Development of a Multi-Platform Whiteboard
Application

Lucas Soares
lucas.soares@tecnico.ulisboa.pt
Instituto Superior Técnico
Lisbon, Portugal

Abstract

The goal of this project is to develop an innovative white-
board application supported in multi-platforms that aims to
facilitate the presentation and manipulation of handwritten
mathematical content. The project will use as a starting point
the application Xournal++ Mobile. The idea is to extend the
editor with features that allow for reliable input and manip-
ulation of mathematical content while supporting remote
and self-learning. Given the recent shift to online/remote
work and teaching, a whiteboard application that can be
used regardless of the device choice can have a massive im-
pact on note-taking and the overall learning experience. The
idea is to make a solid whiteboard application to assist the
development of the first mathematical structure editor using
a cross-platform app software.

Keywords: handwritten mathematics; digital ink; structure
editor; tablet PCs; pen-based input; mathematical sketch-
ing; mathematical expression recognition; gestures; STEM
education; calculational method; educational technology;
intelligent tools; sketch recognition

1 Introduction

We are experiencing a technological revolution in the peda-
gogical area, progressively improving communication means
and teaching methods. The launch of electronic presenta-
tions was a big mark in this process. It allows the instructor
to prepare classroom presentations and present high-quality
content with the benefit of saving time in class and avoid-
ing human errors [5, 12]. Technology has also shown to be
imperative during the COVID pandemic, when multiple in-
stitutions were forced to shut down their installations.

Electronic presentations are very reliable for most areas
but have significant downsides in areas that involve writing
mathematical formulae and expressions such as in STEM
education. Commonly used input devices like keyboards and
mice do not support most mathematical symbols and involve
high cognitive load. Blackboards solve this kind of drawback
but imply that the presenter writes everything in presenta-
tion time, which consumes a high amount of time and can
lead to errors [3, 17].

Digital ink could be used to teach students how to solve
problems related to mathematical content. In addition to solv-
ing problems, digital ink lets students express themselves in
innumerous ways. It lowers barriers so that more students
feel comfortable participating in class and reduce the high
cognitive load associated with common input methods. Dig-
ital ink also facilitates active learning, where students are
directly engaged in the learning process [1, 9, 10, 16].

However, because manipulating mathematical content
involves a large number of syntactic manipulations, users
often find themselves overloaded with tasks that could be
optimized through computer software used in tablet PCs. For
this reason, there is a need for an interface able to effectively
and reliably input and manipulate mathematical content
to improve the overall experience of writing and make the
transition to tablets as smooth as possible [13].

1.1 Work Objectives

The main goal of this thesis is to enrich the state of the art
by developing the most advanced whiteboard application
built with Flutter, supported in multi-platforms. The idea is
to construct a solid starting point for the development of the
first structure editor supported in multi-platforms.

This application will be developed to support and improve
the presentation and manipulation of any written content
through features that aim to make the process more interac-
tive and intuitive, less time-consuming, and prevent human
errors. The system should provide flexible and reliable tools
that assist the user in writing and displaying content. By com-
bining digital ink with the benefits of computer software,
the idea is to improve the overall note-taking experience
in multiple devices to build the starting point for the first
structure editor using cross-platform software.

It will be discussed which cross-platform frameworks
available are the best to use and some advantages and dis-
advantages of this kind of software compared with native
development. Finally, since Flutter was the toolkit used, some
other similar will be surveyed.

2 Background and Related Work

Topics introduced in the previous section will now be ex-
plored in further detail. To better understand this work’s
objectives and thereafter the proposed solution, software

that contributed to the state of the art will be analysed in
order to build up a concrete set of ideas that will be helpful
to the development of this project.

2.1 Pen-based devices and Digital Ink

Instructors are increasingly relying on digitally projected
slides rather than using blackboards and whiteboards to
write and display content. It allows the preparation of high-
quality content in advance without requiring the instructor
to write everything during the presentation. While allowing
easy sharing and reuse of materials, it also facilitates distance
learning.

This kind of tool lacks the flexibility to adjust the materials
in lecture time so the natural response is to integrate digital
ink, giving instructors the flexibility they need to adjust
previously prepared materials [2].

2.1.1 Overview. Digital ink refers to the technology that
represents handwritten content in a digital kind of way. The
majority of these systems use some kind of pen, stylus, or
even the user’s finger over a digitizer laid under an LCD
screen to record what is being written. Ink can change colors,
be moved and resized, be transformed into standardized text,
among other things.

2.1.2 Role in education. Digital Ink systems are becom-
ing more popular over the years across a wide variety of
domains. One key ability that makes digital ink beneficial
for learning is its potential to support intelligent interaction
and visualization features [11]. By encouraging students to
engage with the content, technology may promote active
learning. To better understand a concept, tutoring experi-
ences guide students through a series of interactive activities.
Because the majority of these tools are WIMP-based (Win-
dows, Icons, Menus, Pointers), we end up with low fluidity
levels and a slower learning rate, which affects the learning
process and might distract the student from his task [4, 8, 15].

Digital Ink allows the interactive tutoring experience with-
out the complications associated with these kinds of tools.
Because each activity is followed by feedback, students tend
to understand and retain better what is being taught. This
statement is supported by the Constructivist Theory which
says that to get a deep understanding of a topic, it is very im-
portant for the learner to be actively engaged in the process
(6,7, 14].

2.2 Cross-Platform Application Frameworks

We need a larger user base to generate more income. Fur-
thermore, in today’s quickly evolving technological world,
we have the need for robust cross-platform app frameworks.
The reason for this is simple: creating a cross-platform soft-
ware allows our product to reach a wider audience at a lower
cost. Based on the objectives of the future mobile application,
we may choose one of two development paths: create two
or more native apps, or create a single cross-platform app

Lucas Soares

that works on many devices at once. When we have a large
potential, limited time, and a short budget, a cross-platform
software is the appropriate choice. Another reason to create
a cross-platform mobile app might be if we want a simple
app with no complicated animations or functionality.

The need for cross-platform app development frameworks
has skyrocketed. The main reason for this surge in demand
is that cross-platform apps have a far greater reach than na-
tive apps. Cross platform applications enable the access to a
larger number of individuals. Developers created customized
frameworks to make the cross-platform app development
task more efficient. Cross-platform app frameworks enable
developers to create mobile apps with a single line of code
and run them on many devices with few adjustments. There
are numerous good cross-platform frameworks for mobile
app development available nowadays that allows us to build
high-quality apps.

2.2.1 Cross-platform technology options. We can build
cross-platform apps using 3 different options:

e Web-based Apps

A web-based application is software that is accessible via
HTTP over a network connection rather than being stored
in memory on a device. Web applications can be used on
all mobile and desktop platforms, but they lack native mo-
bile functionalities. PWA (Progressive Web App) capabilities
may also be integrated with the recently announced Web
APIs, allowing developers to construct web apps that operate
similarly to native apps.

e Hybrid Apps

Hybrid apps are built using web technologies and operate
on the device (HTML5, CSS and JavaScript). Hybrid apps
run inside a native container and use the browser engine
to render HTML and handle JavaScript locally. A web-to-
native abstraction layer gives you access to device features
like the accelerometer, camera, and local storage that aren’t
available in Mobile Web app. The main drawbacks are the
lack of performance compared to native apps and the native
feature limitations.

e Cross-Platform Native Apps

The process of developing an app that runs across many
platforms is referred to as cross-platform development. This
is accomplished utilizing tools such as Flutter, React Native,
and Xamarin, and the resulting apps may be used on both
Android and i0S. While this saves time and money;, it comes
at the expense of quality because the program will require
an additional abstraction layer to execute.

2.2.2 Pros and Cons. Our solution can run on numerous
mobile operating systems and is created in a single program-
ming language thanks to cross-platform development. When
an app’s code is complete, it passes through a bridge that

Development of a Multi-Platform Whiteboard Application

converts it to iOS or Android’s native APIs. It helps us to
create the system quickly; it saves us money since we only
need one codebase to operate the app on many operating
systems; it provides for reusable code; and it allows us to
reach a huge portion of the mobile app market.

On the other hand, we have limited access to some native
features and can encounter issues with user experience. If
we don’t want to compromise the user experience and want
to take advantage of all of a phone’s native features, we may
go with native app development.

3 Development of the Whiteboard
Application
3.1 Initial changes to the interface

I decided to maintain the original application layout and
overall organization (with minor adjustments) as it was al-
ready well designed and well structured. In this section, I
will mention all the changes I made to the original interface
and explain the reason behind them. All the changes and
new features implemented were taking in consideration that
the application is designed mainly for pen-based devices,
although it can be used on computers and smartphones as
well. The image below 1 shows the final application interface.
I zoomed the application screen so it would be more visible
in the document. The application has the same aspect as the
original, although it seems different.

= New Document

Figure 1. Final interface of the application

Staring with the toolbar. The toolbar was aligned at the
left end of the bar, which seemed off from the rest of the
interface. I went for a center alignment for design and func-
tional purposes because it is easier for the user to change
between tools, as they are much closer to the canvas and con-
sequently pressed much faster. There were a lot of icons with
not implemented features (Text, LaTeX, Whiteout eraser, Im-
age, and Select) which I removed for being a waste of space
and to avoid misguiding the user to click on icons without
functionality. I ended up with a much more clean, precise
and easy to use toolbar.

Regarding the stroke width bar, it makes no sense for the
bar to have values from 0.1 to 30 because in this range of

Figure 2. On top: old tool bar; on bottom: new tool bar

values, we find overly thin and overly thick strokes that are
just unpractical to use. I replaced the original width bar for
a quantitative stroke width range (from 1 to 5, with 3 as a
starting value) and added a dynamic text box indicating the
current width size. In this scenario, all the values available
are plausible to use and the user has real-time knowledge
regarding the exact stroke width he is choosing and is much
easier to replicate a previously used stroke width.

Stroke width: 3.0

Figure 3. on the left: old stroke width bar and old stroke
width; on the right: new stroke width bar and new stroke
width

Zoom In/Out bar was standing out (in a negative way)
from the rest of the application, as it was barely noticeable. I
changed the button and background colors of the bar so it
could match with the interface design. I added color to the
"+"and "-" buttons to add some contrast with the background
and added a tooltip for both the plus and the minus buttons
(tooltips can be seen on hover, in case the input device is a
mouse, and on long press, in case the input device is a stylus
pen or any other similar device). With these changes the
zoom bar is way more visible and included in the overall app
design.

Figure 4. on the left: old Zoom In/Out bar; on the right: new
Zoom In/Out bar

I have fixed the way that the stroke is dealt with outside
the canvas area. This was giving a false notion of canvas
area as this update was not made in real-time. I solved this
problem by wrapping the Stack (in which the CustomPaint

responsible for the drawing was inserted in) with a ClipRect.
This prevented the user from drawing outside the canvas. If
the user comes back to the canvas, the stroke will continue
and will be dealt as the same stroke.

Figure 5. on the left: stroke before finishing the action ; on
the right: stroke after update

Figure 6. stroke constantly being drawn inside and outisde
canvas area

3.2 New features implementation

In terms of what was already implemented in the project,
there were some drawbacks regarding usability. In this sec-
tion, I will be mentioning those usability flaws and how I
manage to solve them. I will also be explaining the new fea-
tures that were implemented and giving an explanation for
my decisions.

3.2.1 Eraser. The eraser tool had some malfunctions asso-
ciated. Although in the majority of times it worked properly,
there were times where the stroke we were trying to erase
would not get precisely cut apart (or would not get erased at
all). I could not find the reason for what was happening, as I
couldn’t distinguish if it was a consequence of a width vari-
ation malfunction or simply just a wrong implementation.

Because we could not completely rely on this eraser, I
implemented another type of stroke deletion: the erase-by-
stroke tool. I decided to keep the original eraser tool as well
as they both have different uses (but not as a default tool).
With this implementation, we end up with two eraser tools.
For more general uses, the default tool allows us to delete
whole strokes/set of strokes. If we only want to partially
delete a stroke, we use the second eraser. In the sequence
below 7, we can see how both tools work and how we can
change between them.

As soon as we hover (or long-press) on the eraser button,
the tooltip "Eraser by Stroke" immediately shows so that

Lucas Soares

the user knows the tool he is using (and more specifically
which kind of eraser). The eraser deletes the whole stroke (or
multiple ones) as soon as the mouse pointer (or pen) collides
with the content coordinates. Plus sign (+) was deleted on
step 3. If we want to change between eraser tools, we just
need to click again on the eraser icon. As we can see in step 4,
the icon and the tooltip changed to the corresponding eraser
tool. Finally, in step 5, we can see the letter "a" being partially
deleted. The stroke is now handled as two different strokes
and the rest of the content stored in the array is shifted to
the right.

osb osb o b ob b

Figure 7. Example of how both delete methods work and
how we can switch between them. Expression is written
and Eraser button is hovered/long pressed. Eraser button is

pressed; User clicks on the "+" sign; Eraser button is pressed;
User hovers on the canvas

3.2.2 Highlighter. After we used the highlighter, the new
highlight stroke would have no opacity whatsoever, acting
like a normal pen stroke with 5 times its width, which is
the predefined width value for highlighter. I later discovered
that the stroke would acquire highlighter properties (0.5
opacity) as we were deleting it. Anyhow, this tool wasn’t
usable, so I re implemented it as we can see in the figure
bellow. The highlighter can be useful when the user wants to
emphasize some of his written content as the new stroke is
see through. (Highlighter stroke is dealt as a normal stroke
when performing the actions described above and bellow).

e O~ b

Figure 8. On the left: previously implemented highlighter;
on the right: my implementation

3.2.3 Whiteout eraser. I implemented the whiteout eraser
functionality, which is kind of self-explanatory. Similar to
the previews tools, has a tooltip associated with the button to
help the user always be sure of what kind of tool he is using.
After the user selects the "Whiteout eraser" button, as soon
as he clicks on the canvas area all the content is immediately
erased. For preventing miss clicks, this functionality was
purposefully not executed on button press but on canvas
press, with immediate visual effect. If by any means the user
still miss-clicks and erases the whole page, it is possible to
revert the action by clicking again in the Whiteout eraser

Development of a Multi-Platform Whiteboard Application

Icon. All the content that has been deleted is stored until the
user uses another tool. For example, if the user whiteouts
everything and then selects the pen tool and writes new
content, it is no longer possible for the old content to be
recovered. In the original Xournal++ Mobile, the user could
also delete everything that was written on the canvas by
creating a new file. The problem with creating a new file
is that it also restarts the color we were using, the stroke
width, the canvas position on the screen, the zoom, the page
background color, and, in the case we were using multiple
pages, all the remaining content.

The whiteout eraser tool allows us to keep all the previ-
ously mentioned settings and start on an empty canvas, with
the possibility to revert the action (which is not possible if
we create a new file). By being in the center of the screen in
the toolbar, also facilitates performing this action. This tool
can be handy when the user wants to delete everything that
is written on the canvas and wants to keep the previously
set up settings.

o+b a+b o+

Figure 9. Sequence of the whiteout tool being used: Expres-
sion is written; Whiteout Eraser button is pressed; Canvas is
pressed; Whiteout Eraser button is pressed again.

3.2.4 Undo and Redo. I implemented the Undo and the
Redo buttons that, just like the whiteout, are self-explanatory.
These two buttons (alongside the Color button) are the only
buttons that do not permanently change color when pressed,
as the change of color only occurs when a tool is selected.
The Color button changes color after a new color is selected
from the color pallet and only changes again when we select
a different color. When Undo/Redo buttons are pressed, they
suffer from a fade in/fade out kind of animation, changing
from their color to a more light one and changing back to the
original color in a small matter of time, so the user knows
the button as been used.

The Undo allows us to revert the last added stroke all the
way back to an empty canvas and the Redo allows us to
advance all the way forward to our starting point (before
we used Redo). As soon as we introduce a new stroke to the
canvas, all the previously deleted strokes are permanently
deleted and are no longer available for recovery through
the Redo. These tools work together with both eraser tools,
sharing a similar behavior. If a stroke has been deleted by
Eraser-by-Stroke, it is recoverable through the Redo button.
If a stroke has been partially erased or cut apart leaving us
with two strokes (through the other eraser), is possible to
reintegrate the deleted part back into the original stroke. I
opted not to include what had been deleted by the Whiteout
Eraser for recovery because I already included a feature to
undo that action in the Whiteout Eraser itself.

This feature can be useful if the user mistakenly erased
some content he wants to recover or wants to remove what
has just been drawn, without having to select it. The figure
bellow shows 3 different scenarios of this functionality 10.

o+ L, o+ l; o+ o+ o+ L,
o.+ L;. o.+ o+¢C o+ o+C
o+cC o+ o+ o+C

Figure 10. Sequence of the Undo/Redo tools being used.
First scenario: Expression is written; Undo button is hov-
ered/long pressed; Undo button is pressed; Redo button is
hovered/long pressed; Redo button is pressed.

Second scenario: Expression is written; Undo button is
pressed; New stroke is drawn; Undo button is pressed; Redo
button is pressed.

Third scenario: Expression is written; Eraser is used; Redo
button is pressed; Redo button is pressed.

3.2.5 Gestures. [implemented some features that are not
as evident as the previously mentioned, as they are not trig-
gered by buttons but by gestures instead. For example, if
the user is using the pen tool and wants to change to eraser
mode, it is possible to switch between these two without
actually having to press the eraser button. By simply double
tapping the canvas on pen mode the eraser tool is imme-
diately triggered. The inverse is also possible. If the user
has the eraser mode activated and wants to switch back to
drawing mode, a simple double tap on the canvas will do
it. If any other tool is selected and a double tap action on
the canvas is executed, I chose the pen tool to be the default
switch back.

(v & (v & (v &
Oou (v &

Figure 11. Sequence of actions triggered by double tap on
canvas: Expression is written; User double taps on the canvas;
User double taps on the canvas again; User switches to select
mode; User double taps on the canvas

Similar to what happens on double-tap actions, long-press
also has functionality. If the user is using the pen and wants
to switch to highlighter mode, a long press on the canvas
area will change between the tools and the inverse is also

possible. In the case another tool is selected, the default
switchback tool is also the pen. By adding these gestures to
switch between tools, it takes from the user the additional
effort to press on buttons, making the overall experience a
bit more interesting and fluid.

O\ N (SN
o o

Figure 12. Sequence of actions triggered by long press on
canvas: Expression is written; User long presses on the can-
vas; User long presses on the canvas again; User switches to
select mode; User long presses on the canvas

3.2.6 Select. The select functionality is divided in 3 main
steps:

- Detect selection

The first thing we have to do is to detect what is being
selected. We need to check for collisions between the coordi-
nates that are constantly being pressed against the collection
of strokes that are already drawn and stored on the canvas.

After this step, the user has to have the knowledge of what
is selected and what is not, so it is necessary to somehow be
able to distinguish the selected strokes.

Initially, I changed all the selected strokes’ colors to blue,
but this solution would be problematic and confusing if the
user opted for using another stroke color other than the de-
fault grey. As multiple strokes with different colors would be
added to the canvas, we would not be able to distinguish the
original color until the content was deselected. The solution
for this problem was to change the strokes color opacity
so we could be able to maintain the original colors while
selecting and give the user a more clear perception of his
content.

c>\-|-L>=3
c -d =2 c-d = 2

Figure 13. On the left: drawn expressions on the canvas; on
the right: first expression is selected

Because the original strokes were already drawn and stored,
we could not change their appearance or modify them in any
sense. The solution was to access the array where strokes
were being stored, erase those strokes and replace them for
new strokes with the same characteristics but with lower
opacity values. This was only possible because we were us-
ing previously drawn strokes and only changing color values

Lucas Soares

and not stroke points. If we wanted to change the stroke’s
appearance we would have to redraw it.

- Isolate the selected content

Now that the selected strokes are already known, I de-
cided to make a rectangle around what is selected to better
isolate the content from the rest. This rectangle is updated
in real-time (redrawn with bigger dimensions), as the user
is selecting new content. I also added 5 key points to make
the presentation more aesthetic (top left, top right, bottom
left, bottom right and middle).

a+b=3
c-d=05

=3

C-d:5 c-d:5

Figure 14. Sequence of an expression being selected

- Drag and drop content

The solution I came with for dragging the selected con-
tent was to include a semi-transparent container over the
rectangle area so I could wrap it around a Draggable widget
and be able to drag and drop it. In this case, as the strokes
are already drawn in the canvas, it is possible for deleting
and replacing the strokes for new ones with new offsets.

To be able to select some content, the user presses the Se-
lect button and starts to press on the screen, just like he was
drawing. The difference is that no stroke is shown and wher-
ever the user presses the canvas, if it encounters a stroke, it
will be selected. If the user made a bad selection or wants to
select new content, he just needs to press the canvas outside
the selected area and a new selecting will begin. It is also
possible to restart the selection by pressing the selection but-
ton. If the content is selected and the user wants to delete it
without having to manually delete every stroke, it is possible
to do that by just simply dragging the content to the out-
side of the canvas area. If the user presses any functionality
button it deselects the content. If the user no longer wants
to use the select and wants to switch back to writing, the
gestures on double tap and long press for returning to the
pen tool also work.

The select functionality is described below in a sequence
of prints. Firstly, the user presses the select button. As he
no longer wants the last expression, he selects and drags it
to the outside of the canvas so he could easily delete it. The
expression is immediately deleted as the user lets go of the
screen. The user makes another selection and wants to keep
a part of it. He drags the expression to the edge of the canvas
as he knows everything that is outside the canvas is deleted.
With the new selected expression, the user correctly places
it where he wants and finally presses outside the selected
area to deselect.

Development of a Multi-Platform Whiteboard Application

a+th =13 a+rb =13

c -d = A c-d = A

fxe = a2

a+h =13 a+hb =13

c-d = A

a+h =13 a+hb =13 a+b = 3c -d

Figure 15. Sequence of the select tool being used: User
presses the select button; selects expression; drags the ex-
pression to outside the canvas; makes new selection; drags
the expression to the edge of the canvas; moves the selected
content; clicks outisde the selected area

3.3 Problems while developing the application

After the selection was implemented, the idea was to allow
for copy pasting the selected content. By simply double press-
ing what was selected, the expression would immediately be
copied to a new location below. That old expression would
be deselected and the new expression selected in its place,
so the user could now move the copied content. Here is the
first prototype of this functionality. 16.

3 3

Figure 16. Selected expression; User double clicks on the
selected expression

In order to be able to understand why I did not went
further with this functionality and the development of the
structure editing part of the application, its necessary to
understand a bit more about Flutter and the overall project
structure. That is why, in this part, I will be a bit more tech-
nical.

In the PointerListener class, the body of our app, is where
we handle all that happens on the canvas. The Canvas page
is where we define what to do with what just happened.

For example, for a stroke to be saved: as soon as the user
presses the canvas, PointerListener has a method that imme-
diately starts to track every point the user has pressed and
when the user releases the pointer, it saves all those points in
a XppStroke structure. It sends that structure to CanvasPage
to be stored in a collection of strokes and, at the same time,
draws those strokes in the canvas through a CustomPaint
widget.

Initially, while trying to do the copy/paste functionality,
my idea was to go to the structure where strokes where being

saved, duplicate the selected strokes and change their offset
as described in 16. Because the strokes have to be drawn
before being able to be displayed on the canvas, I ended up
with what is shown in the picture below 17.

Figure 17. Problem with duplicating the strokes without
drawing them

Although the strokes were being added to the collection
of strokes, they were not being added to the canvas, so the
old strokes would be replaced by the new ones at the canvas.
In the image 17 we can see the last stroke being redrawn
at the new location (in red). To solve this problem, I add
to somehow be able to draw a stroke and save it with its
own structure. I used the selected strokes’s attributes (tool,
points and color) to paint the new strokes, and that is what
is shown in figure 16. The problem at this step is how the
code is arranged inside the PointerListener. Because what
is been drawn at the canvas is inside a Stack of widgets (so
we can overlap drawings), this stack only accepts widgets
inside, so we cannot call functions or any other methods. As
the directly drawn strokes at the canvas were being saved
before they were painted (through onPointerMove method
used by PointetListener as explained before), they just add
to be paited inside this stack at this step. Our new replicated
strokes, on the other hand, can not use this method because
they are really never manually drawn, they are built through
code. This being said, I could not tell the interface to build a
XppStroke structure with these newly drawn strokes neither
to store them in the collection of strokes. I stopped here the
development of the project because, without being able to du-
plicate content and classify it as an unique stroke/character,
the recognition and the structure manipulation would not
be possible.

4 Evaluation

The purpose of evaluating the system is to ascertain whether
the implemented features are usable and if the application
fulfills its overall goal, which is to support the presentation
and manipulation of mathematical content. It will also reveal
eventual bugs that the application might show. So I could ac-
quire feedback about whether the project is usable or not, 10
users interacted directly with the system through 2 phases:
in the first phase, I scripted a series of actions that the user
add to complete; in the second phase, I wanted the user to

move freely over the interface. I offer the testers a one-page
sheet explaining the interface and the action I wanted them
to perform .

I decided not to do an extensive questionnaire with ques-
tions like "totally agree" or "totally disagree" after the usabil-
ity test and, instead, asked users to have a small conversation
with me in the end where they would give some overall feed-
back of the experience and some suggestions of how the
interface could be improved. I asked the users to think out
loud during the experience so I could understand what was
going through their minds and took notes so I could better
analyze the experience later. Through observation of the
users’ actions and thoughts, and by communication, I col-
lected a detailed evaluation of the system. This way I did not
overload the user with the experience and generated very
interesting data regarding the usability of the system.

After I got the approval for starting the user test, I handed
the sheet of paper mentioned in ??. After the users read the
script, I explained to them how the interface worked and how
each feature should be used. I left the select and the gestures
unexplained. I then started with testing the interface and got
the following analysis and results.

4.1 Phase 1: Users perform a script of actions

At steps 1, 2, and 3, there is not much to say because no
problems were found. I observed that most users were still
getting used to the interface so they took a bit to select the
tool I was asking them to select. This changed after the users
finished the scripted part of the user testing and explored the
app by themselves. Some users asked if they could use the
eraser at step 1 because they wanted to rewrite the expres-
sion. As the important here is to evaluate the performance
and usability of each tool, I asked them to follow the script
because the aspect of the content was not important.

At step 4, some users had problems with the originally
implemented eraser, because it was not deleting the way
they wanted (this problem was already addressed in Section
3).

At step 5, some users questioned why the redo was being
used for adding back the deleted strokes and suggested it
should be the undo to revert the last actions. I noticed, in this
step, that there were some problems restoring previously
partially deleted strokes using the original eraser tool. This
might have happened because the removal of stroke points
was not being done instantaneously but instead through a
series of small steps. In some cases, users had to redo around
10 times to restore a small portion of the removed part of
the stroke.

Lucas Soares

At step 6, although all the testers manage to change the
width and the color of the stroke with no problem whatso-
ever, some of them forgot they had the eraser tool selected
and had to change it back to the pen tool. Step 7 was also
done with ease by all the users as the tool was kind of self-
explanatory.

At step 8,1 wanted to see how the user would try to select
content by them. The majority of the users were using lasso
and rectangle selection and the rest was using a selection
where they just had to click on the strokes they wanted to be
selected. Users that tried to use the lasso selection couldn’t
select anything because the pointer didn’t hover any content.
Users that tried to press directly on the strokes they wanted
to be selected found it strange why the content was not being
selected but the animation was showing. People that were
used to using rectangle selection immediately discovered
how to select, as the initial part in this kind of selection is
similar. At this step, I explained to everyone how to correctly
use this functionality.

Some users commented on the fact that the content was
not moving along the container while being moved. Some
people tried to make a new selection while one was still on
the screen and got confused why they could not select more
content. Users commented that sometimes they were not
able to perceive where the box was while being dragged.

At step 9, after the whiteout was executed, most users
tried to use the undo button instead of using the whiteout
button to undo the whiteout eraser. Maybe this was due to
the name "undo" I used to describe this step. After I explained
again how to revert this action properly they suggested one
more time that undo should undo the last action and redo
remake the last action.

4.2 Phase 2: Users move freely over the interface

And now, at step 10, I told the users to freely explore the
app as they pleased and in the end to give me small feed-
back regarding the overall usability of the app. Before letting
them explore the interface, I told them about how the "on
double-tap" and "on long-press" would allow them for chang-
ing between tools and that they could erase selected content
by simply throwing it to the outside of the canvas.

Because I had just explained how the gestures worked, all
the users decided to test out this new feature. At this step,
only one user remembered to change back to the pen tool to
perform gesture events. Because I linked the rest of the but-
tons to these gestures, this was not a problem. All the users
found the "on double-tap" and "on long-press" gestures very
helpful, as they would not need to manually press buttons to
change between tools. At this step, all the users were able to
use the select functionality for themselves and to test how

Development of a Multi-Platform Whiteboard Application

content could be deleted while selected.

They mentioned again the fact that strokes were not mov-
ing alongside the container while being dragged. I could not
solve this problem as the widget I was using for dragging
content around only allowed me to access the pointer’s offset
after the drag was ended. The interface would also bug some-
times while trying to select the content that was previously
partially deleted and added again (using the original eraser
tool).

After some usages, users found interesting the way the
select functionality was implemented, as they could have a
more precise notion of what was being selected and make
more customized and precise decisions, and rapidly adapted.

4.3 Usability testing conclusions

In the end, all the users complemented the overall experience
with the interface. They also mentioned some usability issues
(most of which I had already noted while they were testing
the application) and made really strong suggestions on how
the interface could be improved.

The fact that I introduced gestures to trigger action was
highly praised. Not only for being able to change between
tools faster but also the way the selected content could be
deleted. Users said they would like to see this implemented
in a more advanced and robust interface.

Users suggested:

e PDF and images should be possible to incorporate

e we should be able to shrink/expand selected content
by pressing the edges

e be able to zoom in/out using a pinch gesture with 2
fingers

o select mode being automatically turned on when long
pressing strokes

o being able to print screen by swiping up with 3 fingers

e some additional selection modes should be incorpo-
rated

e undo/redo buttons should be used to undo/redo ac-

tions and not be related with the strokes directly

each stroke should have its own color and width

detect different levels of pressure while drawing

add text boxes

allow for copy pasting selected expressions

The final conclusion with this evaluation is that, although
with some flaws, the implemented features are usable and
the application fulfills its overall goal. This whiteboard appli-
cation revealed itself suitable for inserting and manipulating
mathematical content and to be a good starting point for
being able to go through with the development of the first
structure editor interface supported in multiple devices.

5 Conclusions

The idea was always to be focused on pen-based devices and
on how digital ink could be a valuable asset to the educa-
tional area. Because I was extremely interested in learning
about mobile development, when professor Jodao Ferreira
introduced me to the Xournal++ Mobile for the first time,
I did not have much to think about before deciding to use
it as my starting point. Besides a well-designed interface, a
pen and an eraser already implemented, it was built using
Flutter. That was all I needed. Flutter lets us program in a
single code base (in dart) and auto-generate applications for
i0S, Android, Windows, Mac, Linux, and even for the web.
This is truly interesting to think from a programmer’s point
of view because we do not have to change a single line of
code for the interface to run on different devices and oper-
ating systems. Although Flutter itself has only 4 years of
existence, I decided to learn a new language and embrace
the opportunity I was being given.

As Flutter is relatively new, is deductible that there is still
not much information online, at least compared to Python or
Java. Because, in our case, the subject is even more specific,
the amount of information we can gather and the help we can
get is even more reduced. This was my main drawback while
developing the project. I could not manage to find much help
from online searching as there was not enough development
in this subject. Making a whiteboard application on Flutter is
way more specific than just building a simple user interface
with buttons and menus as a common developer uses it for.

When we look at the flutter whiteboard interfaces I men-
tioned earlier, we can see there is not much to compare to
and to be based on. These interfaces have a pen, an eraser,
and that is it. If we compare those interfaces to the Xour-
nal++ Mobile I started with, we can see how superior this
application is at every level. Although the tools for on canvas
actions are basically the same (a pen, an eraser, and a color
change), this interface is much more appealing design and
structure-wise and has already tools implemented for chang-
ing the background, for adding new pages, and for saving
the document. It looked like a really promising application.
Unfortunately, they stopped updating it as soon as I started
developing it, so they must have come to the conclusion it
was no longer worth it to keep updating.

While making changes to the application and adding new
features, I realized I was not able to copy and paste previously
drawn strokes because of the way the code was organized.
This was already explained in . This being said, I could not go
further with the structure editing part of this thesis original
idea because it was simply not possible to manipulate and
store strokes created via code, they had to be physically
drawn in order to be saved and handled.

5.1 Achievements

By using Xournal++ Mobile as a starting point, I have devel-
oped the most advanced whiteboard application built with
Flutter until today (to my knowledge). In addition to the
design and functional changes I made to the interface itself,
I created a new eraser, a highlighter, a whiteout eraser, undo
and redo buttons, a select functionality, and added some ac-
tion triggered with the usage of gestures. I can say I was a
pioneer when it comes to whiteboard applications built-in
Flutter and that my contributions are remarkable since there
is very little (to none) exploration in the field (once more, to
my knowledge). The work that I have done here brings new
contributions to the state of the art regarding whiteboard
applications built-in Flutter and gives us an insight into what
kind of obstacles we might face when trying to explore this
toolkit and more particularly, the CustomPaint widget.

5.2 Future Work

Firstly, I would like to make changes to the interface based
on the user testing results in order to improve the overall
usability of the system. Would be interesting to integrate
pdf and image files, add text boxes and make the interface
rely way more on gestures like the ones described at the end
of the evaluation. If I somehow managed to overcome what
made me stop the development of the application in the first
place, the development of the project would go to a whole
new level with being able to manipulate strokes.

I would start the implementation where I left, this being
with the copy-pasting of selected expressions. With the inte-
gration of a handwritten mathematics recognizer, the points
that are being pressed on the screen could automatically be
subjected to the recognizer while being drawn and as soon
as the user finishes the action, we would store the recognized
characters instead of the strokes. Another possible approach
could be to use the recognizer on selected content and then
proceed to store strokes as characters in another structure.
Because every individual has his own handwriting, it would
be interesting to have a model for handwritten characters
which was updated as the user draws new content. Just this
feature alone would be a lot to think about mainly because
recognition systems normally output multiple results with
different percentages of being correct and we had to be able
to select or to give the user the decision on which recognition
was correct. We also have to consider the fact the system
might give us an incorrect output and the user would have to
be able to change that. We also would have to think of a way
for the user to take advantage of the recognition without
overloading the system.

Lucas Soares

References

[1] Richard Anderson, Ruth Anderson, Peter Davis, Natalie Linnell, Craig
Prince, Valentin Razmov, and Fred Videon. 2007. Classroom presenter:
Enhancing interactive education with digital ink. Computer 40, 9
(2007), 56—-61.

[2] Richard J Anderson, Crystal Hoyer, Steven A Wolfman, and Ruth
Anderson. 2004. A study of digital ink in lecture presentation. In
Proceedings of the SIGCHI conference on Human factors in computing
systems. 567-574.

[3] Lisa Anthony, Jie Yang, and Kenneth R Koedinger. 2005. Evaluation
of multimodal input for entering mathematical equations on the com-
puter. In CHI'05 Extended Abstracts on Human Factors in Computing
Systems. 1184-1187.

[4] Lisa Anthony, Jie Yang, and Kenneth R Koedinger. 2005. Evaluation
of multimodal input for entering mathematical equations on the com-
puter. In CHI'05 Extended Abstracts on Human Factors in Computing
Systems. 1184-1187.

[5] Robert A Bartsch and Kristi M Cobern. 2003. Effectiveness of Power-
Point presentations in lectures. Computers & education 41, 1 (2003),
77-86.

[6] Mordechai Ben-Ari. 1998. Constructivism in computer science educa-
tion. Acm sigese bulletin 30, 1 (1998), 257-261.

[7] Charles C Bonwell and James A Eison. 1991. Active Learning: Creating
Excitement in the Classroom. 1991 ASHE-ERIC Higher Education Reports.
ERIC.

[8] Salman Cheema and Joseph J LaViola. 2010. Applying mathematical
sketching to sketch-based physics tutoring software. In International
Symposium on Smart Graphics. Springer, 13-24.

[9] Jamie Cromack. 2008. Technology and learning-centered education:
Research-based support for how the tablet PC embodies the Seven
Principles of Good Practice in Undergraduate Education. In 2008 38th
Annual Frontiers in Education Conference. IEEE, T2A-1.

[10] Thomas J Fitzgerald. 2004. The Tablet PC takes its place in the class-
room. The New York Times 9 (2004).

[11] Md Athar Imtiaz, Rachel Blagojevic, Andrew Luxton-Reilly, and Beryl
Plimmer. 2017. A survey of intelligent digital ink tools use in STEM
education. In Proceedings of the Australasian Computer Science Week
Multiconference. 1-8.

[12] Ferman Konukman, Erik Rabinowitz, Michael W Kernodle, and
Robert N McKethan. 2010. The effective use of PowerPoint to fa-
cilitate active learning. Journal of Physical Education, Recreation &
Dance 81, 5 (2010), 12-16.

[13] Alexandra Mendes, Roland Backhouse, and Joao F Ferreira. 2014. Struc-
ture editing of handwritten mathematics: Improving the computer
support for the calculational method. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces. 139-148.

[14] Jane Mills, Ann Bonner, and Karen Francis. 2006. The development
of constructivist grounded theory. International journal of qualitative
methods 5, 1 (2006), 25-35.

[15] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,
Niklas Elmqvist, and Nicholas Diakopoulos. 2016. Designing the user
interface: strategies for effective human-computer interaction. Pearson.

[16] Beth Simon, Ruth Anderson, Crystal Hoyer, and Jonathan Su. 2004.
Preliminary experiences with a tablet PC based system to support
active learning in computer science courses. In Proceedings of the 9th
annual SIGCSE conference on Innovation and technology in computer
science education. 213-217.

[17] Tran Diem Trang. 2015. Using ppt in the ESL classroom: Benefits and
drawbacks from high school students’ perspectives. Transforming
English Language Education in the Era of Globalization (2015), 301-309.

	Abstract
	1 Introduction
	1.1 Work Objectives

	2 Background and Related Work
	2.1 Pen-based devices and Digital Ink
	2.2 Cross-Platform Application Frameworks

	3 Development of the Whiteboard Application
	3.1 Initial changes to the interface
	3.2 New features implementation
	3.3 Problems while developing the application

	4 Evaluation
	4.1 Phase 1: Users perform a script of actions
	4.2 Phase 2: Users move freely over the interface
	4.3 Usability testing conclusions

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	References

