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Abstract
Pre-trained language models based on the Transformer architecture have achieved impressive results in biomedical natural language processing
tasks. One specific area that has raised interest in recent years is radiography, where textual reports are usually generated to describe findings and
impressions from radiography exams. There are several practical applications related to the processing of these documents, such as automated
classification, summarization or extraction of key findings. This work proposes a multi-task language model based on the Text-to-Text Transfer
Transformer, commonly known as T5, that was trained on different text generation, classification, and inference tasks involving text from
radiology reports. We discuss the data pre-processing and the model training strategy together with its evaluation. The proposed multi-task
model achieved very good results, close to state-of-the-art results from models that were individually trained for the summarization, natural
language inference, semantic text similarity, and paraphrase identification tasks. The results confirm the potential of multi-task and transfer
learning for biomedical natural language processing.
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1. INTRODUCTION
The field of Natural Language Processing (NLP) has seen
significantly advances in the past couple of years. The release
of the paper “Attention Is All You Need” [19] has revolutionized
the way we construct models and introduced a new type of
neural network architecture, the Transformer, that is now
vastly used. The paper demonstrated that an architecture solely
based on attention layers could produce better results than the
standard approaches that used recurrent neural networks.

A new generation of models based on Transformers has
appeared since then. These include BERT, T5, BART, and
GPT-2, which consequently opened a wide range of new
possibilities regarding applications of neural models for lan-
guage understanding and generation. Such models are today’s
standard for most tasks and applications .

One of the areas where such models have raised significant
interest is the medical domain. This area raises several chal-
lenges regarding data, since acquiring large amounts of labeled
medical data tends to be very hard due to the cost associated
with expert labeling and the time required for such annotations.
Few medical datasets are publicly available, and the quality
of such data tends to vary significantly. Anonymization is
also a very important topic when referring to medical data,
where real patient data is being handled. Public tasks such as
MEDIQA [1], contribute to reducing the shortage of training
and testing data by releasing new datasets.

Radiology and radiography exams are particularly interest-
ing in terms of possible natural language processing application.
This is mostly related with the textual nature of the reports
describing radiology studies. Radiology reports also present a
consistent structure that is usually used to describe the impres-
sions and findings of an exam. The practical applications of
processing information on these documents can be automatic
classification and labeling, summarization and extraction of key

findings, or disambiguation of text. Chest X-ray is the most
common imaging study performed worldwide. A large and
publicly available dataset is MIMIC-CXR [10], i.e. a radiol-
ogy report dataset that contains a total of 227,835 radiography
studies of chest x-rays.

In this paper, we focus on exploring the application of re-
cent language models, using the Text-to-Text Transfer model
to demonstrate the capabilities of such architectures when ap-
plied to the medical domain, and radiology in particular. The
decision to use this model is supported by recent literature that
indicates the potential of T5, and the fact that pre-trained T5
models currently hold state-of-the-art [14] results in several
medical tasks such as natural language inference.

We performed several experiments using the MIMIC-CXR
dataset of radiology reports, where a multi-task training strat-
egy was used with the following tasks: summarization, natural
language inference, paraphrase identification, semantic text
similarity, and classification. After fine-tuning, we evaluate
and compare the performance of our model with the current
state-of-the-art models [14].

Our model is based on the original T5-base and it was
fine-tuned with a multi-task strategy on the tasks of natural
language inference, semantic text similarity, paraphrase detec-
tion and classification. The same model was later fine-tuned
on summarization, achieving comparable results with models
reported in the literature for the summarization task without
making any change to the original architecture. This same
model was the base to another model that was fine-tuned on
the all other mentioned tasks, except classification. The perfor-
mance achieved for each fine-tuned model was comparable to
reported results found in the literature. Overall, our multi-task
models show promising results with our particular training
strategy, with a drop in performance for each specific task
compared to the overall state-of-the-art results, but still being
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able to generalize enough to achieve good results in all tasks.
As our main contribution, we provide a base for future work
regarding multi-task NLP models in the medical domain, in
particular the radiology area.

The rest of document is structured as follows. Section 2
we presents previous related work regarding multi-task train-
ing strategies and a description of natural language processing
tasks covered on our work. Section 3 explains our proposed
approach, beginning with the choice of our base model, train-
ing strategy, and data augmentation techniques. Section 4
summarizes our overall findings, including an overview of the
datasets and metrics used to report our results. Finally, Section
5 presents our major conclusions and defines possible steps for
future work on the area of medical NLP.

2. Related Work
Pretrained language models have become a hot research topic
in the past half-decade. The promise of transfer learning by
pre-training a model and later fine-tuning it is nowadays the
most common approach to NLP problems [15]. Experimenta-
tion in several medical NLP tasks have been reported in the
literature and here we provide a brief overview on previous
methods, for different tasks.

2.1 Automatic Labeling
The current availability of medical datasets is very scarce. An-
notation and labeling require experts in the field and it is very
time-consuming, which creates a bottleneck in terms of the
data available to train and evaluate machine learning. Attempts
to create automatic labelers are not new but these in turn, also
need large amounts of training data.

In the paper by Meng et al. [13], the authors focus on the
problem of delays in the communication of urgent clinical
findings in radiology exams. The authors trained and fine-
tuned a model in a large radiology report dataset, to identify
critical reports with time sensitive findings and to feed this
information to an existing pipeline that delivers the informa-
tion to physicians. The proposed self-supervised contextual
language representation model is based on a pre-trained BERT
[6]. The decision to use contextual embeddings resulted in
better results than the state-of-the-art at the time, based in
word2vec representations.

Another automatic labeler named ChexBERT was devel-
oped by Smit et al. [17]. ChexBERT is also a BERT-based
model that was previously pre-trained in biomedical texts. The
paper proposes a training scheme where the model is trained
on radiology reports with annotations from a rule-based labeler
named CheXpert [8], and later fine-tuned in expert annota-
tions augmented with a back-translation strategy. The idea
behind this training is to use the already learned information of
the rule-based model and feed it to the new model in the form
of the generated outputs. The results outperformed previous
rube-based labelers on the MIMIC-CXR dataset.

Figure 1. The text generation approach in the T5 model, together with the
use of prompts.

2.2 Natural Language Inference
Natural Language Inference (NLI) is a task designed to assess
the inference relation between an hypothesis and a premise
expressed in natural language. Three types of inferences can
be verified, entailment, neutral or contradiction.

The release of MedNLI in 2019 [16] allowed anyone to
test their models in the NLI task, specifically focused on the
medical domain. Several models have been specifically trained
and tested in the MEDNLI dataset. For example, Phan et al.
[14] proposed SciFive, i.e. a T5 based model that is pre-trained
in a biomedical corpus of PubMed abtracts, followed by a
training phase using a multi-task learning strategy and later
fine-tuned in five biomedical NLP tasks. The paper defined
new state-of-the-art scores for several tasks including also the
MedNLI dataset.

2.3 Semantic Text Similarity
Semantic text similarity is an NLP task designed to quantita-
tively assess the semantic similarity between two text snippets
[22]. The release of public tasks in the last couple of years,
focused on this topic has helped the exploration of new models
that perform better in medical STS.

In Wang et al. [20], BERT-based models are tested in
the STS task. In particular, the authors try different ways of
extending training data, using unlabeled domain data which is
assigned labels from a general model. This strategy produced
new state-of-the-art results in one of the datasets used.

2.4 Summarization
The task of summarization of radiology reports, although
technically very challenging, presents several incentives to
promote and develop advancements. In particular, the most
important factor is the direct impact on the efficiency of clinical
communication pipelines and the acceleration of the radiology
workflow [13].

The MEDIQA shared task focused specifically in this do-
main. In the 2021 edition, the overview article of the task from
Abacha et al. [1] reports the results presented by the partici-
pants, as well as a brief overview of the type of models that
were used. From the total of 7 teams, 6 presented pre-trained
models based in BART [11] or PEGASUS [23].
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2.5 Medical Paraphrase Detection
Paraphrases are defined by Bhagat and Hovy [3] as sentences
that convey the same meaning using different wording. Un-
fortunately, very few datasets are available for this task when
considering medical domain data. A particularly well-known
dataset is the MSRP corpus released by Microsoft [7], nonethe-
less featuring general text.

3. Proposed Approach
Pre-trained models allow us to reuse features from the gen-
eral domain, learned from large corpora of unlabeled data,
to generalize better when training and fine-tuning specific
models. This approach tends to result in better performance
when compared to training a model from scratch only in task-
specific data. Here we propose to take advantage of the power
of transfer learning, with the use of the text-to-text-transfer
transformer (T5) proposed by Raffel et al. [15]. Text-to-text
means that, for each input received, the model returns a string
as an output, making it appropriate for question answering,
summarization, and other text generation or classification tasks.

3.1 The T5 Model Architecture
The text-text transfer transformer (T5) model [15] is based on
the original Transformer architecture proposed by Vaswani
et al. [19], with some minor differences. The model is com-
posed of an encoder-decoder structure. The encoder com-
ponent is composed of a stack of blocks, which contain a
self-attention layer followed by a feed-forward network. The
decoder structure is very similar to the encoder, except that
after the self-attention layer the model also includes an encoder-
decoder attention layer.

The original article also presented five size versions of the
T5 model. For our work, we developed all the experiments
using the original T5-Base model, which is the original base-
line model with roughly 220 million parameters. No changes
were performed to the original architecture, training objec-
tive, and vocabulary of the original model publicly available
at the HuggingFace websitea To pre-train the original mod-
els, Raffel et al. [15] used the Colossal Clean Crawled Corpus
(C4), i.e. a 750GB size corpus based on a clean version of
Common Crawl’s original web archive.The T5 models were
pre-trained using an unsupervised denoising task that is based
on masked language modeling and word dropout regulariza-
tion. The original input tokens are randomly sampled and
15% are dropped. These tokens are later replaced by unique
sentinel tokens. The model’s objective is to predict the sentinel
tokens that correspond to the original dropped out text.

3.2 Multi-Task Learning
The original paper by Raffel et al. [15], as well as other re-
cent papers, suggest that multi-task learning can provide good
results across several tasks. We use maximum likelihood as ob-
jective, together with teacher forcing to fine-tune the T5-base
already pre-trained in multiple tasks, like questions-answering,

ahttps://huggingface.co/t5-base

summarization, or natural language inference. A great ad-
vantage of using T5 is that the model was already trained in
several tasks using a prompting approach( i.e. ,at the begin-
ning of the input, a prompt dedicated to a specific task is added,
serving as a clue for the model to know which task it is han-
dling). In most of our tasks we were able to re-purpose some
of the prompts used during pre-training of the T5 baseline, by
pre-appending the prompt at the beginning of the examples.
Table 1 summarizes the tasks that we considered, which are
also explained next.

3.3 Fine-Tuning
We preformed fine-tuning on 5 biomedical tasks:

• Natural Language Inference (NLI);
• Semantic Text Similarity (STS);
• Paraphrase detection (PD);
• Summarization;
• Classification (CHEX);

Our training scheme is divided in two phases. On the first
phase we perform a multi-task training where we fine-tuned
a T5-base model with data from the all tasks mentioned above
with the exception of summarization (referred to as small tasks).
The second phase uses the last checkpoint from the first phase
and is followed by fine-tuning the model on the summarization
task. After phase two, we proceed to fine-tuning the models
for each individual small task, with the exception of the classi-
fication task. Figure 2 presents an illustrative representation of
our training scheme.

One of the major reasons for choosing this specific order
of training is that the summarization task differs significantly
in input and label size, compared to the other remaining tasks
that were already mentioned. This creates a bottleneck in
terms of training. To perform a true multi-task training with
all tasks, we need to considered an input and label sizes that
fit well the summarization task, but this requires extensive
padding to the vectors for the remaining tasks. This comes
from the fact that the T5 model requires all input and labels
with a training batch to have the same length.

3.4 Data Augmentation
As mentioned before, biomedical datasets are very scarce and
limited. The original datasets for the small tasks had two
disadvantages, namely the reduced size and not being related to
radiology context. To surpass these limitations, we considered
several common strategies to augment the available data with
radiology data (MIMIC-CXR examples) and subsequently help
the model learn with more examples.

3.4.1 Back Translation
A common strategy to increase the dataset size involves the
use of back-translation, where an input sequence is translated
to another language and translated back again. This approach
tends to modify the original sentence with paraphrasing [4].
All examples were translated to Portuguese, French, Spanish,
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Table 1. Prompts appended to the input specified by task.

Task Prompt Model Input

Summarization summarize summarize sentence1: "sentence 1" sentence 2: "sentence 2" , "label"
NLI mnli mnli hypothesis: "hypotehsis" premise: "hypothesis" , "label"
STS stsb stsb sentence1: "sentence 1" sentence 2: "sentence 2" , "label"
PD mrpc mrpc sentence1: "sentence 1" sentence 2: "sentence 2" , "label"

Classification chex chexbert hypothesis: "impression" premise: "observation", "label"

Figure2. Training Scheme used to trained our model.NLI - Natural Language
Inference, STS - Semantic Text Similarity,PD - Paraphrase Detection

and German, and later back to English. The example with the
higher number of changes compared to the original English
input was selected as the new example and added to the dataset.
This allowed doubling the number of examples of the datasets,
without introducing significant noise.

3.4.2 Artificial Task
We created an artificial task(i.e., the classification task) to sim-
ulate the labels given by the ChexBert labeler [17] and add an
additional task to our multi-task training. We then trained a
T5-base model with the impressions from MIMIC-CXR and as
label the outputs given by the original ChexBert labeler. The
ChexBert model is based on a pre-trained biomedical model
that was fine-tuned on radiology labels from another model
and fine-tuned again on a small set of expert annotations aug-

mented with back-translations. The task of report labelling is
to extract the presence of one or more cliniclally relevant obser-
vations from free-text radiology reports. This particular model
performs labelling in 14 different medical observations: Pneu-
monia, Fracture, Consolidation, Enlarged Cardiomediastinum,
No Finding, Pleural Other, Cardiomegaly, Pneumothorax,
Atelectasis, Support Devices, Edema, Pleural Effusion, Lung
Lesion and Lung Opacity. The labels can be blank, positive,
negative or uncertain, with the exception of No Findings
which can only be either blank or positive.

3.4.3 Data Generation
The relation between findings and impressions tends to be very
strong in terms of similarity of tokens and general content. We
decided to explore this fact to increase the number of exam-
ples in our datasets. Using the ChexBert Labeler to generate
labels for our MIMIC-CXR findings and impression in 14
different categories, we explored this information to identify
relations between both sections of the radiology reports. In
particular, the impressions as a premise should be sufficient
to infer the overall summary, in which case say there is an
entailment relation. If one cannot infer neither contradict the
hypothesis (findings section), this represents a neutral relation.
Lastly, if one can use the premise (impressions sections) to deny
the findings, a contraction relation is found. A threshold of
similarity is defined between the 14 labels to classified each
pair of findings/impression has having a relation of entailment,
neutral or contradiction.

We attributed the entailment label to a pair of findings,
impressions that achieved a ratio superior to 0.7 of equal la-
bels divided by the total labels different than blank and, with
zero labels that where opposites i.e. positive and negative label
for the same observation on the findings impressions pair. A
contradiction label was assigned when the pair of findings
impressions achieved a ratio superior to 0.2 of opposite labels
divided by the total labels different than blank. Th neutral
label was given when the pair of findings/impressions achieved
a value less than 0.5 on the same ratio described for the entail-
ment label and conditions.

A summary of findings in radiology reports is also meant to
preserve key features of the impression section, basically being
a shorter version but with the same overall meaning. In other
words, there is a paraphrase relation between findings and
impression, since the impression section should be descriptive
enough to pass the same content with less words. Additional
PD data was thus created exploring this relation.

This PD dataset has two possible labels: equivalent, which
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means that the sequences are equivalent to each other in mean-
ing, and not equivalent. The following criteria was used to
label the examples: If all labels of the ChexBert labeler were
equal for both impressions and findings, we attribute the label
equivalent. All other cases different from the previous were
considered not equivalent.

4. Experimental Results
This section describes our experimental procedure and the
obtained results. A full comparison with the current state-of-
the-art results on the each task is provided. All experiments
were run on Google Colab.

4.1 Datasets
We now provide a brief description of the medical datasets and
the pre-processing techniques that were used.

4.1.1 MIMIC-CXR
The MIMIC-CXR dataset, released by Johnson et al. [10],
is one of the largest radiology datasets publicly available. It
corresponds to a total of 227,835 radiographic studies, partic-
ularly chest studies. Each report is composed of findings and
impression sections. To sample one such big corpus, we used
the script provided on the MEDIQA 2021 Radiology Report
Summarization [1] task to generate a training set of 91,544
radiology reports. As evaluation set we used the MEDIQA
2021 task test set, representing a collection of 600 chest X-ray
reports. No further pre-processing was performed.

4.1.2 ClinicalSTS 2019 dataset
Released for the 2019 n2c2/OHNLP task [22], this dataset was
derived from electronic health records of the Mayo Clinic,
combining 1068 sentence pairs from the previous year task
that used a subset of MedSTS with new 574 pairs. Each pair
is given a score between 0 and 5, where the first is the lowest
and the last the highest score possible. A total of 1642 pairs are
used for the train subset and 412 for the testing subset.

4.1.3 MEDNLI
Release in 2019 [16], the MEDNLI dataset is composed by
pairs of premises and hypothesis. Each pair is associated a
label of entailment, neutral or contradiction. The original
premises were sampled from the MIMIC-III dataset [9] and
the hypothesis were manually annotated by physicians. A total
of 11,232 training examples, 1395 validation examples, and
1422 test examples are available.

4.1.4 MED PD
We used a small subset of medical paraphrases contains 150
examples for training and 60 validation examples, compiled
by Aditya [2] and that was based on examples from the i2b2
(2018) cohort detection task dataset. [18].

4.1.5 Augmented Datasets
As explained under the data augmentation section, we in-
creased the size of the original datasets with some simple
techniques, like back-translation or generation of new ex-
amples through some heuristics. Table 2 presents a comparison
between the original sizes of the datasets, and which augmen-
tation strategies contribute to increase each dataset.

4.1.6 ChexData
The ChexData dataset was created for this work, specifically
to train a T5 model on which to simulate the labels given by
the original ChexBert labeler. The examples are composed
by MIMIC-CXR impressions and their respective observation
labels given by the ChexBert labeler. This dataset was only
created and used for the chext X-ray labeling task.

Table 2. Original Dataset Sizes and changes due to data augmentation.

Dataset Original Size Back-translation ChexBert Final Size

PD 150 - 1476 1626
NLI 11232 11232 12000* 34464
STS 2020 2020 - 4040

ChexData 205960 - - 205960
MIMIC-CXR 91544 91544 - 183088

* This data was augmented using back-translation.

4.2 Metrics
Taking into consideration the current metrics being used for
each task and that are widely reported in the literature, this
next section provides a brief description on the metrics that
were used to evaluate the different tasks.

4.2.1 ROUGUE
Recall oriented understudy for gisting evaluation (ROUGE)
is the standard metric used to evaluate automatic summariza-
tion [12]. The metric evaluates the quality of the produced
summaries by comparing them with an human reference that
is meant to serve as an example of a perfect summary. The
original paper proposed 4 different ROUGE scores, but we
opted to only report ROUGE-2, since it is the official metric
for the MEDIQA task of radiology reports summarization [1].
ROUGE-2 measures the co-occurrence of bi-grams between
the machine generated summary and the references.∑

S
∑

ngramn∈S Countmatch(ngramn)∑
S
∑

ngramn∈S Count(ngramn))
(1)

In this equation S represents the set of summary references
and ngramn is an ngram belonging to one of the references.

4.2.2 Accuracy
Several tasks that we explored correspond to classification prob-
lems, like medical inference or paraphrase detection. The
common metric used to evaluate classification performance is
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accuracy. We can simply define accuracy as being the number
of right predictions, divided by the number of total predictions.

4.2.3 Pearson Correlation Coe�icient
The task of semantic text similarity differs from all the remain-
ing tasks by being actually a regression task. The output of
this tasks, varies between a range of 0 and 5 with increments
of 0.2. This is not an obstacle for the T5 model, which deals
with this problem by converting the original task into a classi-
fication one, with a total of 30 possible labels. In order to make
an accurate judgment of the performance of our model, we
reported our results using the Pearson Correlation Coefficient,
which is reported in the literature and public tasks, as a good
indicator of similarity between two lists of scores [22].The
following equation describes how to compute the coefficient
value:

Pearson =
∑

(xi – x̄)(yi – ȳ)√∑
(xi – x̄)2

√∑
(yi – ȳ)2

(2)

4.2.4 F1-Score
Besides considering accuracy, the evaluation of the perfor-
mance of our models on the paraphrase detection and medical
inference tasks was also performed using an F1 metric, which
performs a geometric mean of the per-label recall (R) and pre-
cision (P). The outputted score was unweighted, which means
that that we did not take into account the distribution of the
labels in our test set, due to the fact that it is assumed that all
present an evenly occurrence distribution.

F1 = 2
P × R
P + R

(3)

We compute the recall by dividing true positive labels by
the sum of true positive and false negative labels. The precision
is calculated by dividing true positive labels by the true positive
and false positive labels.

5. Experimental Results
This section presents our experimental results. The following
table is a description of the most relevant models trained during
our work and that are worth reporting.

Table 3. Model’s Description and Training Parameters

Model BaseModel TrainingEpochs TrainDatasets
Base - - C4

X1 T5-Base 1.5 ChexData
F1 T5-Base 2.5 MEDNLI,STS and MSR
F2 T5-Base 5 MEDNLI,STS and MSR
S1 F2 2.5 MIMIC-CXR
S2 F2 5 MIMIC-CXR
S3 F2 1 MIMIC-CXR

5.1 Classification Task
We trained a T5-base model on outputs from the ChexBert
labeler of the MIMIC-CXR dataset. The idea was to have
a model that could accurately generate predictions of labels
when compared to the original dataset. The model X1 was
trained for 1.5 epochs in total on the ChexBERT dataset with
a weight decay of 0.01 and a value of 500 warm-up steps. We
than compared the performance of X1 using accuracy when
compared to references produced by the original ChexBERT,
on a test set of 20000 examples, different from the examples
used during the training phase. The overall results are doc-
umented in Table 4 . To reduce the size of the dataset we
decided to not predict labels for the class "No Findings".

Table 4. Acccuracy of the T5-model, for each observation category,trained
on the ChexData dataset and tested a test set of 20000 random ChexBERT
labels from the MIMIC-CXR dataset

Observation Accuracy

Edema 0.9925

Fracture 0.9945

Consolidation 0.9855

Enlarged Cardiom. 0.9855

Pneumonia 0.9945

No Finding -

Pleural Other 0.9980

Cardiomegaly 0.9945

Pneumothorax 0.9995

Atelectasis 0.9920

Support Devices 0.9875

Pleural E�usion 0.9955

Lung Lesion 0.9945

Lung Opacity 0.9765

5.2 Training Parameters
The number of epochs and conditions were adjusted, taken
into account the difference in the examples between the multi-
task datasets and the original single task datasets. A weight
decay value of 0.01 and the value of 500 for the warming steps
was used in all experiments. During the generation phase
only beam search was used and the max length was adapted
according to the tasks.

5.3 Multi-task Training
In order to validate our multi-task learning approach, we
intended to verify that by training the model in several gen-
eration tasks we would see an improvement on the model’s
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performance on those same tasks. We compared training the
model first individually in some tasks and than we compared
the performance results on Table 5.

Table 5. Results - Small Tasks, with FF1 and FF2 correspond to the final fine-
tuned model, trained on each task individually.

PD STS NLI
F1Score Accuracy PearsonCor. F1Score Accuracy

Base 0.39583 0.63333 0.69233 0.36050 0.41421
F1 0.79107 0.81667 0.84018 0.73117 0.73769
F2 0.77815 0.81667 0.83952 0.78746 0.78832

FF1 0.81667 0.77011 0.81587 0.78551 0.78443
FF2 0.86667 0.84596 0.81490 0.79958 0.79867

IBM [21] - - 0.90100 - -
SciFive [14] - - - - 0.86570

5.4 Natural Language Inference Task
The Natural Language Inference (NLI) task was used on the
first phase of our training scheme to fine-tune the T5-base
model, combined with the STS, PD and ChexBERT tasks.
The performance of our model after 2.5 and 5 training epochs
on this multi-task training scheme are reported on Table 5.
We see that the model’s performance on this task improved
with more significantly with more training epochs, noticeable
by comparing model F1 and F2. Another interesting result was
the T5-base zero-shot attempt, which performed relatively
bad on the NLI task. This suggests that although being pre-
trained on natural language inference [15], the performance
of the model is very sensitive to different domains for this task.

We also fine-tune our model on the NLI dataset after the
second phase of our training scheme, this time only with this
specific task. If we observe the results on Table 5, we see that
after 2 epochs of fine-tuning (model FF2), the f1-score and
accuracy on this tasks increases to values close to 0.80. This is
an improvement compared to the performance of first phase
model. Overall, the results obtained are not very far from
current state-of-the-art models [14].

5.5 Semantic Text Similarity Task
Similarly to the previous tasks, the Semantic Text Similarity
task was used on the first phase training scheme of our model,
combine with the PD, NLI and ChexBert tasks. A striking
result that can be seen on the section of the STS task on Table
5 is the relatively high correlation score achieve by the T5-
base model zero shot attempt. The T5 model was pre-trained
on semantic text similarity tasks [15], nevertheless, it shows a
relatively strong performance for a particular radiology and
medical domain that was not previously anticipated. The per-
formance of our models after 2.5 and 5 epochs, also present
some interesting. One can notice that there a decrease of the
correlation score when the model is trained for more epochs
(model F2 compared to F1). The model’s performance is still
an improvement of 0.15 (F1 model) and 0.14 (F2 model) com-
pared to the zero-shot attempt. A possible explanation for this

decrease in overall performance is most likely due to the model
having reached a point of overffiting, a typical phenomenon
when the model gets stuck to the training examples and loses
its capability of generalization, leading to poorer results when
reaching a stage of inference to predict labels.

A second fine-tuning with only this task, was performed
after the second phase of our training scheme. The results
presented on Table 5 show that we it was not possible to achieve
better performance than the first training phase. This is most
likely due to the nature of the classification task that perhaps
requires more training data, so that it does not overfit so easily.
Secondly, we conclude that this task doesn’t appear to benefit
from the second phase training.

5.6 Paraphrase Detection Task

Regarding the Paraphase Detection task, similarly to the pre-
vious tasks, it was also used on the first training phase of our
scheme, combined with the STS, NLI and ChexBERT tasks.
All results of the first training phase are presented on Table 5.
Similarly to the NLI tasks, we see that the zero-shot attempt
of the T5-base model produces very poor results despite being
pre-trained on paraphrase corpus [15]. The same phenomenon
that occurred for the STS task happens for the PD performance,
where we see a decrease on the F1-score when the number
of training epochs is increased. For this specific dataset there
is no available literature for comparison, but we still opted to
include it in order to increase the available training data of our
multi-task approach.

The second fine-tuning with this task only is displayed on
Table 5 it reports a great improvement compared to the first
training phase results.

5.7 Summarization Task

When it comes to the summarization task, the results are re-
ported on Tables 6, 7 and 8, under the models S1, S2 and S3,
and for different metrics. This task is only used on the sec-
ond training phase, where we fine-tuned the T5-base model
fine-tuned from the small tasks. The T5-model was already
pre-trained on the summarization task [15], but still achieves
poor results similar to the previous tasks reported when we
perform a zero-shot attempt.

The results achieved after fine-tuning the previous multi-
task model show great improvements compared to the T5-
base zero shot approach. Surprisingly, we see that the best
performing model is S3, that was fine-tuned only for 1 epoch.
This means that the model is showing overfitting signs in
a very early despite the high number of training examples.
A comparison to recent literature, in particular to the 2021
MEDIQA winner, described on Abacha et al. [1], shows that
although we do achieve a performance we are still distant from
the state-of-the-art result.
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Table 6. Results - Summarization Task ROUGE-1

ROUGE – 1

Precision Recall F1 – Score
Base 0.19412 0.25569 0.19623

S1 0.51951 0.38811 0.41816
S2 0.51781 0.40390 0.42788
S3 0.52231 0.39212 0.42263

L[1] - - 0.55730

Table 7. Results - Summarization Task ROUGE-2

ROUGE – 2

Precision Recall F1 – Score
Base 0.08357 0.09791 0.07938

S1 0.34269 0.25308 0.27133
S2 0.33146 0.25800 0.27081
S3 0.35009 0.2611 0.27947

L[1] - - 0.43620

Table 8. Results - Summarization Task ROUGE-L

ROUGE – L
Precision Recall F1 – Score

Base 0.16932 0.23041 0.17435
S1 0.49906 0.37408 0.40278
S2 0.49644 0.38779 0.41069
S3 0.50317 0.37778 0.40746

L[1] - - 0.53660

6. Conclusions
Our work had the purpose of exploring the potential of new
and powerful model architectures ,like the Text-to-Text Trans-
fer Transformer, when applied to the medical domain. We
developed a multi-task medical model capable of dealing with
4 different tasks: summarization of radiology reports, medical
semantic text similarity, medical natural language inference,
and medical paraphrase detection. We also presented a training
scheme that takes advantage of the differences in the nature
of the datasets sizes and optimizes the time required to train
a model. Our fine-tuning approach revealed significant re-
sults on the mentioned tasks, similar to state-of-the-art models,
but with the ability to generalize for 4 different tasks. We
also demonstrated the potential of data augmentation for the
medical domain by applying a back translation strategy and
by generating new examples based on the radiology report
labelling task outputs of the ChexBERT Model. Our models
suffered from one of the most common problems during train-
ing of medical models, overfitting of the training data, due to
the problem of scarce datasets that were available. The results
achieved with our last model, show significant improvement
regarding all the three small tasks and summarization task. In
particular, according to the official results table from the 2021

MEDIQA task, our model would be rated on the 10th place,
without any modification to the model architecture, which
indicates the robustness of our training scheme and potential
for improvements which take advantage purely from training
strategies and data augmentation.

7. Future Work
The application of models to the medical domain is still in a
very early stage. Future work to improve models like T5 still
needs to be done. Much of the research work is spent research-
ing new architectures, which shifts the focus of experimenting
and achieving the best results with the current ones. Efforts
should pass by exploring simple ideas, like exploring different
training strategies such as on how to take full advantage of
multi-task learning. A possible modification in our models to
be explore is to add different training objectives related with
the tasks to explore. For example, instead of minimizing the
loss for summarization, to modify this objective to minimize a
combination of loss and a metric such as ROUGUE or QAEval
[5]. Due to restrictions of resources, our experiments on the
decoding phase were incomplete and are not reported on this
document. This particular step also showed great promising.
Future work should explore the the use of re-ranking tech-
niques to select the best output based on a metric of our interest,
This allows us to explore different outputs of our models. Tech-
niques like beam search and sampling with multiple returned
sentences allow for a multitude methods that can applied as
an aide to the inference of our model. Another relevant topic
we manage to explore fully and it is not described here is con-
ditional decoding, where we restrict the type of tokens the
model was able to predict, taken into account the task. This
strategy seemed particularly promising for tasks like STS, were
a very short output was generated. Finally, we suggest further
exploration on a hot topic in the NLP community nowadays,
which is quality evaluation. This paradigm is particularly rele-
vant in machine translation and could potentially by applied
to generation as a way of measuring good or bad summaries.
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