
Enabling Enterprise Blockchain Interoperability
Bernardo Carreira dos Santos

Instituto Superior Técnico
bsantostecnico@gmail.com

Abstract—In recent years, with the advances made in technol-
ogy overall, there is a need to modernize the processes currently
in place, especially in governmental organizations. This increases
the number of different blockchain infrastructures that need
to interact with each other, this is the reason that blockchain
interoperability is so important and is a problem that needs
to be solved for adoption to continue. In this document, we
will study blockchain technology, as a possible fit as a solution
for existing issues in these systems. A comparison between
available blockchain infrastructures is shown to evaluate its
applicability in real-world scenarios. We also have a comparison
between the different interoperability solutions available, to be
able to come to an appropriate solution regarding blockchain
interoperability. The solution proposed in this thesis leverages
blockchain technology to replace the current paper support
model in place for Bills of Exchange with a digital model focused
on the integrity and security of the data handled by the system,
which is guaranteed by blockchain technology. Our solution is
deployed using a blockchain infrastructure, Hyperledger Fab-
ric, with nodes representing the multiple institutions involved.
Interoperability between these systems is handled with resort
to Hyperledger Cactus creating a network of relayers between
the multiple blockchain infrastructures interacting. During our
evaluation, we achieved a throughput of 114 TPS with an
average latency of 0.15 seconds which shows that our solution
would be capable of supporting the use of the current bills of
exchange system. Regarding our interoperability solution, we
have concluded that Cactus offers great flexibility for diverse
interoperability use cases, and provides a direct way to further
improve its compatibility, while in some niche use cases there
might be better solutions that is the trade-off we are committing
to by using Cactus.

Index Terms—Blockchain, Interoperability, Hyperledger Fab-
ric, Hyperledger Cactus, Bills of Exchange

I. INTRODUCTION

Blockchain technology has seen a massive increase in adop-
tion and exposure partly because of the financial incentives
associated with it, but also because of the promise of providing
decentralization and distribution of trust to systems where a
single point of failure is the norm. This has caught the attention
of organizations, especially governmental organizations. The
focus of this paper and the use case provided by INCM
was to create a digital platform for bills of exchange using
blockchain technology to first work alongside the current paper
support model eventually completely replacing it, to explore
the interoperability required for such a system. With this in
mind, we introduce a bill of exchange blockchain solution
implemented using Hyperledger Fabric [1], a permissioned
blockchain designed for enterprise solutions, accompanied by
an interoperability solution that takes advantage of Hyper-

ledger Cactus [2] to provide the flexibility and compatibility
required associated with such a system. Our Fabric solution
handles all of the life cycle associated with a bill of exchange
asset, taking into account the organizations involved in this
respective life cycle and permissions associated with each
organization and member, this solution serves as a way to
explore the multiple interoperability use cases associated with
bills of exchange. As there can be several different implemen-
tations of bills of exchange systems, there is a requirement
that our solution is able to seamlessly interact with those
systems, this is provided by leveraging Cactus flexibility and
compatibility as an interoperability solution.

To provide an initial evaluation of our bills of exchange
blockchain solution we are going to be using Hyperledger
Caliper that provides a framework for load-testing blockchain
infrastructures. Regarding the evaluation of our interoperabil-
ity solution, we are going to be discussing the complexity,
flexibility, and compatibility that Cactus is able to offer.

II. BACKGROUND AND RELATED WORK

A. Hyperledger Fabric

Hyperledger Fabric is an open-source blockchain platform,
which serves as a distributed operating system for the cre-
ation of customized permissioned blockchains [1] focused
on enterprise solutions. Fabric is designed with a modular
architecture that allows the use of pluggable implementations
of several functions [3] offering a high degree of flexibility,
confidentiality, scalability, and resiliency.

A distributed application in Fabric consists of 2 core compo-
nents, the chaincode which is a smart contract that is program
code implementing the application logic and runs during the
execution phase, Fabric also has a system chaincode, which
is run in the configuration channel. The endorsement policy
is evaluated during the validation phase and is used for
transaction validation. It can specify the endorsers for a certain
transaction as a subset of peers.

The configuration channel stores the definition of the Mem-
bership Service Provider, consensus configurations, ordering
service parameters, and rules for altering the channel’s con-
figuration. Each channel has a different ledger, as each channel
enforces chaincode and data isolation. Channels allow the
creation of a communication network between participants,
giving these participants access to the transactions they have
permission to visualize.

As Fabric follows an execute-order-validate architecture,
consensus in Fabric is broken into 3 phases, endorsement,



ordering, and validation. A transaction proposal is created by
a blockchain client, representing a member of an organization,
and sent to endorsement peers, as defined in the endorse-
ment policy. During the endorsement phase, the endorsers
simulate the transaction proposal, producing a write-set, with
the modified values and correspondent keys, and a read-set.
This simulation is run in an isolated environment. With the
endorsement created, it is sent back to the client which upon
receiving enough endorsements creates the transaction and
sends it to the ordering service. In the ordering phase, orderers
check if the client who submitted the transaction proposal has
the required permissions and produced blocks that contain the
endorsed transaction ordered. The ordering allows the network
to achieve consensus. The ordering service then broadcasts the
blocks to peers who maintain the state of the ledger, through
the ordering service or the peer gossip protocol. After this,
we get into the validation phase where peers firstly check
if the transactions follow the endorsement policy. Then, for
each transaction, the versions of the keys in the read-set
are compared with the keys currently in the shared ledger.
Transactions with non-matching versions are discarded from
the block and the block is then appended to the head of the
ledger [4].

Fabric supports pluggable consensus for all 3 phases. This
allows applications with different requirements to use different
endorsement, ordering, and validation plugins to satisfy those
needs.

The Fabric network is maintained by a group of peers, as
Fabric is a permissioned blockchain, these are provided an
identity by the modular membership service provider.

Peers can take up 3 different roles, Clients, Endorsers,
Orderers. Clients are those who submit transactions for exe-
cution, help in the execution phase, and broadcast transactions
for the ordering phase, while also keeping a snapshot of the
current state of the ledger. Client peers are not able to invoke
chaincode functions. Endorser peers have access to chaincode,
and when they receive a transaction proposal, they simulate the
execution of the transaction in an isolated environment, and
based on that simulation’s results they prepare a transaction
endorsement to send to Orderer peers. Orderer peers receive
endorsed transactions and assemble them into blocks while es-
tablishing the total order of all transactions, as each transaction
contains state updates and dependencies computed during the
execution phase. Orderers do not participate in the execution
of validation of transactions, they propagate such blocks to
Client peers, where the blocks are validated and committed to
the shared ledger.

Fabric makes use of a key protocol for communication
between peers, known as the Peer Gossip, which is respon-
sible for broadcasting the results of the ordering phase for
unsynched peers.

B. Hyperledger Cactus

Hyperledger Cactus [2] is a project, in the domain of
trusted relays, trying to provide a framework for future in-
teroperability solutions. Cactus has 4 core components, the

connectors which allow establishing a connection between
the blockchain infrastructures. The validators are effectively
a node in both of the involved blockchains with permissions
to publish transactions in both networks. The business logic
plugin defines the logic of the interoperability use case be-
tween both infrastructures, such as the transaction flow and
asset changes. We also have the verifier which is responsible
for verifying and accepting results from validators.

Cactus offers a core framework for achieving interoperabil-
ity between multiple distributed ledger technologies (DLT),
which include blockchains and other more traditional DLT. To
this core framework, by using the mentioned components cac-
tus offers a pluggable way to achieve interoperability between
heterogeneous system architectures. The plugins in cactus are
effectively an abstraction layer on top of Cactus core source
code. For each specific ledger Cactus consortium associates
a group of validators, which effectively act as a secondary
network that actively monitors the state of the underlying
ledger network. Validators run a consensus algorithm separate
from the connected ledgers to agree on the state of the
underlying network. Upon agreement on the state, the proof
of state is produced and signed by several validator nodes
according to the consensus in use.

Validator nodes depend on ledger-specific plugins, conse-
quently, a smart contract on the connected blockchain can
enable the ledger-specific functionalities necessary for a val-
idator node to observe the ledger state to finalize a proof of
state. When providing the results, validators associate their
digital signature, by using their key, with the results in order
for verifiers to be able to certify the produced results.

These ledger-specific plugins are the Cactus connectors,
which are composed of validators and verifiers, to provide
communication between the business logic plugin and each
involved ledger. By using validators and verifiers, connectors
provide a way for the business logic plugin to operate and
monitor the ledger behind them.

Verifiers are responsible for verifying the results and pro-
duced proof of state provided by validators. Verifier nodes can
request and register the public keys of the validator nodes of
a blockchain network that they want to connect to. Therefore,
they can verify the signed proofs of the state of the blockchain
since they have the public keys of the validator nodes. This
implies that the verifier nodes trust the validator nodes and
consequently they trust the Cactus consortium operating the
validator nodes.

The business logic plugin executes business logic and
provides integration services that are connected with multiple
blockchains. It is composed of web applications or smart
contracts on a blockchain. It is a single plugin and is required
for executing Hyperledger Cactus applications.

It should be developed with a specific use case in mind,
by implementing the business logic associated with such use
case to interact with ledger plugins respective to each involved
ledger.

It offers multiple interactions with the ledger plugins, such
as submitting a transaction request at the targeted ledger,



querying the targeted ledger, or receiving event messages
associated with those transactions requests and queries.

C. Bills of Exchange

Bills of Exchange are a paper-written contract that involves
3 parties, the drawer which is the party that is in debt, the
payee to whom the drawer is in debt, and the drawee which
accepts the payment of the drawer’s debt. Once the bill of
exchange is approved by all parties, the drawee is legally
bound to pay the drawer’s debt to the payee on behalf of the
drawer within a set deadline, so the debt between the drawer
and the payee is extinguished [5]. This paper-based model
doesn’t work in the current situation of a global market where
suppliers and customers aren’t next-door neighbors, rendering
Bills of Exchange unpractical to use. As creating a digital
model for such a process has certain requirements, such as
ensuring that such a document has legal validity and a non-
tampering warranty, distributed ledger technologies such as
blockchain technology is seen as a good fit.

As blockchain has been seen improvements in recent years,
different solutions regarding a digital bill of exchange model
have been in development. These solutions, such as Billex [6]
and DigiBoE [5] resort to blockchain technology and more
specifically smart contracts to implement the whole life cycle
of bills of exchange. The core operations regarding the bill
of exchange life cycle include the issuing of the bill by the
drawer, the acceptance of such bill by the drawee, the payee
receiving the bill, and redeeming it receiving the payment from
the drawee. The current life cycle of a bill of exchange varies
between countries, that is one of the reasons that blockchain
interoperability is a requirement for such a system.

By using smart contracts it facilitates the creation of a digital
platform that handles the life cycle of the bills, as the platform
will be able to keep a record of issuing the smart contract
and its current owner, the issue can also fill the details of the
bill such as the payee’s public key, the amount to be paid, its
maturity date and then sign it with his private key providing the
required non-tampering warranty. For certain platforms such as
Billex redeeming the bill can even be automated by the account
associated with the smart contract if its balance allows.

III. BILLS OF EXCHANGE’ BLOCKCHAIN SOLUTION
IMPLEMENTATION

A. Requirements

The solution was developed and implemented as a database
system capable of issuing, signing, registering, and executing
all transactions and operations contemplated by the law for
parties who rely on bills of exchange to obtain and provide
funds. The solution should be able to interact with solutions
from other countries, regardless of the infrastructure and
technologies used in different implementations of this system.
INCM has several non-functional requirements for this system:

1) Availability: The solution developed should be available
99.9% of the time.

2) Scalability: The solution should provide support for the
possible increase of demand for use of the system with-
out compromising with performance. (i.e., an increasing
number of nodes participating in the platform should not
affect its performance).

3) Security: The solution should provide a robust system
for safely issuing, signing, and execute transactions or
operations throughout the bills of exchange life cycle.

4) Testability: The solution should provide the possibility
of being tested in a non-production environment. (i.e., an
environment where operations such as issuing, signing,
and execution of transactions can be simulated using
similar characteristics to the production system).

5) Privacy: Information regarding bills of exchange should
only be accessible to those who have the proper privilege
rights to access that information.

6) Auditability and Traceability: The solution should pro-
vide ways for authorities (such as the Tax Authority, the
Central Bank, and the Justice Sector) to have access to
logs of the system to trace, prevent or act upon malicious
or illegal activity.

7) Interoperability: The solution requires interaction with
other bills of exchange systems to be able to support the
current operations.

As for functional requirements, the solution is supposed to
be integrated within the domain of INCM’s projects and should
facilitate all of the features currently allowed by the original
model in use. This includes several operations regarding bills
of exchange, such as:

• Issuance of bills of exchange
• Signature of bills of exchange
• Registration of bills of exchange
• Execution of all transactions and operations regarding

bills of exchange
• Offer interoperability between other blockchain imple-

mentations handling bills of exchange
The system ingests data generated by each transaction exe-

cuted by the users in the Portal de Letras e Créditos Digitais
(PLCD) platform, which is the platform that gives access
to the user to all operations contemplated by the applicable
legislation in the life cycle of bills of exchange.

B. Preliminaries
By exploring the existing solution that is currently in use

in Portugal we define the conditions and environment in
which the bills of exchange system operates, this allows us to
leverage this knowledge to be able to develop and implement
a solution that works in these same conditions and still meets
the mentioned requirements.

The use case discussed in this paper presents several char-
acteristics:

1) Participants are willing to cooperate but have limited
trust in each other

2) Bill’s of Exchange assets is a responsibility of all
stakeholders (this includes INCM, ATA, BP, and the
participant banks)



3) Multiple organizations can have an administrative role
in the network (such as INCM, ATA, and BP)

4) End users only have permission to access bill’s related
to them (where they are one of the entities represented
in the bill)

A Blockchain participant represents an entity that par-
ticipates in the blockchain. As mentioned, we assume that
participants have limited trust in each other and participate in
the same channel. Participants control peer nodes that maintain
the ledger and may endorse transactions. We also assume that
at least one participant is capable of running a blockchain
client to commit transactions to the blockchain-based on the
information present in the PLCD platform. There are 3 actors
who take part in the network:

• Network Administrator. Network Administrators are re-
sponsible for managing all of the blockchain config-
urations. They also create identities and manage the
participants in the network. The organization responsible
for the network is in most cases the Administrator (in
this case INCM), if there are several Administrators, a
quorum will make the decisions instead.

• Forwarder. Forwarders are oracles responsible for in-
terpreting operations related to bills of exchange exe-
cuted in the PLCD platform and committing the respec-
tive transactions associated with those operations to the
blockchain. These act as a blockchain client and oracle.

• Auditor. Auditors audit the life cycle of bills of exchange,
such as the operations executed throughout its lifespan.
In this use case, ATA and BP would be the auditors.

C. Architecture

The assets being stored in the blockchain are the bills
of exchange generated by the PLCD platform, which is the
information system that allows the end-user to issue operations
on their bills. This proposed solution provides scalability
in terms of the participating organizations. The information
system mentioned and the blockchain for the bills of exchange
are independent, this is possible due to the modularity offered
by Hyperledger Fabric. The blockchain component includes
the ledger, permission management, transaction validation and
definition, and the data model. This architecture is represented
in Figure 1.

Fig. 1. Architecture of the Blockchain Platform for Bills of Exchange

Blockchain clients allow organizations to request operations
to the blockchain, for different needs we should have different
clients as each different client is able to request different
operations depending on their permissions and roles.

In our use case, we require 3 different blockchain clients,
as we have INCM acting as a network administrator and
forwarder between the PLCD platform and the blockchain,
we have ATA and BP acting as auditors requiring access to
data respective to bills of exchange, and lastly, we have banks
which directly interact with a specific operation in the bills of
exchange life cycle. These 3 blockchain clients are defined as
follow:

1) Forwarder Client: After receiving transaction requests
from the PLCD platform, those are processed and ver-
ified before a blockchain transaction being committed
to the network, triggering the updates necessary on the
respective asset.

2) Audit Client: Responsible for committing transactions
on behalf of the auditors, ATA, and BP, these transac-
tions are in fact requests from the auditors to query the
blockchain ledger regarding data from bills of exchange
assets in the blockchain network.

3) Bank Client: This gives banks the capability to commit
transactions in respect to the Discount operation in
which banks are directly involved, to make the necessary
changes to the bills of exchange asset.

Fabric’s blockchain component requires 3 different types
of peers: Orderer peers (orderers), Endorser peers (endorsers),
Committing peers (peers). Orderers are assigned in the con-
figuration file which can be deployed by the network admin-
istrators, and provide delivery guarantees of blocks containing
transactions while assuring atomic communication, consensus.
A node can be both an endorser and a peer node at the same
time, endorsers host and execute instances of the chaincode
to run simulations of transactions, peers host instances of the
ledger.

It is important to note, that in Fabric, there is the possibility
to attribute different levels of trust to each individual peer
using roles. Fabric also offers a modular system that decouples
the trust system from the consensus algorithm, this is done
using endorsement policies that can assign a higher or lower
degree of trust to specific subsets of endorsing peers in the
network.

We have a single instance of chaincode which defines all
of the life cycles of the bills of exchange, both endorsing
peers and committing peers are required to have this chaincode
installed.

Regarding the authentication of participants, Hyperledger
Fabric offers a built-in CA to issue identities to each partic-
ipant, but a custom CA could be used if INCM chooses to
do so. These certificates are important as they are used by
participants to sign transactions, ensuring non-repudiation of
transactions.

With respect to data privacy between different organizations,
we decided to tune the ABAC [7] system through chaincode
where we can define which organizations have permissions



to access data, as it offers the best performance and ease of
implementation while being able to address the restrictions in
our use case.

The architecture we end up with has a single channel where
we have the 3 main organizations, being INCM, BP, and ATA,
where in the future Banks should be represented as they are
crucial for the bills of exchange life cycle. We also have
a single applicational chaincode that implements the logic
behind all of the operations regarding bills of exchange. Lastly,
to address the privacy concerns we end up tuning an ABAC
system to meet our needs as mentioned before.

D. Implementation
As mentioned Fabric uses a certificate authority to generate

the necessary cryptographic information, such as the key pairs,
to enroll different participants in the network. The CA server
can be configured to define what implementations will be used
for the generation of the certificates, we have opted to use
Fabric’s default implementation.

We have implemented the solution with 3 default orga-
nizations which represent INCM, ATA, and BP. Each node
representing a different organization has different specific
permissions regarding which data can be accessed and which
operations can be requested, using the ABAC system. Nodes
from INCM, the network administrator, have a higher level
of permissions allowing them to validate and execute smart
contracts and transactions, ATA and BP nodes can validate
transactions and access the ledger as an auditor. These config-
urations and permissions allow enforcing the necessary privacy
and confidentiality of data.

The blockchain client is written in NodeJS, it allows com-
munication with the blockchain, providing an entry point
to the developed chaincode mentioned before. Taking into
account the permissions defined for the authenticated client,
the chaincode will then access the distributed ledger and
execute the requested operations: such as register a bill of
exchange, protest a bill of exchange or audit the network.

While possible to develop a graphical user interface, the
clients made were used through the command line. A script
was used to simulate the population of the blockchain with
bills of exchange assets.

IV. INTEROPERABILITY SOLUTION IMPLEMENTATION

In this section, the goal is to explore interoperability so-
lutions between heterogeneous blockchains such as a permis-
sioned blockchain like Fabric which we used for our bill of
exchange solution as it was outlined in the previous section,
and a permissionless blockchain which in this case we have
chosen Ethereum as shown in 2. Apart from these networks
required to explore the interoperability use case, we are using
a validator to monitor both networks and commit transactions
associated with the different interoperability use cases being
explored which are implemented using a business logic plugin,
for this the connectors respective to each network are required.

When it comes to bills of exchange, there are several
interoperability use cases that can be explored with Hyper-
ledger Cactus. These include replicating the assets between

Bills of Exchange

Fabric Network

Bills of Exchange

Ethereum Network

Cactus 

Validators

Hyperledger Cactus Network

Business Logic

Plugin

Fabric

Connector

Validators use
the connectors
to monitor the

networks

Ethereum 

Connector

 Implements the
logic associated

with the
interoperability

use case

Fig. 2. Architecture of the Cactus interoperability solution

multiple implementations of bills of exchange, replicating
transactions based on a specific trigger such as having a bill
of exchange being registered in the Portuguese network for
bills of exchange that involves an entity from Spain, you can
replicate the transactions associated with this specific asset on
the Spanish network for bills of exchange. We could also use
a foreign currency or even a cryptocurrency to liquidate a bill
of exchange, which would require interoperability between our
solution and that cryptocurrency blockchain.

While there is no standard for how to implement a bill
of exchange blockchain solution, every bill of exchange im-
plementation, regardless of the country it is associated with,
requires a core set of operations such as registering or paying
the bill. Taking this into account we define the required
transaction flow associated with each interoperability use case
to achieve the needs for that specific use case, which we will
go more in-depth throughout this Chapter.

Most of the work being done is associated with designing
business logic plugins that define the transaction flow for each
interoperability use case. We will outline that work for each
interoperability use case explored, while also mentioning the
difficulties and where it could have been improved.

A. Network Replication

The goal with this specific use case is to replicate every
transaction requested in one of the involved networks, we have
our solution developed on Hyperledger Fabric and a sample
solution using Ethereum, whenever a transaction is requested
on one of the networks it should trigger Cactus to request the
corresponding transaction on the other network.

For this to happen, on the business logic plugin we need to
associate transactions from the solution which uses Fabric and
the solution using Ethereum, for the business logic plugin there
is complete abstraction from how these blockchains work, it is
not required for them to behave similarly. While both solutions
might have different operations for Bills of Exchange, both
should have the core operations required for their life cycle,
in this case, if a register operation is requested in Fabric’s
solution, the respective register operation should be triggered
by cactus on Ethereum’s solution.



As mentioned cactus has nodes monitoring the blockchain’s
state, using this we can react to updates to this state, such as
new transactions being committed, which in this case helps us
replicate the exact same state of each asset on the blockchain
to other solutions, working similarly to an oracle.

A user commits a transaction to Fabric’s network, in this
case, registers a bill of exchange, the transaction gets processed
in Fabric’s network which triggers a new state of the network.
Cactus validators network by monitoring the network are
aware of this new state and publish the respective transaction
to the Ethereum network which then similarly to Fabric ends
up creating a new state of the network. We have to be aware
of this because new states are what triggers Cactus validators,
so we need to have a condition where transactions committed
by Validators do not trigger a transaction request on Cactus
end.

For this specific use case, there are simpler solutions if the
goal is only the replication of the network for the purpose of
redundancy which we went over before. One of the problems
of solutions that focus on replication only is that it is hard
to achieve the transaction history that led to that specific
replicated state of the network, Cactus offers a way to accom-
plish that by actually replicating each transaction requested
individually.

B. Cross-country Asset Replication

this use case works somewhat similarly to the previous use
case explored in the sense that we are effectively reproducing
certain transactions between the involved networks. Similarly,
we have our own solution previously outlined using Fabric,
and an Ethereum sample solution, both running implementa-
tions of the bills of exchange use case.

The goal in this use case is to replicate transactions for
assets that involve entities from different countries, lets say
our Fabric solution and the Ethereum sample solution are
running implementations for Portugal’s and Spain’s respective
bills of exchange systems, if a certain bill involves entities
from Portugal and Spain, we want to reproduce transactions
associated with this specific asset in both networks.

Comparably to the previous solution, we still have to
associate corresponding transactions between both networks.
The difference in this use case is that instead of replicating
every transaction that produces a new state in the ledger, we
are being more restrictive by only reproducing transactions for
specific assets. In addition to cactus validators nodes to react to
changes in the blockchain state, this state update will trigger
a verification process to assess if the assets being changed
involve entities from each network, in this case, if there are
entities from Portugal and Spain associated with this asset. If
this is the case then the validators will request a transaction
in the opposite network to replicate the state of this asset.

In the case where the transaction does not involve entities
from both networks’ respective countries, the validator still
detects a state update, since the validator network is always
monitoring the networks, but after verifying the entities asso-

ciated with the asset it will not trigger any transaction request
on the opposite network.

When the transaction does update an asset that has entities
from multiple countries associated with, after detecting an up-
dated state and verifying the entities involved in the transaction
the validators will then request the respective transaction in
the opposite network, effectively replicating the exact same
life cycle for this specific asset in both networks.

Similarly to the previous use case, cactus offers a way to
replicate the exact transactions that led to a specific asset
current state, keeping its transaction history, in this case, we
are not going for full replication of the network but focusing
on single assets that respect certain constraints, which in this
case Cactus offers a very good solution as the verification for
those constraints occurs in the validator nodes without any
need for changes in the blockchains interoperating.

C. Cross-blockchain Payment

With countries starting to accept cryptocurrencies as legal
tender, such as El Salvador, and allowing cryptocurrencies to
be seen as a country’s currency, this use case becomes more
interesting to explore as this could be a potential need in
the future. The goal of this use case is to use an existing
cryptocurrency to liquidate a bill of exchange asset.

As far as the architecture used, similarly to the previous
use cases we are still using our Fabric solution, but in this
use case the Ethereum network used is not running a sample
implementation for bills of exchange, it is simply being used
to run Ethereum transactions as a payment option for bills of
exchange to show that if in the future more countries start to
accept cryptocurrencies as a currency, this is a possibility.

For this use case instead of having to match the transactions
representing operations respective to bills of exchange, we
have to find a way to associate, in this case, an Ethereum
address to a certain bill of exchange asset or an entity related
to this specific bill. The simplest way for this to be done is
in the case where the bill of exchange solution is developed
with this in mind, and the asset itself can have an Ethereum
address associated with it for payment purposes.

Another problem with this use case is the need for an escrow
account, as the payment operation on the Fabric network
can only be processed after confirmation of payment, but the
payment can only be sent after the payment operation has been
processed. In this case, Cactus validators can act as escrow
where they receive the payment from the Ethereum network
and hold it until the payment operation in Fabric’s network
has been processed, finally, they send the payment to the final
address associated with the bill.

If for any reason the transaction for the payment of the bill
fails in Fabric’s network, the Ethereum that had already been
provided as payment is returned to the original address it was
sent from instead of being sent as payment to the Fabric’s
user address associated with the bill being liquidated. This
keeps the funds safe until there is confirmation that the bill’s
payment succeeded, it also prevents the bill from being paid
without the funds being secured for the owner of the bill.



It is important to explore such a use case as the future
seems to be approaching a state where cryptocurrencies might
be seen as an actual currency and start being adopted as such,
this also shows that Cactus can be quite flexible in terms of the
problems it can solve in a somewhat simple way. It also shows
how future-proof Cactus is. While we explored this use case
using Ethereum as the cryptocurrency being used, multiple
other ones could have been used as long as Cactus already
has a connector developed for it, otherwise, a connector could
also be developed.

V. EVALUATION

A. Bills of Exchange Blockchain Solution

In order to evaluate our Bills of Exchange blockchain
solution we are going to use Hyperledger Caliper as our load-
generating client, Calipers framework goal is to facilitate the
evaluation of multiple blockchains solutions built on different
infrastructures such as Hyperledger Technologies blockchains,
which include Fabric, and others such as Ethereum. Caliper
serves as a load-generating client by running tests based on
configuration files, which helps to replicate the architecture of
the solution’s network, to run tests.

To emulate a real production environment where we have
several distributed nodes, we are using a GCE machine set
up in Amsterdam, Netherlands with a 16vCPU and 256GB
of memory. This helps to keep the hardware used for the test
environment used to run the tests consistent across every round
of tests.

As far as configuring the test environment, we are using an
Hyperledger Fabric version 2.2.1 running a simplified network
with a single channel with 3 organizations representing INCM,
ATA, and BP each with one peer and 1 CA. The consensus
algorithm being used is solo orderer which is designed for
testing purposes where it effectively bypasses the consensus
process. We are also using the default network configuration
provided, with a maximum block size of 128MB, a batch
timeout of 250ms and the number of transactions per block is
10.

The peers, orderers, and CA are being run on top of Docker
containers running Docker version 20.10.8, running the base
image of Hyperledger Fabric. The state database used is the
database provided by Fabric, LevelDB.

While there is not enough data regarding the use of the
system that is currently in place, according to the small
amount of data we have the system achieves a peak use of
7000 operations monthly, which is a really small amount of
transactions per month for such a system. Taking this into
account if we can achieve an average TPS of 5, we can cover
much more than the current use of the system that we currently
see.

In the following tests, we are going to issue transactions
at a constant rate of 5 TPS. We are also going to vary the
number of transactions issued in total between 1000, 2000,
4000, and 8000 transactions. Furthermore, we are going to
vary the number of blockchain clients between 1, 2, 4, 8, and

16 clients submitting transactions, in our context these clients
act as our forwarders.

1 2 4 8 16
0

20

40

60

80

100

Number of clients

T
hr

ou
gh

pu
t

(T
PS

)

1000 transactions
2000 transactions
4000 transactions
8000 transactions

Fig. 3. Throughput variation with different number of clients, using a fixed-
feedback controller

The above graphic (Figure 3) shows the variation of the
throughput with the number of clients, which in our tests we
can see that for a number of clients of 1 or 2 the throughput is
equal independent of the number of transactions, but we see
more variation with increasing numbers of clients which is a
more likely scenario in regular use of the system.

1,0002,000 4,000 8,000
0

1

2

Number of transactions

A
ve

ra
ge

la
te

nc
y

(s
ec

on
ds

)

1 clients
2 clients
4 clients
8 clients
16 clients

Fig. 4. Average latency variation with different number of transactions, using
a fixed-feedback controller

In the above graphic (Figure 4) the variation of the average
latency per number of clients is shown, with transactions being
submitted at a constant rate of 5 TPS similarly to the previous
graph. Usually the more clients the bigger the latency as the
peer nodes have to return answers to more clients before a
transaction is considered valid, in our testing that is not what
we have verified as we have 16 clients with the lowest average
latency.



During these tests, something seems to have occurred when
we were testing with 1 and 2 clients submitting transactions
as the results from those cases seem to be too far apart from
what is expected in both throughput and average latency.

Regarding our performance evaluation, we have achieved
a peak TPS of 113.4 with a latency of 0.15 seconds in the
same test, this peak occurred for a test where 2000 transactions
were submitted and 16 clients were being used, while it is
likely that fewer clients will be used on a real scenario, during
our tests we can see that for any number of clients above
4, we can achieve decent performance without compromising
latency. Tests were run multiple times to assure that the results
were correct.

One of the places where there are improvements to be
made is Fabric’s blockchain configuration, this includes several
performance improvements in terms of TPS. We could have
tested several parameters such as the batch size which includes
the size of the block in terms of data and also includes the
number of transactions per block, which if we used a higher
value in both parameters we could possibly achieve higher
values of TPS. Besides this we could also experiment with
different values for the batch timeout which is the time for a
block to be deemed invalid if not processed in a certain time
frame, a higher value would give more time for blocks to be
processed. We could also experiment different with consensus
algorithms.

B. Cactus Interoperability Solution

In this section, we are going to evaluate Cactus compati-
bility, flexibility, and complexity. It is important to understand
that Cactus is still in development and is not production-ready
at this moment, it should be production-ready in version 1.0,
and it is currently in version 0.4.2. This means that there are
still developments being made in the core framework, and
there are still connectors to be released, this will improve the
usability of Cactus as an interoperability solution.

Regarding the compatibility that Cactus offers, it is first
important to understand how Cactus can implement interoper-
ability solutions between different blockchains, this includes
both permissioned and permissionless blockchains.

Cactus relies on validators to perform transactions on mul-
tiple blockchains to facilitate interoperability between those
respective blockchains. These validators in turn require a
connection to the respective blockchain to submit transactions,
this is where Cactus connectors come into play. As each
blockchain infrastructure implements a different consensus
algorithm, Cactus requires a different connector for each
different blockchain infrastructure.

In our specific use cases, we are using connectors that
Cactus already has developed, these being connectors for
Hyperledger Fabric and Ethereum. Cactus already has other
connectors available such as connectors for most Hyperledger
Distributed Ledger technologies such as Hyperledger Besu
and Hyperledger Sawtooth with existing business logic plugins
samples that show these connectors working.

In terms of compatibility the only development necessary
to be done in Cactus is effectively the connectors, and with
the current number of different blockchain infrastructures
available it is hard to develop connectors for every existing
one. However, Cactus should be able to support interoper-
ability between most existing blockchain technologies both
permissioned and permissionless, as shown in our use cases
where we are using both with that being Hyperledger Fabric
and Ethereum respectively. Effectively, Cactus offers back-
ward compatibility, by not requiring extra development to the
blockchain technologies being used.

With respect to complexity, we are not going to evaluate
if the implementations steps themselves are complex, we
are instead going to evaluate the number of steps required
to implement an interoperability solution using Cactus in
the different possible scenarios. It is hard to evaluate if the
implementation steps taken to achieve a certain solution are or
not complex as that is subjective to whoever is implementing
them, and how familiar the framework is to them.

There are effectively 2 scenarios when it comes to using
Cactus for implementing an interoperability solution, some-
thing common in these scenarios is that you will always have
to develop a BLP as that is specific to each interoperability
use case being implemented. In addition to this, your solution
may require the development of a new connector as Cactus
does not have connectors available for all existing blockchain
infrastructures.

In the worst-case scenario, a connector will have to be
developed and tested before actually being available to use in
the interoperability solution being implemented. This can be
simpler if the respective blockchain infrastructure uses a sim-
ilar consensus to current blockchain infrastructures supported
by Cactus which can be used as an example.

Concerning the flexibility of the solution, what we are
trying to evaluate here is if the solution can be used to
implement a wide variety of use cases, in our case we
explored 3 different scenarios each with its own goal. This was
done effectively by developing 3 different BLP, as explained
before the BLP is what allows the logic behind a specific
interoperability use case to be implemented. They define the
transaction flow associated with the interoperability use case
being explored, respective to each blockchain infrastructure
involved in the use case defined by the BLP.

As a consequence of requiring a BLP for each different
use case, it means there will be development associated with
each new interoperability use case being implemented. Cactus
unlike other interoperability solutions requires that whoever is
implementing a specific use case has knowledge regarding the
multiple applications involved.

This is required because when developing the business logic
plugin you are effectively defining what triggers a certain
interoperability function, what transactions will the validator
submit to each associated distributed ledger depending on the
function triggered, and in what order should those transactions
be processed. In order for this to be possible, you need to be
familiar with the applications involved in the interoperability



solution, and Cactus.
The advantage that this provides is that by using Cactus as

an interoperability solution you are not required to develop
your blockchain solution taking into account the possible
interoperability use cases it will require in the future. As all of
the work regarding the necessary interoperability can be done
when using Cactus to implement those use cases by developing
their respective BLP.

One of the focuses of this paper was to explore the
interoperability between permissioned and permissionless
blockchains, this is a common problem because the implemen-
tation of permissioned and permissionless blockchains diverge
in multiple points, which in turn hampers the development
of interoperability solutions using heterogeneous blockchains.
The way Cactus provides interoperability is by using an aux-
iliary network of Validators to respond to triggers and submit
transactions on all of the involved blockchains, them being
permissioned or permissionless. So, validators effectively act
as participants in those networks, which solves the problem.

As mentioned, the biggest problem with providing
blockchain interoperability is that there is an increasing num-
ber of new blockchains being developed, and there is no
existing standard that these blockchains follow, both at the
root of the blockchain that is being developed, as well as the
applications which work on top of them.

If we take the 3 scenarios we implemented to show Cactus
flexibility as an example, the main concern is that you are
required to have knowledge of all of the applications involved
in the interoperability use case being implemented, taking
our replication scenario as an example, you are required to
know which operation has the same result in all applications.
Taking an example where multiple organizations are going to
develop new applications that will only require interoperability
between each other, using something like Cactus might not be
the best solution, something like Cosmos or Polkadot which
work like an ecosystem where every application built on top
of it is already able to interoperate between each other might
be a better solution.

The biggest advantage of using Cactus is that it presents
itself as a great interoperability solution for cases where your
application requires interoperability with an already existing
blockchain application. In general Cactus provides a good
solution for interoperability, but for very niche use cases, there
might certainly be better solutions, such as the case mentioned
previously where something like Cosmos or Polkadot would
work better.

VI. CONCLUSION

This paper presents a solution that aims to replace the
current Bills of Exchange system which resorts to paper
support by a digital solution using the Hyperledger Fabric
blockchain technology, these solutions will require to be able
to interoperate with solutions implemented in other countries,
that is where we propose an interoperability solution using
Hyperledger Cactus framework.

During our evaluation of our Bills of Exchange blockchain
solution, we managed to achieve a peak of 113 bills of
exchange operations per second with an average latency of
0.15 seconds, using 16 clients which ends up being a slightly
more costly solution. By using a lower amount of clients such
as 4 we achieve an average bills of exchange operations per
second of 16 to 20 with an average latency of 0.21 to 0.30
seconds. As far as storage, since our solution uses a very
simple implementation of the bills of exchange assets, we can
not provide a proper estimate of how this would impact the
costs, but in general, we can conclude that the storage costs
will increase proportionally to the number of peers in the
network. There is a clear trade-off between decentralization
and trust which such blockchain-based solutions offer, and the
performance and storage requirements that a traditional system
provides.

Regarding the interoperability solution, we implemented 3
different scenarios based on our Bills of Exchange blockchain
solution to explore what Hyperledger Cactus can offer. This
allowed us to explore how flexible such a solution can be by
implementing 3 use cases with different goals and different im-
plementation requirements, and we also explored how Cactus
is able to provide compatibility with already existing and to-
exist blockchain solutions as that is a crucial focus point with
interoperability solutions. We concluded that Cactus can be
used for a wide variety of use cases, and while for very niche
use cases there are better solutions, Cactus is able to provide
backward compatibility by not requiring for there to be extra
development to already existing blockchain infrastructures as
all the work is done on Cactus side. This can be done as all
the logic associated with the interoperability use case is imple-
mented as a Cactus plugin. Concerning the compatibility, as
Cactus uses a network of validators to issue transactions on all
of the involved ledgers to achieve the required interoperability,
which depends on Cactus connectors. These connectors can
be developed for each different blockchain technology being
used.

REFERENCES

[1] Hyperledger fabric: a distributed operating system for permissioned
blockchains. Androulaki, Elli and Barger, Artem and Bortnikov, Vita
and Cachin, Christian and Christidis, Konstantinos and De Caro, Angelo
and Enyeart, David and Ferris, Christopher and Laventman, Gennady
and Manevich, Yacov and others.

[2] Hyperledger Cactus Whitepaper. Hart Montgomery and Hugo Borne-
Pons and Jonathan Hamilton and Mic Bowman and Peter Somogyvari
and Shingo Fujimoto and Takuma Takeuchi and Tracy Kuhrt and Rafael
Belchior.

[3] Architecture of the hyperledger blockchain fabric. Cachin, Christian and
others.

[4] Hyperledger Architecture Volume 1: Introduction to Hyperledger Busi-
ness Blockchain Design Philosophy and Consensus. Hyperledger Archi-
tecture Working Group and others.

[5] Envisioning the Digital Transformation of Financial Documents: A
Blockchain-Based Bill of Exchange. Ponza, Andrea and Scannapieco,
Simone and Simone, Anna and Tomazzoli, Claudio.

[6] Blockchain-Based Discount Bill of Exchange – BILLEX
[7] Attribute-based access control. Hu, Vincent C and Kuhn, D Richard and

Ferraiolo, David F and Voas, Jeffrey.

https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
https://billex.club/bill-of-exchange/

	Introduction
	Background and Related Work
	Hyperledger Fabric
	Hyperledger Cactus
	Bills of Exchange

	Bills of Exchange' Blockchain Solution Implementation
	Requirements
	Preliminaries
	Architecture
	Implementation

	Interoperability Solution Implementation
	Network Replication
	Cross-country Asset Replication
	Cross-blockchain Payment

	Evaluation
	Bills of Exchange Blockchain Solution
	Cactus Interoperability Solution

	Conclusion
	References

