y,z(0) = 1−pNx,y(1)−[pN−1
x,y (0)−pN−1

x,y (1)]pNz (1)−pNx,y(2)−[pN−1
x,y (1)−pN−1

x,y (2)]pNz (1)−pN−1
x,y (2)pNz (1)

= pNx,y(0)− pNz (1)pN−1
x,y (0). (4.30)

6Recall that pN−1
x,y (3) is defined as zero.
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Therefore, the recursive formula (4.29) is also true for m = 0 (where we use the convention pN−1
x,y (−1) =

pN−1
x,y (3) = pNx,y(3) = 0).

Remark 4.1.3. We expect that the argument presented above for θ = 0 can be extended for any number

of dual particles still keeping the recursive formula, i.e., for any k ∈ N, we expect to have

pNx1,...,xk+1
(m) = pNx1,...,xk

(m) + pNxk+1
(1)[pN−1

x1,...,xk
(m− 1)− pN−1

x1,...,xk
(m)]. (4.31)

Remark that we proved above this formula for k = 2 and k = 3.

Remark 4.1.4. Even though, we did not need the following information to compute the absorption prob-

abilities, observe that, because of our restriction of the parameters γ, ϵ, δ and β, there are some symme-

tries on the expressions of the absorption probabilities, i.e., for any x, y, z ∈ ΛN with x < y < z,

pNx (1) = pNN−x(0), p
N
x,y(2) = pNN−y,N−x(0), p

N
x,y(1) = pNN−y,N−x(1),

pNx,y,z(3) = pNN−z,N−y,N−x(0), p
N
x,y,z(2) = pNN−z,N−y,N−x(1).

4.2 Stationary density and correlations via absorption probability

The case α = 1 has a special highlight in the literature because is the only value of α for which is

known, using MPA, a closed explicit formula for the k-points stationary correlation function, for k ∈ N.

Unfortunately, up to our knowledge, this method is not available neither for SEP(α), with α ∈ N2, nor

SIP(α), with α ∈ R+. In this section, we will obtain explicit expressions for the stationary density profile

and the 2-points and 3-points stationary correlation functions avoiding using any results from MPA known

for SEP(1).

Notation: For what comes in the next subsections, some more notation will be required. Let ∇+,N

(resp. ∇−,N , denote the discrete right (resp. left) gradient, which is define, for every f ∈ F({0, . . . , N})

and x ∈ ΛN , as

∇+,Nf(x) = N [f(x+ 1)− f(x)] (resp. ∇−,Nf(x) = N [f(x− 1)− f(x)]). (4.32)

We will denote by ∇+,N
x , ∇+,N

y and ∇+,N
z (resp. ∇−,N

x , ∇−,N
y and ∇−,N

z ) the operator defined above act-

ing now on the first, second and third argument, respectively, of a function with at least three arguments.

Let η ∈ ΩN and k ∈ N with k ≥ 2. We will represent by {ηt}t≥0 the continuous time Markov chain

describing the dynamics of our models, where η0 will represent the initial configuration of the process.

Let µss be the unique stationary measure of each of the studied processes and define the discrete

stationary density profile ρNss as:

ρNss(x) = Eµss
[η(x)]. (4.33)
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Let us also define the k-points stationary correlation function φN
ss:

φN
ss(x1, . . . , xk) = Eµss [η̄(x1) . . . η̄(xk)], (4.34)

where η̄(x) = η(x)− Eµss
[η(x)] and xj ∈ ΛN and x1 ≤ · · · ≤ xk, for any j ∈ {1, . . . , k}, and k ∈ N2. We

are now interested in finding explicit expressions for each one of these functions. To do that, we will use

an approach based on consequences of duality.

Remark 4.2.1. For any permutation σ : ΛN → ΛN , φN
ss(x1, . . . , xk) = φN

ss(xσ1 , . . . , xσk
). Then, to

completely characterize φN
ss, it is enough to find its value for points (x1, . . . , xk) that satisfy x1 ≤ · · · ≤ xk.

4.2.1 Applications to SEP(1)

Fix k ∈ N. Observe that, as we remarked on the proof of existence and uniqueness of invariant

measure for SIP(α), since µss is the unique stationary measure of an irreducible continuous time Markov

chain and f : ΩN → R given, for every η ∈ ΩN , by f(η) = η̄(x1) . . . η̄(xk), is a bounded function (it is

uniformly bounded by 2K , because η(xj) ≤ 1, for every j ∈ {1, . . . , k}), then, for every initial configuration

η ∈ ΩN ,

Eµss
[η̄(x1) . . . η̄(xk)] = lim

t→∞
Eη[η̄t(x1) . . . η̄t(xk)], (4.35)

where Eη represents the expectation taken with respect to the probability measure P η in the cádlag7

space D([0,∞),ΩN ) for which η0 = η P η-a.s. (recall the general definition of a Markov process in terms

of families of probability measures - see, for example, [15]). Remark that, if η̂ = δx1+· · ·+δxk
∈ ΩEx,dual

N ,

with x1 < · · · < xk, then, from Theorem 3.4.1, since η̂(0) = η̂(N) = 0 (recall that xj ∈ ΛN , for every

j ∈ {1, . . . , k}), we can simplify the expression of the duality function to

DSEP (1)(η, η̂) = ρ
η̂(0)
0︸︷︷︸
=1

[
N−1∏
x=1

1{η(x)≥η̂(x)}

]
ρ
η̂(N)
N︸ ︷︷ ︸
=1

=

k∏
i=1

1{η(xi)≥1} =

k∏
i=1

η(xi) (4.36)

where the last equality comes from the fact that η(xj) ∈ {0, 1}, for all j ∈ {1, . . . , N}. Then, combining

equations (4.36) and (4.35) and the duality property (3.1), we get that, for x1 < · · · < xk,

Eµss
[η(x1) . . . η(xk)] = lim

t→∞
Eη[D

SEP (1)(ηt, η̂)] = lim
t→∞

Eη̂[D
SEP (1)(η, η̂t)]

= Eη̂[ρ
η̂∞(0)
0 ρ

η̂∞(N)
N ] (4.37)

=

k∑
m=0

ρm0 ρk−m
N Pη(η̂∞(0) = m, η̂∞(N) = k −m)︸ ︷︷ ︸

=pN
x1,...,xk

(m)

, (4.38)

where the equality in (4.37) is obtained by remarking that the dual process {η̂t}t≥0 describes a one

dimensional (on a line segment) random walk of k dual particles with absorbing boundary points, and,

therefore, as time goes to infinity, η̂t will reach a stationary configuration with a certain number m of

particles absorbed at the left reservoir and the remaining k −m absorbed at the right reservoir.

7From the French ”continue à droite, limite à gauche”.
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Hence, from duality, we can also use the absorption probabilities with one dual particle to obtain an

explicit expression for (4.33) as:

ρNss(x) = ρ0p
N
x (1) + ρNpNx (0). (4.39)

The last expression is obtain by using equation (4.38) with k = 1 and, therefore, m ∈ {0, 1}.

By similar arguments, the k-points stationary correlation function can be obtained once we have

computed the absorption probabilities pNx1,...,xk
(m), with m ∈ {0, . . . , k}:

φN
ss(x1, . . . , xk) = Eµss [η(x1) . . . η(xk)]− ρNss(x1)Eµss [η(x2) . . . η(xk)]−

−
k∑

j1=2

ρNss(xj1)Eµss
[η(x1) . . . η(xj1−1)η(xj1+1) . . . η(xk)] + ρNss(x1)ρ

N
ss(x2)Eµss

[η(xj4) . . . η(xk)]+

+

k∑
j2=3

ρNss(x1)ρ
N
ss(xj2)Eµss [η(x2) . . . η(xj2−1)η(xj2+1) . . . η(xk)] + · · ·+

+

k∑
j1,j2=2
j1<j2

ρNss(xj1)ρ
N
ss(xj2)Eµss

[η(x1) . . . η(xj1−1)η(xj1+1) . . . η(xj2−1)η(xj2+1) . . . η(xk)] + · · ·+

+ (−1)k−1kρNss(x1) . . . ρ
N
ss(xk) + (−1)kρNss(x1) . . . ρ

N
ss(xk)

Rearranging the terms, denoting (x) = (x1, . . . , xk), we get

φN
ss(x) = Eµss

[
k∏

l=1

η(xl)

]
+

k−1∑
m=1

(−1)m
k∑

j1,...,jm=1
j1<···<jm

[
m∏
l=1

ρNss(xjl)

]
Eµss

 k∏
l=1

l ̸=j1,...,jm

η(xl)

+ (−1)k
k∏

l=1

ρNss(xl).

(4.40)

Using (4.40), for k = 2, we obtain the 2-points stationary correlation function:

φN
ss(x, y) = Eµss [η(x)η(y)]− ρNss(x)ρ

N
ss(y), (4.41)

and, for k = 3, the 3-points stationary correlation function is given by

φN
ss(x, y, z)=Eµss

[η(x)η(y)η(z)]−ρNss(x)φ
N
ss(y, z)−ρNss(y)φ

N
ss(x, z)−ρNss(z)φ

N
ss(x, y)−ρNss(x)ρ

N
ss(y)ρ

N
ss(z).

(4.42)

Thereby, using the results of Section 4.1, it is easy to derive explicit expressions for the discrete

stationary density profile and the 2-points and 3-points stationary correlation functions.

Discrete stationary density profile:

Substituting in (4.39) the results obtained in (4.5), we get

ρNss(x) =
(ρ0 + ρN )(Nθ − 1) + ρ0(N − x) + ρNx

N + 2Nθ − 2
. (4.43)
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Then, if, for any x ∈ ΛN , we assume that x
N → u ∈ [0, 1], as N goes to infinity (here we are going from

the microspace to the macrospace), the limit in N of (4.43) is given by

lim
N→∞

ρNss(x) = ρ̄(u) :=


ρ0+ρ1

2 , if θ > 1

ρ0+ρ1+ρ0(1−u)+ρ1u
3 , if θ = 1

ρ0(1− u) + ρ1u, if θ < 1

,

where ρ1 := ρN and ρ0 are as in Table 2.1.

We remark that, independently from the value of θ, the limit lim
N→∞

ρNss(x) is a linear function of u but

the coefficients depend on the value of θ and

lim
N→∞

max
x∈ΛN

∣∣ρNss(x)− ρ̄( x
N )

∣∣ = 0. (4.44)

2-points stationary correlation function:

Remark that φN
ss(x, y) is defined for every x, y ∈ ΛN , i.e., its domain is a discretized square. Since

η(x) = [η(x)]2, then φN
ss(x, x) = ρss(x)(1− ρss(x)) which is completely determined using the expression

of ρss(x) given in (4.43). Also, by Remark 4.2.1, to find the value of φN
ss(x, y), for y ̸= x, we only need to

focus now on the points (x, y) on the upper triangle T N .

Combining equation (4.41), the identity in (4.38) and the results obtained in the case k = 2, namely,

equation (4.10), a simple, but long, computation gives us, for (x, y) ∈ T N ,

φN
ss(x, y) = ρ20p

N
x,y(2) + ρ0ρNpNx,y(1) + ρ2NpNx,y(0)− [ρ0p

N
x (1) + ρNpNx (0)][ρ0p

N
y (1) + ρNpNy (0)]

= − (ρN − ρ0)
2

N + 2Nθ − 3
pNx (0)pNy (1). (4.45)

Observe that, for any (x, y) ∈ TN , since pNx (0), pNy (1) > 0, if ρN ̸= ρ0, then φN
ss(x, y) takes negative

values. This is due to the repelling of the particles caused by the exclusion rule. Also, for any possible

value of θ ∈ R, if x < y, lim
N→∞

φN
ss(x, y) = 0, meaning that the 2-points stationary correlation function for

SEP(1) decays to zero when we pass to the macroscopic space. The question now is, what is the order

of its decay? The correct answer is that it has linear decay, i.e., of order N .

For any x, y ∈ ΛN with x < y, assuming that x
N → u and y

N → v as N → ∞, then, the limit

lim
N→∞

NφN
ss(x, y) now depends on the value of θ, which means that, depending on the strength of the

reservoirs, we will obtain different limit functions of parameters u and v, which are non-identically zero if

θ ≤ 1.

Case 1: θ < 1

lim
N→∞

NφN
ss(x, y) = lim

N→∞
− N3(ρN − ρ0)

2

(N + 2Nθ − 3)(N + 2Nθ − 2)2

[
x

N
+

Nθ − 1

N

] [
N +Nθ − 1

N
− y

N

]
= −(ρ1 − ρ0)

2G2,Dir(u, v), (4.46)

where ρ1 and ρ0 are the same as for the limit of the stationary density profile and G2,Dir(u, v) := u(1−v)
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is the Green function of the 2-dimensional Laplacian on the upper triangle

T = {(u, v) ∈ [0, 1]2 | u ≤ v}, (4.47)

which is reflected on the diagonal u = v, and with homogeneous Dirichlet boundary conditions, i.e.,

G2,Dir is solution of the initial value problem

∆2DG2,Dir(u, v) = δu=v, if (u, v) ∈ int T, (2D Laplace equation)

G2,Dir(0, v) = G2,Dir(u, 1) = 0, if u, v ∈ [0, 1], (homogeneous Dirichlet b.c.)
(4.48)

with int T={(u, v)∈(0, 1)2 |u≤v} and ∆2D=


d2

du2 + d2

dv2 , in (int T ) \DT

∂
∂u − ∂

∂v , in DT

, where DT ={(u, u) | u∈(0, 1)}.

Case 2: θ = 1

lim
N→∞

NφN
ss(x, y) = lim

N→∞
− N3(ρN − ρ0)

2

3(N − 1)(N + 2N − 2)2

[
x

N
+

N − 1

N

] [
2N − 1

N
− y

N

]
= − (ρ1 − ρ0)

2

9
G2,Rob(u, v),

where G2,Rob(u, v) :=
(u+ 1)(2− v)

3
is the Green function of the 2-dimensional Laplacian (as above) on

the upper triangle T , defined in (4.47), which is reflected on the line u = v and with homogeneous Robin

boundary conditions, i.e., G2,Rob is solution of the initial value problem


∆2DG2,Rob(u, v) = δu=v, if (u, v) ∈ int T, (2D Laplace equation)

∂
∂uG

2,Rob(0, v) = G2,Rob(0, v), if v ∈ [0, 1], (homogeneous Robin b. c.)

∂
∂vG

2,Rob(u, 1) = −G2,Rob(u, 1) if u ∈ [0, 1], (homogeneous Robin b. c.)

where int T and ∆2D are defined as above. In this regime, the limit lim
N→∞

NφN
ss(x, y) is again a multiple

of the solution of the 2-dimensional Laplace equation on T but with the homogeneous Dirichlet boundary

conditions replaced by homogeneous Robin boundary conditions.

Case 3: θ > 1

lim
N→∞

NφN
ss(x, y) = lim

N→∞
− N3(ρN − ρ0)

2

(N + 2Nθ − 3)(N + 2Nθ − 2)2

[
Nθ − 1 + x

N

] [
N +Nθ − 1− y

N

]
= 0.

This means that, for slow boundary (θ > 1), the 2-points stationary correlation function has an order of

decay higher than a linear function of N . In fact, the correct order to see a non-trivial limit in the case

of very slow boundary, i.e., with θ > 1, is Nθ. Then, if instead of assuming that x
N → u and y

N → v as
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N → ∞, we assume that x
Nθ → u and y

Nθ → v as N → ∞, we obtain

lim
N→∞

NθφN
ss(x, y) = lim

N→∞
− N3θ(ρN − ρ0)

2

(N + 2Nθ − 3)(N + 2Nθ − 2)2

[
x

Nθ
+

Nθ − 1

Nθ

] [
N +Nθ − 1

Nθ
− y

Nθ

]
= − (ρN − ρ0)

2

8
(u+ 1)(1− v).

A summary of these results can be found in [7].

Before going to the next section where we look at the 3-points stationary correlation function, let us

remark that, by using the forward Kolmogorov’s equation, one can also find a system of equations for

φN
ss, and, passing to the limit in N , recover the solutions above - see Appendix C.

3-points stationary correlation function:

If x, y ∈ ΛN with x < y, then φN
ss(x, x, x) = ρNss(x)− 3[ρNss(x)]

2 +2[ρNss(x)]
3, φN

ss(x, y, y) = φN
ss(x, y)[1−

2ρNss(y)] and φN
ss(x, x, y) = φN

ss(x, y)[1−2ρNss(x)], that are completely determined replacing the stationary

density profile ρNss by the expression given in (4.43) and the 2-points stationary correlation function φN
ss

by the expression given in (4.45).

Combining equation (4.42) and the identity in (4.38), we have, for x, y, z ∈ Λ3
N with x < y < z,

φN
ss(x, y, z) = ρ30p

N
x,y,z(3) + ρ20ρNpNx,y,z(2) + ρ0ρ

2
NpNx,y,z(1) + ρ3NpNx,y,z(0)

+
(ρN − ρ0)

2

N + 2Nθ − 3

{
ρ0p

N
z (1)[pNx (1)pNy (0) + 2pNx (0)pNy (1)] + ρNpNx (0)[pNz (0)pNy (1) + 2pNy (0)pNz (1)]

}
− [ρ0p

N
x (1) + ρNpNx (0)][ρ0p

N
y (1) + ρNpNy (0)][ρ0p

N
z (1) + ρNpNz (0)]. (4.49)

Replacing in (4.49) the results obtained in (4.10) and (4.19), performing long (but simple) computa-

tions, we get an explicit formula for the 3-points stationary correlation function that is written in terms of

the one particle absorption probabilities as we had for the 2-points stationary correlation function:

φN
ss(x, y, z) = 2

(ρN − ρ0)

(N + 2Nθ − 4)
[φN

ss(x, y)p
N
z (1)− pNx (0)φN

ss(y, z)]. (4.50)

Observe that, for any x, z ∈ ΛN , pNx (0), pNz (1) > 0, then, the sign of φN
ss(x, y, z) will depend on y and

the difference between ρN and ρ0.

Also, for any θ ∈ R, lim
N→∞

NφN
ss(x, y, z) = 0, meaning that, at the macroscopic level, the 3-points

stationary correlation function decays to zero faster than a linear function of N , and, therefore, faster

than the 2-points stationary correlation function. We expect that, as k (the total number of dual particles)

increases, the corresponding k-points stationary correlation function converges faster to zero the higher

the value of k. In the current case, what is then the correct order of decay? As we will see below, the

order of decay is quadratic, i.e., N2, if θ ≤ 1, and N2θ, if θ > 1. For any x, y, z ∈ ΛN with x < y < z,

assuming that x
N → u ∈ [0, 1], y

N → v ∈ [0, 1] and z
N → w ∈ [0, 1] as N → ∞, then, the limit

lim
N→∞

N2φN
ss(x, y, z), similarly to what to have for the 2-points stationary correlation function, depends on

the value of θ.
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Case 1: θ < 1

lim
N→∞

N2φN
ss(x, y, z) = lim

N→∞

−2N5(ρN − ρ0)
3
(
Nθ−1 −N−1 + x

N

) (
1− 2y

N

) (
Nθ−1 −N−1 + 1− z

N

)
(N + 2Nθ − 3)(N + 2Nθ − 4)(N + 2Nθ − 2)3

= −2(ρ1 − ρ0)
3G3,Dir(u, v, w),

where ρ1 := ρN and ρ0 are as in Table 2.1 and G3,Dir(u, v, w) = u(1− 2v)(1− w) is the Green function

of the 3-dimensional Laplacian on the simplex

S = {(u, v, w) ∈ [0, 1]3 | u ≤ v ≤ w}, (4.51)

which is reflected on the planes S1, S2 and on the line S3, where S1 = {(u, v, w) ∈ S |u = v}, S2 =

{(u, v, w) ∈ S |v = w} and S3 = {(u, v, w) ∈ S |u = v = w}, and with homogeneous Dirichlet boundary

conditions, i.e., G3,Dir is solution of the initial value problem

∆3DG3,Dir(u, v, w) = (1− w)δu=v + uδw=v, if (u, v, w) ∈ int S, (3D Laplace equation)

G3,Dir(0, v, w) = G3,Dir(u, v, 1) = 0, if (u, v), (v, w) ∈ Q, (homogeneous Dirichlet b.c.)

where int S = {(u, v, w) ∈ (0, 1)3 | u ≤ v ≤ w},

∆3D =



d2

du2 + d2

dv2 + d2

dw2 , in (int S) \ ( int S1 ∪ int S2) ,

d2

du2 + d
dv − d

dw , in (int S1) \ ( int S3),

d2

dw2 + d
du − d

dv , in (int S2) \ ( int S3),

d
du − d

dw , in int S3,

and int Sj = (int S) ∩ Sj , for j ∈ {1, 2, 3}.

Case 2: θ = 1

lim
N→∞

N2φN
ss(x, y, z) = lim

N→∞

−2N5(ρN − ρ0)
3
(
1−N−1 + x

N

) (
1− 2y

N

) (
1−N−1 + 1− z

N

)
(3N − 3)(3N − 4)(3N +−2)3

= −2(ρ1 − ρ0)
3

9
G3,Rob(u, v, w),

where G3,Rob(u, v, w) = (1+u)(1−2v)(2−w)
27 is the Green function of the 3-dimensional Laplacian (as above)

on the simplex S, defined in (4.51), which is reflected on the same planes and line and with homoge-

neous Robin boundary conditions, i.e., G3,Rob is solution of the initial value problem


∆3DG3,Dir(u, v, w) = (1− w)δu=v + uδw=v, if (u, v, w) ∈ int S, (3D Laplace equation)

∂
∂uG

3,Rob(0, v, w) = G3,Rob(0, v, w), if (v, w) ∈ T, (homogeneous Robin b.c.)

∂
∂wG3,Rob(u, v, 1) = −G3,Rob(u, v, 1) if (u, v) ∈ T, (homogeneous Robin b.c.)
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Case 3: θ > 1

lim
N→∞

N2φN
ss(x, y, z) = lim

N→∞

−2N5(ρN − ρ0)
3
(
Nθ−1 −N−1 + x

N

) (
1− 2y

N

) (
Nθ−1 −N−1 + 1− z

N

)
(N + 2Nθ − 3)(N + 2Nθ − 4)(N + 2Nθ − 2)3

= 0.

As we had for the 2-points correlation function, this means that, for slow boundary, the 3-points

stationary correlation function has an order of decay higher than a quadratic function of N . In fact, the

correct order to see a non-trivial limit in the case of slow boundary is N2θ.

Then, if instead of assuming that x
N → u, y

N → v and z
N → w as N → ∞, we assume that x

Nθ → u,
y
Nθ → v and z

Nθ → w as N → ∞, we obtain

lim
N→∞

N2θφN
ss(x, y, z) = − (ρ1 − ρ0)

3

2

(1 + u)v(1− w)

8
.

Remark 4.2.2. Like we remarked for the 2-points stationary correlation function, by using the forward

Kolmogorov’s equation, one can also find a system of equations for the 3-points stationary correlation

function and, passing to the limit in N , recover the solutions above - see Appendix C.

We could now continue with this same type of computations to find the absorption probabilities for

four, five, and so on, particles and, using them, find explicit expressions for the 4-th, 5-th, and so on,

stationary correlation functions. The issue is that the systems of equations that we will have to solve, for

fixed k ∈ N, will have 2k+1 − 1 different types of equations, which, as k increases, grows very fast. How

to get this last number? If we have k particles to place on the system (here, we will be considering N

at least 2(k + 1) so we can have the configuration with all particles separated by at least one empty site

and no particles at sites 1 and N − 1). Then, to place the first particle, it can either go to the point 1 of

somewhere in {2, . . . , N − 1 − k}; the second can be placed after the first as nearest neighbor or not;

the third can be after the second as nearest neighbor or not, and so on; for the k-th particle, it has four

possibilities that generate different equations: either it is nearest neighbor to the particle k− 1 and is not

in site N−1, or it is nearest neighbor to the particle k−1 and is in site N−1, or it is not nearest neighbor

to the particle k − 1 and is in site N − 1, or even, it is not nearest neighbor to the particle k − 1 and

is not in site N − 1. Until now, we have counted 2 × 2× · · · × 2︸ ︷︷ ︸
k−2 times

×4 different types of equations. Since,

because of our choice of N , we cannot have all particles to be close to each other and have the first

at 1 and the last at N − 1, then, to the 2k+1 possibilities counted above, we have to extracted this case

that is not allowed. We then obtain that the number of possible different equations is 2k+1 − 1. As k

increases, the number of equations that we would need to solve to find the absorption probabilities with

k dual particles grows exponentially, making our computations longer and harder. Because of this, we

will stop here (with 3 dual particles) the computations for SEP(1). Next, we will apply the same ideas for

the general SEP(α).
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4.3 SEP(α) with α ≥ 2 - Absorption Probabilities

4.3.1 Case k = 1

With just one dual particle, SEP(1) and SEP(α) describe the same model, with the jump rates on the

bulk that we had for SEP(1) rescaled by α (which does not affect the computations of the absorption

probabilities). We get exactly the same results as in Section 4.1.1.

4.3.2 Case k = 2

Recall that fixing k = 2 means that we now have only two dual particles and, as before, m ∈ {0, 1, 2}.

Let us keep the same notation we used in SEP(1) for the absorption probabilities pNx,y(m). Since in

SEP(α), with α ≥ 2, we allow more than one particle per site, we are also interested in computing

pNx,x(m). Here pNx,x(m) denotes the probability that, starting from a dual configuration with 2 particles at

site x (in a pile), m particles being absorbed at the left reservoir.

As we did for SEP(1), conditioning on the first jump, we get a system of ten equations with two

boundary conditions that can be compacted in


Uθ
NpNx,y(m) = 0, for x = 1, . . . , N − 2 and y = x+ 1, . . . , N − 1,

pN0,y(m) = pNy (m− 1)1{m ̸=0}, if y = 0, . . . , N,

pNx,N (m) = pNx (m)1{m̸=2}, if x = 0, . . . , N.

(4.52)

where the operator Uθ
N : F(BCT N ) → F(CT N ), with

BCT N := {(x, y) ∈ {0, . . . , N}2 | x ≤ y} and CT N := {(x, y) ∈ Λ2
N | x ≤ y}, (4.53)

is defined as, for every function f ∈ F(BCT N ) and for every (x, y) ∈ CT N ,

Uθ
Nf(x, y) = ax[f(x− 1, y)− f(x, y)] + by[f(x, y + 1)− f(x, y)] + dx,y[f(x+ 1, y) + f(x, y − 1)− 2f(x, y)],

(4.54)

where ax = N2

Nθ 1x=1 + N21x ̸=1, by = N2

Nθ 1y=N−1 + N21y ̸=N−1 and dx,y = −N2

α 1y=x+1 + N21y ̸=x,x+1.

For every x, y ∈ {2, . . . , N − 2}, if x < y and |x − y| ≥ 2, Uθ
N = ∆2D

N,full, and if y = x, Uθ
N = ∆2D

N,ref ,

where ∆2D
N,full and ∆2D

N,ref have the exact same meaning as in SEP(1). Also, if x ∈ {2, . . . , N − 2} and

y = x+ 1,

Uθ
NpNx,x+1(m) = ∆2D

N,fullp
N
x,x+1(m) +

1

α− 1
∆2D

N,refp
N
x,x+1(m).

This shows that if α ≥ 2, the operator that we obtain for x ∈ {2, . . . , N − 2} and y = x + 1 is no longer

the 2-dimensional reflected Laplacian as we had for SEP(1). Instead, over the line {(x, x+1) | x ∈ ΛN},

we will observe a super position of the operators that act above and over this line.
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As we did for SEP(1), can we find pNx,y(m) by starting with an ansatz? The natural ansatz to take is,

for every (x, y) ∈ CT N ,

pNx,y(m) =


Amx+Bmy + Cmxy +Dm, if |x− y| ≥ 2,

Ãmx+ B̃my + C̃mxy + D̃m, if y = x+ 1,

Amx+Bmx2 + Cm, if y = x,

(4.55)

with Am, Bm, Cm, Dm, Am, Bm, Cm, Dm, Ãm, B̃m, C̃m, D̃m ∈ R to be determined.

If θ = 0, using the ansatz in equation (4.55) to solve the system in (4.52), performing long (but, again,

simple) computations, for every x, y ∈ {0, . . . , N} with x ≤ y, we obtain

If x < y : If x = y :
pNx,y(0) =

−1+αy
−1+αN pNx (0)

pNx,y(1) =
(αN+1)x+(αN−1)y−2αxy

N(−1+αN)

pNx,y(2) =
−1+α(N−x)

−1+αN pNy (1)


pNx,x(0) =

x(−1+αx)
N(−1+αN) +

1
2N(−1+αN) ,

pNx,x(1) =
(αN+1)x+(αN−1)x−2αx2

N(−1+αN) − 1
N(−1+αN) ,

pNx,x(2) =
(−1+αN−αx)(N−x)

N(−1+αN) + 1
2N(−1+αN) .

(4.56)

The previous results were checked using Mathematica (see Appendix A). Therefore, in this case, Ãm =

Am, B̃m = Bm, C̃m = Cm and D̃m = Dm. We could not obtain the explicit expressions for the absorption

probabilities in the case θ ̸= 0, since taking different coefficients throughout the line y = x+1 and θ ̸= 0,

we are lead to a system with a solution not of this form (see Appendix A). Also, we observe that on the

diagonal line y = x, the expression of pNx,x(m) differs from the expression of pNx,y(m) inside the triangle,

i.e., (x, y) ∈ T N (with T N as SEP(1)), by a constant that depend on α, N and m.

4.4 Stationary density function and correlations via absorption

probabilities

4.4.1 Applications to SEP(α) with α ≥ 2

As we did for SEP(1), we want now to compute the stationary density profile and the 2-points station-

ary correlation function (defined in Section 4.2), and find their limit as N goes to infinity.

If η̂ = δx1
+ · · · + δxk

∈ ΩEx,dual
N with x1 < · · · < xk, from Theorem 3.4.1 and recalling that, since

xj ∈ ΛN for every j ∈ {1, . . . , k}, then η̂(0) = η̂(N) = 0, we can simplify the duality function to

DSEP (α)(η, η̂) =
(ρ0
α

)η̂(0)

︸ ︷︷ ︸
=1

[
N−1∏
x=1

η(x)!(α− η̂(x))!

(η(x)− η̂(x))!α!
1{η(x)≥η̂(x)}

](ρN
α

)η̂(N)

︸ ︷︷ ︸
=1

=

 N−1∏
x=1

x ̸=x1,...,xk

1{η(x)≥0}


︸ ︷︷ ︸

=1

[
k∏

i=1

(η(xi))!

(η(xi)− 1)!

(α− 1)!

α!
1{η(xi)≥1}

]
=

1

αk

k∏
i=1

η(xi) (4.57)
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where the last equality comes from the fact that, for every i ∈ {1, . . . , k}, η(xi)1{η(xi)≥1} = η(xi). Here

ρ0 and ρN are the left and right density of the reservoirs of the initial process, respectively. Then, we can

simply repeat the argument we did for SEP(1) in Section 4.2.1 to get that, for x1 < · · · < xk,

Eµss
[η(x1) . . . η(xk)] =

k∑
m=0

ρm0 ρk−m
N Pη(η̂∞(0) = m, η̂∞(N) = k −m)︸ ︷︷ ︸

=pN
x1,...,xk

(m)

. (4.58)

Now, if we allow only two of the xj in η̂ to be equal (we consider x1 = x2 without loss of generality),

the expression of the duality function becomes

DSEP (α)(η, η̂) =

[
k∏

i=3

η(xi)!

(η(xi)− 1)!

(α− 1)!

α!
1{η(xi)≥1}

]
η(x1)!

(η(x1)− 2)!

(α− 2)!

α!
1{η(xi)≥2}

=
1

αk−2

[
k∏

i=3

η(xi)

]
η(x1)[η(x1)− 1]

α(α− 1)
=

1

αk−1(α− 1)

[
k∏

i=3

η(xi)

]
η(x1)[η(x1)− 1], (4.59)

if k ≥ 3, and DSEP (α)(η, η̂) = 1
α(α−1)η(x1)[η(x1)− 1], if k = 2. Therefore, if x1 = x2 < · · · < xk,

Eµss [η(x1) . . . η(xk)]− Eµss [η(x2) . . . η(xk)] =
α− 1

α

k∑
m=0

ρm0 ρk−m
N Pη(η̂∞(0) = m, η̂∞(N) = k −m)︸ ︷︷ ︸

=pN
x1,...,xk

(m)

.

Again, using duality, explicit formulas for the discrete stationary density profile and the 2-points sta-

tionary correlation function for SEP(α) can be obtained once we have computed the absorption probabil-

ities pNx1,x2
(m), with m ∈ {0, 1, 2}. For k ≥ 3, to obtain all the quantities needed to compute the k-points

stationary correlation function, we would need now to simplify the expression of the duality function

considering more cases besides having only two particles at the same site.

Discrete stationary density profile:

Since the absorption probabilities for one dual particle are the same for SEP(1) and SEP(α), by

equation (4.58), the stationary density profile for SEP(α) is given as in (4.43) (here ρ0 and ρN are the

densities of the left and right reservoir for SEP(α)). If we had chosen also for SEP(α), ϵ+ γ = β + δ = 1,

then, the density profile would be given by αρNss, where ρNss represent the density profile of SEP(1).

2-points stationary correlation function:

As we did for SEP(1), combining equation (4.41), the identity in (4.58) with k = 2 (and m ∈ {0, 1, 2})

and the results obtained in (4.56), if θ = 0, then, for every (x, y) ∈ CT N ,

φN
ss(x, y) = ρ20p

N
x,y(2) + ρ0ρNpNx,y(1) + ρ2NpNx,y(0)− [ρ0p

N
x (1) + ρNpNx (0)][ρ0p

N
y (1) + ρNpNy (0)]

+ [ρ0p
N
x (1) + ρNpNx (0)− ρ20

α
pNx,x(2)−

ρ0ρN
α

pNx,x(1)−
ρ2N
α

pNx,x(0)]1y=x (4.60)
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Simplifying the previous expression, we get that

φN
ss(x, y) =− (ρ0 − ρN )2

−1 + αN
pNx (0)pNy (1)

+

{
(ρ0 − ρN )2

2N(−1 + αN)
+ ρNss(x)−

ρ20
α
pNx,x(2)−

ρ0ρN
α

pNx,x(1)−
ρ2N
α

pNx,x(0)

}
1y=x. (4.61)

Observe that, for any x, y ∈ ΛN , since pNx (0), pNy (1) > 0, if ρN ̸= ρ0, then, for x ̸= y, φN
ss(x, y) < 0.

Remark that, for y = x, since − (ρ0−ρN )2

−1+αN pNx (0)pNy (1) + (ρ0−ρN )2

2N(−1+αN) < 0, then φN
ss(x, x) < ρNss(x). In

fact, if N ≥ 2 (which is clearly the case), the only real solutions of the polynomial N − 2Nx + 2x2 are
N±

√
N(N−2)

2 , and since, N−
√

N(N−2)

2 < 1 and N+
√

N(N−2)

2 > N − 1, the result follows. Also, as we

had for SEP(α), if x < y, lim
N→∞

φN
ss(x, y) = 0, meaning that the 2-points stationary correlation function for

SEP(α) decays to zero when we pass to the macroscopic space. Like we had for SEP(1), it has decay of

order N . Also, φN
ss(x, x)−

ρN
ss(x)[α−ρN

ss(x)]
α decays to zero as N goes to infinity, with order of decay equal

to N . For any (x, y) ∈ CT N , assuming that x
N → u and y

N → v as N → ∞, then

lim
N→∞

N

[
φN
ss(x, y)− ρNss(x)

α− ρNss(x)

α
1y=x

]
= −

(
1− 1

α
1v=u

)
(ρ0 − ρ1)

2

α
G2,Dir(u, v),

where G2,Dir is given as in (4.48). Observe that this case and the previous (α = 1) differ from a

multiplicative constant 1/α. This means that, macroscopically, changing the parameter α, rescales the

limit function of NφN
ss(x, y) obtain in (4.46) by a factor of 1/α.

In the next section, we will apply the same strategies for SIP(α).

4.5 SIP(α) - Absorption Probabilities

4.5.1 Case k = 1

If k = 1, then SEP(α) and SIP(α) describe the exact same model, therefore, for every x ∈ ΛN , the

absorption probabilities pNx (m), with m ∈ {0, 1}, are the same as in Section 4.1.1.

4.5.2 Case k = 2

Let m ∈ {0, 1, 2} and let us keep the same notation and conventions for the absorption probabilities

pNx,y(m). Like in SEP(α), in SIP(α), we allow more than one particle per site, and therefore, it makes

sense to consider pNx,y(m) with x = y with the same meaning as in SEP(α), with α ≥ 2. As we did for

SEP(α), conditioning on the first jump, we get a system of 10 equations for pNx,y(m) with two boundary

conditions that can be compacted in:


Wθ

NpNx,y(m) = 0, for x = 1, . . . , N − 2 and y = x+ 1, . . . , N − 1

pN0,y(m) = pNy (m− 1)1{m ̸=0}, if y = 0, . . . , N

pNx,N (m) = pNx (m)1{m ̸=2}, if x = 0, . . . , N

, (4.62)
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where the operator Wθ
N : F(BCT N ) → F(CT N ) (see (4.53)) is defined, for every function f ∈ F(BCT N )

and for every (x, y) ∈ CT N , by

Wθ
Nf(x, y)=ax[f(x− 1, y)− f(x, y)]+by[f(x, y + 1)− f(x, y)]+ex,y[f(x+ 1, y) + f(x, y − 1)− 2f(x, y)],

where ax = N2

Nθ 1x=1 +N21x̸=1, by = N2

Nθ 1y=N−1 +N21y ̸=N−1 and ex,y = N2

α 1y=x+1 +N21y ̸=x,x+1. For

every x, y ∈ {2, . . . , N − 2}, if x < y and |x− y| ≥ 2, Wθ
N = ∆2D

N,full, and if y = x, Wθ
N = ∆2D

N,ref . Also, if

x ∈ {2, . . . , N − 2} and y = x+ 1,

Wθ
NpNx,x+1(m) = ∆2D

N,fullp
N
x,x+1(m) +

1

α+ 1
∆2D

N,refp
N
x,x+1(m).

This shows that, like in SEP(α), over the line {(x, x + 1) | x ∈ ΛN}, we observe a super position of the

operators that act above and over this line. Then, the natural ansatz to take is the same as in (4.55).

If θ = 0, using that ansatz to solve the system in (4.62), performing, once again, long computations,

if x, y ∈ {0, . . . , N} with x ≤ y,

If x < y : If x = y :
pNx,y(0) =

x(1+αy)
N(1+αN) =

1+αy
1+αN pNx (0),

pNx,y(1) =
(αN−1)x+(1+αN)y−2αxy

N(1+αN) ,

pNx,y(2) =
(1+α[N−x])(N−y)

N(1+αN) = 1+α[N−x]
1+αN pNy (1).


pNx,x(0) =

x(1+αx)
N(1+αN) −

1
2N(1+αN) ,

pNx,x(1) =
(αN−1)x+(1+αN)x−2αx2

N(1+αN) + 1
N(1+αN) ,

pNx,x(2) =
(1+α[N−x])(N−x)

N(1+αN) − 1
2N(1+αN) .

(4.63)

Like in SEP(α), this means that on the diagonal y = x, the expression of pNx,y(m) changes from the one

inside the triangle, i.e., for (x, y) ∈ T N , by a constant that depends on α, N and m. Also, in this case,

Ãm = Am, B̃m = Bm, C̃m = Cm and D̃m = Dm. We could not obtain the explicit expressions for the

absorption probabilities for θ ̸= 0, by the same reasons presented in SEP(α).

4.6 Stationary density function and correlations via absorption

probabilities

4.6.1 Applications to SIP(α)

As we did for SEP(α), we want now to compute the stationary density profile and the 2-points sta-

tionary correlation function for SIP(α) by using the absorption probabilities obtained above. Fix k ∈ N.

Note that, if η̂ = δx1 + · · ·+ δxk
, where x1 < · · · < xk, then, from Theorem 3.5.1, and, since j ∈ ΛN , for

every j ∈ {1, . . . , k}, η̂(0) = η̂(N) = 0, we can simplify the expression of the duality function to

DSIP (η, η̂) =
(ρ0
α

)η̂(0)

︸ ︷︷ ︸
=1

[
k∏

i=1

(η(xi))!

(η(xi)− 1)!

Γ(α)

Γ(α+ 1)
1{η(xi)≥1}

](ρN
α

)η̂(N)

︸ ︷︷ ︸
=1

=
1

αk

k∏
i=1

η(xi), (4.64)
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where the last equality comes from the fact that, for every i ∈ {1, . . . , k}, η(xi)1{η(xi)≥1} = η(xi) and the

property of the gamma function given by Γ(α + 1) = αΓ(α). Here ρ0 and ρN represent the density of

the left and right reservoirs of the initial process, respectively. Then, repeating the argument we did for

SEP(1) in Section 4.2.1, using equation (4.64) and the duality property (3.1), we get that

Eµss [η(x1) . . . η(xk)] =

k∑
m=0

ρm0 ρk−m
N Pη(η̂∞(0) = m, η̂∞(N) = k −m)︸ ︷︷ ︸

=pN
x1,...,xk

(m)

. (4.65)

Again, if now we allow x1 = x2 but all the other xj different, we obtain, analogous to what we had for

SEP(α), that DSIP (α)(η, η̂) = 1
α(α+1)η(x1)[η(x1)− 1], if k = 2, and, therefore, for SIP(α) we have that

Eµss [η(x1) . . . η(xk)] + Eµss [η(x2) . . . η(xk)] =
α+ 1

α

k∑
m=0

ρm0 ρk−m
N Pη(η̂∞(0) = m, η̂∞(N) = k −m)︸ ︷︷ ︸

=pN
x1,...,xk

(m)

.

Thus, we can obtain the stationary density function and the 2-points stationary correlation function once

we have computed the absorption probabilities pNx1,...,xk
(m), with m ∈ {0, . . . , k} and k ≤ 2.

Discrete stationary density profile:

The SEP(α) and SIP(α), with only one dual particle, describe the same model - equal density profile.

2-points stationary correlation function:

Again, combining (4.41), (4.65) and the results in (4.63), for every (x, y) ∈ CT N ,

φN
ss(x, y) = ρ20p

N
x,y(2) + ρ0ρNpNx,y(1) + ρ2NpNx,y(0)− [ρ0p

N
x (1) + ρNpNx (0)][ρ0p

N
y (1) + ρNpNy (0)]

− [ρ0p
N
x (1) + ρNpNx (0)− ρ20

α
pNx,x(2)−

ρ0ρN
α

pNx,x(1)−
ρ2N
α

pNx,x(0)]1y=x (4.66)

Simplifying the previous expression, we get, if θ = 0, that

φN
ss(x, y) =

(ρ0 − ρN )2

−1 + αN
pNx (0)pNy (1)

+

{
− (ρ0 − ρN )2

2N(−1 + αN)
− ρNss(x) +

ρ20
α
pNx,x(2) +

ρ0ρN
α

pNx,x(1) +
ρ2N
α

pNx,x(0)

}
1y=x. (4.67)

Observe that, for any x, y ∈ ΛN , since pNx (0), pNy (1) > 0, if ρN ̸= ρ0, then, for x ̸= y, φN
ss(x, y) > 0.

Remark that, for y = x, by the same argument we used for SEP(α), we also have that φN
ss(x, x)+ρNss(x) >

0, if N ≥ 2. For SIP(α), we still have that lim
N→∞

[
φN
ss(x, y) +

ρNss(x)[α+ ρNss(x)]

α
1y=x

]
= 0, meaning that

the 2-points stationary correlation function for SEP(α) decays to zero when we pass to the macroscopic

space. The order of decay of order is still N . Finally, for any x, y ∈ ΛN , assuming that x
N → u and y

N → v

as N → ∞, then lim
N→∞

N

[
φN
ss(x, y) + ρNss(x)

α+ ρNss(x)

α
1y=x

]
=

(
1 +

1

α
1v=u

)
(ρ0 − ρN )2

α
G2,Dir(u, v),

where G2,Dir has the same interpretation as in SEP(1) and SEP(α). Observe that the difference from

the analogous result obtained for SEP(α) is the change of sign from a minus to a plus.
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Chapter 5

Conclusions

5.1 Achievements and results discussion

We can think of this work as a constructive description of some of the results one can obtain when

duality is available. This thesis is organized in three main chapters, Chapters 2, 3 and 4, where the first

two contain the ingredients needed for applications presented in Chapter 4.

The main achievements of the present work are: the presentation of the relationship, through duality,

between all the continuous time Markov processes with reservoirs attached to the boundary referred

throughout the dissertation, with their corresponding versions replacing the reservoirs dynamics by ab-

sorbing boundary points; obtaining explicit expressions for the stationary density profile and 2-points

(also for SEP(1), 3-points) stationary correlation functions, with a method based on finding absorption

probabilities of the dual processes that are solution of some discrete equations with boundary condition;

and finding the macroscopic limit functions of these same functions relating them with Green functions

that are solution of an initial value problem with different boundary conditions depending on the strength

of the interaction of the reservoirs with the system, i.e., on value of the parameter θ.

In Chapter 2, the main result is the existence and uniqueness of invariant measures for both pro-

cesses taken in consideration when we are in equilibrium and out of equilibrium. Here we concluded

that, when the density of the left and right reservoirs are equal, not only exists a unique invariant mea-

sure, but that it is also reversible and of homogeneous product form. For different densities of the left

and right reservoirs, using a classical theorem from continuous times Markov chains, we also guaran-

teed existence and uniqueness of the invariant measure for SEP(α) and the proof, based on duality, for

existence and uniqueness of the invariant measure for SIP(α) was presented on the following chapter.

In Chapter 3, we concluded that both models introduced in Chapter 2 have a dual process that

conserves the bulk dynamics exchanging the reservoir’s dynamics to absorbing boundary points. To

show these duality relations, we used not only the very important observation that we can generate

duality functions by applying symmetries of the Markov generator to a known duality function, but also

powerful tools from Lie algebra’s theory, namely, representations of the Lie algebras su(2) and su(1, 1).

We concluded that once a reversible measure is available for a given continuous time Markov process
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with a countable state space, self-duality comes for free using the cheap self-duality function and that

non-trivial duality functions can be generated from this one. We also concluded that duality can be

used to prove the non-trivial result about existence and uniqueness of stationary measure for the model

SIP(α) that has a countable (and not finite) state space.

At last, in Chapter 4, we could obtain explicit expressions for the absorption probabilities with k =

1, 2, 3 dual particles for SEP(1) with θ ∈ R and with k = 1, 2 dual particles for SEP(α) and SIP(α) with

θ = 0. Let us now compare the results:

• The next table compares the absorption probabilities pNx,y(m), with x, y ∈ ΛN and x < y, taking

θ = 0, for SEP(1), SEP(α) and SIP(α).

Values for m SEP(1) SEP(α) SIP(α)

m = 0 pNx (0)− pNy (1)pN−1
x (0) pNx (0)− pNy (1) x

N−α−1 pNx (0)− pNy (1) x
N+α−1

m = 1 (N+1)x+(N−1)y−2xy
N(N−1)

(αN+1)x+(αN−1)y−2αxy
N(−1+αN)

(αN−1)x+(1+αN)y−2αxy
N(1+αN)

m = 2 pN−1
x (1)pNy (1) N−α−1−x

N−α−1 pNy (1) N+α−1−x
N+α−1 pNy (1)

Table 5.1: Absorption probabilities pNx,y(m), with x, y ∈ ΛN where x < y and θ = 0: SEP(1) versus
SEP(α) versus SIP(α).

We observe that, for m ∈ {0, 1, 2}, pNx,y(m), for all models, can be factorized, for every x, y ∈ ΛN

with x < y, as pNx,y(m) = pNx (m) + pNy (1)Fx(m), with

Fx(m) =


pN−1
x (m)− pN−1

x (m− 1), for SEP(1)

pN−α−1

x (m)− pN−α−1

x (m− 1), for SEP(α)

pN+α−1

x (m)− pN+α−1

x (m− 1), for SIP(α)

, where pN+r
x (m) :=


x

N+r , if m = 0,

N+r−x
N+r , if m = 1,

0, if m = −1, 2,

(5.1)

for every r ∈ R. So, if α−1 ∈ N, then pN+α−1

x (1) (resp. pN+α−1

x (0)) represents the probability that,

starting from one dual particle at site x on a lattice of size N+α−1 (the size increased), one particle

is absorbed at 0 (resp. N ). On the other hand, if α−1 /∈ N, then pN±α−1

x (1) and pN±α−1

x (0) are no

longer absorption probabilities since to see them as that we would need to consider a lattice of

non-integer size (the size N decreases by α−1, for SEP(α), and increases by α−1, for SIP(α)) that,

by our construction of the microscopic space from the macroscopic space, is not allowed.

Let us now compare the absorption probabilities pNx,y(m), with x, y ∈ ΛN and y = x, taking θ = 0,

for SEP(α) and SIP(α) (recall that it does not make sense to talk about pNx,x(m) for SEP(1), since

only one particle is allowed per site) - see the Table 5.2.

Clearly, for SEP(α) and SIP(α), for m ∈ {0, 1, 2}, pNx,x(m) can be factorized, for every x ∈ ΛN as

pNx,x(m) = pNx (m) + pNx (1)Fx(m) + H(m), where Fx(m) is as in (5.1) and H(m) is a real number
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Values for m SEP(α) SIP(α)

m = 0 pNx (0)− pNx (1) x
N−α−1 + α−1

2N(N−α−1) pNx (0)− pNx (1) x
N+α−1 − α−1

2N(N+α−1)

m = 1 (αN+1)x+(αN−1)x−2αx2

N(−1+αN) − α−1

N(N−α−1)
(αN−1)x+(1+αN)x−2αx2

N(1+αN) + α−1

N(N+α−1)

m = 2 N−α−1−x
N−α−1 pNx (1) + α−1

2N(N−α−1)
N+α−1−x
N+α−1 pNx (1)− α−1

2N(N+α−1)

Table 5.2: Absorption probabilities pNx,x(m), with x ∈ ΛN and θ = 0: SEP(α) versus SIP(α).

that depends on m, but not on x, and is defined, for m ∈ {0, 1, 2}, as

H(m) :=


(−1)mα−1

2N(N−α−1) [1m ̸=0 + 1m ̸=2], for SEP(α),

(−1)m+1α−1

N(N+α−1) [1m̸=0 + 1m̸=2], for SIP(α).
(5.2)

Summarizing, for SEP(α) and SIP(α), if θ = 0, for m ∈ {0, 1, 2}, pNx,y(m) can be factorized, for every

x, y ∈ ΛN with x ≤ y, as

pNx,y(m) = pNx (m) + pNy (1)Fx(m) +H(m)1y=x, (5.3)

where Fx(m) and H(m) are the ones defined above.

• As we saw in Chapter 4, the stationary density profiles of SEP(α) and SIP(α) are exactly the same,

since with only one particle, these processes describe the same dynamics. Let us then compare

the results for the 2-points stationary correlation function for SEP(α) and SIP(α) for the choice

θ = 0 - see Table 5.3.

SEP(α) SIP(α)

−α (ρ0−ρN )2

N−α−1 pNx (0)pNy (1) + f1(x)1y=x α (ρ0−ρN )2

N+α−1 pNx (0)pNy (1) + f2(x)1y=x

Table 5.3: 2-points stationary correlation function, φN
ss(x, y), with x, y ̸= 0, x, y ̸= N and θ = 0: SEP(α)

versus SIP(α).

Above, f1, f2 : ΛN → R are given by

fj(x) = (−1)j
[

(ρ0 − ρN )2

2N(−1 + αN)
− ρNss(x) +

ρ20
α
pNx,x(2) +

ρ0ρN
α

pNx,x(1) +
ρ2N
α

pNx,x(0)

]
,

with j ∈ {1, 2}. Therefore, for SEP(α) and SIP(α), φN
ss(x, y), with x, y ∈ ΛN , factorizes as

φN
ss(x, y) + Cαρ

N
ss(x)

α+ Cαρ
N
ss(x)

α
1y=x

=
(ρ0 − ρN )2

α

{
NH(1)pNx (0)pNy (1) +

(
H(0) +

Cα

α

[
NH(1)pNx (0)pNy (1) +H(0)

])
1y=x

}
(5.4)

where H(0) and H(1) are the same as in (5.2) and Cα = −1, for SEP(α), and Cα = 1 for SIP(α).

Also, for SEP(α), we have φN
ss(x, y) < 0, while for SIP(α), φN

ss(x, y) > 0, for all x, y ∈ ΛN with y ̸= x.
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Finally, in Chapter 4, we concluded that duality, for our models, can be used to obtain explicit formulas

for the stationary density profile and for k-points stationary centered (and also non-centered) correlation

function provided that there is a closed formula for the absorption probabilities starting from a config-

uration on the dual process initialized with k particles. By the methods presented in this chapter, we

concluded that solving systems of equations with some boundary conditions, with patience (due to the

extensive computations that are involved), we can obtain the same results known for SEP(1) with θ = 0

and with general θ that were obtained using MPA. More, not only this method works for SEP(1), but for

SEP(α) and SIP(α) where MPA is not available, and even, we believe, can be applied for other interact-

ing particle systems with boundaries where duality is available with such a duality function that can be

related to moments of the initial process.

5.2 Future Work

We left, as future work, proving the general recursive formula for the absorption probabilities for

k ≥ 4 dual particles for SEP(1) using our method. Once this is achieved, using (4.40), one can easily

obtain the general formula for the k-points stationary correlation function for SEP(1) that we expect to

match with the one obtained using MPA. Also, we would like to obtain the solution for the system of

equations that the absorption probabilities for 2 dual particles with θ ∈ R for SEP(α) and SIP(α) solve

and from here obtain explicit expressions for the 2-points stationary correlation function for SEP(α) and

SIP(α) and study its corresponding limiting function, meaning, find its order of decay to zero. We expect

this approach to leave to a hard path. An alternative approach could be, as is presented in Appendix

(C), apply Kolmogorov’s equation to obtain the equation satisfied by the 2-points stationary correlation

function for these models and try to find the solution of that. We expect that the operators that will appear

will be related to the ones obtained for the absorption probabilities pNx,y(m) with an extra error function

taking values only on the diagonal y = x. From here, we would also like to see if the stationary centered

correlation functions for higher order (3-points, 4-points, and so on) can also be written in an analogous

factorized form as in (5.4) using absorption probabilities of just one dual particle or even recursively like

it is known for SEP(1).
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[18] R. D. Paula. Modelo em meios porosos em contato com reservatórios. Master’s thesis, Pontifı́cia
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Appendix A

Links for the Mathematica’s code

Since the code used in Mathematica to verify some of this thesis computations is too extensive, we

leave here the links for the Mathematica files that are free for observation:

• Absorption probabilities for SEP(1), with θ ∈ R:

https://www.wolframcloud.com/obj/b0f3b160-65cb-4c51-81af-9133b7566771

• Absorption probabilities for SEP(α) with θ = 0:

https://www.wolframcloud.com/obj/8ad986db-b7c6-4ea1-9678-df592edb049b

• Absorption probabilities for SIP(α) with θ = 0:

https://www.wolframcloud.com/obj/12adc15a-7b9c-4662-bb19-535255ea24ad

• Stationary density, 2-nd and 3-rd point stationary centered correlation functions for SEP(1), with

θ ∈ R:

https://www.wolframcloud.com/obj/0eacec5b-2cdc-4769-9746-501f80cddc4a

• Stationary density and 2-nd point stationary centered correlation function for SEP(α) with θ = 0:

https://www.wolframcloud.com/obj/0b141ad0-413f-486e-9f4b-925174a9d466

• Stationary density and 2-nd point stationary centered correlation function for SIP(α) with θ = 0:

https://www.wolframcloud.com/obj/e3d1eff2-bbdd-4b88-97be-fc10ea727b13
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Appendix B

Formulas for absorption probabilities

including the boundary

B.1 SEP(1)

B.1.1 Case k = 1

For every x ∈ {0, . . . , N},

pNx (1) =
Nθ − 1 +N − x

N + 2Nθ − 2
+

Nθ − 1

N + 2Nθ − 2
1{x=0} −

Nθ − 1

N + 2Nθ − 2
1{x=N},

pNx (0) =
Nθ − 1 + x

N + 2Nθ − 2
− Nθ − 1

N + 2Nθ − 2
1{x=0} +

Nθ − 1

N + 2Nθ − 2
1{x=N}.

B.1.2 Case k = 2

For every x, y ∈ {0, . . . , N} with x < y,



pNx,y(0) =
(Nθ−1+x)(Nθ−2+y)

[N+2Nθ−2][N+2Nθ−3]
− (Nθ−1)(Nθ−2+y)

[N+2Nθ−2][N+2Nθ−3]
1{x=0}+

(Nθ−1)(Nθ−1+x)
[N+2Nθ−2][N+2Nθ−3]

1{y=N} − (Nθ−1)2

[N+2Nθ−2][N+2Nθ−3]
1{x=0,y=N}

pNx,y(1) =
(N+1)x+(N−1)y−2xy+2(Nθ−1)(Nθ+N−1)

[N+2Nθ−2][N+2Nθ−3]
+ (Nθ−1)(2y−N−1)

[N+2Nθ−2][N+2Nθ−3]
1{x=0}+

(Nθ−1)(N−1−2x)
[N+2Nθ−2][N+2Nθ−3]

1{y=N} +
2(Nθ−1)2

[N+2Nθ−2][N+2Nθ−3]
1{x=0,y=N}

pNx,y(2) =
(Nθ−2+N−x)(Nθ−1+N−y)

[N+2Nθ−2][N+2Nθ−3]
− (Nθ−1)(Nθ−2+N−x)

[N+2Nθ−2][N+2Nθ−3]
1{y=N}+

(Nθ−1)(Nθ−1+N−y)
[N+2Nθ−2][N+2Nθ−3]

1{x=0} − (Nθ−1)2

[N+2Nθ−2][N+2Nθ−3]
1{x=0,y=N}

.
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B.1.3 Case k = 3

For every x, y, z ∈ {0, . . . , N} with x < y < z,

pNx,y,z(0) =
(Nθ−1+x)(Nθ−2+y)(Nθ−3+z)

[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]
− (Nθ−1)(Nθ−2+y)(Nθ−3+z)

[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]
1{x=0}+

(Nθ−1)(Nθ−1+x)(Nθ−2+y)
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{z=N} − (Nθ−1)2(Nθ−2+y)
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0,z=N}

pNx,y,z(1) =
(Nθ−2)(1+2N+Nθ)x+(N2θ+2NNθ−2Nθ−3N+3)y+(Nθ−1)(Nθ+2N−2)z+(5+N−Nθ)xy+(2+N−Nθ)xz

[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]
+

(−1+N−Nθ)yz−3xyz+3(Nθ−2)(Nθ−1)(Nθ+N−1)
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

+ (Nθ−1)2[3y+Nθ−N−2]
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0,z=N}

(Nθ−1)[(Nθ−N−5)y+(Nθ−N−2)z+3yz−(Nθ−2)(Nθ+2N+1)]
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0}+

(Nθ−1)[(−Nθ+2+N)x+(−Nθ+N−1)y+3xy+(Nθ−1)(Nθ+2N−2)]
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{z=N}

pNx,y,z(2) =
(N−Nθ+2)(Nθ+N−1)x+(−N2θ+2Nθ+N2−N−3)y+(Nθ+N−2)(−Nθ+N−1)z−(1+2N+Nθ)xy

[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]
+

(2−2N−Nθ)xz+(5−2N−Nθ)yz+3xyz+3(Nθ−1)(Nθ+N−2)(Nθ+N−1)
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

+ (Nθ−1)2[−3y+Nθ+2N−2]
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0,z=N}+

(Nθ−1)[(Nθ+2N+1)y+(Nθ+2N−2)z−3yz+(Nθ+N−1)(Nθ−N−2)]
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0}+

(Nθ−1)[(−Nθ−2N+2)x+(−Nθ−2N+5)y−3xy−(Nθ−N+1)(Nθ+N−2)]
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{z=N}

pNx,y,z(3) =
(Nθ+N−1−z)(Nθ+N−2−y)(Nθ+N−3−x)

[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]
− (Nθ−1)(Nθ−2+N−y)(Nθ−3+N−x)

[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]
1{z=N}+

(Nθ−1)(Nθ−1+N−z)(Nθ−2+N−y)
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0} − (Nθ−1)2(Nθ−2+N−y)
[N+2Nθ−2][N+2Nθ−3][N+2Nθ−4]

1{x=0,z=N}
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Appendix C

Correlations via Kolmogorov’s

equation

C.1 2-points stationary correlation for SEP(1)

Let us keep the notation φN
ss to represent the 2-points stationary correlation for SEP(1). We want to

find a system of equations for φN
ss using Kolmogorov’s equation. To simplify notation, we will write here

ηx to represent η(x). So, by the forward Kolmogorov’s equation, we have that

0 =
d

dt
φN
ss(x, y) = Eµss

[LEx
1 ηxηy]− ρNss(x)Eµss

[LEx
1 ηy]− ρNss(y)Eµss

[LEx
1 ηx]. (C.1)

Since

LEx
1 ηx =


1

Nθ [ϵ− η1] + (∇+,Nη1), if x = 1

∆1D
N ηx, if x ̸= 1, N − 1

1
Nθ [δ − ηN−1] + (∇−,NηN−1), if x = N − 1

and

LEx
1 ηxηy =



1
Nθ [ϵ− η1] ηy + (∇+,Nη1)ηy + η1(∆

1D
N ηy), if x = 1, y = x+ 2, . . . , N − 2

1
Nθ [ϵ− η1] η2 + (∇+,Nη2)η1, if x = 1, y = 2

1
Nθ [ϵ− η1] ηN−1 + (∇+,Nη1)ηN−1 + η1(∇−,NηN−1), if x = 1, y = N − 1

ηy(∆
1D
N ηx) + ηx(∆

1D
N ηy), if x ∈ {2, . . . , N − 3}, y ∈ {x+ 2, . . . , N − 1}

ηx+1(∇−,Nηx) + ηx(∇+,Nηx+1), if x ∈ {2, . . . , N − 2}, y = x+ 1

1
Nθ [δ − ηN−1] ηx + (∇−,NηN−1)ηx + (∆1D

N ηx)ηN−1, if x ∈ {2, . . . , N − 3}, y = N − 1

1
Nθ [δ − ηN−1] ηN−2 + (∇−,NηN−2)ηN−1, if x = N − 2, y = N − 1

,
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substituting in (C.1) and performing long computations, we get

Oθ
NφN

ss(x, y) + gN (x, y) = 0, (C.2)

where Oθ
N is the same as in (4.8) and gN (x, y) = −(∇+,NρNss(x))

2δy=x+1. The previous result can also

be found in [8] for a correlation function that is time-dependent (hence, starting not necessarily from the

stationary measure but from any probability measure µN defined on ΩEx
N ).

If we take the limit as N goes to infinity, the equation (C.2) is converted to an initial value problem:

since, as N goes to infinity, ∇+,N → d
dx and ρNss → ρ̄, and

d

du
ρ̄(u) =


ρ1 − ρ0, if θ < 1

ρ1−ρ0

3 if θ = 1

0, if θ > 1

,

then, denoting by φss the limit in N of φN
ss,

• if θ < 1, φss is solution to

−∆2Dφss(u, v) = (ρ1 − ρ0)
2δu=v, if (u, v) ∈ int Q

φss(0, v) = φss(u, 1) = 0, if (u, v) ∈ Q

.

• If θ = 1, φss is solution to


−∆2Dφss(u, v) =

(
ρ1−ρ0

3

)2
δu=v, if (u, v) ∈ int Q

∂
∂uφss(0, v) = φss(0, v), if v ∈ [0, 1]

∂
∂vφss(u, 1) = −φss(u, 1) if u ∈ [0, 1]

.

Remark C.1.1. We observe that the previous computations can be done by taking the expectation with

respect to any probability measure µN , and, in that case, we obtain the system of equations for the

2-points time-dependent centered correlation function, φN
t (x, y).

C.2 3-points stationary correlation for SEP(1)

Let us keep the notation φN
ss to represent the 3-points stationary correlation for SEP(1). Performing

similar (but longer) computations like the ones for the 2-points stationary centered correlation function,

we obtain

Rθ
NφN

ss(x, y, z) + fN (x, y, z) = 0, (C.3)

where Rθ
N is the same as in (4.17) and

fN (x, y, z) = −
[
∇+,NρNss(x)

]
[(∇+,N )xφ

N
ss(x, z)]δy=x+1−

[
∇+,NρNss(y)

]
[(∇+,N )yφ

N
ss(x, y)]δz=y+1. (C.4)

If we take the limit as N goes to infinity, the equation is converted to an initial value problem: since, as N

goes to infinity, ∇+,N → d
dx , (∇+,N )x → ∂

∂x (the same substituting x by y) and ρNss → ρ̄, then, denoting

by φss the limit in N of φN
ss, we have:
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• If θ < 1,

−∆3Dφss(u, v, w) = (ρN − ρ0)
3[(1− w)δu=v + uδw=v], if (u, v, w) ∈ int S

φss(0, v, w) = φss(u, v, 1) = 0, if (u, v), (v, w) ∈ Q

.

• If θ = 1,


−∆3Dφss(u, v, w)(u, v, w) = (ρN − ρ0)

3[(1− w)δu=v + uδw=v], if (u, v, w) ∈ int S

∂
∂uφss(0, v, w) = φss(0, v, w), if (v, w) ∈ T

∂
∂wφss(u, v, 1) = −φss(u, v, 1) if (u, v) ∈ T

.

Remark C.2.1. We observe that the previous results can be easily extended to obtain the system of

equations for the 3-points time-dependent centered correlation function, φN
t (x, y, z), by taking the expec-

tation in the definition of φN
ss(x, y, z) with respect to any probability measure µN instead of the invariant

measure.
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Glauber dynamics, 5

Green function, 67, 69

inclusion rule, 16

infinitesimal Markov generator, 7

invariant measures, 9

irreducibility, 18

Kawasaki dynamics, 5

Killing form, 27

left reservoir, 5

Lie algebra, 24

Lie algebra representation, 25

Lie bracket, 24

Liggett conditions, 45

macroscopic space, 5

Markov semigroup, 8

microscopic space, 5

non-equilibrium, 20

open boundary, 5

Poisson clock, 7

recurrence, 18

reversible measures, 9

right reservoir, 5

space of configuration for SIP(α), 15

space of configurations for SEP(α), 6

stationary correlation function, 64

stationary density profile, 63

symmetry, 26

tempered measure, 43

universal enveloping algebra, 27
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