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ABSTRACT 
 

Migraine is an incapacitating neurological disorder characterised by recurring, throbbing headache attacks, generally combined with nausea, 
vomiting, sensory and cognitive disturbances. Migraine has become a major public health concern with a huge impact worldwide, however, 
its pathophysiology is not entirely understood. In order to investigate the disorder mechanisms, dynamic functional connectivity (dFC) in 
migraineurs was assessed through the analysis of resting-state functional magnetic resonance imaging data. Eight female menstrual 
episodic migraine patients without aura were scanned in the interictal (attack-free) phase of the migraine cycle, five of the eight patients in 
the ictal (attack) phase, and six healthy controls in the menstrual mid-cycle/post-ovulation phase to control hormonal variation in the interictal 
phase. To estimate the dFC, the sliding window and phase coherence methods were tested. Then, the leading eigenvector dynamic analysis 
focused on the dominant patterns of dFC matrices captured by leading eigenvectors, further organised into recurrent dFC states with the 
k-means clustering algorithm. Finally, between-group differences were statistically assessed with non-parametric permutation-based t-tests. 
Results revealed a significant increased mean lifetime and probability of occurrence in dorsal attention/frontoparietal, somatomotor and 
visual networks, and decreased temporal metrics in the fully connected state (global mode) in migraine patients in the ictal phase and 
controls compared to the interictal phase. This work reinforced the relevance of using dFC to study migraine brain, and suggested that its 
dysfunction might be associated with an altered dynamic of attentional/cognitive and stimulus processing systems and the global mode, 
which might potentially constitute neuroimaging biomarkers for disease progression. 
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1.  INTRODUCTION 

 

1.1.  Migraine 
 

Migraine is a complex neurological headache disorder among the 
most prevalent and disabling conditions worldwide, estimated to affect 
over 20 % of the population in a 3:1 female-to-male ratio [1]. According 
to the Global Burden of Disease study (2019) from the World Health 
Organization [2], this disorder ranks second among the world’s causes 
of disability and first in young women [3]. Despite the massive indivi-
dual impact that migraine brings, it also entails burdensome conse-
quences on private and socioeconomic domains, especially due to the 
productivity losses caused by its prevalence in the youngest and most 
productive years of life [1][4]. Notwithstanding, migraine remains 
undervalued in terms of priority setting and resource allocation 
processes, and new therapeutics to treat this condition lack  
investment [5]. 

Migraine presents a cyclic phenotype, characterised by recurrent, 
incapacitating headache attacks, typically accompanied by wide-
ranging symptomatology, followed by attack-free phases. A complete 
migraine cycle includes the interictal phase, the interval between two 
consecutive attacks in which the patients are usually asymptomatic, 
and the migraine attack, which comprises the preictal, ictal and post-
ictal phases. Within an attack, these phases may happen sequentially, 
but, in most cases, they are overlapped [6]. 

The preictal phase, also known as the premonitory phase or 
prodrome, corresponds to the time before the onset of the headache 
and can be manifested up to 48 hours [7]. Commonly, this stage inclu-
des sensory symptoms such as photophobia, phonophobia, osmopho-
bia, allodynia and muscular sensitivity; affective symptoms, involving 
irritability and depression; autonomic symptoms, namely fatigue, yaw-
ning, food cravings, thirst, flushing, sweating, nasal and sinus conges-
tion, rhinorrhoea, frequent urination and diarrhoea; and cognitive 
symptoms, thought to be reversible and finished after the attack or with 
effective acute treatment [8]–[10]. The most common pattern of cogniti-
ve decline involves speech, reading and concentration difficulties and 
impaired thinking during the preictal, ictal and postictal phases, which 
suggests attentional and executive deficits with abnormalities in 
processing speed, decision-making and working memory [9][11].       

Regarding the aura, this phase is experienced immediately after 
the prodrome, only by approximately one-third of migraineurs, and 
according to the ICHD-3 beta [12], it consists of a total reversible 
neurological disturbance and cortical dysfunction that lasts between 15 

and 30 minutes [7][10]. The visual aura is the most common type of 
disturbance, however, other cortical perturbations may occur, involving 
motor, sensory and language spectra [13]. 

The ictal phase corresponds to the interval of 4 to 72 hours in 
which the patient experiences the headache and the pain severity 
raises to maximum. Thereafter, the postictal phase or postdrome lasts 
up to 24 hours after the ictal phase, being defined as the period 
between the resolution of the headache and total recovery. Despite the 
large neglection of this phase by the scientific community, which is not 
even documented in the ICHD-3 beta [12], migraineurs report 
symptoms after the headache involving tiredness, attention deficits 
and neck stiffness [14][15]. 

Although the interictal phase of the migraine cycle is tendentially 
asymptomatic, converging evidence points to the existence of an 
habituation response deficit in this period of the cycle. Instead of a 
regular habituation effect, with a “response decrement” resulting from 
the exposure to repeated stimuli, interictal migraineurs exhibit an initial 
weaker response that intensifies with persistent stimulation, leading to 
some vulnerability in those conditions (e.g. exposure to sensory inputs) 
[11]. Hence, the peculiarities of each phase and the intra- and inter-
patient varying symptoms contribute to the huge complexity of this 
disorder. 

The origin of migraine attacks and the underlying brain structures 
and neurobiological processes involved in their progression remains 
unclear and under clinical and scientific research. Currently, the 
putative basis for migraine attacks is the activation of the meningeal 
nociceptors and, consequently, the trigeminovascular (TV) system, 
followed by its peripheral and central sensitisation. The activation of 
the meningeal nociceptors due to the neurogenic inflammation [8] 
activates the TV neurons in the spinal trigeminal nucleus, together with 
incoming signals from the head and neck. These signals ascend 
through the quintothalamic tract to the brainstem and high cervical 
spinal cord, which participate in the processing of the nociceptive 
signals, synapsing with the thalamic neurons [16]. Thereafter, the 
thalamus transmits nociceptive inputs to the cortex, especially to the 
primary and secondary somatosensory cortices and insula, and the 
somatosensory and visceral inputs project from the head and orofacial 
regions to the hypothalamus, through the trigeminohypothalamic tract 
[17]. The perception and modulation of nociceptive information are 
affected by a set of pain-modulatory circuits that involve the brainstem, 
thalamus, hypothalamus and cortex [17]. 
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1.2.  Resting-state fMRI and functional connectivity 
 

In the last two decades, technologies to investigate migraine 
pathophysiology progressed greatly. Neuroimaging techniques, parti-
cularly Blood Oxygen Level Dependent-functional magnetic resonance 
imaging (BOLD-fMRI), have become an indispensable tool in migraine 
research and have driven robust advances in understanding migraine 
generation, progression, chronification and treatment [18].  

Resting-state fMRI (rs-fMRI), which focuses on the spontaneous 
low-frequency fluctuations of the BOLD signal by scanning patients at 
“rest” (with the absence of any imposed task), has gained widespread 
acceptance in the neuroscience community as a powerful technique to 
explore spontaneous brain activity and functional connectivity (FC) for 
characterising brain’s spatiotemporal organisation and mapping brain 
function [19]. FC can be defined as the coherence (or statistical 
temporal dependence) between BOLD signal fluctuations [20],  

The FC analysis in rs-fMRI studies has been widely explored. Over 
the years, resting-state networks (RSNs) composed of regions with 
low-frequency synchronous fluctuations have been identified, contri-
buting to study brain’s functional architecture [21]. Templates of well-
established RSNs commonly used as reference are the Yeo repertoire 
[22], which comprises seven RSNs – visual  (VN), somatomotor 
(SMN), ventral attention (VAN), dorsal attention (DAN), limbic (LN), 
frontoparietal (FPN) and default mode (DMN) networks – and Smith’s 
template, with ten RSNs – visual medial, occipital and lateral (VMedN, 
VOccN, VLatN), right and left FPN, DMN, SMN, auditory (AudN), 
executive control (ECN) and cerebellar (CbN) networks. 

Most FC studies assume connectivity stationarity over the full rs-
fMRI scan (static FC or sFC). Notwithstanding, the prior assumption 
that FC did not fluctuate over time started to be interpreted as too 
simplistic to capture the full extent of resting-state activity [23]. Hence, 
in the 2000s, studies suggesting the dynamic behaviour of FC on short-
time scales started to arise, namely throughout ageing, development 
and visual state. Throughout the years, the limitations of sFC analysis 
and improvements in recording methods shifted the attention to the 
concept of dynamic FC (dFC), allowing the detection of time-varying 
patterns of neuronal connectivity and the appearance of quasi-stable 
recurrent FC states that resemble brain networks [23].  

Up to now, two main methods have been used to estimate the dFC: 
the sliding window (SW) Pearson correlation and the phase coherence 
(PC) methods. The SW segments fMRI data in successive intervals of 
time (temporal windows), within which the FC is described between 
each pair of brain regions by computing a pairwise (typically Pearson) 
correlation between their respective BOLD signal time courses [24]. 
For a sliding window with length W, the dFC between two brain regions 
n and p at each time point t can be given by the Eq. (1.1): 

 

𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑟𝑟(𝑥𝑛,𝑡
      𝑡+𝑊−1, 𝑥𝑝,𝑡

     𝑡+𝑊−1)      (1.1) 
 

where corr() is the FC metric of interest, and xn,𝑡
      𝑡+𝑊−1 and xp,𝑡

      𝑡+𝑊−1 

are the BOLD time courses of the brain regions n and p, respectively, 
segmented in time from t to t + W - 1 [23]. The SW approach provides 
a robust pipeline to obtain FC estimates and is less susceptible to 
noise than other techniques such as PC. However, it compromises the 
temporal resolution of the data, precluding the detection of FC patterns 
with durations below the window size [23][25].                                                    

To overcome these caveats, the PC method characterises the 
time-varying single frame FC by converting each BOLD time course 
into its complex analytic version (instantaneous amplitude and phase) 
with the Hilbert transform [26], and then comparing instantaneous 
phase information between BOLD signals of different brain regions. 
The degree of phase synchronisation between brain regions n and p 
at time point t, also called phase coherence, measures the dFC [27], 
as described in Eq. (1.2): 
 

𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑠 [𝜃(𝑛, 𝑡) − 𝜃(𝑝, 𝑡)]      (1.2) 
 

where 𝜃(𝑛, 𝑡) and 𝜃(𝑝, 𝑡) are the instantaneous phases of regions n 
and p, respectively, at the time point t. The implementation of the PC 
method has been an emerging tool in fMRI due to its great advantages, 
namely the ability to characterise the dFC at each repetition time (TR), 
ensuring a maximum temporal resolution and a more accurate analysis 
of the faster dFC fluctuations. Furthermore, since this metric is applied 
instantaneously for each time point and the whole brain with one 
transform, it is computationally faster than temporal correlations. Also, 
since PC is a non-linear measure, it is more suitable to detect complex 
dynamic processes in the brain [27]. 

In particular, a method implemented by Cabral et al. [26], the 
leading eigenvector dynamic analysis (LEiDA), has proposed to repre-
sent the PC between brain regions using the largest magnitude 

eigenvector of BOLD phases (N elements per time), which explains 
over 50% of data variance, instead of the whole N×N phase 
synchronisation matrix. The LEiDA allows to reduce data dimension-
nality, improve cluster performance, and detect recurrent BOLD phase 
patterns that closely overlap with previously defined RSNs [28]. 

Over the past years, much progress has been made in migraine 
neuroimaging research and study of FC, providing new insights regar-
ding the alterations in migraine brain FC throughout the migraine cycle 
and compared to healthy subjects [29]. Hence, the present work propo-
ses to investigate for specific dFC alterations in migraine, by compa-
ring episodic migraine patients without aura in the interictal and ictal 
phases of the migraine cycle, and migraineurs with healthy controls 
(HC), evaluate its relation with migraine mechanisms and, potentially, 
identify neuroimaging biomarkers to track disease progression and 
response to treatment.  

 

2.  METHODS 
 

2.1.  Data description 
 

   2.1.1.  Participants 
 

rs-fMRI imaging data used in the present work was gathered in the 
scope of the MIG_N2Treat project, at Hospital da Luz, with data 
collected from October 2019. The participants of this project were 8 
female patients with menstrual and menstrually-related episodic 
migraine without aura and 6 HC. Regarding migraineurs, the exclusion 
criteria were the following: previous history of migraine with aura or 
chronic migraine; presence of another type of headache, neurological 
disorder or psyquiatric disorder; taking any drugs affecting the central 
nervous system; being under phophylactic treatment; daily alcohol or 
tabacco consumption; and non-compatibility with MRI.  

All migraine patients underwent the rs-fMRI scan in the interictal 
phase of the migraine cycle, whereas just 5 of the 8 were scanned in 
the ictal phase. The HC were scanned in the mid-cycle/post-ovulation 
phase of the menstrual cycle to control for hormonal variation in the 
interictal phase of the migraine cycle. The ages of the participants 
ranged between 21 and 45 (34.1 ± 9.0) years old for the migraine group 
and between 22 and 39 (27.7 ± 6.0) years old for the HC. 

Within the migraine ictal group, clinical features regarding the 
ongoing attack were registered and averaged across the 5 patients: 
attack frequency per month of 3.9 ± 2.0; usual attack duration of (41.6 
± 23.0) hours; mean pain intensity of the attack in a mild (1)-to-severe 
(3) scale of 2.6 ± 0.5 and in the Visual Analogue Scale (0-10) of (6.2 ± 
0.7) hours. Furthermore, regarding migraine-associated symptoms, 
ictal patients were interrogated with a yes (1)-or-no (0) question and 
the answers were averaged across participants: 1.0 for nausea; 0.4 ± 
0.5 for vomit; 0.8 ± 0.4 for photophobia; 1.0 for phonophobia; and 1.0 
for motion sensitivity. 

 

   2.1.2.  Image acquisition protocol 
 

Regarding the image acquisition, structural and functional data 
were acquired on a 3 Tesla Siemens MRI system. The structural scans 
were collected with a T1-weighted magnetization-prepared rapid gra-
dient echo (MPRAGE) series, with TR = 2300 ms, time echo (TE) = 
2.98 ms and 1 mm isotropic resolution. The rs-BOLD fMRI scans were 
acquired for 7 minutes using a T2*-weighted gradient-echo 2D-EPI 
sequence, with TR = 1260 ms, TE = 30 ms and 2.2 mm isotropic reso-
lution. In the rs-fMRI scans, 333 volumes were acquired, each consis-
ting of 60 axial slices of the whole brain, with an SMS acceleration 
factor of 3 (z direction) and a generalized autocalibrating partial parallel 
acquisition (GRAPPA) acceleration factor of 2 (y or phase encoding 
direction). During the rs-scan, participants were asked to stay 
motionless with eyes open and without falling asleep. 

 

2.2.  rs-fMRI data preprocessing and parcellation 
 

The rs-fMRI data analysed in this work were preprocessed by the 
team using the FMRIB’s Software Library® (FSL) and the MATLAB 
2016b Software® (The Math-Works Inc., Natick, MA, USA).  

The preprocessing steps were the following: (i) brain extraction to 
remove the skull, and other non-brain tissues [30]; (ii) segmentation 
and bias field correction [31], with the creation of white matter (WM) 
and cerebrospinal fluid (CSF) masks further binarized in the structural 
space; (iii) motion correction, which included the estimation of the 6 
motion parameters (3 translations and 3 rotations) for each volume 
with respect to the middle one [32], application of a rigid body (RB) 
geometrical transformation based on the motion parameters, and 
alignment of volumes to the reference; (iv) EPI distortion correction 
(unwarping); (v) registration, which comprised the alignment of the 
subject’s functional and structural images (linear RB transformation 
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with 6 degrees of freedom) and the registration from the structural to 
the 2 mm MNI152 standard space (non-linear transformation) [33], and 
the registration of the WM and CSF masks into the functional space, 
eroded with a spherical Gaussian kernel of 2.2 mm and 1.8 mm radius, 
respectively; (vi) semi-automatic classification of ICA components into 
the signal of interest or noise and ICA noise clean-up to regress the 
noise components out of the original fMRI data [34][35]; (vii) nuisance 
regression to regress the nuisance time series out of the data (6 RB 
motion parameters, motion outliers, and average WM and CSF signal), 
which entered into a GLM fitted to the data [36]; (viii) high-pass filtering 
with a cut-off period of 100 s [36]; (ix) spatial smoothing with a full width 
at half maximum of 3.3 mm (1.5 times the voxel size) [19][37].  

After preprocessing, the rs-fMRI data were parcellated using four 
commonly used atlases: AAL with 90 cortical and subcortical ROIs 
(AAL90) [38]; AAL with 116 cortical, subcortical and cerebellar ROIs 
(AAL116) [38]; Desikan with 66 cortical ROIs [39]; and Harvard-Oxford 
with 63 cortical and subcortical ROIs. The following processing steps 
were performed using the MATLAB 2016b® software, and the LEiDA 
was applied following Cabral et al.’s pipeline [40]. 

 

2.3.  rs-fMRI data processing  
 

   2.3.1.  dFC estimation 
 

The estimation of the dFC was performed using two different 
approaches: the SW and the PC. The first step for both methods 
consisted of filtering the preprocessed ROI-averaged BOLD signal in 
the low-frequency range of 0.01 Hz to 0.1 Hz (meaningful frequencies 
of resting-state fluctuations) using a second-order Butterworth band-
pass filter (Fig. 1.A.) [20][41]. 

To implement the SW analysis, three window sizes were tested – 
25 TR (corresponding to 31.5 s), 35 TR (44.1 s) and 45 TR (56.7 s), 
slid in steps of 1 TR (1.26 s). According to the literature, window sizes 
in the range of 30 s to 60 s are a reasonable choice to capture dFC 
patterns, and steps of 1 TR are commonly used [42]. Thereafter, the 
Pearson correlation coefficient was computed within each window for 
all pairs of filtered ROI-averaged BOLD signal time courses (Eq. (1.1)), 
yielding an N × N symmetric dFC matrix per window (time) and subject, 
in which N stands for the number of brain regions of the atlas. 

The PC analysis was performed with the Hilbert transform 
approach. The instantaneous phase was extracted from the filtered 
ROI-averaged BOLD signals (Fig. 1.B.), and the dFC was obtained by 
computing the phase synchronisation of for all pairs of ROIs (Eq. (1.2)), 
originating an N × N symmetric dFC matrix per TR and subject, 
capturing the BOLD PC throughout the whole brain over time. This 

matrix is illustrated in Fig. 1.C., with the colours ranging from red (full 
synchrony of BOLD phases) to blue (phase difference of 180o). 

 

     2.3.1.1.  Comparison of dFC matrices 
 

To evaluate the degree of similarity between the dFC matrices 
obtained with both methods, the cosine similarity coefficient was used. 
The literature suggests that this metric provides better results than the 
Pearson correlation [40]. Thus, the dFC matrices obtained per TR with 
the PC (higher temporal resolution) were averaged within each window 
used in the SW approach. Then, the cosine similarity coefficient   
(𝐶𝑆𝑆𝑊,𝑃𝐶) was computed between the N×(N-1)/2 upper triangular ele- 

ments (concatenated into a vector) of the dFC matrices obtained with 
the SW (𝑥𝑆𝑊) and the averaged ones obtained with the PC (𝑥𝑃𝐶). The 
expression is described in Eq. (2.1): 

 
 

𝐶𝑆𝑆𝑊,𝑃𝐶 =  
𝑥𝑆𝑊 ∙ 𝑥𝑃𝐶

‖𝑥𝑆𝑊‖‖𝑥𝑃𝐶‖
      (2.1)  

 

where‖  ‖ is the Euclidean norm. The cosine similarity is equal to 1 for 
maximal similarity and -1 for maximal dissimilarity. 
 

   2.3.2.  LEiDA 
 

After estimating the connectivity time courses, following Cabral et 
al.’s pipeline [40], the LEiDA was implemented into the dFC matrices 
yielded by PC and SW, since the leading eigenvectors were able to 
explain the majority of the dFC variance in both metrics. Regarding the 
PC method, V1 describes the main orientation of BOLD signal phases 
across the N brain regions over time, and each element of V1 repre-
sents the projection of the BOLD phase of the given brain region into 
this leading eigenvector (Fig. 1.D.). If all elements of V1 have the same 
sign, then all BOLD phases are pointing in the same direction and 
following the main orientation determined by V1 (strong coherence), 
also called the global mode of BOLD signal fluctuation. Instead, if 
BOLD signals have different orientations with respect to V1 (positive 
and negative signs), the brain can be divided into two communities 
according to the BOLD phase relationships between the brain regions. 
The magnitude of each element of V1 represents the strength with 
which brain regions belong to those communities [43]. The present 
work used the convention that the global mode is characterized by 
positive values of V1 across all brain regions, so detachments from the 
global mode are represented by negative values.  
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Fig. 1. Pipeline of LEiDA, with the AAL90 atlas (parcellation scheme) and PC method (estimation of dFC). A) The BOLD signal in a given brain region n (green) is 
band-pass filtered (blue) and Hilbert transformed into a complex analytic signal. The signal phase is represented by eiθ across time t (black line) and at each TR (red 
arrows), where the real part is given by cos(θn) and the imaginary part by sin(θn). B) BOLD phases of all brain regions represented in (i) cortical space, with arrows 
centered at the center of gravity of each ROI and (ii) in the complex plane, with phases centered in the origin of a unit circle with real and imaginary axis. C) PC 
matrix (dFC(t)). D) Leading eigenvector of the dFC matrix (V1(t)). E) Concatenation of V1(t) over time and across subjects and partition into k clusters or dFC states. 
F) dFC states displayed according to their decreasing probability of occurrence and represented by the respective Vc: (i) as a network in the AAL90 cortical space 
(axial slice), in which the elements of Vc are placed at the center of gravity of the respective brain region, shaped as spheres colored according to their sign (red to 
yellow spheres represent positive elements from 1 to 0, cyan to dark blue represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with blue 
edges; (ii) by the outer product VcVc

T, that represents a N×N connectivity pattern where each Vc(n) weights the contribution of each brain region n to that pattern; 
and (iv) as a bar plot displaying the projection of the BOLD phase in each brain region into Vc. dFC states are also characterised by their (iii) dFC matrix. 
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   2.3.3.  dFC states 
 

To identify recurrent FC patterns, the k-means clustering algorithm 
was implemented at a group-level in the migraine interictal dataset (8 
subjects, total of 8 samples); in a group composed of the interictal and 
ictal dataset (5 subjects in the interictal and ictal phases, total of 10 
samples); and in a group including the interictal and HC dataset (6 
subjects in the interictal phase and 6 HC, total of 12 samples). 

This factorisation technique received as input the leading eigen-
vectors estimated from the dFC matrices concatenated over time and 
subjects (Fig. 1.E.) and was run with k ranging from 3 to 15 (i.e., 
dividing the total number of leading eigenvectors into 3 to 15 clusters) 
to cover the range of functional networks that is commonly found in the 
literature [28][43]. Moreover, the cosine distance was chosen as the 
distance metric for minimization since it gave more meaningful results 
than the squared euclidean distance (higher specificity in detecting 
well-established RSNs). To increase the likelihood of escaping local 
minima and ensure consistency in the results, the k-means clustering 
algorithm was run 1000 times, and the best result that minimized the 
distance between the cluster point and its centroid was selected. 

After implementing this method, the leading eigenvectors were 
reorganised into a predefined k number of clusters or dFC states 
representing recurrent patterns of BOLD phase coherence (Fig. 1.F.). 
Each FC pattern was described through its N×1 cluster centroid vector 
Vc (c = 1 to k) in three different ways. (i) In cortical space. Areas with 
Vc ≤ 0.1 are linked with blue edges to represent the network created 
by the smallest community of brain regions. Several thresholds for the 
links were tested, though, this value allowed for better specificity in the 
network detection; (ii) Back into matrix format, through the outer 
product of Vc with Vc

T. This yields an N×N connectivity pattern with 
each element weighting the contribution of each brain region to that 
pattern. Positive red values are set to pairs of brain regions with the 
same sign of Vc (coherent BOLD signals) and negative blue values to 
pair of areas with different signs of Vc; (iv) And as a bar plot, showing 
the projection of the BOLD phase of each brain region into Vc. Also, 
dFC states were represented by its (iii) N×N dFC matrix, 
corresponding to the average of the dFC matrix over the time points in 
which the respective state occurred [40][43]. 

After estimating the dFC states, they were characterised using 
predefined temporal metrics: the mean lifetime (or dwell time), which 
corresponds to the mean number of consecutive epochs in the given 
state; the probability of occurrence (or fractional occupancy), which is 
the fraction of epochs the state occurred throughout the scan; and the 
switching profile, which summarises the probabilities of switching from 
a given dFC state to another [40]. 
 

   2.3.4.  Statistical analysis 
 

     2.3.4.1.  Correlation of dFC states with RSNs 
 

     While RSNs consist of temporal patterns that replicate across 
space, dFC states represent spatial patterns that replicate over time 
[40]. Nevertheless, the latter are expected to reveal sub-parts of 
specific RSNs, combinations of different RSNs or even resemble entire 
RSNs. In order to assess the correspondence of the obtained dFC 
states with well-established RSNs reported in the literature, the 
correlation of the cluster centroid vectors with the vetors corresponding 
to the RSNs in atlases spaces was computed, following the same 
method used by Cabral and colleagues [40].  

Firstly, the seven Yeo RSNs defined in 2 mm3 MNI space by Yeo 

and colleagues [22] were transformed into the atlas (AAL90, AAL116, 

Desikan and Harvard-Oxford) space. This process yielded a matrix 

with size N ROIs × 7 RSNs, i.e., seven vectors with as many elements 

as the number of ROIs of the given atlas, where each element 

corresponds to the voxels in each brain area belonging to the 

corresponding Yeo network. Since the network contrasting from the 

global mode in each state is represented by elements with a negative 

sign in the respective element of Vc, the RSNs vectors were 

transformed to their symmetric, so that they could be compared with 

the Vc’s. Moreover, since the global mode does not define a functional 

network of BOLD signal decoupling, the correlation with RSNs was not 

computed for this state. This sequence of steps was also applied to the 

ten RSNs defined by Smith and colleagues in 2 mm3 MNI space [44].  

 After this transformation, the Pearson correlation coefficient was 
computed between the cluster centroid vectors of the dFC states 
corresponding to the partition model being studied and the transformed 
RSNs vectors. For all partition models studied with the k-means 
clustering, k hypotheses were tested for each FC repertoire. Therefore, 

to correct for multiple comparisons, the standard significance threshold 
0.05 was adjusted with a Bonferroni correction to 0.05/k, and the 
statistically significant correlations were those with the respective p-
values inferior to that threshold [43]. 
 

     2.3.4.2.  Comparison between groups 
 

In order to statistically assess between-group significant 
differences in terms of the temporal metrics (mean lifetime and 
probability of occurrence) of the obtained dFC states, non-parametric 
permutation-based t-tests with 10,000 permutations were implemented 
on these two metrics. In the results obtained with the group composed 
of the migraine patients scanned in the interictal and ictal phases, a 
permutation-based paired t-test was implemented, since it compared 
paired observations of the same subject in two different conditions. 
Instead, in the results obtained with the group including migraineurs in 
the interictal phase and HC, a permutation-based unpaired t-test was 
applied, since it compared two unrelated and independent groups [45]. 
Afterwards, the results were analysed by plotting the p-values for the 
whole FC repertoire over the range of ks. The significance of the 
results was evaluated using as reference three thresholds for the p-
values: the standard significance threshold, 0.05; the Bonferroni 
corrected significance threshold, 0.05/k, to correct for multiple 
comparisons by considering the number of states (independent 
hypotheses) compared within each partition model; and the corrected 
significance threshold, 0.05/Σk, to correct for multiple comparisons by 
considering all hypothesis independent across models, including the 
whole sample of tests performed [43]. 

 

3.  RESULTS AND DISCUSSION 
 

3.1.  Comparison between dFC matrices: SW vs. PC methods 
 

     In order to compare the dFC matrices estimated for the AAL90, 

AAL116, Desikan and Harvard-Oxford atlases with the SW and PC 

methods in the interictal dataset, the cosine similarity was computed 

between the dFC matrices obtained with the SW and the averaged 

ones obtained with PC within the respective window (sizes of 25 TR, 

35 TR and 45 TR and step of 1 TR). The results are depicted in Fig. 2. 

By looking at the box plots, it is possible to observe that, regardless 
of the brain parcellation scheme and the window size chosen for the 
SW, the cosine similarity values are always above 0.650, the medians 
above 0.960 and the means above 0.940.  Furthermore, it was found 
that the distribution of data points tends to narrow for larger window 
sizes (fewer outliers with lower cosine similarity values), resulting in a 
slight increase in the medians and means. This observation might be 
associated with the fact that larger window sizes lead to the inclusion 
of more data points in the average of the PC dFC matrices within the 
window and, consequently, to the increase of the SNR, which would 
explain a slightly higher similarity between the dFC matrices obtained 
with the PC and SW with a size of 45 TR.  

Thus, despite the methodological differences between the SW and 
PC, these results suggest that the connectivity information they 
provide is overall similar.  

 

3.2.  Analysis of migraine interictal dataset 
 

After extracting the leading eigenvectors of the dFC matrices 
estimated with both methods, the k-means clustering algorithm was 
implemented in the migraine interictal group with the predefined 
number of clusters ranging from k = 3 to k = 15. In the following section, 
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(i) PC vs. 

SW (25 TR) 
(ii) PC vs. 

SW (35 TR) 
(iii) PC vs. 

SW (45 TR) 

Fig. 2. Cosine similarity values computed between the dFC matrices obtained 
with the SW and the averaged ones obtained with PC within the respective 
window ((i) size of 25 TR, (ii) 35 TR and (iii) 45 TR, all slid in steps of 1 TR), 
for the four atlases in the interictal group. The median is represented by the 
horizontal line within the box plot, the mean value is denoted with a black 
asterisk (∗) and the outliers are marked with the red plus (+). 
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the AAL90 atlas was chosen as the reference brain parcellation 
scheme, since it is the most commonly used in literature [26][28][40]. 

 

   3.2.1.  Comparison between SW and PC methods 

 

To evaluate how dFC states varied between methods, the k-
means clustering algorithm with k = 5 was run for PC and SWs of 25 
TR, 35 TR and 45 TR, with the AAL90 atlas. This partition model was 
chosen since it has been used in several studies as the best clustering 
solution to represent FC data [24][40] and provides a low set of 
synchronisation patterns, facilitating the following analyses. The axial 
cortical representation of the obtained dFC states is depicted in Fig. 3. 

For all clustering solutions depicted in Fig. 3., state 1 (most 
prevalent state) is consistent and exhibits all brain regions with BOLD 
phases aligned with each other and projected toward the same 
direction into the leading eigenvector (i.e., only positive red elements 
in the cluster centroid vector), and does not show the separation of any 
particular subsystem nor a significant correlation with RSNs of 
reference, being called the global mode. This state is extensively 
reported in the literature [24][40]. From the second state on, small 
groups of brain regions exhibit BOLD phases that deviate from the 
global coherence state and start to form functional networks (areas 
with Vc ≤ 0.1 linked by the dark blue edges).  

Although the average dFC matrices yielded by PC method 
presented a high degree of similarity with those yielded by SW (Fig. 
2.), results obtained with the k-means clustering algorithm for k = 5 
reveal that the dFC states differ greatly between both methods. 

By qualitative analysis of Fig. 3., the FC patterns identified with the 
PC seem to be more consistent with those obtained with the SW of 25 
TR, showing notable deviations compared to the results of SWs with 
larger sizes (35 TR and 45 TR) that present more irregular states. In 
particular, the occipital state, which is extensively reported in the PC 
literature [40][46], can be identified in the results obtained with the SW 
of 25 TR (although with less pronunciation than in PC) but it does not 
appear for the wider SWs. 

 

     3.2.1.1.  Correlation between cluster centroid vectors 
 

To quantitatively understand the similarities between the dFC 
states obtained with different methods, the Pearson correlation 
coefficient was computed for each pair of cluster centroid vectors 
(excluding the global mode) obtained with the PC and SW methods for 
the partition model k =5) (Fig. 4.).  

   By analysing the correlation matrices, it was not found any univocal 
correlation between states of different methods. However, results from 
Fig. 4. (i) reveal that the centroid vectors of state 2, state 3 and state 
5 obtained with PC and those of state 2, state 4 and state 3 identified 
with the SW of 25 TR are, respectively, meaningfully correlated. For 
the dFC states yielded by larger SWs, the number of correlated states 
increases, such that a single state from the PC FC repertoire presents 
multiple meaningful correlations with states yielded by SW (e.g., in Fig. 
4. (iii), the state 3 obtained with the PC is greatly correlated with state 

3 and state 5 yielded by SW of 45 TR). This suggests that, contrarily 
to the PC, the functional subsystems identified with the SW start to 
appear intermingled within each cluster, such that the correlation 
departs from univocity. Furthermore, results show that the wider the 
window, the lower the correlation with the centroid vectors obtained 
with the PC (the maximum r in Fig. 4. (i), (ii) and (iii) is 0.95, 0.75 and 
0.69, respectively). Hence, this quantitative analysis reinforces the 
higher degree of similarity between the repertoire obtained with the PC 
and the SW of 25 TR, and the divergence of results for larger windows, 
as expected. In fact, although the connectivity time courses yielded by 
PC and SW of 45 TR display slightly higher similarity (Fig. 2.), smaller 
SWs produce dynamic analyses on closer temporal scales (or 
resolution), and therefore yield more similar dFC states. 

 

     3.2.1.2.  Correlation of dFC states with RSNs 
 

Next, in order to quantitatively assess the influence of using the 
PC or SW in the reliability of the results, the dFC states obtained with 
both methods were compared with well-established RSNs, by 
computing the Pearson correlation coefficient between the cluster 
centroid vectors of the dFC states for k = 5 and the seven Yeo 
transformed RSNs vectors. 

Results reveal that the FC patterns obtained with the PC present 
statistically significant correlations with the VN (r = 0.80, p-value =         
= 2.27 ∗ 10-21), SMN (r = 0.73, p-value = 5.27 ∗ 10-16), VAN (r = 0.58, 
p-value = 1.53 ∗ 10-9) and DMN (r = 0.28, p-value = 7.40 ∗ 10-3) in 
distinct clusters. In the SW of 25 TR, the VN is also detected separately 
in state 2, although it does not correlate significantly with any Yeo RSN. 
Regarding the remaining SWs, the VN arises in the state 5 obtained 
with the SW of 35 TR (r = -0.31, p-value = 2.80 ∗ 10-3) and 45 TR (r = 
-0.32, p-value = 2.10 ∗ 10-3), though, it is not detected separately, as it 
appears intermingled with the DMN with lower correlation coefficients 
(absolute value) and statistical significance (r = 0.38, p-value = 2.29 ∗ 
10-4 for the SW of 35 TR and r = 0.34, p-value = 1.00 ∗ 10-3 for a size 
of 45 TR). In the SW of 25 TR, the DMN arises separately in state 4    
(r = 0.34, p-value = 9.10 ∗ 10-4). Regarding the SMN, it appears for the 
three SWs (r = 0.66, p-value = 1.02 ∗ 10-12 for the SW of 25 TR,                  
(r = 0.42, p-value = 3.76 ∗ 10-5 for a size of 35 TR, and r = 0.52, p-value 
= 1.89 ∗ 10-7 for a size of 45 TR). In contrast to the PC method, none 
of the SWs can detect the VAN. However, in the results obtained with 
the window of 45 TR, the DAN arises in state 4 (r = 0.41, p-value =        
= 6.36 ∗ 10-5). This network does not correlate with any dFC state 
obtained with the PC.  

Therefore, results suggest that the recurrent states obtained with 
the PC method are more similar to the functional networks of reference 
VN and SMN than those obtained with the SW method (higher 
correlation coefficients) and present stronger statistical significance, 
i.e., lower p-values. Furthermore, excluding the global mode, while 
each of the four dFC states obtained with the PC method presents a 
statistically significant correlation to one network of reference (in total, 
four Yeo RSNs are detected), states obtained with the SWs of 25 TR, 
35 TR, and 45 TR significantly correlate with a total of two, three, and 
four Yeo RSNs, respectively. These observations show that, for the 
shortest window size, just half of the Yeo RSNs is significantly detected 
compared to the PC results, and for larger window sizes, the overlap 
with the Yeo RSNs increases, but they start to appear intermingled 
within each state. Thus, we may speculate that the PC is more 
sensitive than SW in detecting RSNs, presumably due to the inherently 
higher temporal resolution. 

In fact, whereas the PC method allows for a maximal temporal 
resolution, estimating the instantaneous synchronisation of BOLD 
phases (one connectivity matrix per TR), the SW describes statistical 
relationships between brain regions within successive fixed-length 
windows (25 TR, 35 TR and 45 TR, in this case). Thus, the concept 
underlying the SW method implies focusing on the lower frequencies 
of the data (introduction of 31.5 s, 44.1 s and 56.7 s of period, 
respectively), which worsens the temporal resolution and may affect 
the detection of recurrent FC patterns with shorter mean lifetimes (i.e., 
that occur more rapidly). It should also be noted that the percentage of 
variance explained by the leading eigenvector was not above 50% for 
all data points in the SW, which may have led to a misleading 
representation of the FC dominant pattern by the leading eigenvectors  
in some cases, and affected the representation of dFC states. 
     Therefore, although the PC presents more susceptibility to noise 
than the SW, results suggest that the first method is more suitable to 
assess faster fluctuations of dFC, since it captures a dynamic that 
effectively exists and is not purely noise  (otherwise the SW would 
probably detect it more reliably). This conclusion was also presented 

Fig. 3. dFC states obtained with the k-means clustering algorithm (k = 5), 
displayed according to their decreasing probability of occurrence, for the AAL90 
atlas, (i) PC and SW of (ii) 25 TR, (iii) 35 TR, (iv) 45 TR methods. 

 (i) PC 

(ii) SW (25 TR) 

(iii) SW (35 TR) 

(iv) SW (45 TR) 

Fig. 4. Pearson correlation coefficient computed between the cluster centroid 
vectors of the dFC states obtained with the PC and SW of (i) 25 TR, (ii) 35 TR, 
(iii) 45 TR methods. The global mode was not evaluated. 

(i) (ii) (iii) 
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by Cabral and colleagues [24], which suggested the existence of a fast 
dynamic of functional FC patterns evolving, at least, at the temporal 
resolution of acquisition (in this case, corresponding to TR = 1.26 s), 
which would only be detected by keeping the high frequency 
components of the BOLD signal.  

 

     3.2.1.3.  Dynamics of FC states 
 

     In order to compare the temporal metrics of the dFC states obtained 
with the PC and SW methods, the mean lifetime and probability of 
occurrence of each synchronisation pattern are displayed in Fig. 5. for 
the partition model k = 5.  

By comparing the temporal metrics between the PC and SW 
methods (Fig. 5. (i)), it was found that the mean lifetimes of the dFC 
states are higher in the SW. Within the SW method, since the duration 
of the states tends to increase for wider window sizes, the mean 
lifetime of the global mode decreases, approximating the duration of 
the remaining patterns. Indeed, as described in the previous section, 
the SW method focuses on the lower frequency components of the 
BOLD signal. This method introduces by itself a temporal smoothing 
during the estimation of the FC within successive intervals of time, 
which increases the period of fluctuations and the mean lifetimes of the 
dFC states. Thus, synchronisation patterns with mean lifetimes shorter 
than the window size are hardly detected by this method. Following the 
same reasoning, wider window sizes (stricter low-pass filter) are 
expected to originate dFC states with higher mean life-times on 
average, which is also observed (except for the SW of 45 TR).  

The findings above do not clarify whether the FC patterns present 
short mean lifetimes that appear longer in the SW because the method 
extends their duration over time and excludes shorter instances, or if 
the states have, in fact, high mean lifetimes, being better detected by 
filtering the high frequencies of the signal. Nonetheless, the correlation 
with the Yeo repertoire analysed in the previous section shows the 
importance of a fine-grained temporal specificity in detecting functional 
networks, and Cabral et al. [24] emphasize the relevance of keeping 
the higher frequencies of the BOLD signal to detect the fast evolution 
of dFC at a scale at least as fast as the acquisition TR. These observa-
tions point to the ability of the PC method to capture a fast functional 
dynamic that exists and approximates the dynamic of the rs-fMRI (0.01 
Hz to 0.1 Hz), which can not be reproduced with the SW method. 

Furthermore, Fig. 5. (ii) reveals that the global coherence state 
tends to be more prevalent (higher probability of occurrence) and occur 
in shorter continuous time periods (lower mean lifetime) for the SW 
method than the PC method. As expected, the higher the probability of 
occurrence of the global mode, the lower the probabilities of the 
remaining FC patterns, which is visually detected in the same figure. 
 

3.3.  Comparison between groups 
 

   3.3.1.  Migraineurs: Interictal vs. Ictal 
 

    Migraine interictal and ictal sessions were compared by 
implementing a permutation-based paired t-test on the mean lifetime 
and probability of occurrence of the dFC states. Then, the FC patterns 
with statistically significant between-session differences on those 
temporal metrics were analysed. The p-values associated with the 
solutions obtained for the whole FC repertoire studied (k = 3 to k = 15) 
with the AAL90 atlas and PC method are displayed in Fig. 6., although 
this analysis was also performed for the remaining atlases (AAL116, 
Desikan and Harvard-Oxford). The red dashed line represents the 
standard significance threshold, p-value = 0.05; the green dashed line 
corresponds to the Bonferroni corrected significance threshold to 
correct for multiple comparisons by considering the number of states 
(independent hypotheses) compared within each partition model, p-
value = 0.05/k; and the blue dashed line represents the corrected 
significance threshold to correct for multiple comparisons by 
considering all hypothesis independent across models, including the 
whole sample of tests performed, p-value = 0.05/Σk [43]. 

Of the clustering solutions considered, most dFC states did not 
present any significant difference between the interictal and ictal 
sessions (black asterisks). Moreover, several solutions obtained for 
the probability of occurrence and mean lifetime were revealed to be 
possible false positives (red asterisks). Only two solutions survived the 
correction for multiple comparisons: state 6 for k = 7 (green asterisk,     
p-value < 0.05/k) and state 8 for k = 10 (blue asterisk, p-value < 
0.05/Σk), with significant between-session differences in the probability 
of occurrence and mean lifetime, respectively.   

For the subsequent analyses, the partition model with the lowest k 
and, simultaneously, with the solution displaying the p-value below the 
most significant threshold will be studied. For example, the chosen 
partition model for this atlas will be k = 10, since it is the shortest 
repertoire displaying a solution below the most significant threshold (p-
value < 0.05/Σk). Moreover, states with significant between-session 
differences in temporal metrics will also be analysed in in terms of FC 
strength or degree of coherence between brain regions (obtained by 
averaging the eigenvalues of dFC matrices over the time points in 
which the respective state occurred in the interictal and ictal sessions), 
and correlated with reference RSNs (Yeo and Smith repertoires).    

 

 

      3.3.1.1.  Analysis of relevant dFC states: temporal metrics 
and correlation with RSNs 
 

Regarding the partition model k = 10 obtained with the AAL90 atlas 
and PC method, state 8 displays a statistically significant between-
session difference in the mean lifetime (p-value = 5.92 ∗ 10-6), 
spending longer periods in the ictal session (averaged mean lifetime ± 
standard error = 5.05 ± 0.46 TR) than in the interictal session (1.80 ± 
0.92 TR). Furthermore, the frequency of this FC pattern is also signify-
cantly higher during the ictal phase (averaged probability of occurrence 
± standard error = 0.088 ± 0.023) than in the interictal phase (0.015 ± 
0.009), although this metric did not pass the correction for multiple 
comparisons. Regarding the FC strength, state 8 presents significantly 
different (p-value = 0.015) eigenvalues between both sessions, with 
stronger FC during the ictal phase (mean eigenvalue of 56.16 ± 1.34) 
than in the interictal phase (52.58 ± 0.73). This FC pattern is depicted 
in Fig. 7. A. 
     Regarding other states for this partition model, the global mode 
(state 1) is the most strongly connected state regardless of the phase 
of the migraine cycle (higher mean eigenvalues in both sessions in 
comparison to the remaining states), exhibiting significantly higher FC 
strength (p-value < 0.05) when occurring in the interictal session (mean 
eigenvalue of 70.94 ± 2.61) than in the ictal session (64.36 ± 0.88). 
     Furthermore, state 3, which is significantly correlated with Yeo’s VN 
and Smith’s VMedN, VOccN and VLatN (p-value < 0.05/Σk), and state 
7, without any significant correlation to Yeo RSNs, also reveal 
significantly higher FC strength (p-values < 0.05 and 0.05/k, 
respectively) in the ictal session than in the interictal session. The VN 
in state 3 is composed of regions from the occipital lobe (calcarine fis- 
sure, cuneus cortex, lingual gyrus, occipital superior, middle and 
inferior gyri); fusiform gyrus, belonging to both occipital and temporal 
lobes; and parietal lobe (parietal superior gyrus). (Fig. 7. B). Hence, 
results suggest that during the migraine attack, besides the higher 
mean lifetime and probability of occurrence of the DAN/FPN state, this 
network also presents stronger FC in comparison to the attack-free 
period. This observation is also valid for the VN (state 3), however, the 
differences in terms of mean lifetime and probability of occurrence did 

(i) Differences in the probability (ii) Differences in the mean lifetime 

Fig. 6. Significance of between-session differences in the (i) probability of 
occurrence and (ii) mean lifetime of each dFC state, obtained with the AAL90 
atlas and PC method, between migraine interictal and ictal sessions, as a function 
of k.  

 (ii)  (i) 

PC SW (25 TR) SW (35 TR) SW (45 TR) PC SW (25 TR) SW (35 TR) SW (45 TR) 

Fig. 5. Mean lifetime (i) and probability of occurrence (ii) of each dFC state             

(k = 5) obtained for the PC and SW of 25 TR, 35 TR and 45 TR. 
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 not present statistical significance for this atlas. 
Regarding the solutions of this statistical analysis for the remaining 

atlases, the partition models chosen to be analysed for each atlas 
followed the aforementioned criteria, being k = 14 for the AAL116, k = 
9 for Desikan and k = 13 for Harvard-Oxford. The DAN/FPN state 
described for the AAL90 (state 8, k = 10) can also be found with 
significant between-session differences in the results obtained with the 
AAL116 atlas – state 10 (k = 14), significantly correlated with Yeo’s 
DAN and FPN and Smith’s left FPN (r = 0.28, 0.57 and 0.52, 
respectively) – and the Harvard-Oxford atlas – state 9 (k = 13), 
significantly correlated with Yeo’s DAN and FPN and Smith’s right and 
left FPN (r = 0.54, 0.47, 0.56 and 0.64, respectively). Regarding the 
Desikan atlas, state 9 (k = 9) overlaps with Yeo’s FPN and Smith’s left 
FPN (r = 0.46 and 0.46, respectively). One should note that all the 
correlations with RSNs passed the significance threshold corrected for 
the whole sample of tests performed (p-value < 0.05/Σk).  

Similar to the AAL90 atlas, the DAN/FPN FC pattern presents 
significantly higher mean lifetime (p-value < 0.05/Σk), probability of 
occurrence (p-value < 0.05) and FC strength (p-value < 0.05) in the 
ictal session than in the interictal session for the AAL116 and Harvard-
Oxford atlases. For the Desikan atlas, the FPN occurs in significantly 
longer continuous time periods (p-value < 0.05/k), with higher 
probability (p-value < 0.05/Σk) and stronger FC (p-value < 0.05) in the 
ictal session than in the interictal session. 

Besides the DAN/FPN, other states correlated to well-established 
RSNs (p-value < 0.05/Σk) presented significant between-session. The 
global mode revealed a mean lifetime (AAL116 and Desikan, p-value 
< 0.05), probability of occurrence (Desikan, p-value < 0.05) and FC 
strength (Harvard-Oxford atlas, p-value < 0.05/k) significantly higher in 
the interictal session when compared to the ictal session. Regarding 
the VN, state 8 (Yeo’s VN and Smith’s VMedN, VOccN and VLatN) 
obtained with the AAL116 and state 5 (Yeo’s VN and Smith’s VMedN) 
obtained with the Harvard-Oxford revealed significantly higher mean 
lifetime and probability of occurrence (p-value < 0.05) in the ictal 
session than in the interictal session. Finally, with respect to the SMN, 
state 8 (Yeo’s SMN and Smith’s SMN and AudN) obtained with 
Desikan showed significantly higher mean lifetime and probability of 
occurrence (p-value < 0.05) and FC strength (p-value < 0.05/Σk) for 
the ictal session than the interictal session (Fig. 7. C). This state is 
composed of regions from the frontal lobe (precentral gyrus, orbito-
frontal medial cortex, anterior cingulate cortex rostral, posterior cingu-
late cortex); parietal lobe (postcentral gyrus); paracentral gyrus, belon-
ging to both parietal and frontal lobes; and temporal lobe (temporal 
superior gyrus, banks superior temporal sulcus, entorhinal cortex, 
temporal pole and temporal transverse cortex).  

   3.3.2.  Migraineurs vs. Controls 
 

     Migraine patients scanned in the interictal phase and HC were 
compared by applying a permutation-based unpaired t-test on the 
temporal metrics of the dFC states. The p-values associated with the 
solutions obtained for the whole FC repertoire (k = 3 to k = 15) with the 
AAL90 atlas and PC method are displayed in Fig. 8. 
 

      3.3.2.1.  Analysis of relevant dFC states: temporal metrics 
and correlation with RSNs 
     

     Results in  Fig. 8. show that the global mode displays statistically 
significant between-group differences in the probability of occurrence 
and mean lifetime from k = 4 to k = 15 (0.05/Σk < p-value < 0.05) 
between migraine patients scanned in the interictal phase and HC. In 
this case, the partition model chosen to be analysed is k = 4, following 
the aforementioned criteria. 

For k = 4, the global mode reveals a significantly higher probability 
of occurrence (p-value = 7.23 ∗ 10-3), mean lifetime (p-value = 3.40 ∗ 
10-2) and FC strength (p-value = 1.40 ∗ 10-3) in migraine patients in the 
interictal session compared to healthy controls. This state occurs with 
a probability of 0.687 ± 0.099, mean lifetime of 20.08 ± 7.08 TR, and 
FC strength of 67.91 ± 2.50 for migraine group, and probability of 0.391 
± 0.057, mean lifetime of 7.88 ± 0.72 TR, and FC strength of 59.63 ± 
1.22 for the control group. As expected, and similarly to the behaviour 
observed when comparing the two phases of the migraine cycle, the 
global coherence state is the only FC pattern with a higher probability 
in migraineurs scanned in the interictal phase (in this case, compared 
to controls). Thus, these results suggest that, during the interictal 
phase, patients transit less frequently to functional networks compared 
to controls, spending longer continuous time periods in global mode.  

Other patterns that show statistically significant between-group 
differences in this partition model, although not surviving multiple 
comparisons correction, are states 2 and 3, in which HC spend longer 
continuous periods of time and with higher probability than 
migraineurs. State 2 does not present any significant correlation with 
well-established RSNs, whereas state 3 is significantly correlated with 
Yeo’s SMN and Smith’s SMN and AudN. These functional subsystems 
are more weakly connected than the global mode. 

Regarding the remaining atlases, the significant differences found 
in the global mode obtained with the AAL90 atlas (k = 4, state 1) can 
also be verified with statistical significance in the repertoires obtained 
with the AAL116 and Desikan (k = 5) and Harvard-Oxford (k = 4). 

Furthermore, other states present statistically significant between-
group differences and significant overlap with Yeo and Smith RSNs    
(p-value < 0.05/ Σk). In the results obtained with the AAL116 atlas, 
state 5 (Yeo’s SMN and Smith’s SMN and AudN) for k = 5 revealed 
significantly higher mean lifetime (p-value < 0.05) and probability of 
occurrence (p-value < 0.05/Σk) in migraineurs scanned in the interictal 
phase compared to HC. Regarding the FC repertoire obtained with the 
Harvard-Oxford atlas, state 4 (Yeo’s VN and Smith’s VMedN and 
VOccN) for k = 4 displayed significantly higher mean lifetime and 
probability of occurrence (p-value < 0.05) for patients than controls. 

Although the partition models were studied following the criterium 
of lowest k and p-value below the most significant threshold, to observe 
the behaviour of the DAN/FPN network in the present comparison, the 
partition model k = 14 obtained with the AAL90 was analysed. For this 
clustering solution, it was found that state 13, which significantly (p-
value < 0.05/Σk) overlaps with Yeo’s DAN and FPN and Smith’s right 
and left FPN, exhibits significantly lower mean lifetime and probability 
of occurrence (p-value < 0.05) in patients group than in controls.  

 

   3.3.3.  Association of results with migraine pathophysiology 
 

A summary of the results obtained in the statistical comparisons 
described above is displayed in Table 1. The stronger statistical 

(i) Differences in the probability (ii) Differences in the mean lifetime 

Fig. 8. Significance of between-group differences in the (i) probability of occurrence 
and (ii) mean lifetime of each dFC state, obtained with the AAL90 atlas and PC 
method, between migraine interictal session and HC, as a function of k.  

(ii)
 

(iii)
 

Fig. 7. States obtained with the k-means clustering algorithm (state 8, k = 10), for 
the AAL90 atlas (DAN/FPN state 8 and VN state 3 for k = 10) and Desikan atlas 
(SMN state 8 for k = 9) and with the PC method, represented by its Vc: (i) as a 
network in the atkas cortical space (axial slice), in which the elements of Vc are 
placed at the center of gravity of the respective brain region, shaped as spheres 
coloured according to their sign (red to yellow spheres represent positive elements 
from 1 to 0, cyan to dark blue spheres represent negative elements from 0 to -1), 
and areas with Vc ≤ 0.1 are linked with dark blue edges; (ii) by the outer product 
VcVc

T; and (iv) as a bar plot displaying the projection of the BOLD phase in each 
brain region into Vc. dFC states are also characterised by their (iii) dFC matrix. 

(i)
 

(iv)
 A. DAN/FPN

 

B. VN 

C. SMN 
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significance (lower p-value) associated with the results across atlases 
is registered on the table, and the labels of AAL atlas were chosen to 
describe the composition of the RSN detaching from the global mode.  
 

Table 1. Summary of the results obtained with the statistical comparisons 
between the migraine interictal session vs. ictal session and migraine interictal 
session vs. HC.  

 

Abbreviations: A = Anterior; Amg = Amygdala; An = Angular; C = Cortex; CalFis = Calcarine 

Fissure; CC = Cingulate Cortex; Cd(N) = Caudate (Nucleus); Ce = Central; Cun = Cuneus; F 

= Frontal; FC = Functional connectivity; Fus = Fusiform; G = Gyrus; HC = Healthy Controls; 

HiC = Hippocampus; I = Inferior; Ins = Insular; L = Left; LentN = Lentiform Nucleus; Lin = 

Lingual; LT = Mean Lifetime; M = Middle; Med = Medial; O = Orbital; Olf = Olfactory; Occ = 

Occipital; Op = Opercular; P = Posterior; Par = Parietal; Precun = Precuneus; Pal = Pallidum; 

PO = Probability of occurrence; Put = Putamen; Rec = Rectus; RolOp = Rolandic Operculum; 

S = Superior; SC = Subcortical; Sup = Supramarginal; SuppMoA = Supplementary Motor 

Area;  T = Temporal; Tri = Triangular; ↑/↓ = Increased/Decreased; * Significant difference 

before correcting for multiple comparisons (p-value < 0.05); ** Significant difference after 

correcting for multiple comparisons (p-value < 0.05/k); *** Significant difference after correcting 

for multiple comparisons (p-value < 0.05/Σk). 
 

Over the past years, neuroimaging studies have revealed 
alterations in the functional state of migraineurs’ brain compared to the 
normal brain condition [47], suggesting that this pathological alteration 
involves the sensitivity of FC to plastic and developmental changes in 
the functional architecture. This sensitivity may lead to the adaptation 
of cortical networks and reshape of functional connections to altered 
cognitive and emotional demands, such as chronic pain [48]. Indeed, 
converging evidence suggests that the increased nociceptive synaptic 
transmission derived from recurring headaches involves a survival 
pain experience that demands attention and is intimately associated 
with learning. Thus, the unconditioned pain stimuli may bring cognitive 
and sensory processing-related regions to a heightened state [49].  

 
 

3.3.3.1.  DAN/FPN 
 

The DAN and FPN play an essential role in cognitive and executive 
processes, involving goal-directed attention, working memory, 
stimulus processing and perception-somesthesis-pain [44][47]. Hence, 
the study of dFC changes in these brain networks may provide indirect 
information about brain cognitive and executive integrity.  

The present work results suggest that migraineurs spend longer 
continuous time periods, with a higher probability of occurrence and 
more strongly coherent brain regions, in a state composed of the DAN 
and FPN during the ictal phase compared to the interictal phase. The 
temporal metrics of this FC pattern are also higher for controls than for 
migraine patients in the interictal phase. 

To the best of our knowledge, comparisons throughout the 
migraine cycle and between migraineurs and controls in terms of 
dynamics of FC states have not been performed so far. In contrast, FC 
findings have already been reported in several studies comparing 
these groups, although lacking consistency and reproducibility.  

Regarding the DAN, Niddam et al. [50] suggest an increased sFC 
between the DAN and the orbital, rectal, fusiform and parahippo-
campal gyri, and middle temporal and occipital gyri in migraine patients 
in the interictal phase compared to HC. With respect to the FPN, Lee 
and colleagues [51] point to a decrease in the dFC of FPN, and Xue et 
al. [52] report an increased sFC within the frontoparietal central 
executive network, both in migraineurs scanned in the interictal phase 
compared to controls. Regarding the comparison between migraine 
interictal and ictal phases, literature is scarce, and as far as we are 
aware no statistically significant results have been published. 

Converging evidence has suggested that pain and cognition 
systems are partially overlapped and share resources. Indeed, the 
“pain-cognition interactions” consist of connections between brain re-
gions with altered activity involved in pain processing and modulation, 

namely amygdala, anterior cingulate cortex, middle prefrontal cortex 
(affective components of pain) and S1, S2, and insula (sensory 
components of pain), and areas belonging to the FPN that act on the 
cognitive control of pain (ventrolateral and dorsolateral cortices and 
parietal gyrus). Some of these interactions may begin before the attack 
but are more prevalent during the ictal phase [9][11][52].  

Two main mechanisms have been hypothesized regarding the 
functioning of pain-cognition interactions during the attack. When 
simultaneously activated, pain and cognition systems may compete for 
resources. In those conditions, whereas healthy individuals show a 
mildly reduced brain activity in response to acute pain, and pain has a 
low ability to affect the performance of cognitive systems, migraineurs 
reveal a decreased cognitive task-related brain activity in response to 
painful stimulation [11]. This decrease can be explained by a “self-
compensatory adaptation response” driven when the brain is exposed 
to a high sensorial load (nociceptive inputs), which induces a distrac-
tion or filtering mechanism to guarantee a less painful experience and 
avoid suffering [53]. Furthermore, the sole activation of pain systems 
(resting-state condition) is interpreted by several authors as an 
“additional cognitive load” that requires focused attention and 
management. In that case, pain enhances activity in attention-specific 
networks (DAN) that share resources with cognitive-related networks 
(FPN) [54]. Following this reasoning, it is rational to expect that, during 
the attack, migraineurs spend longer continuous time periods in a goal-
directed attentional and cognitive state with a higher probability of 
occurrence and FC strength than in the attack-free period.  

 

3.3.3.2.  SMN and VN 
 

The SMN and the VN are sensory RSNs both involved in 
processing external stimuli [54]. The SMN plays a vital role in action-
execution motor tasks and perception-somesthesis paradigms, and 
the VN is associated with the visual behavioural domain, namely the 
processing of simple, complex emotional and high-order visual stimuli 
[44]. For some partition models studied, the SMN appears intermingled 
with the AudN, which is also integrated into the sensory system and 
associated with action-execution, cognition-language, and perception-
audition-speech paradigms [44]. 

The results of this work suggest that migraineurs hold the SMN 
and VN for longer continuous time periods, with a higher probability of 
occurrence and and FC strength during the ictal phase than in the 
interictal phase. This behaviour of temporal metrics is also repeated 
for HC compared to interictal phase. 

Comparing migraineurs scanned in the interictal phase with HC, 
Zang et al. [55] suggest an increased sFC between the left S1 and right 
S1, and Tu et al. [42] point to a decrease in the dFC of VN, both in the 
interictal session. Comparing migraine ictal and interictal sessions, 
Araújo [56] reports a decrease in the sFC within the SMN 
(somatomotor cortex), and Hougaard and colleagues [57] suggest an 
increase of the sFC between the visual cortex and the lower middle 
frontal gyrus, both for the ictal session. 

One possible theory to explain the observed increased 
permanence and FC strength in the SMN during the ictal phase 
compared to the interictal phase is that the recurrent brain activation 
to persistent migraine attacks enhances the strength of the functional 
connections between brain regions involved in nociceptive processing, 
or in other words, it evokes the activity of pain processing networks 
[58]. For that matter, besides the stronger FC, it would be plausible to 
speculate that patients in the ictal phase spend significantly longer 
periods and with a higher probability in a network involved in 
processing pain information (SMN). Another hypothesis to support the 
increased permanence of migraineurs in this synchronisation pattern 
during the ictal phase is the “psychological manipulation” theory [59]. 
Studies have shown that pain experience is hugely influenced by 
attention and emotion, and several brain regions associated with 
attentional/cognitive and emotional processes also participate in pain 
processing. Thus, it has been suggested that psychological 
manipulation (e.g. distraction) can profoundly impact on our perception 
of pain, such does the emotional state: a positive state lowers the pain 
and a negative state increases the pain [59]. Hence, the attempt of 
migraineurs in the ictal phase to distract from pain and return to a 
normal state may justify its frequency in dFC states participating in 
attention/cognitive and pain processing systems such as in a normal 
brain condition (healthy subjects). 

Moreover, evidence has shown that in the presence of sensory 
stimulation, such as visual stimuli, and pain stimulation, both inputs are 
sent from posterior thalamic neurons via dural and retinalthalamo-
cortical pathways to the cortex and might affect the external sensory 
sensitivity in migraine patients: the perception of pain stimulation is 

FC pattern Main findings 

Global mode 

 

   Interictal vs. Ictal 
   ↑ LT*, PO*, FC** 
   Interictal vs. HC 
   ↑ LT*, PO**, FC*** 
 

 

DAN/FPN 
F lobe (FIOG, IOG, OlfC, FSMedG, FMedOC, GRec, ACC, 
PCC); Par lobe (AnG, PrecunC); T lobe (ParaHiCG, TMG, TS 
and TM poles); SC regions (HiC, Amg, CdN) (AAL90) 

 

   Interictal vs. Ictal 
   ↓ LT***, PO*, FC* 
   Interictal vs. HC 
   ↓ LT*, PO* 
 

 

 

VN 
Occ lobe (CalFis, CunC, LinG, OccSG, OccMG, OccIG); Occ/T 
lobe (FusG); Par lobe (ParSG) (AAL90) 
 

 

   Interictal vs. Ictal 
   ↓ LT*, PO*, FC* 
   Interictal vs. HC 
   ↓ LT*, PO* 
 

 

SMN/AudN 
F lobe (PreCeG, FMG, FMOG, FIOpG, FITriG, RolOp, 

SuppMoA); Par/T lobes (InsC); Par lobe (PostCeG, ParSG, 

ParIG, SupG); Par/F lobes (ParaCe lobe); T lobe (Hechl’s G, 

TSG, TIG); SC regions (LentNPut, LentNPal) (AAL116) 
 

 

   Interictal vs. Ictal 
   ↓ LT*, PO*, FC*** 
   Interictal vs. HC 
   ↓ LT*, PO*** 
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amplified in the presence of visual inputs, converging in an increased 
pain sensation, and the saliency of visual inputs is enhanced in the 
presence of pain [54][60]. This could explain a higher mean lifetime, 
probability of occurrence and FC strength of a visual processing-
related network during the ictal phase of the migraine cycle compared 
to the interictal phase. Additionally, previous migraine studies have 
reported associations between enhanced sensitivity to sensory inputs 
and hyperactivation in brain regions involved in their processing [61]. 
In the present study, four of the five participants scanned in the ictal 
phase reported photophobia as a common symptom during the attack, 
which could also explain the higher permanence in the VN during the 
ictal phase when compared to the interictal phase. 

 

3.3.3.3.  The global mode 
 

Results of the present work reveal that migraine patients scanned 
in the interictal phase spend longer periods in the global mode with a 
higher probability of occurrence and FC strength compared to the ictal 
phase and HC. Therefore, interestingly, migraineurs reveal a more 
similar behaviour to the HC during the attack than in the attack-free 
period. This effect might be associated with the habituating response 
deficit that occurs in migraineurs. 

The habituation effect is proposed to be a cortical mechanism of 
protection against sensory overload, consisting of a decreased 
response to repeated stimuli. In patients with migraines, the repetition 
of sensory inputs leads, on the contrary, to a successive intensification 
of the response with each repetition of the stimuli, which requires a 
higher energy demand [11][62]. This deficit contributes to the cortical 
hyperexcitability and vulnerability of sensory signals in migraine. 

Coppola et al. [62] report that, during the days preceding the 
migraine attack (interictal phase), the habituation deficit reaches its 
maximum, with an exaggerated habituation decrease to sensory and 
stress overload accompanied by increased energy demand, lower 
thalamo-cortical activity and thalamic control. The decreased cortical 
activity increased energy demand required by migraineurs in this 
phase of the cycle could explain its permanence in a strongly coherent 
state (which reflects an increased power and connectome energy [24]), 
and its lower probability to occur in other functional subsystems 
detaching from the global BOLD phase coherence (attractor states or 
energy landscapes characterised by local energy minima [63]) 
compared to the ictal phase or healthy subjects. Furthermore, 
sequential recordings show that, within the interval of 12 hours to 24 
hours that precede the attack (preictal phase), the electrocortical 
patterns and energy demand tend to normalize, such as the 
habituation response. During the attack (ictal phase), this 
normalization is even more notable, so a higher tendency of 
migraineurs to occur in functional subsystems deviated from the global 
coherence state compared to the interictal period could be expected. 
Indeed, this is verified in the present work, since overall migraineurs 
present a higher mean lifetime and probability of occurrence in dFC 
states misaligned from the global mode in the ictal phase compared to 
the interictal phase (and in HC compared to migraineurs in the interictal 
phase). Approximately one or two days after the attack (postictal 
phase), the electrocortical patterns tend to destabilize again, with the 
increased energy demand and the deficit in the habituation response. 

Therefore, these results suggest that the migraine cycle might be 
characterised by an increased permanence in the global mode during 
the interictal phase due to the habituation response deficit and an 
increased probability to occur in attentional/cognitive and stimulus 
processing-related functional networks during the attack. 

 

4.  CONCLUSION 
 

The main goal of this work was to study dFC in the migraine brain, 
which is still a novel field in the literature, and compare the altered 
temporal properties and FC strength of the recurrent dFC states 
between migraineurs in the interictal and ictal phases, and between 
migraineurs in the interictal phase and HC, in order to infer the relation 
of these alterations to the disorder mechanisms and the possibility of 
them constituting a neuroimaging biomarker to predict migraine 
progression and response to treatment. 

The results obtained extended previous findings and represent 
novel evidence to the literature, revealing that the dysfunction of 
migraine brain may be associated with increased temporal metrics in 
attentional/cognitive and stimulus processing systems during the 
attack, and in the global mode during in the interictal phase. 
Furthermore, the study of dFC corroborated evidence for the dynamic 
nature of the migraine brain during rest, and emphasised the suitability 
of this analysis to detect and assess the evolution of brain signals. 

Future work regarding the study population should reproduce the 

analyses performed in the present study in a larger sample size, to 
validate the generalisability of results. Furthermore, between-group 
comparisons could be performed throughout the migraine cycle, by 
recruiting preictal and postictal patients, such as HC scanned in the 
corresponding menstrual phase to control for hormonal variation. 
Concerning the analysis, brain parcellation schemes prioritising 
functional homogeneity should be explored, such as group ICA, 
instead of atlases with sole anatomical basis that do not ensure spatial 
coherence within regions. Finally, to approach the inter-subject 
variability, the same analysis could be repeated at a subject-level, and 
the relationship between the obtained results and individual metrics 
could be studied (for example, by correlating clinical variables with the 
occurrence of specific states). 
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