
Constrained IoT authentication in Cloud services
Tomás Silva

Instituto Superior Técnico
Truphone

Lisbon, Portugal
tomas.silva@truphone.com

Abstract—Constrained devices operating on constrained net-
works are a big part of the IoT paradigm. They have a myriad
of applications such as farming [1], wheater-monitoring [2] and
logistics and supply-chain management [3]. With Cloud Services
and IoT technologies on the rise, it is imperative to create a seam-
less authentication mechanism that can identify these devices to a
third-party Cloud provider. A lightweight solution to this problem
is explored, by leveraging network-level authentication via SIM
to identify and authenticate these constrained devices operating
on constrained networks to a third-party Cloud provider. This
work presents an authentication protocol that is transparent to
the client, specifically designed for constrained devices operating
on constrained networks. This is achieved using an OAuth 2.0-
based protocol running on top of improved communication and
application-layer protocols, with the introduction of a new key
feature. In this novel approach, the broker component allows the
client to be free from all authentication procedures and allows
the delegation of all of these tasks, like managing and requesting
access tokens. When compared to the authentication mechanisms
currently working in Truphone, the proposed solution reduces the
client-side network traffic by more than 98%, reduces computation
needs and is suitable to use over NB-IoT, the cellular network that
will power these constrained devices.

I. INTRODUCTION

Most authentication mechanisms that allow authentication for
third-party services are not optimized for the IoT paradigm,
targeting regular computers, a radically different scenario from
the one that will be explored. On the other hand, most au-
thentication mechanisms designed specifically for IoT are made
with an entirely different objective, double way authentication
between two IoT devices, and not authenticating the IoT device
to a third-party service.

This work leverages the existent network-based authentica-
tion to trustfully and automatically authenticate a device to a
third-party service, such as a Cloud provider (e.g. AWS IoT
Core). Since the network provider can already authenticate
and trust a device, by extending this trust with a mechanism
to authenticate the device to a third-party, the same trustful
and automatic authentication can be achieved. Constrained
devices operating on constrained networks currently do not
have out-of-the-box solutions for lightweight authentication to a
third-party. Since constrained devices and constrained networks
play an important role in a large scope of IoT (Internet of
Things) scenarios, this is an industry shortcoming that this work
attempts to solve.

II. BACKGROUND

A. OAuth2.0

OAuth 2.0 [4] is an authorization framework that allows
users to authenticate towards a remote resource/service. This
framework defines four participants: the client, the resource
owner, the resource server and the authorization server. The
client is the entity that requests access to a protected resource
on behalf of the resource owner, and it can only access the
protected resource once it has been granted authorization. The
resource owner is the entity that can grant permission to the
client to access said resource. The resource server is the entity
hosting the protected resource, allowing access to the resource
when presented with an access token. The authorization server
is the entity capable of issuing access tokens after successfully
authenticating the resource owner and obtaining permission.

1) Protocol Flow: The interactions between these roles are
depicted in Figure 1.

Client

Resource Owner

Authorization Server

Resource Server

(E) Access Token

(A) Authorization Request

(C) Authorization Grant

(B) Authorization Grant

(D) Access Token

(F) Protected Resource

Fig. 1. OAuth 2.0 Protocol

(A) marks the start of the interaction between all parties, with a
request for authorization to access the protected resource, made
by the client to the resource owner. (B) depicts the response
to the authorization request, where the resource owner grants
the client authorization to access the protected resource. In (C),
the client presents this authorization grant to the authorization
server which, after authenticating the client and validating the
authorization grant, issues an access token that is sent to the
client in (D). In (E), the client requests the protected resource
to the resource server, sending the access token in the request.
The resource server validates the access token and responds to
the client by allowing access to the protected resource in (F).

1

tomas.silva@truphone.com


An important caveat is that the client works on behalf of the
resource owner, meaning that steps (A) and (B) are usually not
actual message exchanges between different entities but the a
end-user, acting as the resource owner, using an application,
acting as the client, to access information that he controls on
another service/application.

2) Confidential Clients and Public Clients: OAuth 2.0
makes an important distinction regarding clients. Clients can
either be public or confidential. Confidential clients can hold
credentials in a secure way without exposing them to unautho-
rized parties. Public clients cannot. So confidential clients are,
for example, web applications running in a secure server and
public clients are, for example, single-page applications running
directly on a browser.

3) Resource Owner Password Credentials Flow: The re-
source owner password credentials flow is designed for cases
when the resource owner has a trust relationship with the
client. In this flow, the client has access to the resource owner
credentials. This flow is only used when other flows are not
viable and it can be used to migrate clients to OAuth 2.0 by
converting the stored resource owner credentials into access
tokens. This flow is depicted in Figure 2.

Authorization Server

Resource Owner

Client

Resource Server

(A) Resource Owner
Password Credentials

(B) Resource Owner
Password Credentials

(C) Access Token

(E) Protected Resource

(D) Access Token

Fig. 2. Resource Owner Password Credentials Flow

The protocol starts in (A), here the resource owner provides the
client with its credentials. The way these credentials are shared
is out of the scope of the protocol, so, as long as the client can
access the resource owner’s credential, step (A) is completed.
In (B) the client requests an access token from the authorization
server and sends the resource owner credentials along with this
request. After validating the resource owner’s credentials, the
authorization server issues an access token that is sent to the
client in (C). In (D), the client uses this access token to request
access to a protected resource held by the resource server. After
validating the access token, the resource server grants access
to the protected resource, depicted in the Figure as (E).

4) Client Credentials Flow: The client credentials flow is
used when the client is requesting access to resources owned
by itself or when it is accessing resources under the control
of another resource owner. This resource owner has previously
orchestrated, with the authorization server, that the client can

access it without contacting the resource owner (the way this
orchestration is performed is not defined by OAuth 2.0 and
it is considered out of scope of the standard). In these cases,
there is no need to contact the resource owner and the client
can access the protected resource by authenticating itself to the
authorization server. In this flow, the client directly contacts the
authorization server and requests the access token. This flow is
illustrated in Figure 3.

Client

Resource Server

Authorization Server

(A) Authentication

(C) Access Token

(D) Protected Resource

(B) Access Token

Fig. 3. Client Credentials Flow

In (A) we can see that the client authenticates itself to the
authorization server (this authentication can be done by any
method; a common one is to use a username and a password to
identify a client). The authorization server, after authenticating
the client, issues an access token which is represented in (B).
(C) and (D) are the same steps shown in Figure 1 where
the client sends the access token to the resource server and
the resource server allows the client to access the protected
resource.

5) Access Token: The access token is the token that proves
that the client has the authorization to access the protected
resource. This access token has the form of a JWT. The
access token to be considered valid must be a valid JWT and
the resource server must be able to validate this token. This
validation includes validating the signature and the "aud" claim
which must indicate that the token was issued to access the
determined protected resource.

B. ACE Framework

The Authentication and Authorization for Constrained Envi-
ronments (ACE) Framework [5] is a framework designed to ex-
pand the authorization flow of OAuth 2.0 to constrained devices
in IoT networks. One key difference that aims to accommodate
the limitations of constrained devices and networks is the use
of CWTs instead of JWTs. By using CBOR, the protocol can
better compress the messages, resulting in smaller payloads.
The ACE protocol, illustrated in Figure 4, works similarly to
OAuth 2.0. It starts when the client (the constrained device)
asks the Authorization Server for an access token that contains
claims about the identity of the client and if the client can
access the protected resource here depicted in (1) and (2).
Then, the client sends this access token in the request to access
the resource hosted by the Resource Server, as shown in (3).
The Resource Server, if needed, can verify the token with

2



the Authorization Server using an introspection request. This
introspection request is portrayed in steps (4) and (5). The
resource server sends the Access Token, that the client used,
to the Authorization Server. The Authorization Server then
confirms the validity of the Access Token. After validating the
token (with or without an introspection), the Resource Server
provides the client with access to the protected resource, as
shown in (6). This protocol was made to work over CoAP
however, HTTP implementations are possible.

Client

Resource Server

Authorization
Server

(4)

(2)

(6)

(1)

(3)

(5)

Fig. 4. ACE Protocol Flow

The implementation in [6] is made over HTTP due to the poor
support of DTLS by the networking libraries implementing
CoAP servers and clients showed poor support for DTLS at
the time. This implementation showed that, by using CWT
instead of JWT, the access tokens were about 50% smaller.
The reported overhead due to the use of HTTP is around 50%,
which, when dealing with constrained devices and networks, is
a very large number. This implementation is extremely useful in
showing the massive difference in performance that is possible
by using CWT instead of JWT.
This protocol was made to work with two different security
protocols, one working with Object Security for Constrained
RESTful Environments (OSCORE) [7] and another working
only with DTLS. OSCORE allows for true end-to-end encryp-
tion (over proxies) while DTLS does not, since CoAP defines a
number of proxy operations that require transport layer security
to be terminated at the proxy. It is important to notice that
OSCORE runs on the application layer and DTLS on the
transport layer so they are not mutually exclusive.

C. Truphone’s Existing Solution

Truphone has a patent pending working solution (patent ID
PCT/GB/2021/051093) capable of authenticating IoT devices
equipped with a Truphone SIM to a third-party. It is based on
the Client Credentials Flow from OAuth2.0, described above.
This solution, also known as the “notarizer”, is here described
starting with the participants in the protocol and then detailing
the flow.

1) Truphone’s Private Network: This solution leverages the
authentication and security present in cellular networks. An
eSIM equipped device, using LTE/NB-IoT, has a secure channel
to the core cellular network. The device is connected to the

core network which then connects to the Internet. This core
network/secure channel will be named Truphone’s Private Net-
work. The authorization server in Truphone’s existing solution
is deployed in this core network, where it has access to a
mapping between a certain client’s IP and their SIM creden-
tials. This is caused by the authentication process in cellular
networks. A client that has access to the Internet through
a cellular network is authenticated beforehand via SIM. The
cellular provider is responsible for IP address provisioning and
it can associate this IP to a certain SIM card. By leveraging
this association, the authorization server knows the identity of
every client that is connected to Truphone’s network.

2) Protocol Participants: As mentioned in the previous
section, the “notarizer” is based on OAuth 2.0 and so they
share some participants, namely the authorization server and
the client. The client, as in OAuth 2.0, is the participant that
needs to be authenticated, the authorization server is the entity
that has the ability to identify and authenticate the client and, in
OAuth 2.0, there is the resource owner who needs to assess the
identity of the client and in the “notarizer” this role is filled by
the third-party, which needs to assess the identity of the client.
These participants will now be detailed.

Authorization Server: The authorization server has the same
responsibilities as its namesake in the ACE framework and
OAuth 2.0. It is responsible for identifying clients and issuing
access tokens that assert a client’s identity. This authorization
server however has a major difference from the ones presented
in the aforementioned protocols. It is capable of authenticating
every client that issues a request without the need for credentials
to be exchanged. The authorization server is a service provided
by Truphone and it is deployed in Truphone’s network. This
means that the authorization server has a secure channel estab-
lished to the client and can identify it.

Client: The client is the entity that needs to be authenticated
to another entity by the authorization server (in this solution to
the third-party service). In this proposed solution, the client is a
constrained IoT device operating in a constrained environment,
with a Truphone SIM. The client also has a third-party Soft-
ware Development Kit (SDK) pre-installed which provides the
client with the necessary information to contact the third-party
service, namely the IP address. The client is connected to the
Internet using a Truphone eSIM. This connection allows the
client to communicate with Truphone’s services using a private
network.

Third-Party Service: The third-party service is the equivalent
of the resource owner in the ACE framework and OAuth 2.0.
It expects clients to request access to some protected resource
and it relies on the authorization server for the identification
of these clients. Working with the authorization server can
provide, or deny, access to this resource. In this solution, due
to third-party constraints, the client uses MQTTS (with one-
way authentication, so the third-party authenticates itself to the
client, which has a preloaded certificate to confirm the third-
party identity) to communicate with the third-party.

3) Protocol Flow: Truphone’s existing solution’s flow is
depicted in Figure 5.
In (1), the client, through an HTTP request, asks for a token
to the authorization server. In this request, the client will send
to the authorization server SIM credentials (namely two unique

3



Client Authorization Server

(1)

(2)

AWS(3)

MQTTS ->

HTTP    ->

Fig. 5. Notarizer

identifiers: ICC-ID and IMSI). Since the authorization server
is deployed in Truphone’s private network, it has access to the
mapping between a certain client’s IP address and their SIM
credentials, allowing the authorization server to identify the
client. In (2), the authorization server responds to this request
with the token issued for the client, and finally, in (3), the
client uses this token to authenticate itself towards the third-
party service using MQTTS. An important detail, is that while
the connection between the Client and the Authorization Server
is not protected by HTTPS, it is a private connection, running
on Truphone’s private network. This flow is triggered when the
client needs to publish a message to a third-party.

4) ID Token: The token follows the specification defined in
the OAuth 2.0 standard. It is a JWT containing the mandatory
OAuth 2.0 claims and signed by the authorization server. Token
validation is done by the third-party. Token validation also
follows the OAuth 2.0 standard. A key-sharing mechanism
between the authorization server and the third-party is not
defined as it is considered out-of-scope for this project.

5) Limitations and Advantages: The “notarizer” is not the
best solution when dealing with constrained devices for a
myriad of reasons. Firstly, the use of HTTP is a problem.
HTTP runs on top of TCP which, provides a connection-
oriented reliable service at the cost of additional overhead
when compared with UDP. The use of a JWT poses another
problem. There are other alternatives that can encode the same
information as a JWT while saving space, namely a CWT
which trades off human readability for compactness. Another
problem is the use of MQTTS. MQTTS is a version of MQTT
which runs on top of TLS. The use of MQTT by itself could
already be considered problematic considering that it runs on
top of TCP, however, the use of TLS makes this even worse.
The TLS handshake presents an unacceptable overhead when
dealing with constrained devices.

6) Security: To prove the security of Truphone’s existing
solution, an assumption was made: OAuth 2.0 is a secure
protocol, designed for use on the Internet over HTTPS. The
security of the intermediate solutions will be demonstrated by
addressing the changes it has compared to OAuth 2.0.
The “notarizer” implements the following changes compared to
OAuth 2.0:

1) The use of HTTP instead of HTTPS, when requesting the

token
2) The use of MQTTS instead of HTTPS, when sending the

token to authenticate itself
Both are changes to application-layer protocols. The second
change is meaningless as HTTPS security comes from the use
of TLS and MQTTS also runs over TLS. This means that both
HTTPS and MQTTS provide the same security capabilities.
The first change, however, can pose problems as HTTP is
not secured by TLS. Nonetheless, this connection between the
client and the authorization server is, as mentioned before, made
over Truphone’s Private Network that guarantees authentication
and confidentiality, keeping the protocol secure.

III. PROPOSED SOLUTION

A. Problem Description

This work aims to solve the lack of an automatic authen-
tication mechanism for constrained IoT devices operating in
constrained environments that allows devices to authenticate
themselves towards third-party services. The proposed solution
targets constrained devices that, due to operating in constrained
networks, cannot use the current solution provided by Truphone
due to network overhead. The proposed solution is based on
the current working solution provided by Truphone and it is
designed specifically for constrained devices.

B. Building Blocks

One of the key blocks of the proposed solution is NB-IoT.
NB-IoT is the ideal network when dealing with constrained
devices and environments. This network is here considered to
connect the devices to the Internet.
The second building block is CoAP. CoAP is built specifically
to cope with constrained devices and environments. This so-
lution uses non-confirmable messages as the acknowledgement
messages introduced by the reliability mechanism would orig-
inate unnecessary overhead to the protocol. The lightweight
nature of this protocol, when compared to other application-
layer protocols, makes it the best alternative to use. It is used
when the devices need to send or receive data from other
entities.
The third and final building block is CBOR and, more specif-
ically, CWT. The use of CWTs will allow the creation of a
more compact access token.

C. Intermediate Solution 1

The first intermediate solution is an adaptation of the ex-
isting solution. It uses the same protocol participants as the
“notarizer”. In order to reduce traffic network on the client side
this first approach uses different data transfer protocols and a
different method to encode the token. This solution presents
four major changes:

1) It uses CoAP instead of using HTTP when the client
requests the token from the authorization server

2) It uses a CWT instead of a JWT to encode the access
token

3) Token validation is now performed by the authorization
server

4



4) The client no longer sends SIM data to the authorization
server. The authorization server can associate an IP to SIM
data so the client’s IP is sufficient for the authorization
server to identify a client, since they share Truphone’s
private network.

The first two changes will reduce the client’s traffic network. By
using a lighter application-layer protocol and a more efficient
data format for the access token, the client will transmit fewer
bytes when it requests the token, when it receives it and when
it publishes the message in the third-party as the token is
present in that message. The third change tackles the need to
manually distribute the authorization server’s public key as the
token validity is now confirmed by the authorization server.
The access token is equal to the one used in the current solution
apart from the different data formats. The last change will allow
the token request to be slightly smaller since there is no need
to send any payload.

Truphone

Client

Authorization Server
(5)

Third-Party

(1)
(4)

(2)

(3)

CoAP    ->

MQTTS ->

HTTP    ->

Fig. 6. Intermediate Solution 1 Flow

1) Protocol Flow: The protocol flow is represented in Figure
6. In (1) and (2), the client requests the token to the authoriza-
tion server. These two messages are similar to the ones made
in the “notarizer” flow with the already mentioned changes of
using CoAP instead of HTTP and the use of a CWT instead
of a JWT to encode the token. Message (3) is the same as
in the “notarizer” sending both the token and the message to
publish to the third-party using MQTTS. Messages (4) and (5)
are introduced here. In (4) the third-party sends the access token
received in (3) to the authorization server and the authorization
server will assess the validity of the token and send it back
to the third-party in (5). This flow is triggered when the client
needs to publish a message to a third-party.

2) Limitations and Advantages: While this intermediate so-
lution solves some of the “notarizer” limitations, like the need
to manually distribute the authorization server’s public key and
the use of HTTP, it still has a problem: the use of MQTTS is
still an issue that brings unacceptable communication overhead
for a constrained device to use, since it runs on TCP and it
uses TLS to secure communications.

3) Security: To prove the security of intermediate solution
1, the changes it introduces from Truphone’s existing solution
will be analyzed.
Intermediate solution 1 implements the following changes com-
pared to the “notarizer”:

1) It uses CoAP instead of using HTTP when requesting the
token

2) It uses a CWT instead of a JWT to encode the access
token

3) Token validation is now performed by the authorization
server

4) The client no longer sends SIM data to the authorization
server. The authorization server can associate an IP to SIM
data so the client’s IP is sufficient for the authorization
server to identify a client, since they share Truphone’s
private network.

The first change is inconsequential as the security comes from
the private network, not from the application-layer protocol
chosen here. The second change also does not affect security,
since the CWT is properly signed as it was before. The third
change is not a problem as token validation can be done by any
party that possesses the public key from the key pair used to
sign the access token. As long as the connection between the
third-party and the authorization server is secure and the third-
party trusts the authorization server, this is secure. The fourth
change is meaningless to security, and as long as the client can
send some information that the authorization server can use to
identify and authenticate the client, this is not a problem.

D. Intermediate Solution 2

To improve the above solution, in particular the use of
MQTTS. This intermediate solution introduces a new protocol
participant, the broker. The broker connects the client to the
third-party service, as illustrated in Figure 7. It is introduced
to allow the client to use CoAP even if the third-party is not
prepared to use it. It acts as a middle-man between the client
and the third-party service, receiving CoAP requests from the
client and extracting the information meant to the third-party
service crafting, from this, an appropriate request is sent to the
third-party. The type of request depends on the third-party. In
the case of the current solution, the third-party, as mentioned
before, uses MQTTS. In this case, the broker receives a CoAP
request, extracts its information and uses MQTTS to send this
information the third-party on behalf of the constrained device.
The addition of the broker is a crucial step as it enables the use
of constrained devices operating in constrained environments by
allowing the device to communicate exclusively using CoAP,
which, as seen before, is the best fit for this kind of device. The
broker is also deployed in Truphone’s private network and so,
it has access to the same features as the authorization server
mentioned above, namely a private confidential connection to
the client. The access token and its validation process is the
same to the one used in intermediate solution 1.

1) Protocol Flow: The protocol flow, depicted in Figure 7.
Messages (1) and (2) stay the same as in the first intermediate
solution. Message (3), as in the first intermediate solution, sends
the access token and the message, however, in this case, the
client does not send this directly to the third-party. It sends
it to the broker which will then send this information to the
third-party on behalf of the client. It also uses CoAP instead of
MQTTS. Since MQTTS has a reliability mechanism and CoAP
does not, the broker sends the message (4) to confirm that it
received the message, and when paired with a timeout it can

5



be used to create an application-layer reliability mechanism.
In message (5) the broker sends the access token and the
message to the third-party using MQTTS as the third-party
dictates. Messages (6) and (7) perform token validation. The
third-party sends the access token to the authorization server,
that responds with the assessment of the token’s validity. This
token validation process is the same as in the first intermediate
solution and stay the same. This flow is triggered when the
client needs to publish a message to a third-party.

Truphone

CoAP              ->

Non-Specified ->

HTTP              ->

Client

(1)

(2)
Authorization Server

(7)

Third-Party

Broker
(3)

(5)

(6)

(4)

Fig. 7. Intermediate Solution 2 Flow

2) Limitations and Advantages: This solution does not have
any major limitations like the ones presented before. The
use of CoAP instead of MQTTS requires the aforementioned
application layer reliability mechanism to be implemented. The
broker introduces a layer of abstraction that allows a client to
send a message to a third-party in a transparent way. One use
case where the broker can be useful is in managing the client.
Since the client is expected to be a constrained device, it is
reasonable to assume that there will be some entity managing
it. In the case of migrating a client or a collection of clients
from a third-party to another (for example from AWS to another
cloud provider), this can be done without changes in the client
since the broker will deliver these messages, and just needs to
be informed of the change so it can behave accordingly.

3) Security: To prove the security of intermediate solution
2, the changes it introduces from intermediate solution 1 will
be analyzed.
Intermediate solution 2 implements the following changes com-
pared to intermediate solution 2:

1) The introduction of the broker
2) The use of CoAP instead of MQTTS by the client

Starting with the first change. The broker is deployed inside
Truphone’s private network and so its connection to the client
benefits from the same guarantees as the connection between
the client and the authorization server. The connection between
the broker and the third-party is made via MQTTS, which, as
seen before, is secure.

E. Final Proposed Solution

The proposed solution optimizes the second intermediate
solution by delegating the responsibility of requesting a token
from the client to the broker. This approach allow for a reduc-
tion of the traffic network on the client side since messages (1)

and (2) from the previous solution will not be present in this
solution, as illustrated in Figure 8. In this approach the token
request is made by the broker.

1) Protocol Flow: The protocol flow is represented in Figure
8. In message (1), the client sends to the broker the data it needs
to publish in the third-party. The broker confirms the reception
of this message with (2) for reliability. The broker will then
extract the client’s IP and send it in (3) a token request to the
authorization server which the authorization server can identify,
as mentioned before. In (4), the authorization server sends the
access token identifying the client to the broker which will then
compose a message using this token and the message sent by
the client in (1) to the third-party, on behalf of the client, in
(5). Messages (6) and (7), where the third-party requests the
authorization server to assess the validity of the access token,
will stay the same, as in the previous solutions.

Truphone

Client (4)

Authorization Server
(7)

Third-Party(3)

Broker
(1)

(5)

(6)

(2)

CoAP              ->

Non-Specified ->

HTTP              ->

Fig. 8. Proposed Protocol Flow

2) Limitations and Advantages: By delegating the token re-
quest to the broker, this protocol essentially builds a transparent
authentication scheme for the client. The client only needs to
send to the broker the message that it wants to publish to the
third-party and the broker will deal with everything from here.
By doing this, the solution optimizes traffic network on the
client-side as it only needs to send the message that it would
need to send anyway and it can do it in a near-optimal way by
using CoAP instead of other heavier protocols. It also allows
for client managing like in intermediate solution 2.

3) Security: To prove the security of the final proposed
solution, the changes it introduces from intermediate solution
2 will be analyzed.
The final proposed solution implements the following changes
compared to intermediate solution 2:

1) The delegation of the token request from the client to the
broker

This change does not affect security since the connection
between the authorization server and the broker is made on
Truphone’s private network. The broker uses the client’s IP to
identify it to the authorization server like before and so there
is no change to the protocol’s security, proving this solution to
be secure.

F. Access token
The access token, is a CWT. As aforementioned, a CWT

must be either signed, MACed or encrypted. The access token

6



must preserve its integrity and it must be verifiable that it was
issued by the Authorization Server. Given these requirements,
the access token will be signed by the Authorization Server.
This presents another choice that must be made: should it be
signed using an ECDSA or an EdDSA algorithm. According to
[8], the curve P-256 should be used to generate keys used for
digital signatures for authentication purposes. A P-256 curve
generates a 64-byte key. As per [9], ECDSA signatures are 2
times longer than the signer’s private key for the curve used dur-
ing the signing process. This means that using ECDSA would
generate a 128 byte sized signature. According to [10], EdDSA
can use two curves for key generation: the edwards25519 and
edwards448 curves. EdDSA public keys have exactly b bits
and EdDSA signatures have exactly 2b bits. The value b is a
multiple of 8, therefore, the public key and signature lengths
are an integral number of octets. For Ed25519, b is 256, so the
private key is 32 octets. With a private key of 32 bytes, EdDSA
using the edwards25519 curve would generate a signature with
64 bytes. Since both algorithms are secure [10], the access token
is signed using EdDSA with the edwards25519 curve, also
known as an Ed25519 digital signature, to produce a smaller
signature.
Apart from the signature, the access token contains claims about
the subject that possess it. Unlike a JWT, a CWT does not
have any mandatory claims that must be made about a subject.
The access token provided by the current solution contains the
claims mandatory as per the OAuth 2.0 standard. This includes
the issuer, subject, expiration date and audience claims. The
access token in the proposed solution contains the same claims.
The claim “subject” needs to uniquely identify a subject so the
authorization server uses the ICC-ID and the IMSI of the client
in this claim in the following way: “ICC-ID”|“IMSI”. This value
will allow any client to be uniquely identified.

Validating an Access Token: The tokens are validated by the
authorization server. The validation process of an access token
has 4 steps:

1) It is necessary to validate the Ed25519 digital signature,
assuring that it was signed with a Truphone’s private key

2) It is necessary to confirm that the issuer claims match
“Truphone”

3) It is necessary to confirm if the access token is not expired
4) It necessary to confirm if the audience claim matches the

identity of who wants to validate the token
If any of these steps fail, the token is considered invalid.

G. Improvements

The proposed solution was designed to solve the current’s
solution shortcomings, namely:

1) The use of HTTP
2) The use of JWT
3) The use of MQTTS
4) Lack of third-party interoperability

To solve issue 1., the proposed solution uses CoAP. To solve
issue 2., the proposed solution uses CWT encoded tokens. Issue
3. is directly related to issue 4. as it originates from a third-
party restriction. To deal with issues 3. and 4., the broker is
introduced in the proposed solution. It allows the client to use
CoAP for every communication and it eliminates the hassle of

modifying multiple clients to deal with different third-parties.
It delegates this effort to the broker making this process easier
as one broker will serve multiple devices.

H. Implementation Details

1) Third-party service: The third-party used in all imple-
mentations (including the baseline) is AWS IoT Core. AWS IoT
Core is a cloud service from AWS made for IoT devices. The
use of this third-party shapes this implementation as AWS IoT
Core requires connecting devices to use either HTTP, MQTT or
LoRaWAN. Keeping in mind the objective to minimize traffic
network, the connection to AWS IoT Core was made in MQTT.
MQTT was made specifically for constrained devices and it
is lighter than HTTP. LoRaWAN is a low power wide area
networking protocol made for IoT connectivity [11], however, it
requires additional infrastructure, namely LoRaWAN gateways
and network servers. This brings additional constraints to the
client which would need to set up this infrastructure, making
this option a less flexible alternative than using CoAP. AWS
IoT Core requires MQTTS to be used. This means that the
connection with AWS is protected by the use of TLS version 1.2
and AWS is authenticated to the client, the messages exchanged
are encrypted and their integrity is protected.

2) Authorization Server: The authorization server runs on
Truphone’s network and it has access to a mapping between
devices’ IP addresses and ICC-IDs. The authorization server
is built in Rust. Rust is a modern, statically typed language
that offers better memory usage than other modern and stat-
ically typed languages (Java and Go) [12]. Due to business
constraints, excessive memory usage is a concern (higher cost)
and Rust also supports CoAP and CBOR (by using the coap
[13] and serde_cbor [14] crates). Rust however lacks support
for CWT usage which dictated the need to develop a crate that
added this feature. The cwt crate was developed on top of the
aforementioned serde_cbor crate which offers serialization and
deserialization support for CBOR objects, however, it can not
create or read COSE headers that are necessary for CWTs.

3) Broker: The broker is a service built in Rust deployed on
Truphone’s network. It receives CoAP requests from the clients
and redirects them to the third-party service using MQTTS. In
this proof-of-concept, only one third-party will be used and so
the broker contains the needed CA certificate to verify the third-
party identity. In future use, the broker should be agnostic to
the third-party.

IV. IMPLEMENTATION

A. Third-party service

The third-party used in all implementations (including the
baseline) is AWS IoT Core. AWS IoT Core is a cloud service
from AWS made for IoT devices. The use of this third-
party shapes this implementation as AWS IoT Core requires
connecting devices to use either HTTP, MQTT or LoRaWAN.
Keeping in mind the objective to minimize traffic network, the
connection to AWS IoT Core was made in MQTT. MQTT
was made specifically for constrained devices and it is lighter
than HTTP. LoRaWAN is a low power wide area networking
protocol made for IoT connectivity [11], however, it requires

7



additional infrastructure, namely LoRaWAN gateways and net-
work servers. This brings additional constraints to the client
which would need to set up this infrastructure, making this
option a less flexible alternative than using CoAP. AWS IoT
Core requires MQTTS to be used. This means that the connec-
tion with AWS is protected by the use of TLS version 1.2 and
AWS is authenticated to the client, the messages exchanged are
encrypted and their integrity is protected.

B. Authorization Server
The authorization server runs on Truphone’s network and it

has access to a mapping between devices’ IP addresses and
ICC-IDs. The authorization server is built in Rust. Rust is a
modern, statically typed language that offers better memory
usage than other modern and statically typed languages (Java
and Go) [12]. Due to business constraints, excessive memory
usage is a concern (higher cost) and Rust also supports CoAP
and CBOR (by using the coap [13] and serde_cbor [14] crates).
Rust however lacks support for CWT usage which dictated the
need to develop a crate that added this feature. The cwt crate
was developed on top of the aforementioned serde_cbor crate
which offers serialization and deserialization support for CBOR
objects, however, it can not create or read COSE headers that
are necessary for CWTs.

C. Broker
The broker is a service built in Rust deployed on Truphone’s

network. It receives CoAP requests from the clients and redi-
rects them to the third-party service using MQTTS. In this
proof-of-concept, only one third-party will be used and so the
broker contains the needed CA certificate to verify the third-
party identity. In future use, the broker should be agnostic to
the third-party.

V. EVALUATION

A. Metrics
To test the effectiveness of the proposed solution a network

traffic test is considered.
Constrained devices in constrained environments need to min-
imize the amount of data exchanged. By measuring the traffic
in the network, it is possible to test the effectiveness of the
proposed solution.
Network traffic is affected by the amount of data in the network.
This data can be separated into two distinct parts: the payload
and the network overhead. The payload is the content of a
message. The network overhead is all the headers of lower-layer
protocol data and information that is necessary for the proper
transmission of a message. In the case of the proposed solution,
the payload size is related to the token size and message size.
By measuring token size, it is possible to understand both the
improvements that this solution provides, when compared with
other authentication mechanisms, and the overhead impact on
the network’s traffic and how the use of CoAP affects the
message size when compared to other transport-layer protocols.
It is also interesting to see the differences in data transmission at
each OSI layer and for the data received and sent by the client,
since both operations have different costs for IoT devices.
Another interesting discussion is to assess if the proposed
solutions are suited for NB-IoT.

B. Test set-up

To test the network traffic the following set-up was used for
every tested solution (“notarizer”, intermediate solutions 1 and
2 and the final solution). The client was run on a PC connected
to the Internet. Wireshark was used to collect every packet sent
between the client and the authorization server and between the
client and the third-party (or broker in the case of the second
prototype). Every test was performed 10 times. The network’s
conditions, depicted in Table I, were also tested, which depict
the packet loss and RTT (Round-Trip Time). This was obtained
by pinging the authorization server, the broker and the third-
party 100 times.

TABLE I
NETWORK CONDITIONS

Client to Authorization Server Client to Third-Party Client to Broker
Average RTT (ms) 55 74 62
Packet Loss (%) 0 0 0

By using Wireshark in the client, it is possible to test the entire
traffic network on the client-side which is what is important
since the client is the constrained node that needs to minimize
the network traffic. It also allows the examination of the traffic
per layer and to examine the data contents, allowing for an
analysis of not only the overhead in each layer but also the
difference in data (excluding protocol overhead) sent in each
solution which corresponds to the token size and message sent.
In every test, the message published by the client was a 3-byte
message.

C. Experimental Results

The experimental results are presented per tested solution and
are divided into two flows, in order to better assess the impact
of each particular change. The first flow is the “Get Token” flow
in which the client contacts the authorization server to request
the token. The second flow is the “Client Publish” flow where
the client sends the message, either to the broker or directly to
the third-party. They are also divided by sent and received data
by the client-side.
Starting by presenting the average bytes, with the standard
deviation, sent and received by the client in each layer for each
flow for each iteration. There are two flows considered: the flow
where the client requests the access token and the flow where
the client sends a message to the third-party. These flows will
be named as “Get Token” flow and “Publish” flow, respectively.
Then a comparison between the total bytes received and sent
in each iteration, will be presented.

1) “Get Token” Flow: Starting with the depiction of the
“Get Token” flow. Table II depicts the bytes received and sent
by the client. The same information, divided by OSI layer, is
depicted in Figures 9 and 10

TABLE II
BYTES RECEIVED AND SENT BY THE CLIENT IN THE “GET TOKEN” FLOW

FOR EVERY SOLUTION

Baseline Solution 1 Solution 2 Solution 3
Received 969± 0 179± 0 179± 0 0
Sent 525± 0 55± 0 55± 0 0

The decrease in traffic network is clear with the changes

8



introduced in the first intermediate solution. By making simple
modifications such as changing the application-layer protocol,
the data format used for the token and by authenticating clients
via IP instead of SIM data, an 81.53% reduction in bytes
received and an 89.52% reduction in bytes sent was observed at
intermediate solution 1 (and 2, that uses the same mechanism).
Solution 3 is optimal since the client does not request the token
leaving this task for the broker and so sending and receiving 0
bytes.

Fig. 9. Bytes Sent in the “Get Token” flow

In Figure 9 it is possible to see a significant decrease, when
comparing the Baseline to the proposed solutions, in bytes
sent by the client when requesting the token. This decrease is
explained by the use of CoAP instead of HTTP. In the physical
layer, we see a decrease in bytes sent that is related to the
decrease in the number of packets sent. In the network layer,
the use of UDP instead of TCP, explains this decrease. In
the application layer, the decrease is caused by the reduced
overhead that CoAP has when compared to HTTP. In both
prototypes the CoAP request does not carry any payload as
the only information needed to identify a client is their IP in
Truphone’s private network. In the baseline, the client sends
data to help with this identification, sending the SIM’s ICC-ID
and IMSI, which also confirm the client’s identity.
Figure 10 depicts the bytes received by the client in the “Get
Token” flow. As in Figure 9, it is possible to see a decrease
in bytes. Again, the decrease of bytes received in the physical
layers is explained by the reduced number of packets received.
In the network layer, it is explained by the use of UDP instead
of TCP and, in the application layer, it is explained by the
use of CoAP instead of HTTP. The reduction in data sent is
explained by the usage of a CWT instead of a JWT to codify
the access token.

2) “Client Publish” Flow: Now the depiction of the “Client
Publish” flow. Table III shows the bytes received and sent by
the client, and further detailed per OSI layer in Figures 11 and
12
In this case, the decrease in traffic network is not so meaningful
with the changes implemented in the first intermediate solution.
Most changes were targeted at the “Get Token” flow, however,
there is an 18.67% decrease in bytes sent by the client due
to the changes to the token format, meaning that the token is

Fig. 10. Bytes Received in the “Get Token” flow

TABLE III
BYTES RECEIVED AND SENT BY THE CLIENT IN THE “CLIENT PUBLISH”

FLOW FOR EVERY SOLUTION

Baseline Solution 1 Solution 2 Solution 3
Received 6204.6± 37.757 6169.4± 46.419 52± 0 52± 0
Sent 1859± 25.456 1512± 25.456 228± 0 55± 0

smaller and so the client sends fewer data. There is a mean-
ingless reduction of 0.57% that is statistically irrelevant. The
significant changes come with the second intermediate solution
that eliminates the costly use of MQTTS with the introduction
of the broker. With a whopping 99.16% reduction in received
bytes received and an 87.74% reduction in sent bytes, when
compared to the baseline, showing that the intermediate solution
2 presents clear benefits to the client. The proposed solution
eliminates the need to send the token to the broker which
helps to enhance this gain from 87.74%, when compared to
the baseline, to 97.04%.

Fig. 11. Bytes Sent in the “Client Publish” flow

In Figure 11 there is more nuance as there is a difference
in performance, not only between the baseline and the inter-
mediate solutions but also between the intermediate solutions
themselves. The major difference between the baseline and the
first intermediate solution is in the data which comes from the
difference in technology used to codify the token. The use of
CWT instead of JWT is responsible for this difference. The
big changes are seen when comparing the first to the second
intermediate solution, given the introduction of the broker. The

9



introduction of the broker allows for the use of CoAP instead
of using MQTTS. The use of MQTTS, which requires various
handshakes and a heavy overhead, is replaced by a single CoAP
request and this is apparent in the performance of the two
prototypes. The proposed solution optimizes this flow since
there is no need to send the token in the request.
In Figure 12 the difference in performance is explained by the
fact that both the baseline and first intermediate solution use
MQTTS and have to perform costly TCP and TLS handshakes
where as the intermediate solution 2 and the proposed solution
use CoAP. The big amount of data, when compared to other
layers, is due to the need to receive the TLS certificate of the
third-party.

Fig. 12. Bytes Received in the “Client Publish” flow

D. Evaluation

The results presented show that the proposed solution brings
a massive increase in performance, with the intermediate so-
lution 2 and the final proposed solution showing that the
introduction of the broker comes with tremendous benefit for
the device, as it allows the device to use CoAP for every com-
munication effectively bypassing the third-parties restrictions.
Another important analysis is to check if these prototypes are
ready to use NB-IoT. An NB-IoT device is expected to transmit
up to 200 bytes per day. In table IV the total network traffic of
the client is depicted.

TABLE IV
TOTAL TRAFFIC NETWORK IN THE CLIENT FOR EVERY SOLUTION

Baseline Solution 1 Solution 2 Solution 3
Total Traffic Network 9546.8± 36.199 7912± 52.679 517± 0 107± 0

Assuming that a client needs to send a message to the third-
party at least one time per day the only solution that is ready
to use NB-IoT is the final proposed solution. The message sent
in the tests was a 3-byte message which means that the total
overhead for communications is 104 bytes, allowing the client
to send one message per day to the third-party up to 96 bytes.

VI. RELATED WORK

Gerber [6] implements the ACE framework, analysing it’s
efficiency when compared to OAuth 2.0, but runing the protocol
over HTTP instead of CoAP.

Truphone’s Existing Solution implements an authentication
mechanism for IoT devices based on the authentication made
by the SIM in cellular networks.
Lagutin et al. [15] use the ACE framework to allow constrained
IoT devices to use verifiable credentials and decentralized
identifiers to manage authentication and authorization.

VII. CONCLUSION

In this work, a new innovative way to authenticate con-
strained devices operating in constrained environments to a
third-party is presented. It relies on cellular authentication
provided by Truphone and on the introduction of a broker to
which the client delegates all authentication mechanisms. The
proposed solution fulfils provides the client with authentication
based on his cellular connection, it reduces traffic network in
the client by more than 50% and it allows for a seamless
authentication mechanism, as the client only needs to send
a message to the broker and the broker will deal with the
authentication to the third-party.

REFERENCES

[1] S. Jaiganesh, K. Gunaseelan, and V. Ellappan, “Iot agriculture to improve
food and farming technology,” in 2017 Conference on Emerging Devices
and Smart Systems (ICEDSS). IEEE, 2017, pp. 260–266.

[2] L. S. Chandana and A. R. Sekhar, “Weather monitoring using wireless
sensor networks based on iot,” Int. J. Sci. Res. Sci. Technol, vol. 4, pp.
525–531, 2018.

[3] M. Tu, “An exploratory study of internet of things (iot) adoption intention
in logistics and supply chain management,” The International Journal of
Logistics Management, 2018.

[4] D. Hardt, “The oauth 2.0 authorization framework,” Internet Requests
for Comments, RFC Editor, RFC 6749, October 2012, http://www.
rfc-editor.org/rfc/rfc6749.txt. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc6749.txt

[5] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth),” Internet Engineering
Task Force, Internet-Draft draft-ietf-ace-oauth-authz-42, Jun. 2021, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-ace-oauth-authz-42

[6] U. Gerber, “Authentication and authorization for constrained environ-
ments,” Master’s thesis, University of Zurich, 2018.

[7] G. Selander, J. Mattsson, and F. Palombini, “Object security for
constrained restful environments (oscore),” Internet Requests for
Comments, RFC Editor, RFC 8631, July 2019, https://www.rfc-editor.
org/rfc/rfc8631.txt. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc8631.txt

[8] E. B. Barker and Q. H. Dang, “Recommendation for key management
part 3: Application-specific key management guidance,” Tech. Rep.,
2015. [Online]. Available: https://doi.org/10.6028/NIST.SP.800-57Pt3r1

[9] S. Nakov, Practical Cryptography for Developers. Gitbook, 2018, https:
//cryptobook.nakov.com/.

[10] E. Barker, “Digital signature standard (dss),” October 2019.
[11] J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and A. L.

Aquino, “Lorawan—a low power wan protocol for internet of things: A
review and opportunities,” in 2017 2nd International Multidisciplinary
Conference on Computer and Energy Science (SpliTech). IEEE, 2017,
pp. 1–6.

[12] D. Darwich, “Comparison between java, go,
and rust,” https://medium.com/@dexterdarwich/
comparison-between-java-go-and-rust-fdb21bd5fb7c, accessed: 2021-
03-26.

[13] https://github.com/Covertness, “coap,” https://crates.io/crates/coap.
[14] https://github.com/pyfisch, “serde_cbor,” https://crates.io/crates/serde_

cbor.
[15] D. Lagutin, Y. Kortesniemi, N. Fotiou, and V. A. Siris, “Enabling

decentralised identifiers and verifiable credentials for constrained iot
devices using oauth-based delegation,” in Proceedings of the Workshop
on Decentralized IoT Systems and Security (DISS 2019), in Conjunction
with the NDSS Symposium, San Diego, CA, USA, vol. 24, 2019.

10

http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-42
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-42
https://www.rfc-editor.org/rfc/rfc8631.txt
https://www.rfc-editor.org/rfc/rfc8631.txt
https://www.rfc-editor.org/rfc/rfc8631.txt
https://www.rfc-editor.org/rfc/rfc8631.txt
https://doi.org/10.6028/NIST.SP.800-57Pt3r1
https://cryptobook.nakov.com/
https://cryptobook.nakov.com/
https://medium.com/@dexterdarwich/comparison-between-java-go-and-rust-fdb21bd5fb7c
https://medium.com/@dexterdarwich/comparison-between-java-go-and-rust-fdb21bd5fb7c
https://github.com/Covertness
https://crates.io/crates/coap
https://github.com/pyfisch
https://crates.io/crates/serde_cbor
https://crates.io/crates/serde_cbor

	Introduction
	Background
	OAuth2.0
	Protocol Flow
	Confidential Clients and Public Clients
	Resource Owner Password Credentials Flow
	Client Credentials Flow
	Access Token

	ACE Framework
	Truphone's Existing Solution
	Truphone's Private Network
	Protocol Participants
	Protocol Flow
	ID Token
	Limitations and Advantages
	Security


	Proposed Solution
	Problem Description
	Building Blocks
	Intermediate Solution 1
	Protocol Flow
	Limitations and Advantages
	Security

	Intermediate Solution 2
	Protocol Flow
	Limitations and Advantages
	Security

	Final Proposed Solution
	Protocol Flow
	Limitations and Advantages
	Security

	Access token
	Improvements
	Implementation Details
	Third-party service
	Authorization Server
	Broker


	Implementation
	Third-party service
	Authorization Server
	Broker

	Evaluation
	Metrics
	Test set-up
	Experimental Results
	``Get Token'' Flow
	``Client Publish'' Flow

	Evaluation

	Related Work
	Conclusion
	References

