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Resumo 

A enxaqueca é uma patologia neurológica incapacitante caracterizada por crises recorrentes de 

cefaleias pulsáteis, geralmente acompanhadas de náuseas, vómitos, distúrbios sensoriais e cognitivos. 

Apesar de ser considerada um problema de saúde pública, a sua patofisiologia não é totalmente 

conhecida. De modo a investigar os mecanismos deste distúrbio, procedeu-se ao estudo da 

conetividade funcional dinâmica (dFC) através da análise de dados de ressonância magnética funcional 

em repouso de oito pacientes com enxaqueca episódica menstrual sem aura na fase interictal do ciclo 

de enxaqueca, cinco das oito pacientes na fase ictal, e seis controlos saudáveis na fase menstrual de 

pós-ovulação para controlo hormonal na fase interictal. Primeiramente, a dFC foi estimada com os 

métodos da janela temporal e coerência de fase. Depois, a análise dinâmica do vetor próprio principal 

focou-se nos padrões dominantes das matrizes de dFC, agrupados posteriormente em estados de dFC 

recorrentes com o algoritmo k-médias. As diferenças entre grupos foram avaliadas estatisticamente 

com t-tests de permutação não-paramétrica. Verificou-se para a fase ictal e controlos um aumento 

significativo do tempo de vida médio e probabilidade de ocorrência em redes de atenção 

dorsal/frontoparietais, redes somatomotora e visual, e uma diminuição dessas métricas temporais no 

estado global mode comparativamente à fase interictal. Esta investigação enfatizou a relevância de 

analisar a dFC para estudar a enxaqueca, e a possibilidade deste distúrbio estar associado a uma 

alteração na dinâmica de sistemas de atenção/cognitivos, de processamento sensorial e do global 

mode, os quais poderão constituir biomarcadores neuroimagiológicos para a monitorização da 

progressão desta patologia. 
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Abstract 

Migraine is an incapacitating neurological disorder characterised by recurring, throbbing headache 

attacks, generally combined with nausea, vomiting, sensory and cognitive disturbances. Migraine has 

become a major public health concern with a huge impact worldwide, however, its pathophysiology is 

not entirely understood. In order to investigate the disorder mechanisms, dynamic functional connectivity 

(dFC) in migraineurs was assessed through the analysis of resting-state functional magnetic resonance 

imaging data. Eight female menstrual episodic migraine patients without aura were scanned in the 

interictal (attack-free) phase of the migraine cycle, five of the eight patients in the ictal (attack) phase, 

and six healthy controls in the menstrual mid-cycle/post-ovulation phase to control hormonal variation 

in the interictal phase. To estimate the dFC, the sliding window and phase coherence methods were 

tested. Then, the leading eigenvector dynamic analysis focused on the dominant patterns of dFC 

matrices captured by leading eigenvectors, further organised into recurrent dFC states with the k-means 

clustering algorithm. Finally, between-group differences were statistically assessed with non-parametric 

permutation-based t-tests. Results revealed a significant increased mean lifetime and probability of 

occurrence in dorsal attention/frontoparietal, somatomotor and visual networks, and decreased temporal 

metrics in the fully connected state (global mode) in migraine patients in the ictal phase and controls 

compared to the interictal phase. This work reinforced the relevance of using dFC to study migraine 

brain, and suggested that its dysfunction might be associated with an altered dynamic of 

attentional/cognitive and stimulus processing systems and the global mode, which might potentially 

constitute neuroimaging biomarkers for disease progression. 
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1    Introduction 
 

 
This chapter provides the reader with the motivation behind the present work in section 1.1., followed 

by the main objectives of this investigation in section 1.2. Finally, section 1.3. describes the thesis 

outline, with an overview of the chapters included in this study.  

 
 

1.1.  Motivation 

Migraine is a complex neurological headache disorder among the most prevalent and disabling 

conditions worldwide, estimated to affect over 20 % of the population in a 3:1 female-to-male ratio [1]. 

According to the Global Burden of Disease study (2019) from the World Health Organization (WHO) [2], 

this disorder ranks second among the world’s causes of disability and first in young women [3]. 

The cyclic nature of migraine is characterised by recurrent and incapacitating headache attacks, 

which typically coincide with wide-ranging symptomatology, followed by attack-free phases. These 

symptoms include nausea, vomiting, sensory disturbances, muscle tenderness [4], and attentional, 

cognitive, and executive impairments [5], contributing to the great complexity of this disorder. 

Despite the massive individual impact that migraine brings, it also entails burdensome consequences 

on private and socioeconomic domains, especially due to the productivity losses caused by its 

prevalence in the youngest and most productive years of life [1][6]. Notwithstanding, migraine remains 

undervalued in terms of priority setting and resource allocation processes, and new therapeutics to treat 

this condition lack investment [7]. 

In the last two decades, technologies to investigate migraine pathophysiology progressed greatly. 

Functional neuroimaging techniques, especially functional magnetic resonance imaging (fMRI), have 

become an indispensable tool in migraine research and have driven robust advances in understanding 

migraine generation, progression, chronification and treatment. In particular, resting-state fMRI (rs-fMRI) 

has gained widespread acceptance in the neuroscience community as a powerful technique to explore 

spontaneous migraine brain activity and functional connectivity (FC) for characterising brain’s 

spatiotemporal organisation and mapping brain function [8]. 

Studying migraine patients in different phases of the migraine cycle and healthy controls have 

allowed for a deeper comprehension regarding migraine phase-specific alterations in neuronal activity, 

stimulus processing and FC [9][10]. Therefore, emerging studies in pair with new optimized approaches 



2 

 

may contribute to advancing the knowledge of migraine mechanisms and eventually identify potential 

biochemical, genetic and/or imaging clinical biomarkers able to ensure a more accurate diagnosis of the 

disorder, better prediction of each individual’s response to treatment, and, potentially, recognition of 

targets to develop novel therapeutics. 

 

1.2.  Objectives 

This Master’s Thesis aims to study dFC in migraine and investigate specific brain alterations during 

the ictal (attack) and interictal (attack-free) phases of the migraine cycle. These alterations might 

potentially contribute to advances in the knowledge of migraine pathophysiology and constitute 

neuroimaging biomarkers to predict this disorder’s progression or response to treatment. 

The dFC is estimated from rs-fMRI data and organised into quasi-stable recurrent FC patterns, called 

the dFC states [11]. These states can be characterised in terms of spatial patterns (correlation with well-

established resting-state functional networks), temporal metrics (mean lifetime, probability of occurrence 

and switching profile) and FC strength (mean eigenvalue). 

Different methodologies are proposed to be implemented and compared throughout the work to 

evaluate their impact on the results (dFC states). Hence, the specific target objectives of the present 

dissertation are the following: 

1. Preprocessing: Compare a minimal preprocessing pipeline with a more refined preprocessing 

protocol including additional denoising steps – Independent Component Analysis (ICA) noise 

clean-up and nuisance regression; 

2. Parcellation: Assess the influence of different atlases (with different cortical and subcortical 

resolutions) to parcellate preprocessed data (namely the Automated Anatomical Labelling (AAL), 

Desikan and Harvard-Oxford atlases); 

3. dFC estimation: Compare the Sliding Window (SW) Pearson correlation method with the Phase 

Coherence (PC) method using the Hilbert transform approach; 

4. Smoothing dFC labels: Evaluate the impact of implementing a temporal smoothing algorithm 

to the dFC labels on temporal metrics; 

5. Static vs. dynamic FC: Compare the information provided by dFC (FC over time) with the one 

from static FC (sFC) (average of FC over time);  

6. Investigate migraine-specific dFC alterations: Compare different phases of the migraine 

cycle (ictal with interictal) and migraineurs in the interictal phase with healthy controls.  

 

1.3.  Thesis outline 

This dissertation is organised into five main chapters. The first and current chapter 1 comprises an 

introduction to the work, including the motivation for the conducted study, the objectives proposed to be 

accomplished and the thesis outline. 

Chapter 2 provides the reader with the theoretical background required to understand the 

approached concepts, namely migraine clinical aspects and pathophysiology, basic principles of fMRI, 
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rs-fMRI and FC, and comprises a review with the current state-of-the-art of migraine rs-fMRI studies and 

the main findings regarding sFC and dFC.  

Next, chapter 3 presents a complete description of the data acquisition, including the characteristics 

of the participants involved in the project and the parameters of the acquired rs-fMRI data. Furthermore, 

this chapter explains the methodologies followed for the data analysis performed in this work, comprising 

the preprocessing and parcellation steps, the methods used to estimate the dFC matrices, the LEiDA 

applied to reduce the dimensionality of the data while explaining the majority of its variance, and the 

approaches followed to estimate and characterise the dFC states. Finally, this chapter describes the 

statistical analyses performed, namely the correlation of the dFC states with resting-state networks and 

the comparison between migraine patients in the interictal and ictal sessions and between migraineurs 

in the interictal session and healthy controls.  

Furthermore, chapter 4 displays the results obtained with the fMRI data analysis and their 

interpretation and comparison with findings from the literature. This chapter includes an exploratory 

analysis of the FC repertoire obtained for the migraine interictal dataset, which comprises several 

comparisons derived from altering methods of the procedure, and a statistical analysis to evaluate the 

significant differences between migraine patients in the interictal and ictal phases and between 

migraineurs in the interictal phase and healthy controls. 

 At last, chapter 5 highlights the main conclusions to be drawn from this work, along with the main 

limitations and suggestions regarding future work. 
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 Chapter 2  

Capítul1  

 

 

2    Context and Related Work 
 

 

This chapter provides the reader with theoretical background regarding the work developed in this 

Master’s Thesis and the related work. Section 2.1. presents the context behind the present study 

concerning migraine. Next, section 2.2. provides an overview of the fMRI field and associated concepts. 

Finally, section 2.3. describes the state-of-the-art review of studies directed to the sFC and dFC analysis 

in migraine and other headache-related disorders. 

 
 

2.1.  Migraine 

Migraine is a common, incapacitating brain disorder characterised by recurrent attacks of throbbing 

headaches that can last from 4 to 72 hours [12], generally accompanied by wide-ranging symptoms 

including nausea, vomiting, hypersensitivity to sensory inputs (visual, auditory and olfactory) and 

movement, cutaneous allodynia (abnormal skin sensitivity) and muscle tenderness [4][13]. 

Migraine attacks typically begin around puberty, although they may have their first occurrence in 

childhood, a few times per year, and their frequency can increase up to a few times per week in 

adulthood [4][14]. Due to this heterogeneity, the International Classification of Headache Disorders 

(ICHD) (ICHD-3 beta) classifies migraine as either episodic, if the patient suffers up to 14 headache 

days per month, or chronic, when the frequency of the attacks corresponds to at least 15 days per 

month, with migraine-associated features required on 8 of the 15 headache days [15]. 

Scientific evidence supports the notion that migraine has a strong genetic basis, being tendentially 

more prevalent in genetically susceptible individuals [4]. In fact, advances in genetics have already 

identified 38 genomic migraine-associated loci [16]. Furthermore, familial hemiplegic migraineurs have 

revealed single genetic mutations associated with deficits in ion channels (e.g. Na+-K-ATPase pump or 

α1-subunit of the voltage-gated P/Q-type calcium channel), and two families with migraine exhibited 

mutations in the gene expressing casein-kinase-1δ involved in circadian rhythm disorders [16]–[18]. 

     Migraine is recognised by WHO as a global health priority, estimated to affect over 20% of the 

population in a 3:1 female-to-male ratio [1], and ranking second among the world’s causes of disability 

and first in young women [2][3]. Data estimate that 5.4% of the total years lived with disability are 

attributed to headache disorders, with migraine accounting for 88.2% of those, which corresponds to 

46.6 million people dying one year early in terms of lost health life [3]. 
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The massive prevalence of migraine entails burdensome consequences on private and socio-

economic domains, which have been underestimated in numerous health care systems and resource 

allocation processes. In particular, productivity losses are significant and largely amplified due to the 

prevalence of this condition in the youngest and most productive years of life (15 to 49 years) [1][6].  

Furthermore, it is worth mentioning that this disorder has a severe impact on a mental health level 

and brings indirect intangible costs that exceed the direct costs of medical care. A global survey 

performed among migraineurs in 2018 revealed that 85% of all participants felt depressed, helpless, 

and misunderstood during life, and 55% lived in fear of the next attack [19]. 

Despite the meaningful impact of migraine, therapeutics for this condition lack investment [7]. 

Currently, the available therapies are either acute treatments that induce the termination of acute attacks 

(e.g. administration of analgesics, antiemetics, ergotaminics and triptans) or prophy-lactic treatments 

that act on their prevention (e.g. anticonvulsants, β-blockers, calcium channel modula-tors and tricyclic 

antidepressants), decreasing the duration, intensity and frequency of their associated features 

[7][20][21]. However, these therapies present disadvantages. The acute treatment only relieves the pain 

entirely within 2 hours and for a minority of patients, being overused in several situations, and is 

susceptible to the patient’s sensitivity to the medication and contraindications, such as cardiovascu-lar 

diseases. In turn, prophylactic treatment is only effective for a limited number of migraineurs [13]. 

Over recent years, events and associations to support and empower migraineurs have increased. 

For example, in 2019, Portugal created the first portuguese association of migraine and headache 

patients MiGRA Portugal, the American Migraine Foundation made the campaign Move Against 

Migraine, and the World Federation of Neurology dedicated the World Brain Day to this disorder. 

Nonetheless, it is essential to keep raising awareness for the investment and research needs of this 

condition in order to allow for a better understanding of its pathophysiological mechanisms, for the 

development of new therapies to improve its outcomes and, in a broader perspective, for the 

optimisation of the resource allocation and clinical management [2][6].  

2.1.1.  Clinical aspects 

The migraine phenotype is periodic. A complete migraine cycle is characterised by the interictal 

phase and the migraine attack, as depicted in Figure 2.1. The interictal phase corresponds to the interval 

between two consecutive migraine attacks in which the patients are usually asymptomatic. The migraine 

attack comprises the preictal, ictal and postictal phases, which may happen sequentially, but, in most 

cases, they are overlapped [22]. 

The preictal phase, also known as the premonitory phase or prodrome, corresponds to the time 

before the onset of the headache and can be manifested up to 48 hours [23]. Commonly, this stage 

includes sensory symptoms, such as photophobia, phonophobia, osmophobia, allodynia and muscular 

sensitivity; affective symptoms, involving irritability and depression; autonomic symptoms, namely fati- 

gue, yawning, food cravings, thirst, flushing, sweating, nasal and sinus congestion, rhinorrhoea, frequent 

urination and diarrhoea; and cognitive symptoms, thought to be reversible and finished after the attack 

or with effective acute treatment [4][5][14]. The most common pattern of cognitive decline involves 

speech, reading and concentration difficulties and impaired thinking during the preictal, ictal and post-
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ictal phases, which suggests attentional and executive deficits with abnormalities in processing speed, 

decision-making, planning and working memory [5][24]. Although this symptom repertoire is 

characteristic of the prodrome, it may be noticeable and endure throughout the cycle, being usually less 

prevalent in the headache phase [4][25]. 

Some authors consider the prodromal manifestations reliable predictors of the incoming attacks [24]. 

If patients identify those symptoms early, the avoidance of stimuli that may trigger the attack (e.g. 

sensory stimuli, missing meals, caffeine, alcohol, smoke, physical exercise) and the early start of the 

treatment may attenuate the following symptoms [4][14].  

Regarding the aura, this phase is experienced immediately after the prodrome, only by approximately 

one-third of migraineurs, and according to the ICHD-3 beta [15], it consists of a total reversible 

neurological disturbance and cortical dysfunction that lasts between 15 and 30 minutes [14][23]. The 

visual aura, which is the most common type of disturbance, is characterised by visual changes known 

as the fortification spectra (positive symptoms such as scintillations and flashes of lights) or the 

scotomas (negative symptoms such as blind spots). However, other cortical perturbations may occur, 

involving motor, sensory and language spectra [26]. 

The ictal phase corresponds to the interval of 4 to 72 hours in which the patient experiences the 

headache and maximum pain severity. Thereafter, the postictal phase finishes the migraine attack. 

The postictal phase or postdrome lasts up to 24 hours after the headache phase and can be defined 

as the period between the resolution of the headache and total recovery. Despite the large neglection 

of this phase by the scientific community, not even documented in the ICHD-3 beta [15], some patients 

report symptoms involving tiredness, attention deficits and neck stiffness [25][27]. 

Although the interictal phase of the migraine cycle is tendentially asymptomatic, some studies argue 

otherwise. Neurophysiological evidence points to cases of hypersensibility to sensory stimuli, stripe-

induced visual discomfort and cognitive dysfunction [24]. Moreover, converging evidence describes the 

existence of a habituation response deficit in the attack-free phase. Instead of a regular habituation 

effect, with a “response decrement” resulting from the exposure to repeated stimuli, interictal 

migraineurs exhibit an initial weaker response that intensifies with persistent stimulation (e.g. sensory 

inputs), leading to some vulnerability in those conditions [24][28]. 

Figure 2.1. Migraine cycle. The migraine attack can be dissected into three different periods: the preictal 
phase or prodrome, which lasts up to 48 hours; the ictal phase, which can last between 4 to 72 hours 
and corresponds to the period in which the patient experiences the headache; and the postictal phase 
or postdrome, which takes up to 24 hours. The interictal period corresponds to the interval between two 
consecutive migraine attacks. The headache pain severity reaches its maximum in the ictal phase. 
Figure adapted from Peng and May [22]. 
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Hence, the peculiarities of each phase and the intra- and inter-patient varying symptoms contribute 

to the huge complexity of this disorder. 

2.1.2.  Origin: Vascular vs. Neural theories 

Headaches started to be recognised nearly 6,000 years ago, while the defining features of migraine 

only emerged in the work of Willis published in the 17th century [14]. 

In the 1870s, Edward Liveing described migraine attacks as “nerve-storm” headaches derived from 

a brain disorder. In the same year, Peter Latham's work suggested that migraine was originated from 

vasodilation and triggered by aura [14]. Since then, the origin of migrainous pain and the 

pathophysiological events involved in triggering and conducting its progression have been under 

medical debate and dichotomised into either vascular or neural events [7][29].  

The vascular hypothesis has dominated for many years, suggesting that mechanisms driving 

migraine attacks occurred in the major pain sensing regions of the brain – meninges and large cerebral 

blood vessels [30]. In fact, in 1940, the famous work of Graham and Wolff showed a strong correlation 

between the migraine headache pain and the amplitude of pulsation of the cranial vasculature, namely 

that the administration of ergotamine tartrate would constrict specific branches of the external carotid 

arteries, reducing the amplitude of their pulsations and, therefore, the intensity of the headache [31]. 

Approximately four years later, the first pure neuronal theory for the origin of migraine by Aristides 

Leão claimed that the alterations in blood flow derived from neuronal activation [30]. Posterior advances 

in migraine biology research and development of medicines with both neural and vascular effects (e.g. 

sumatriptan) contributed to discrediting the entirely vascular nature of the disorder [14].  

Over the years, migraine perception transited from a purely vascular disorder to a neurovascular 

condition primarily associated with abnormal brain activity, since the brain of a migraineur differs from a 

non-pathological brain, with the vasculature playing a critical role in the disease mechanisms [4][25]. 

Nowadays, migraine is considered a central nervous system disorder [32]. Nevertheless, the origin of 

its attacks and the underlying brain structures and neurobiological processes involved in their 

progression remains unclear and under clinical and scientific research. 

2.1.3.  Pathophysiology 

Reports suggest that migraine attacks are commonly driven by triggers, such as anxiety, fatigue, 

stress, sleep disturbances, posture, physical exercise, food or missing meals, alcohol, caffeine, smoke, 

hormonal and environmental changes, and sensory stimuli (e.g. bright lights, loud noises and intense 

odours) [4][33]. The association of migraine triggers with a destabilisation of the body homeostasis 

suggests a major involvement of the hypothalamus in the symptomatology of this disorder, with the 

brainstem, thalamus and cortical regions also playing a significant role [4][33]. Currently, the putative 

basis for migraine attacks is the activation of the meningeal nociceptors and the trigeminovascular 

system (TVS), followed by its peripheral and central sensitisation. 

2.1.3.1.  Activation of the meningeal nociceptors 

The hypothalamus is involved in the regulation of homeostatic networks and circadian rhythms of the 

body [4] – appetite and food intake (linked to the mediobasal nucleus), sleep arousal (suprachiasmatic 
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nucleus) and stress and mood changes (paraventricular nucleus) [34] – and autonomic and endocrine 

factors. Furthermore, this brain region is interconnected with structures that participate in migraine 

mechanisms, such as the brainstem and the spinal trigeminal nucleus (SpVC) located in the 

trigeminocervical complex (TCC) of the medullary dorsal horn, which emphasises the relevance in 

correlating external with internal factors, and migraine triggers with the prodromal manifestations [34]. 

A plausible hypothesis for the activation of the meningeal nociceptors is the ability of the 

hypothalamic neurons to affect the balance between the parasympathetic and sympathetic tone [13], 

which is schematically illustrated in Figure 2.2. 

Firstly, the hypothalamus and brain regions integrating the limbic system send inputs to the 

preganglionic parasympathetic neurons in the superior salivatory nucleus (SSN) located in the pons of 

the brainstem, which unleashes the neurogenic inflammation from the meningeal terminals of 

postganglionic parasympathetic neurons in the sphenopalatine ganglion (SPG) of the TVS. The 

neurogenic inflammation consists of the local release of endogenous vasoactive neuropeptides, namely 

acetylcholine, calcitonin gene-related peptide (CGRP), substance-P, pituitary adenylate cyclase-

activating polypeptide-28, vasopressin intestinal peptide and nitric oxide, which induce an augmented 

parasympathetic outflow to the cranial vasculature [4][35]. Consequently, the meningeal nociceptors 

vasodilate, leading to the activation of trigeminovascular (TV) neurons in the SpVC and a cascade of 

signalling events and perivascular changes that culminate in head pain [36], which is explained 

hereinafter in section 2.1.3.2. This process generates a parallel loop since it simultaneously induces 

trigeminal ganglion (TG) stimulation, increasing the parasympathetic tone expression [13]. 

Another hypothesis for the activation of the meningeal nociceptors is the electrophysiological 

phenomenon known as cortical spreading depression (CSD), which originates the aura. The CSD 

consists of a transient depolarisation wave that propagates slowly across the brain, excites the cortical 

neurons and glia (hyperemia or phase of depolarisation) and subsequently inhibits them (oligemia or 

Figure 2.2. Parasympathetic pathway involved in the activation of meningeal nociceptors and TVS. The 
SSN receives input from hypothalamic and limbic areas (LH, PVN, PAG, Pir and BNST), whose activity 
is controlled by migraine triggers. This process activates the SPG and leads to the neurogenic 
inflammation, meningeal vasodilation and activation of the TV neurons in the SpVC. In parallel, the 
activation of the TG potentiates the increase of the parasympathetic tone. BNST = Bed Nucleus of Stria 
Terminalis; LH = Lateral Hypothalamus; PAG = Periaqueductal Gray; Pir = Piriform Cortex; PVN = 
Paraventricular Hypothalamic Nucleus; SPG = Sphenopalatine Ganglion; SpVC = Spinal Trigeminal 
Nucleus; SSN = Superior Salivatory Nucleus; TG = Trigeminal Ganglion; Th = Thalamus. Figure adapted 
from Burstein et al. [35]. 
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SpVC 
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phase of hyperpolarisation), silencing the spontaneous and evoked synaptic activity up to 30 minutes 

[37]. In the case of visual aura, the abnormalities in the visual field described by migraineurs are believed 

to derive from the initiation of the CSD in the occipital lobe and its retinotopic propagation throughout 

the visual cortex [14]. The susceptibility of migraineurs to trigger CSD and aura derives from the 

hypothesis that migraine is a disorder with an altered brain state of hyperexcitability. Indeed, central 

neuronal hyperexcitability in migraine has been observed in several studies, with enhanced levels of 

oxidative stress biomarkers accompanied by a reduction of antioxidant mechanisms and alterations in 

the mitochondrial metabolism. These alterations induce increased levels of lactic acid and deficits in 

NADH-dehydrogenase and cytochrome-c-oxidase [38]. 

The CSD has been proved to disturb the neurovascular coupling, inducing a temporary decrease of 

cerebral blood flow, deregulation of ionic and metabolic homeostasis and deficits in cortical activity. 

Then, the autoregulation of the cerebral blood flow occurs together with the local release of adenosine 

triphosphate (ATP), glutamate, hydrogen, potassium ions (by neurons, glia and vascular cells), and 

vasoactive neuropeptides (by peripheral nerves), which diffuse and activate the meninges [4][13][17].  

2.1.3.2.  The Trigeminovascular System 

The anatomy of the TVS consists of trigeminal neurons (with cell bodies localised in the TG) and the 

cerebral vasculature they innervate [39]. The main function of this pathway is to convey nociceptive 

information from the meninges to the brain, firstly to central regions and subsequently to the cortex [35].  

The trigeminal neurons present first-order peripheral axonal projections that extend mainly through 

the ophthalmic division of the trigeminal nerve (V1) (with lesser extent through the maxillary (V2) and 

mandibular (V3) nerves) and reach the meninges (pial, arachnoid and dural blood vessels), venous 

sinuses and large cerebral arteries [37][40]. Thus, there is a dense nociceptive innervation in the 

meningeal and intracerebral vasculature, with C-fibers (unmyelinated axons) and Aδ-fibers (myelinated 

axons), that reach the dorsal horn superficial layers (laminae I and II) [37]. Moreover, these axons have 

sensory afferent projections that enter the brainstem through the trigeminal tract, interact with inputs 

from pericranial and paraspinal muscles, adjacent skin and upper cervical spinal cord (C1-C2), and 

converge centrally, synapsing with SpVC (second-order) neurons in the TCC [13][37].  

When the TVS is activated, incoming signals from the dural vasculature extend as trigeminal affe-

rents through the TG and are received by the SpVC neurons, together with inputs coming from the head 

and neck that can also pass through the TG or as greater occipital nerve afferents through the cervical 

ganglion (CG) (Figure 2.3.) [37]. Then, the SpVC neurons extend via ascending pathways through the 

quintothalamic tract to structures that participate in the processing of nociceptive signals, namely the 

brainstem – periaqueductal grey (PAG), locus coeruleus and areas from the rostral ventromedial 

medulla (RVM) – and high cervical spinal cord, synapsing with the thalamic (third-order) neurons [37]. 

Thereafter, the thalamus transmits nociceptive signals to the cortex. One approach suggests that 

this phenomenon occurs since the thalamic neurons are densely innervated by a set of 

neurotransmitters and neuropeptides (mainly GABA, glutamate, dopamine and serotonin) in a system 

that, when unbalanced, potentiates the activation of the TVS and this signal transmission [41]. In turn, 

the somatosensory and visceral inputs coming from the head and orofacial regions project through the  

trigeminohypothalamic tract to the hypothalamus [36]. 
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2.1.3.3.  Modulation and perception of pain 

The processing of nociceptive inputs throughout the TVS is complex. Upon activation of this pathway, 

the convergence of V1 inputs from the trigeminal nerve and signals from facial skin and cervical nerves 

sensitises the pericranial muscles and periorbital skin, which explains the distribution of pain perception 

in migraine through the occipital, cervical-neck and periorbital areas [40][42]. The perception of 

nociceptive signals is affected by a set of pain-modulatory circuits that involve the hypothalamus, 

thalamus, cortex and brainstem [36]. 

The hypothalamus, as mentioned in section 2.1.3.1., is critically involved in premonitory symptoms 

due to its role in regulating body homeostasis and several physiological functions. Furthermore, the 

hypothalamic projections to the SSN participate in the parasympathetic pathway and drive the activation 

of the TVS. Besides these roles, the hypothalamic descending pathways integrate the modulation of 

nociceptive signals at the spinal level and SpVC neurons, namely through the A11 dopaminergic nucleus 

(see Figure 2.3.). The A11 nucleus is believed to be the source of dopamine in the spinal cord and, if 

activated, this molecule can alter the responses in dural meningeal nociceptors [14][36]. 

Regarding the thalamus, it is usually interpreted as a “relay station” of nociceptive central processing 

and integration of affective, cognitive and sensory responses to pain [36]. Moreover, the sensitisation of 

central TV neurons and thalamic nuclei significantly affects the perception of pain information. The 

peripheral sensitisation (up to 10 minutes to develop) is characterised by a decreased threshold 

response and enhanced magnitude response of TV neurons, which become sensitive to dural 

stimulation to which their response was minimal or even null [4][13]. This phenomenon mediates the 

throbbing headache pain and its intensification during tasks inducing augmented intracranial pressure 

Figure 2.3. Ascending and descending pathways of the TVS. The inputs coming from the meningeal 
vasculature are conducted through the TG and signals from head and neck travel either through the TG 
or CG to the TCC. The inputs in the SpVC neurons in the TCC ascend via the quintothalamic tract to the 
brainstem (including PAG, LC and areas from the RVM), thalamus and hypothalamus, and also present 
a reflex connection to the SuS that activates the SPG, inducing the parasympathetic outflow and 
meningeal vasodilation. The signals coming from the thalamus and hypothalamus ascend to the cortex. 
The descending projections extend from the cortex to the hypothalamic, thalamic nuclei and LC. The 
SpVC neurons are modulated through the hypothalamus (A11 dopaminergic nucleus), PAG and RVM. 
CG = Cervical Ganglion; LC = Locus Coeruleus; PAG = Periaqueductal Grey; RVM = Rostral Ventro-
medial Medulla; SPG = Sphenopalatine Ganglion; SuS = Superior Salivatory Nucleus; TCC = Trigemino-
cervical Complex; TG = Trigeminal Ganglion. Figure adapted from Akerman et al. [36]. 
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(e.g. coughing or bending over) [4][37]. Furthermore, the central sensitisation of TV neurons (30 to 60 

minutes to develop) and thalamic (ventroposteromedial, dorsal and posterior) nuclei (2 to 4 hours to 

develop) is associated with increased spontaneous neuronal activity and sensitivity to mechanical and 

thermal stimulation of, respectively, cephalic and extracephalic regions, as if these inputs were noxious  

[4][13]. This phenomenon explains the allodynia and muscle tenderness in migraine [4][37].  

In the cortex, the reception of thalamic nociceptive inputs by primary/secondary (S1/S2) somato-

sensory cortices and insula is associated with sensory-discriminative aspects of pain, namely its quality, 

intensity and location. In turn, signals sent to visual, auditory, motor, olfactory, parietal association, and 

retrosplenial cortices explain why an abnormal neuronal activity in these areas is involved in migraine 

symptoms such as hypersensitivity to light, sounds and odours, allodynia, motor clumsiness, 

concentration deficit and transient amnesia [37][43]. Moreover, descending cortico-trigeminal pathways 

modulate the excitability of SpCV neurons, inhibiting their activity if the pathway begins in S1, and 

stimulating it if it starts in the insular cortex [37]. 

The role of the brainstem in migraine has been explored over the years. In particular, in the 1980s, 

the origin of migrainous pain was thought to derive from functional deficits in the PAG, also called the 

“headache generator” [7]. During the migraine attack, the abnormal functioning of this structure would 

conduct changes in cortical activity, either the hyperactivation of the neurons responsible for the pain 

transmission in the dorsal horn or the decrease of the synaptic neuronal activity that inhibited the same 

pain transmission, leading to the headache pain phase in the migraine cycle. Currently, although there 

is a lack of evidence supporting the “generator” theory, PAG is undoubtedly associated with the 

modulation of migrainous pain [7][44]. Studies have shown that stimulating the PAG or blocking its P/Q-

type calcium channels inhibits and facilitates, respectively, the activity of SpVC neurons [37]. 

Furthermore, bilateral projections of PAG to the RVM are interpreted as a modulatory circuit that controls 

pain processing to the spinal dorsal horn. In fact, RVM cells affect how the neurons respond to noxious 

stimulation and alter the perception of craniovascular inputs, such that the “on” cells are inhibited by 

opioids and stimulate the firing of neurons after receiving nociceptive signals, and the “off” cells are 

stimulated by opioids and inhibit the neuronal firing [14][37].  

Considering the existence of these pain-related circuits, it is interesting to mention the pain 

modulation processes in migraine treatments. Triptans (mentioned in section 2.1.1. as an acute therapy) 

are selective 5-HT1B and 5-HT1D serotonin receptor antagonists that disturb the interconnections 

between the peripheral and central TV neurons. According to preclinical studies, these molecules can 

reduce the release of vasoactive neuropeptides (e.g. CGRP and substance-P) to the TG and trigeminal 

nucleus by vasoconstriction of arterial vasculature [7][45]. Also, ditans are 5-HT1F receptor antagonists 

that inhibit the activity of cells in the trigeminal nucleus caudalis with trigeminal stimulation [7]. More 

recent drugs, such as anti-CGRP monoclonal antibodies and onabotulinumtoxin-A, inhibit the activation 

and sensitisation of meningeal nociceptors hampering the activity of Aδ- and C-fibers, respectively [45]. 

Hence, this overview shows that migraine is not a common headache, but a burdensome multifactorial 

disorder involving complex, interlinked pathophysiological mechanisms and modulatory systems. 

In the last two decades, technologies to investigate migraine pathophysiology progressed greatly, 

including novel biochemical, genetic, electrophysiological and neuroimaging studies [9]. 
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Functional neuroimaging techniques have become an indispensable tool in migraine research and 

driven robust advances in understanding its generation, progression, chronification and treatment [10]. 

In particular, fMRI has been widely explored to understand the mechanisms involved in migraine sensory 

(visual, auditory, olfactory, painful) hypersensitivities by measuring brain changes in response to 

external stimuli, as well as to decoding the functional architecture and network organisation of the 

migraine brain throughout the cycle, by studying FC of patients at rest [46]. Thus, emerging migraine 

studies in pair with new optimized approaches may contribute to garnering new insights regarding 

migraine-specific brain alterations and identifying biochemical, genetic and/or imaging clinical 

biomarkers able to ensure a more accurate diagnosis of the disorder, better prediction of each 

individual’s response to treatment, and, potentially, recognition of targets to develop novel therapeutics. 

 

2.2.  Functional Magnetic Resonance Imaging 

fMRI is a high spatial resolution and non-invasive magnetic resonance imaging (MRI) technique that 

emerged in the 1990s. This approach detects real-time information in terms of cerebral blood flow, which 

most likely reflects neurotransmitter action and, for that reason, is considered an indirect measure of 

neuronal activity [10]. Therefore, fMRI has become a leading and valuable research tool for mapping 

the activity of the human brain and exploring its function and dysfunction [47]. 

2.2.1.  Basic principles 

2.2.1.1.  Magnetic Resonance Imaging 

MRI is a technique based on the phenomenon of nuclear magnetic resonance, which arises from the 

interaction of atomic nuclei, mainly hydrogen (1H) in water molecules, with an externally applied 

magnetic field [48]. Atoms with an odd number of protons and/or neutrons present an inherent spin 

angular momentum that acts as a magnetic dipole due to its electrical charge. 

In the absence of an external magnetic field, the individual magnetic moments of the patient’s nuclei 

are randomly oriented and cancel each other, so that the net magnetisation is null [49]. However, when 

the patient is placed in the scanner, a static magnetic field (B0) derived from a strong magnet is applied 

in the longitudinal or z-direction (corresponding to the patient's long axis), which leads to two notable 

phenomenons: on the one side, the magnetic moments of the nuclei align parallel or antiparallel to B0, 

being tendentially more oriented in the same sense of B0 since it corresponds to the minimum energy 

state; on the other side, according to the Classical Theory of Electromagnetism, spins exhibit resonance 

at a well-defined Larmor frequency (ω0), proportional to the hydrogen nucleus's gyromagnetic constant 

and the strength of B0. This precession frequency originates a non-null net magnetisation across all 

spins that stabilises in the equilibrium magnetisation state, and the patient becomes polarised [50]. 

In order to obtain the MR signal, it is necessary to apply an oscillating electromagnetic radiofrequency 

(RF) field (B1), weaker than B0, with an excitation frequency that equals ω0. This RF pulse excites the 

nuclei from the lower to the higher energy state (parallel to antiparallel conformation, respectively) and 

flips the net magnetisation to the transverse or xy-plane, perpendicular to B0. Hence, spins are in phase 

and precessing around a field resulting from the sum of the static and oscillating ones [49].  
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When the application of B1 is stopped, the spins return to the lower energy state, and the 

magnetisation vector decays back to thermal equilibrium in a process known as relaxation, which occurs 

in the longitudinal and transverse directions. It is worth noticing that the contrast mechanism in MRI 

derives from differences in the relaxation times between tissues. The longitudinal relaxation (re-growth 

of the vector component into the z-direction) is characterised by the time constant T1 and corresponds 

to the transference of energy from the spin to the surrounding lattice due to the transition between states 

with different energy [51]. The transverse relaxation (decay of the vector component into the xy-plane), 

in ideal conditions of B0 homogeneity, is characterised by an exponential signal decay, or free-induction 

decay (FID), controlled by the time constant T2, which is measured by RF coils placed within the scanner 

and converted into a measurable signal [50]. In practice, magnetic field inhomogeneities change locally 

and randomly the precession frequency of the spins, such that there is a loss of phase coherence (spin 

dephasing) and the relaxation is faster, being characterised by the time constant T2* (lower than T2). In 

the brain, the field inhomogeneities can also arise from the composition of the local blood supply, which 

depends on the cellular metabolic needs and, thus, is used as an indirect measure of neural activity. 

This correlation is the core of the Blood Oxygen Level-Dependent (BOLD) contrast used in BOLD-fMRI 

to map brain function [48]. 

2.2.1.2.  The Blood Oxygen Level Dependent signal 

The BOLD signal was first described by Ogawa and colleagues in 1990 and is the most commonly 

used contrast mechanism in fMRI [52]. The concept underlying this mechanism is that local neuronal 

(electrical and synaptic) activity is tightly correlated with changes in haemodynamics, including regional 

cerebral blood flow (rCBF) and volume (rCBV) and blood oxygenation, through a process known as 

neurovascular coupling. This phenomenon produces an effect that is measurable in MR images [52]. 

According to the neurovascular coupling, the activation of brain areas increases the regional cerebral 

metabolic rate of oxygen (rCMRO2) and glucose (rCMRglu) required for cellular metabolism, which is 

ensured by the haemodynamic response that, through local vasodilation, leads to an augmented rCBF 

and rCBV. In order to guarantee that the local influx of oxygen is higher than the consumption rate, the 

rCBF needs to be larger than the rCMRO2. Therefore, there is an increase in blood oxygenation in 

response to neural activation, which reflects a net increase in the balance between oxygenated arterial 

blood to deoxygenated venous blood, and, consequently, a higher BOLD signal in the activated brain 

region compared to the surrounding tissue (see Figure 2.4.) [8][48]. 

The BOLD contrast is sensitive to changes in the regional concentration of blood oxyhaemoglobin 

(HbO2) and deoxyhaemoglobin (dHb) within the brain, since these are coupled to subtle alterations in 

the magnetic field surrounding the red blood cells. The HbO2, saturated with oxygen molecules, is 

diamagnetic, being magnetically indistinguishable from the surrounding tissue. The dHb, deoxygenated 

and with four unpaired electrons, is paramagnetic. This paramagnetism leads to susceptibility effects in 

the surroundings of these molecules that result in local magnetic field inhomogeneities and thus cause 

spin dephasing and geometric distortions. Therefore, this phenomenon reduces T2 (intravascular signal) 

and T2* (extravascular signal) time constants, leading to BOLD signal losses. In the same reasoning, an 

increase in blood oxygenation leads to an augmented ratio of HbO2 to dHb, which enhances the T2
(*) 

and therefore the BOLD signal, corresponding to a brighter region on the MRI [8][47]. 
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     One should note that the BOLD signal response is much slower than the underlying neuronal activity, 

being modelled by the haemodynamic response function (HRF) that limits the temporal resolution of 

fMRI. Typically, the HRF presents a width of approximately 3 s and a peak between 5 s to 6 s after the 

stimulus onset, returning to baseline about 12 s after the stimulus onset [8][47]. 

In theory, the BOLD signal corresponds closely to local field potentials (LFP) of a neural population 

(i.e., a weighted average of synchronised dendro-somatic components from synaptic signals), such that 

it can be roughly approximated by the convolution of the LFP with the HRF. Nevertheless, according to 

the Linear Transform Model, assuming that the BOLD response is linearly dependent on neural signals 

under certain conditions and that the relationship between the BOLD signal and the neuronal response 

displays linear and time-invariant (LTI) properties, the neural responses to individual events add linearly 

to yield the expected BOLD response (see Figure 2.5.). In those conditions, the BOLD signal can be 

predicted as the convolution of neuronal activity with the HRF [48][53][54]. 

The basic principle of BOLD-fMRI consists of acquiring sequential low-resolution brain volumes 

(each one with multiple slices composed by voxels), from which it is possible to detect variations in the 

BOLD signal. The typical image readout sequence used for BOLD-fMRI acquisition is echo-planar 

imaging (EPI) due to the BOLD contrast sensitivity and imaging speed. However, this technique presents 

limited temporal resolution, with a slow temporal sampling of the haemodynamic response and 

susceptibility to artefacts near the air-tissue boundaries [8][53]. To overcome these caveats, new 

directions for imaging technology have arisen over the years, namely simultaneous multislice (SMS) 

and 3D imaging techniques, which improved acquisition speed and signal-to-noise ratio (SNR). The use 

of ultra-high fields (7 Tesla or higher) in fMRI experiments can also be used to increase the available 

SNR and contrast-to-noise ratio (CNR) [55]. 

The BOLD-fMRI acquisition can be performed using a task-based or stimulus-driven paradigm, which 

Figure 2.5. BOLD signal response modelled by the HRF, following the LTI properties, with A displaying 
separately distributed neural events and B representing neural responses close together in time. The 
property of linearity of the BOLD response stands for (i) if a neural response is scaled by a factor, the 
BOLD response will be scaled by the same factor and (ii) if two neural events occur close in time, the 
expected BOLD reponse is a linear addition of both. The property of time invariance demonstrates that 
if a neural reponse is shifted in time, the BOLD response will also be shifted by the same amout of time. 
Figure extracted from Poldrack et al. [53]. 

A B

A 

Figure 2.4. Schematic representation of the neurovascular coupling mechanism. 
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compares stimulus-evoked responses with a matched baseline task, or a resting-state paradigm, which 

corresponds to a condition with the absence of external stimuli or imposed tasks [8]. The use of fMRI 

experimental designs with task-based paradigms makes it possible to determine which brain regions 

show an increased intensity of the BOLD signal when a task or stimulus is imposed, which contributes 

to studying the localised brain activity and function. Furthermore, throughout the years, rs-fMRI has 

gained widespread acceptance in the neuroscience community as an increasingly powerful technique 

to explore spontaneous brain activity and functional co-activation patterns for characterising the brain’s 

spatiotemporal organisation and mapping brain function [8][56]. 

2.2.2.  Resting-state fMRI and Functional Connectivity 

The human brain can be interpreted as an integrative network derived from complex interactions 

between brain regions with some degree of FC. FC can be defined as the coherence (or statistical 

temporal dependence) of BOLD signal fluctuations between distinct brain regions [56]. 

rs-fMRI is the area of application of BOLD-fMRI that allows studying the intrinsic brain FC. This 

technique focuses on the spontaneous low-frequency fluctuations (usually between 0.01 Hz and 0.1 Hz) 

of the BOLD signal, reflecting the brain baseline activity. In a typical rs-fMRI experiment, participants 

are placed into the MR scanner and asked to keep their eyes opened or closed and not think of anything 

in particular without falling asleep, while the intrinsic brain activity is measured [56][57]. This approach 

presents several technical advantages over other fMRI techniques, namely the facility in the signal 

acquisition, reduced burden of experimental design or training demands, the low effort required from the 

patients, reduced susceptibility to (head) motion artefacts and proficiency in detecting different functional 

areas in patient populations [56][57].  

Over the past years, rs-fMRI studies have identified resting-state networks (RSNs), i.e., intrinsic 

connectivity networks composed of brain areas with low-frequency synchronous fluctuations, which 

reproduce the functional architecture of the brain [57][58]. In 1995, Biswall and colleagues demonstrated 

the first significant BOLD signal functional correlations within the sensorimotor or somatomotor network 

(SMN), between the left and contralateral sensorimotor cortices [59][60]. Furthermore, emerging rs-fMRI 

studies have allowed the identification of standard repertoires of functional subsystems over the years. 

The Yeo’s template [61] was obtained with a surface vertex clustering analysis and includes seven RSNs 

– visual  (VN), SMN, ventral attention (VAN), dorsal attention (DAN), limbic (LN), frontoparietal (FPN) 

and default mode (DMN) networks. Moreover, the Smith’s template [62], originated by an ICA analysis, 

comprises ten RSNs, which include a sub-divided VN – visual medial (VMedN), visual occipital (VOccN) 

and visual lateral (VLatN) networks, a sub-divided FPN – right and left FPN (R FPN and L FPN, 

respectively), the DMN, SMN, auditory (AudN), executive control (ECN) and cerebellar (CbN) networks. 

All of the RSNs mentioned before except for the DMN are task-positive, meaning that voxels 

belonging to those get consistently more activated in active-task conditions. In contrast, the DMN is 

task-negative, since it includes regions that are more intensely correlated during rest and present 

reduced activity when a cognitive task is performed. Recently, more attention has been given to the 

DMN in the clinical and research communities [60][62]. A global description of the anatomical and 

functional characteristics of each standard RSN based on a literature review is presented in Table 2.1. 
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Table 2.1. Anatomical and functional description of the most common RSNs reported in the literature. 
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Table 2.1. (Continued) 

 
 

Abbreviations: A = Anterior; An = Angular; Amg = Amygdala; Ass = Association; Aud(N) = Auditory (Network); BLat = Bilateral; 

C = Cortex; CalSul = Calcarine Sulcus; CC = Cingulate Cortex; Cb(N) = Cerebellum (Network); D = Dorsal; DAN = Dorsal Attention 

Network; DM(N) = Defaut Mode (Network); EC(N) = Executive Control (Network); F = Frontal; FAs = Frontal Areas; FEF = Frontal 

Eye Field; FPN = Frontoparietal Network; G = Gyrus; GenN = Geniculate Nucleus; HC = Hippocampus; HTh = Hypothalamus;     

I = Inferior; Ins = Insula; L = Left; LN = Limbic Network; Lat = Lateral; Lin = Lingual;  M = Middle; M1 = Primary Motor Cortex;                        

Med = Medial; NAc = Nucleus Accumbens; Occ = Occipital; P = Posterior; Par = Parietal; PerStrA = Peristriate Area;                        

PF = Prefrontal; Precun = Precuneus; Prim = Primary; R = Right; S = Superior; S1 = Primary Somatosensory Area;                            

S2 = Secondary Somatosensory Area; SM(N) = Somatomotor (Network); SN = Salience Network; SuppMoA = Supplementary 

Motor Area; T = Temporal; Vent = Ventro; VAs = Visual Areas; VAN = Ventral Attention Network; V(N) = Visual (Network). 
 

In summary, fMRI connectivity studies contribute to a more detailed brain characterisation 

concerning the FC strength within each network (functional segregation) and large-scale neuronal 

communication between different networks (functional integration). Advances in this field may provide 

new insights regarding healthy brain functioning and the disruption from the normal brain condition in 

neurological and neuropsychiatric disorders [56][57].   

2.2.2.1.  Preprocessing 

The neuronal activity that induces the BOLD-fMRI response only accounts for a small ratio of the 

total variance of the signal. The predominant non-neuronal contributions may include thermal noise 

(derived from the electrical circuits of MR signal reception), instrumental drifts, and artefacts derived 

from hardware instabilities, head motion and non-neuronal physiological fluctuations (e.g. signals 

derived from the pulsatile flow of cardiac cycle through the brain, respiration, alterations in the 

concentration of arterial CO2 due to the changing respiration rate, vasomotion effects and changes in 

blood pressure and cerebral autoregulation mechanisms) [63][64]. 

Since the rs-fMRI analysis investigates the correlation between BOLD time courses through the brain 

without any prior knowledge about the signal of interest, the presence of noise and artefacts that might 

share some spatial and spectral overlap with RSNs reduces the SNR and the quality of the BOLD signal, 

affecting the identification of the RSNs and, consequently, the analysis of FC [65]. Furthermore, in dFC 

analysis, the presence of noise can mislead the assignment of dynamic changes to neural activity 

[66][67]. Thus, to improve the relative validity of the FC estimates, the BOLD signal must undergo 

preprocessing, as will be further explored in section 3.2.1. of the present work. Typical preprocessing 

steps include motion correction, distortion correction, slice-timing correction, physiological noise 

correction, spatial smoothing, temporal filtering, and registration to standard space [53][66].  

2.2.2.2.  Parcellation 

The organizational principles of the human brain are extremely complex due to the existence of vast 

microarchitectures, topographies, connectivities and functionalities [68]. Furthermore, the enormous 
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dimensionality of the fMRI datasets would hamper an efficient and fast extraction of information for 

further analyses if BOLD signals from all brain voxels were considered individually [69].  

Hence, the concept of brain parcellation has become widely used in neuroscience, which consists of 

dividing the brain into anatomically and/or functionally distinct regions of interest (ROIs) and average 

the BOLD time courses of the voxels belonging to each ROI [70].  

Not only can brain parcellations reduce the extremely high dimensionality of rs-fMRI data into a set 

of manageable sets of regions and increase the SNR (by reducing the noise through averaging), they 

also provide fundamental insights regarding the whole-brain activity and functional architecture, which 

contributes to decoding the human brain in terms of predicting behavioural/clinical phenotypes from 

brain imaging data. Furthermore, this method makes the comparison of FC results across studies more 

efficient, as the FC is analysed within specific ROIs and not in hundreds of thousands of voxels 

[68][70][71]. However, parcellating the rs-fMRI has some inherent limitations, such as the loss of a 

detailed connectome within each ROI and the counter-intuitive down-sampling of the data by averaging 

BOLD signals in pair with efforts to increase the spatial resolution of fMRI sequences [69].  

Over the past few years, much progress has been made in defining new types of brain parcellations, 

including cortical and subcortical regions, through model-driven or data-driven approaches.  

The model-driven methods use standard predefined anatomical templates that divide the brain 

according to histological and microstructural properties (cyto- or myelo-architectonic information), 

ensuring spatial contiguity and non-overlap of brain regions. Some examples are the AAL [72], Desikan 

[73] and Harvard-Oxford atlases. However, this type of parcellation does not require the defined ROIs 

to present FC homogeneity, and since the atlases derive from a higher resolution source than the 

majority of fMRI data, their application at the fMRI scale may give rise to partial volume effects (PVEs) 

and co-registration errors [74].  

In turn, data-driven approaches generate ROIs by parcellating the whole rs-fMRI data into spatially 

coherent regions that show maximum functional homogeneity without including anatomical priors (FC-

based parcellation strategies). For that purpose, spatially constrained clustering techniques, such as the 

ICA, k-means and hierarchical clustering, are used [53][68][70]. Some templates obtained by this type 

of approach are Yeo repertoire [61], Smith repertoire [62] and Craddock atlas [74]. Nevertheless, one 

should note that these parcellation schemes do not guarantee spatial contiguity [74].  

Besides the variety of methods to parcellate the brain, there are distinct sources of reference data 

through which the templates are created and different objectives that drive their creation (for example, 

to track a specific brain structure or functionality).  

Figure 2.6. Adjusted mutual information scores between different brain parcellation schemes. Figure 
adapted from Lawrence et al. [71]. 
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Figure 2.6. shows the variable degree of similarity (adjusted mutual information scores) between 

different templates [71]. 

Thus, the peculiarities of each approach and the complementary information they provide together 

justify the importance of comparing distinct parcellation schemes during data analysis to provide a more 

complete interpretation of results. 

2.2.2.3.  Static FC analysis 

Assuming stationarity of FC over a full rs-fMRI scan, with the underlying brain connections being 

constant over time, the sFC can be analysed in preprocessed data through several methods. The most 

common are model-dependent methods, which are limited to local connectivities and require prior infor-

mation or a predefined model (seed-based correlations, regional homogeneity (ReHo) and amplitude of 

low-frequency fluctuations (ALFF)) and exploratory data-driven approaches that look for general FC 

patterns at a whole-brain level (principal component analysis (PCA), ICA and clustering) [8][56]. 

     The seed-based correlational analysis (Figure 2.7.A) was the first method of sFC to be implemented 

to rs-fMRI data by Biswal and colleagues [59] and is currently the most straightforward approach to 

assess the activity of a specific ROI (seed), which can correspond to one single voxel or a set of voxels. 

This technique correlates the averaged BOLD time courses of voxels belonging to the seed with the 

time series of all remaining voxels of the brain. Therefore, with the application of a threshold, it is 

obtained an FC map that provides information about which voxels are significantly correlated (or 

functionally connected) to the seed and to what extent, allowing to detect both long- and short-distance 

connections between the seed and other brain regions [56][75]. 

     Then, the ReHo method (Figure 2.7.B) relies on the assumption that a given voxel is temporally simi- 

lar to its closest neighbourhood [76]. It can be applied in a predefined ROI, although that is not a 

mandatory condition, and measures the synchronisation between the BOLD time course of a given voxel 

with the ones of its nearest neighbours, in a voxel-wise approach, using Kendall’s coefficient of 

concordance. In contrast to seed-based correlational analysis, ReHo studies local spontaneous activity 

and short-distance connections, providing information about brain regional activity [8]. 

The ALFF method (Figure 2.7.C), or the most recent fractional ALFF technique (fALFF) with reduced 

sensitivity to physiological noise, measures the magnitude of signal amplitude on a voxel-by-voxel way, 

reflecting the intensity of spontaneous regional activity. The (f)ALFF can be obtained by transforming 

each voxel’s time series to the frequency domain (power spectrum) and then computing the amplitude 

at each frequency, since the power of a frequency is proportional to the square of the amplitude of this 

frequency component. Finally, the averaged amplitude is computed at each voxel in the low-frequency 

range (typically 0.01-0.1 Hz) [8][77]. Similar to the ReHo, this approach analyses spontaneous activity 

at a local level, and since both metrics express different properties of BOLD signal (synchronisation and 

A B

 

C

 

D

 

Figure 2.7. Common methods used to study static FC in rs-fMRI data. A: Seed-based correlations;          
B: ReHo; C: ALFF; D: PCA; E: ICA; F: Clustering. Figure adapted from Soares et al. [8]. 
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amplitude, respectively), they are commonly used as complementary analyses [8]. 

Regarding the PCA (Figure 2.7.D), it is a method that searches for a set of principal components 

(PCs), each of them corresponding to a direction in the dimensional space of input data (orthogonal 

axes). In practice, data can be explained as a linear combination of all PCs, as they together maximise 

the explained variance of the data and separate relevant information from noise. The efficacy of this 

technique depends on assumptions of linearity and orthogonality of PCs and high SNR [8]. 

Furthermore, the ICA (Figure 2.7.E) is a blind-source separation technique that finds a mixture of 

sources that minimises the statistical dependence between its underlying components [78]. When 

implemented in rs-fMRI analysis, ICA decomposes the 4D fMRI dataset into statistically independent 

spatial-temporal components (ICs) described by a spatial map modulated in time by the series of the 

respective component. This data-driven approach has been widely used in several studies with the 

significant advantage of requiring few prior assumptions. Nevertheless, it requires the user to visually 

and manually ascertain the ICs of interest corresponding to brain networks, correlate them with 

predefined RSN templates and discard those associated with noise [75]. 

Finally, clustering methods (Figure 2.7.F) divide data into non-overlapping clusters that maximise the 

degree of similarity within each group and minimise the similarity between different groups [56]. The 

cluster assignment is based on the distance of each data point to the cluster centroid, which is typically 

computed through an average of its members. Each iteration of the algorithm updates the cluster 

centroids and memberships, and the algorithm halts when the centroids stabilize and the defined 

number of iterations is achieved (i.e., until convergence of results) [79]. In rs-fMRI analysis, data are 

segmented into clusters of brain voxels with correlated BOLD time courses and, thus, FC [8].  

Over the past years, all metrics described above have provided new insights regarding the rs-fMRI 

signal, and, currently, they are still widely used to analyse brain FC. However, the estimation of FC over 

an entire rs-fMRI scan with the prior assumption that it does not change over time started to be 

interpreted as too simplistic to capture the full extent of resting-state activity [80]. Indeed, at rest, the 

dynamic aspects of fMRI are even more notable since the mental activity is unconstrained [66]. 

Hence, in the 2000s, studies suggesting the dynamic behaviour of FC on short-time scales started 

to arise throughout ageing, development, visual state and even as a function of attention, conscious 

awareness, learning and muscle fatigue. In 2010, the investigation from Chang and Glover 

demonstrated for the first time the unambiguous dynamic behaviour of FC with fluctuations in the time 

scale of seconds to minutes [66]. Throughout the years, the limitations of sFC analysis and 

improvements in recording methods shifted the attention to the concept of dFC and the implementation 

of new methods to analyse FC, as explored in the next section in more detail. 

2.2.2.4.  Dynamic FC analysis 

In contrast to conventional sFC, the study of dFC addresses variations in the FC over time (i.e., 

across the duration of a scan), which allows the detection of time-varying patterns of neuronal 

connectivity and the appearance of significant brain networks. These are not so easily identified in sFC 

analysis and can be particularly prominent when comparing the FC of healthy and diseased brains [81]. 

Up to now, some analytical pipelines have been implemented to estimate the dFC, including the SW, 

PC and time-frequency analysis. 
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(i) Sliding Window method 

The SW has been the most common and straightforward approach for analysing dFC [82]. This 

method segments fMRI data in successive intervals of time (temporal windows), within which the FC is 

described between each pair of brain regions by computing a pairwise (typically Pearson) correlation 

between their respective BOLD time courses [83]. 

For a sliding window with length W (i.e., that spans the temporal period from t to t + W - 1) shifted by 

a step S that defines the degree of overlap between successive windows after calculating the FC metric 

of interest (corr()), the dFC between two brain regions n and p at each time point t can be given by the 

Equation (2.1): 

𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑟𝑟(𝑥𝑛,𝑡
      𝑡+𝑊−1, 𝑥𝑝,𝑡

     𝑡+𝑊−1) 

where xn,𝑡
      𝑡+𝑊−1 and xp,𝑡

      𝑡+𝑊−1 are the BOLD time courses of the brain regions n and p, respectively, 

segmented in time from t to t + W - 1. This process is repeated until the window reaches the end part of 

the whole time course [80][84]. That way, considering the brain parcellated into N regions, the functional 

connections between all regions can be described in connectivity matrices with size N × N per window 

(time) that reflect the temporal evolution of the FC through the whole brain, as schematically illustrated 

in Figure 2.8. Since the sFC matrices are symmetric, only the upper (or lower) values in relation to the 

diagonal (N×(N-1)/2 elements) yield relevant information [80]. 

      One should note that, although the Pearson correlation coefficient is the most common metric used 

to estimate FC in the SW approach, other possibilities have already been used, namely ReHo and ICA. 

For example, in the case of SW-ICA, the decomposition of BOLD time courses with ICA yields spatial 

maps of RSNs over time [84]. 

(2.1) 

Figure 2.8. SW methodology to estimate dFC. A: BOLD time courses (brown and blue) from two brain 
ROIs and a temporal window (grey) that spans the temporal period from t to t + W - 1, shifted by a step 
S that defines the degree of overlap between successive windows, within which the parwise correlation 
is computed; B: Connectivity time course obtained from computing the pairwise correlation between 
the time series of the two ROIs within the temporal window over time; C: dFC matrices representing 
the FC between each pair of ROIs over time. Figure adapted from Preti et al. [80]. 

A 

B 

C 

t t + W - 1  

S 
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The SW provides a simple pipeline to obtain FC estimates, and its robustness makes it less 

susceptible to noise than other techniques, such as the PC. Notwithstanding, it entails several 

limitations. The estimation of FC within the sliding window compromises the temporal resolution of the 

method, and the choice of a fixed-length window precludes the detection of dFC fluctuations with 

durations below that size. Thus, the choice of the window length is a trade-off: it should be short enough 

to detect potentially FC variations of interest without introducing spurious fluctuations (sensitivity), but 

long enough to ensure a reliable estimation of FC (specificity) and resolve the lowest frequencies of 

interest in the signal and [80][84]. Although there is no ideal size, previous studies revealed that 

durations of 30 s to 60 s produce robust results of FC [84]. Furthermore, the window step is commonly 

set to one repetition time (TR), which is the period between the application of consecutive RF pulses 

(corresponding to one time frame or volume) [82].  

Another pitfall of this technique is the window shape. The rectangular window, which is the most 

commonly used, assigns equal weights to all observations inside the window. However, this increases 

the risk of including/excluding outliers that appear as instantaneous noisy observations, leading to 

sudden misunderstood changes in dFC [80]. A possible solution to that problem is selecting tapered 

windows with weighted edges (e.g. by convolving a rectangular window with a Gaussian kernel) [11]. 

(ii) Phase Coherence method 

The PC method characterises the time-varying single frame FC by comparing instantaneous phase 

information between BOLD time courses of different brain regions. The degree of phase 

synchronisation, also called PC, is a measure of dFC [85]. 

 The first step of the PC method is the conversion of the band-pass filtered BOLD signal (𝑥(𝑡)) into 

its complex analytic version (𝑥𝑎(𝑡)), meaning the separation of its instantaneous amplitude from its 

instantaneous phase (Equation (2.2)). This signal decomposition can be performed using processing 

techniques like the Hilbert transform, Wavelet filtering or Gabor expansion [85]. In the present work, the 

Hilbert transform approach was implemented: 

𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)] 

where 𝑗 is the imaginary unit and 𝐻[⋅] the Hilbert transform.  

 Assuming that 𝑥(𝑡) is a narrowband signal, it can be represented by the product of an amplitude-

modulated low-pass signal, 𝑎(𝑡), with a sinusoidal carrier frequency, 𝜃(𝑡), such that: 

𝑥(𝑡) = 𝑎(𝑡)𝑐𝑜𝑠 [𝜃(𝑡)] 

If the Bedrosian’s theorem is respected, then the Hilbert transform of 𝑥(𝑡) can be rewritten as follows: 

𝐻[𝑥(𝑡)] = 𝑎(𝑡)𝑠𝑖𝑛 [𝜃(𝑡)] 

Therefore, the analytic signal can be defined by Equation (2.5), using Euler’s formula: 

𝑥𝑎(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃(𝑡) 

where 𝑎(𝑡) is the instantaneous amplitude and 𝜃(𝑡) the instantaneous phase [85]. 

 

(2.2) 

(2.4) 

(2.3) 

(2.5) 
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After estimating the phases of BOLD signals, the dFC between two brain regions n and p at each 

time point t can be given by their PC, which is computed through the Equation (2.6): 

𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) = 𝑃𝐶(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑠 [𝜃(𝑛, 𝑡) − 𝜃(𝑝, 𝑡)] 

Thus, if two brain regions have synchronised BOLD signals at the same instant (i.e., 𝜃(𝑛, 𝑡) =

 𝜃(𝑝, 𝑡)), they have no phase difference, such that 𝑑𝐹𝐶(𝑛, 𝑝, 𝑡) = 𝑃𝐶(𝑛, 𝑝, 𝑡) = 1. Following the same 

reasoning, orthogonal BOLD signals will present null PC and dFC [86]. Considering the brain 

parcellation scheme of N regions, it is possible to obtain a whole-brain pattern of BOLD PC over time, 

represented by symmetric dFC matrices with size N × N per TR. 

The implementation of the PC method has been widely recognised in magnetoencephalography 

(MEG) and electroencephalography (EEG) studies, being still an emerging tool in fMRI [85]. Since this 

method uses instantaneous BOLD phase alignments to characterise FC, it presents more sensitivity to 

noise fluctuations than the SW, because random fluctuations of BOLD phases with small phase 

differences between them may lead to spurious connections [87]. However, PC reveals substantial 

advantages compared to SW. First of all, the PC method computes the dFC at each TR, which 

guarantees a maximum temporal resolution and ensures a more accurate analysis of the faster dFC 

fluctuations. Moreover, since this metric is applied instantaneously for each time point and the whole 

brain with one transform, it is computationally faster than temporal correlations. Also, since the PC is a 

non-linear measure, it is more suitable to detect complex dynamic processes in the brain [85]. 

 (iii) Time-frequency analysis 

 

The time-frequency analysis quantifies the correlation between BOLD time courses of different brain 

regions as a function of both time and frequency, by analysing their coherence and phase lag [66][82]. 

One way to implement this method is resorting to the Wavelet Transform Coherence (WTC). The 

WTC decomposes the BOLD time series into the time-frequency space through the convolution of the 

time course with scaled and translated versions of a wavelet function [66]. The implementation of time-

frequency analysis with the WTC overcomes the limitation of the SW of requiring a fixed window size. 

Instead, the scale of the wavelet (effective analysis window) is adapted to the frequency of the signal, 

such that shorter time windows are implemented in higher frequencies (faster changes, better spatial 

resolutions) and larger time windows to lower frequencies. That way, this method allows to characterise 

the coherence between brain regions and networks at multiple frequencies and study the temporal 

variability in the amplitude and phase relationships between brain regions at each time-frequency point. 

Nevertheless, the abundance of information obtained with this type of implementation makes it difficult 

to scale up to multiple brain regions and subjects [84][88]. 

2.2.2.5.  dFC states 

The direct analysis of dFC time courses would be highly burdensome due to their dimensionality. 

Also, several studies have revealed that FC displays quasi-stable recurrent synchronisation patterns 

that resemble well-established functional networks instead of varying randomly over time. Hence, the 

organisation of FC fluctuations into dFC states is extremely relevant to their interpretation [11]. 

The estimation of dFC states from multi-dimensional data can be computationally faster and more 

(2.6) 
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efficient if the input dimensionality is significantly reduced. A way to perform this reduction is by applying 

the Leading Eigenvector Dynamic Analysis (LEiDA) proposed by Cabral and colleagues [83][86][89]. 

LEiDA focuses on the dominant FC pattern of the data by considering the leading eigenvector (V1) of 

the dFC matrix at each time point (N elements per time) instead of the whole dFC matrix (N × N elements 

per time or, in practice, non-redundant N×(N-1)/2 elements per time) [86]. The V1 is associated with the 

largest magnitude eigenvalue and explains the majority (over 50 %) of data variance [89]. 

Beyond the reduced dimensionality that LEiDA ensures, it provides a clearer and more rigorous 

detection of recurrent patterns and epochs at which the dFC variance becomes dominated by a different 

pattern, being also more robust to high-frequency noise [86]. 

Thereafter, the estimation of dFC states can be performed by implementing matrix factorisation 

techniques into FC data (or the respective leading eigenvectors) over time, such as k-means clustering, 

PCA and dictionary learning. Commonly, these methods are implemented across subjects, allowing for 

a dFC characterisation of the entire group that participated in the rs-fMRI acquisition [80].  

The k-means clustering algorithm is a clustering technique introduced by Allen and colleagues [11] 

that groups the dFC matrices over time into non-overlapping clusters. Each cluster is characterised by 

a centroid vector representing a recurrent dFC state, and dFC matrices are described at each time point 

by a single state to which they present the highest similarity (shortest distance to the centroid). The 

requirement of a predefined number of clusters to implement this algorithm makes it susceptible to 

getting different results, which may interfere with the interpretation of the FC states [11][80].  

In contrast to k-means clustering, in which the centroids are mutually exclusive in time, PCA and 

dictionary learning approaches allow temporal overlap between states. In PCA, the dFC matrices are 

decomposed as a linear combination of all FC patterns (known as eigenconnectivities) with time-varying 

associated weights [90]. Instead, in dictionary learning, the dFC matrix is a linear combination of a 

subset of dFC states with a certain degree of temporal sparsity [91]. 

After estimating the dFC states, they can be characterised in terms of their occurrence throughout 

time using predefined temporal metrics: the mean lifetime (or dwell time), which corresponds to the 

mean number of consecutive epochs in the given state; the probability of occurrence (or fractional 

occupancy), which is the fraction of epochs the state occurred throughout the scan; and, finally, the 

switching profile, which summarises the probabilities of switching from a given dFC state to another [86].  

 

2.3.  State-of-the-art 

Functional neuroimaging studies are a crucial tool to understand migraine pathophysiology, helping 

to identify potential brain regions involved in the onset of migraine attacks and determine the clinical 

significance of brain dysfunction associated with the disorder [92]. 

Over the years, much progress has been made in migraine research. Most investigations focused 

on stimulus-induced brain activation and processing, involving the exposure of interictal migraineurs to 

visual, olfactory, skin noxious thermal stimulation and trigemino-nociceptive activation by intra-nasal 

ammonia, and the comparison of results with healthy controls. Consistent observations have also been 

reported in terms of altered brain activity in response to external sensory stimuli and atypical habituating 

responses between attacks [92][93]. Moreover, other studies directed to pharmacologically-induced and 
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triggered attacks could reproduce the pathological migraine mechanisms during the ictal phase [9].  

In the last two decades, rs-fMRI experiments have increased exponentially, providing new insights 

regarding the alterations in migraine brain FC throughout the migraine cycle and compared to healthy 

subjects. Most studies focused on the analysis of FC assuming stationarity over a full rs-fMRI scan, 

using mainly seed-based correlational analysis and ICA. Table 2.2. summarises the main sFC 

alterations observed in the past years, based on the review of Skorobogatykh et al. [94] and the more 

recent literature published to date.  

 Migraine literature comparing the interictal phase with healthy controls revealed an abnormal FC in 

more than 20 RSNs, namely the basal ganglia (BasN) and central executive (CEN) networks, DAN, 

DMN, ECN, FPN, SMN and SN, and other networks composed by pain processing structures belonging 

to the so-called “pain matrix”, such as the amygdala, cingulate cortex, cerebellum, hypothalamus, insula, 

PAG, prefrontal cortex, posterior central gyrus and thalamus [93][94]. Furthermore, studies suggested 

altered FC in the DAN, DMN and executive network (EN) during the ictal phase compared to controls 

and in the DMN, FPN, SMN, VN, pons network and pain matrix (hypothalamus, insula, postcentral gyrus 

and thalamus) during the ictal phase compared to the interictal phase.  

Although atypical sFC has been reported within migraine brain sensory processing regions involved 

in affective, cognitive and sensory-discriminative pain processes, the heterogeneity across studies 

suggests poor reproducibility of results and lack of migraine-specific neuroimaging patterns [94].  

More recently, assuming that FC fluctuates on short time scales, other studies started to emerge, 

exploring the dynamic aspects of rs-fMRI [80]. In Table 2.3., the state-of-the-art of dFC findings 

regarding migraine is described. Due to the novelty of this approach and lack of studies, literature on 

headache-related disorders was also included. Alterations in FC were detected in patients with these 

conditions in the AudN, DMN, FPN, ECN, SMN, SN, VN, subcortical (SCN) and cognitive control 

(CogCN) networks, and pain matrix (lower brainstem, cingulate cortex, cerebellum, insula, prefrontal 

cortex and thalamus) in comparison to controls.  

 Table 2.2. Static FC rs-fMRI studies in migraine. 
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Table 2.2. (Continued) 
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Table 2.3. Dynamic FC rs-fMRI studies in migraine and headache-related disorders. 
 

Citation Population Acquisition 
Brain 

parcellation 
 Analysis 

Methods Main FC-related findings  

 

Wang 
et al. 

(2017) 
[95] 

 

 

CH 
(21F, 7M): 
Migraine 
(13-) 
PrimH 
(7-) 
TTH 
(8-) 
HC 
(21F, 7M) 

 

3.0 T scanner 
10-min scan 
TR = 2000 ms 
TE = 30 ms 
Scanning 
performed w/ 
eyes closed. 
 

 

Seed-based 
analysis: 14 
cortical ROIs. 
 
 
 
 

sFC 

 

Seed-based analysis w/ Pears. corr. The 
6 ROIs with significant ≠ in sFC followed 
for dFC analysis. 
 

 

CH vs. HC 
↑sFC: L MedOFC–L PCC/L ITC/R SParC; L 
PCC–L SFC/L ITC; R SParC–R CunC.  
 

dFC 

 

SW w/ Pears. corr. (WSize = 15/30/60 
TR, WStep = 1 TR); WTC w/ Morlet WT; 
Distr. and std. of corr. coefs. per SW 
(subj.- and group-level); Freq. spectrum 
of coefs. w/ FFT and max. ampl. ≠ 
between groups; Av. of WTC values; 
Corr. to dFC (group-level). 
 

 

CH vs. HC 
≠dFC: L MedOFC–L PCC/L ITC (WSize = 
15/60 TR)/L PCC (0.02-0.033 Hz)/L ITC 
(0.015-0.01 Hz)/R SParC (0.015-0.01 Hz). 
 
 

 

Tu 
et al. 

(2019) 
[96] 

 

MO 
interictal  
(67F, 22M)   
HC 
(52F, 18M) 

 

3.0 T scanner 
6-min scan 
TR = 2000 ms 
TE = 30 ms 
Scanning 
performed w/ 
eyes closed. 

 

GICA: 52 
ICNs, namely 
the VN, 
AudN, 
CogCN, 
DMN, SCN 
(w/ 2 ICNs of 
Th nuclei), 
SMN. 

dFC 

 

SW w/ graphic LASSO (WSize = 20 TR, 
WStep = 1 TR); k-means clustering on 
patient-specific exemplars; Graph theory 
(subj.- and group-level); Clin. corr. 
determined w/ multivariate linear 
regression model. 
 

 

Interictal vs. HC 
↑dFC: VN–SMN (all states); ↓dFC: VN (4 
states); VN–SCN/DMN (1 state)/CogCN (3 
states). 
Clin. corr. in MO group 
Corr +: dFC PTh–Precun w/ headache freq.; 
Corr -: dFC PTh–MOccG w/ headache freq.  
 

 

Lee 
et al. 

(2019) 
[81] 

 

Migraine 
interictal 
(13F, 3M) 
Migraine 
ictal/peri-
ictal  
(22F, 12M) 
HC 
(35F, 15M) 
 
 
 
 
 
 

 

3.0 T scanner 
TR = 3000 ms 
TE = 30 ms 
Scanning 
performed w/ 
eyes opened. 

 

GICA for the 
interictal 
dataset and 
HC: 47 ICNs, 
namely the 
VN, DMN, 
ECN, FPN, 
SMN, AudN, 
SN, ThN, 
BasN, CbN, 
BrN, pain 
matrix, used 
for the 
ictal/peri-ictal 
dataset. 

sFC 

 

Graph theory (nodes = ICNs, edges = 
Pears. corr. (r) between time series of ≠ 
nodes); Fisher’s r-to-z transf. of FC 
matrices and EigC values (all groups). 
 

 

Interictal vs. HC 
≠sFC: BrN (lower pons-upper medulla). 
 

dFC 

 

SW w/ Pears. corr. (WSize = 22 TR, 
WStep = 1 TR, convolved w/ Gaussian 
kernel (Size = 3 TR, Stride = 1 TR); L1 
reg. of dFC matrices; k-means clustering 
(subj.- and group-level for the interictal 
dataset, obtained brain states used in the 
ictal/peri-ictal dataset); EigC values for 
migraine groups; Clin. corr. determined 
w/ EigC values. 
 

 

Interictal vs. HC 
↑dFC: BrN (lower brainstem); ↓dFC: DMN; 
FPN; CbN; PModN (ACC, Cb and DMdb). 
Ictal/peri-ictal vs. HC 
↑dFC: BrN; ThN; PModN (CeOpCs, Ins, S2); 
↓dFC: FPN; CbN; PModN (ACC, BLatIns, 
MedPFC, Precun). 
Clin. corr in migraine group 
Corr +: dFC Br w/ disease dur.; Corr -: dFC 
Cb w/ disease dur. and headache freq. 
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Table 2.3. (Continued). 
 

Citation Population Acquisition 
Brain 

parcellation 

 Analysis 

Methods Main FC-related findings  

 

Dum- 
krieger 
et al. 

(2019) 
[97] 

 

Migraine  
(21F, 12M) 
PPTH 
(16F, 28M) 
HC 
(17F, 19M) 

 

3.0 T scanner 
10-min 
scanner 
TR = 2500 ms 
TE = 27 ms 
Scanning 
performed w/ 
eyes closed 

 

ROI 
approach: 59 
ROIs. 

 

sFC 

 

Seed-based analysis w/ Spear. corr. 
The ROI pairs w/ scorr. > 0.1 at least for 
one group were included in the next 
analyses; Variance analysis w/ t-tests 
(group-level comparison); ROI pairs w/ 
significant ≠ in sFC followed for clin. 
corr. determined w/ Pears. corr. 
corrected for sex and age. 

  

Migraine vs. HC 
≠sFC: R S1–L SupG; L VentMedPFC–R TPole; 
L S2–L MOccG/R Cun/L Cun/L ACC; L LinG–
LPrecun. 
Migraine vs. PPTH 
≠sFC: ACC; MCC; Cun; Precun; HTh; LinG; 
MOccG; S1; S2; PIns; PulN; SupG; SM; 
SParLobe; TPole; VentMedPFC; DLatPFC. 
Clin. corr in migraine group 
Corr +: sFC L S2–R Cun w/ headache freq.; 
Corr -: sFC R DLatPFC–R VentMedPFC w/ 
years w/ headache. 
 

dFC 

 

SW (WSize = 24 TR); Variance analysis 
w/ t-tests; The ROI pairs w/ significant ≠ 
in dFC followed for clin. corr determined 
w/ Pears. corr corrected for sex and 
age. 

 

Migraine vs. PPTH 
≠dFC: Amg; HTh; LinG; FusG; MFG; SupG; 
PreCeG; MCC; PCC; ParOccC; S2; SParG; 
SM; TPole. 
Clin. corr in migraine group 
Corr +: dFC R MCC–R SupG w/ headache freq; 
Corr -: dFC R PCC–R Amg w/ pain intensity at 
the time of testing. 
 

 

Zou 
et al. 

(2020) 
[98] 

 

 

CM  
(10F, 7M) 
HC 
(11F, 9M) 

 

3.0 T scanner 
TR = 2000 ms 
TE = 35 ms 
Scanning 
performed w/ 
eyes closed. 

 

GICA: 13 
ICNs, namely 
the DMN, 
ECN, DAN, 
AudN, VN 
and CbN. 

sFC 
 

 

Detrending, despiking and LP filtering 
(0.01-0.15 Hz) of the selected IC time 
courses; Pairwise corr. of the ICs; 
Fisher’s z-transf. 

 

CM vs. HC 
↑dFC: ECN (L AnG); AudN (R SParG); 
↓dFC: AudN (L SFG); VN (R CalSul); DMN (L 
Precun, L SFG). 

 

dFC 

 

SW (WSize = 30 TR, WStep = 1 TR); k-
means clustering; Temporal metrics 
regarding the states (mean DT, FO and 
transition changes). 
 

 

CM vs. HC 
↑dFC: ECN–DMN/AudN/VN (1 state); ↓dFC: 
DMN–AudN (1 state). 
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Table 2.3. (Continued). 
 

Citation Population Acquisition 
Brain 

parcellation 

 Analysis 

Methods Main FC-related findings  

 

Imai 
et al. 

(2020) 
[99] 

 

Migraine 
interictal  
(62F) 
Photo-
phobia 
(37F) 
Phono-
phobia 
(34F) 
Osmo-
phobia 
(21F) 

 

3.0 T scanner 
TR = 2500 ms 
TE = 40 ms 
Scanning 
performed w/ 
eyes closed. 

 

ROI 
approach w/ 
Harvard-
Oxford atlas 
(91 C + 15 
SC ROIs) 
and AAL 
atlas (26 Cb 
ROIs). 

sFC 

 

Seed-based analysis w/ Fisher transf. 
bivariate corr.; Group-level comparison 
of ROI-to-ROI corr. 

 

Migraine w/ photophobia vs. without 
≠sFC: 18 ROI pairs, namely Cb–TOccFusC; Cb 
hemisphere–TFusC. 
Migraine w/ phonophobia vs. without 
≠sFC: 15 ROI pairs, namely Vermis Lobule IX–
CunC; Vermis Lobule IX–Amg. 
Migraine w/ osmophobia vs. without 
↑sFC: R Cb hemisphere Lobule IV–Br. 
 

dFC 

 

dICA; Group-level comparison of ROI-
to-ROI corr. 
 

 

Migraine w/ photophobia, phonophobia and 
osmophobia vs. without  
≠dFC: 16 ROI pairs (mainly involving Cb 
hemisphere), 8 and 14 ROI pairs, respectively. 
 

 

Chen 
et al. 

(2021) 
[100] 

 

 

MO 
(5F, 16M) 
HC 
(8F, 13M) 

 

3.0 T scanner 
8.3-min 
scanner 
TR = 2000 ms 
TE = 30 ms 
Scanning 
performed with 
eyes closed. 
 

 

 
     
 
          – 
 

dFC 

 

Transf. of the time series into the freq. 
domain; ALFF at the power within the 
low-freq. range (0.01-0.8 Hz); SW 
(WSize = 50 TR, WStep = 5 TR); 
dALFF; Conversion of dALFF maps 
into z-scores and statistical analyses; 
Clin. corr. determined w/ dALFF and 
VAS values. 
 
 

 

MO vs. HC 
↓dALFF: SN (BLatAIns, BLatACC); BLatOFC; 
BLatMedPFC; L MFC. 
ClinCorr in MO group 
Corr -: dALFF ACC w/ VAS scores. 

 
 

Nie 
et al. 

(2021) 
[101] 

 

Migraine 
(15F, 19M) 
HC 
(20F, 14M) 
HC from a 
public 
database 
(15F, 19M) 
 

 

3.0 T scanner 
8/7.5/4.3-min 
scanner 
TR = 3000/ 
2000/2000 ms 
(respective to 
each group) 
 

 

ROI 
approach w/ 
Brainnetome 
atlas  (210 C 
+ 36 SC 
ROIs). 

dFC 

 

SW w/ Pears. corr. (WSize = 12/18/18 
TR respective to each group, WStep = 
1 TR); Automatic segm. algorithm to 
build the WQCP sample set; k-means 
combined w/ hierarchical clustering to 
construct the DFCPs; Local network 
metrics (degree and participation 
coefficient). 
 

 

Migraine vs. HC 
↑dFC regarding one significantly ≠DFCP: Pain 
matrix (Brodmann areas 1/2/3 (S1), 6 (S2), 10 
(APFC), 24 (VentACC), 32 (DACC); InsG; Bas; 
Th); Pain processing-related areas outside the 
pain matrix (Brodmann areas 4 (PrimMotorC), 5 
(Spar lobule), 7 (Visuomotor coordination)); 
PParC; MedVOccC). 
 

 

Abbreviations: A = Anterior; AAL = Automated Anatomical Labelling; ALFF = Amplitude of Low-Frequency Fluctuations; Ampl. = Amplitude; An = Angular; Aud = Auditory; Av. = Averaging;           

Bas(N) = Basal Ganglia (Network); BLat = Bilateral; Br(N) = Brainstem (Network); C = Cortex; CalSul = Calcarine Sulcus; Cb(N) = Cerebellar (Network); CC = Cingulate Cortex; Cd(N) = Caudate 

(Nucleus); CE(N) = Central Executive (Network); Ce = Central; CG = Central Gyrus; CH = Chronic Headache patients; Clau = Claustrum; Clin = Clinical; Corr. = Correlation; CM = Chronic Migraine 

patients; Coef(s). = Coefficient(s); CogC(N) = Cognitive Control (Network); Cun = Cuneus;  D = Dorsal; d = Dynamic; DA(N) = Dorsal Attention (Network); DentN = Dentate Nucleus; 
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Abbreviations (Continued): Distr. = Distribution; DFCPs = Dynamic Functional Connectome Patterns; DM(N) = Default Mode 

(Network); DT = Dwell Time; Dur. = Duration; DVA(N) = Dorsoventral Attention (Network); E(N) = Executive (Network);               

EC(N) = Executive Control (Network); EigC = Eigenvector Centrality; F = Frontal; FC = Functional Connectivity; FFT = Fast Fourier 

Transform; FO = Fractional Occupancy; FP(N) = Frontoparietal (Network); FPCE(N) = Frontoparietal Central Executive (Network);               

Freq. = Frequency; Fus = Fusiform; (G)IC(A) = (Group) Independent Component (Analysis); G = Gyrus; HC = Healthy Controls;  

HTh = Hypothalamus; I = Inferior; ICN = Intrinsic Connectivity Network; Ins = Insula; L = Left; Lat = Lateral; LentN = Lentiform 

Nucleus; Lin = Lingual; LP = Low-Pass; M = Middle; MA = Migraine With Aura patients; Mdb = Midbrain; MdNS = Medial Division 

of Neostriatum; Med = Medial; Mo = Motor; MO = Migraine Without Aura patients; NAc = Nucleus Accumbens; NCoer = Nucleus 

Coeruleus; O = Orbital; Occ = Occipital; Op = Opercular; P = Posterior; PAG = Periaqueductal Gray; Par = Parietal;                   

Pears. = Pearson; PF = Prefrontal; PMod(N) = Pain Modulatory (Network); PontN = Pontine Nuclei; PPTH = Persistent Post-

Traumatic Headache patients; Precun = Precuneus; Prim = Primary; PrimH = Primary Headache; Pul(N) = Pulvinar (Nuclei);      

R = Right; Rec = Rectal; Reg. = Regularization; ROI = Region Of Interest; S = Superior; s = Static; S1 = Primary Somatosensory 

Area; S2 = Secondary Somatosensory Area; SC(N) = Subcortical (Network); Sec = Secondary; Segm. = Segmentation;           

SM(N) = Sensorimotor (Network); SN = Salience Network; Spear. = Spearman; std. = Standard Deviation; Subj. = Subject;         

Sul = Sulcus; Sup = Supramarginal; Supp = Supplementary; SW = Sliding Window; T = Temporal; Th(N) = Thalamus (Network); 

Transf. = Transformation; TTH = Tension-Type Headache; V(N) = Visual (Network); VA(N) = Ventral Anterior (Network);            

VAS = Visual Analogue Scale; Vent = Ventro; WQCP = Whole-brain Quasistable Connectome Pattern; WSize = Window Size; 

WStep = Window Step; WT(C) = Wavelet Transform (Coherence); +/- = Positive/Negative; ↑/↓ = Increased/Decreased; / = And; 

A – B (A, B = Brain regions/networks) = Between A and B;  nF (n ∈ ℕ)= n Females;  nM (n ∈ ℕ) = n Males; n- (n ∈ ℕ) = n patients 

with the gender not specified. 

Studies following a dFC approach seemed to capture alterations in FC that were not detected with 

the conventional sFC analysis, being more suitable to study the dynamic nature of brain signals [81]. 

Nevertheless, despite the relevant findings, the variability of results across the dFC literature shows 

poor consistency, such as in sFC. 

Overall, it is worth noticing that migraine fMRI studies present limitations. Firstly, the usual low 

number of participants restricts the statistical power of the study and the replication of results in the 

following investigations [93]. Moreover, the unpredictability of migraine due to the intra- and inter-subject 

variability in terms of attack duration and associated symptoms makes the ictal studies particularly 

challenging, together with the fact that these require conjugation of scanner schedules, availability of 

trained personnel and patient dedication and motivation. Additionally, the administration of preventive 

medications that may influence brain activity and FC is usually not considered [9]. 

All these limitations, together with a substantial variety of methods to acquire and analyse fMRI data, 

hamper the definition of a cohesive and consistent model to represent migraine brain abnormalities at a 

regional- and network-level [93]. 

Therefore, optimised fMRI studies are an essential progressive trend in migraine neuroimaging and 

an indispensable tool to better understand neural migraine dysfunction. 
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 Chapter 3  

Capítul1  

 

 

3   Methods 
 

 
This chapter describes clinical data and methods used in the present dissertation. Section 3.1. 

comprises the description of the cohorts under study and the image acquisition protocol. Section 3.2. 

provides the reader with an overview of the methods used to preprocess and analyse rs-fMRI data. 

 
 

3.1.  Participants and Image Acquisition 

rs-fMRI imaging data used in the present Master Thesis was gathered in the scope of the 

MIG_N2Treat project1 at Hospital da Luz, with data collected from October 2019. The participants of this 

project were 8 female patients with menstrual and menstrually-related episodic migraine without aura 

and 6 healthy controls. Regarding migraineurs, the exclusion criteria were the following: previous history 

of migraine with aura or chronic migraine; presence of another type of headache, neurological disorder 

or psychiatric disorder; taking any drugs affecting the central nervous system; being under phophylactic 

treatment; daily alcohol or tabacco consumption; and non-compatibility with MRI.  

All migraine patients underwent the rs-fMRI scan in the interictal phase of the migraine cycle, 

whereas just 5 of the 8 patients were scanned in the ictal phase. The healthy controls were scanned in 

the mid-cycle/post-ovulation phase of the menstrual cycle to control for hormonal variation in the 

interictal phase of the migraine cycle. The ages of the participants ranged between 21 and 45 years old 

(mean ± standard deviation = 34.1 ± 9.0 years old) for the migraine group and between 22 and 39 years 

old (27.7 ± 6.0 years old) for the control group. 

Within the migraine ictal group, clinical features regarding the ongoing attack were registered and 

averaged across the 5 patients: attack frequency per month of 3.9 ± 2.0; usual attack duration of (41.6 

± 23.0) hours; mean pain intensity of the attack in a mild (1)-to-severe (3) scale of 2.6 ± 0.5 and in the 

Visual Analogue Scale (0-10) of (6.2 ± 0.7) hours. Furthermore, regarding the migraine-associated 

symptoms, migraine patients in the ictal session were interrogated with a yes (1)-or-no (0) question and 

the answers were averaged across participants: 1.0 for nausea; 0.4 ± 0.5 for vomit; 0.8 ± 0.4 for photo- 

phobia; 1.0 for phonophobia; and 1.0 for motion sensitivity. 

 
1 MIG_N2TREAT Project: https://welcome.isr.tecnico.ulisboa.pt/projects/multimodal-neuroimaging-biomarkers-

throughout-the-migraine-cycle-towards-neurofeedback-training-for-personalized-anti-migraine-treatment/.  
Accessed in 15 July 2021 at 2:30 PM. 

https://welcome.isr.tecnico.ulisboa.pt/projects/multimodal-neuroimaging-biomarkers-throughout-the-migraine-cycle-towards-neurofeedback-training-for-personalized-anti-migraine-treatment/
https://welcome.isr.tecnico.ulisboa.pt/projects/multimodal-neuroimaging-biomarkers-throughout-the-migraine-cycle-towards-neurofeedback-training-for-personalized-anti-migraine-treatment/
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Regarding the image acquisition, structural and functional data were acquired on a 3 Tesla Siemens 

Vida MRI system. The structural scans were collected with a T1-weighted magnetization-prepared rapid 

gradient echo (MPRAGE) series, with TR = 2300 ms, time echo (TE) = 2.98 ms and 1 mm isotropic 

resolution. The rs-BOLD fMRI scans were acquired for 7 minutes using a T2*-weighted gradient-echo 

2D-EPI sequence, with TR = 1260 ms, TE = 30 ms and 2.2 mm isotropic resolution. In the rs-fMRI scans, 

333 volumes were acquired, each consisting of 60 axial slices of the whole brain, with an SMS 

acceleration factor of 3 (z direction) and a generalized autocalibrating partial parallel acquisition 

(GRAPPA) acceleration factor of 2 (y or phase encoding direction). During the rs-scan, participants were 

asked to lie with eyes open without falling asleep and with the least possible movement. 

In the present work, rs-fMRI data from the Human Connectome Project (HCP)2 public database were 

also analysed. Participants included 99 young healthy adults, 54 females and 45 males from 20 to 35 

years old. Structural and functional data were collected in a 3 Tesla Siemens Vida MRI system. The 

structural images were acquired with a T1-weighted MPRAGE series with the following parameters:          

TR = 2400 ms, TE = 2.14 ms and 0.7 mm isotropic resolution [102]. Functional data were acquired using 

a T2*-weighted gradient-echo 2D-EPI sequence in four 15-minute sessions (1250 volumes per 

acquisition), with TR = 720 ms,  TE = 33 ms and 2 mm isotropic resolution. During the session, subjects 

were asked to keep their eyes open and relax when looking at a white cross on a dark background and 

with the least possible movement [103]. 

 

3.2.  rs-fMRI Data Processing and Analysis 

3.2.1.  Preprocessing 

The rs-fMRI data analysed in this work were preprocessed by the MIG_N2Treat project team using 

the FMRIB’s Software Library® (FSL)3 and the MATLAB 2016b Software® (The Math-Works Inc., Natick, 

MA, USA)4. The preprocessing steps were the following: 

(i) Brain extraction using the Brain Extraction Tool (BET)5, which resorts to a stripping algorithm to 

remove the skull and other non-brain tissues [104]. 

(ii) Segmentation and bias field correction using FMRIB’s Automated Segmentation Tool (FAST)6, 

which is based on a hidden Markov random field model and an associated expectation-maximization 

algorithm [105]. The concept underlying segmentation is that the signal in each pixel of the image is 

a weighted contribution between the grey matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF). Thus, the segmentation algorithm estimates the PVEs in each pixel of the image (fraction of 

the pixel volume belonging to each tissue type) and divides the brain into GM, WM and CSF. With 

 
2 HCP: https://www.humanconnectome.org/study/hcp-young-adult/data-releases. Accessed in 15 Sep. 2021 at 

19:20 PM. 
3 FMRIB’s Software Library (FSL®): https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/. Accessed in 15 July 2021 at 2:30 PM. 
4 MATLAB® 2016b Software: https://www.mathworks.com/products/matlab.html. Accessed in 15 July 2021 at 2:35 

PM. 

5 BET: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET. Accessed in 15 July 2021 at 2:40 PM. 
6 FAST: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST. Accessed in 15 July 2021 at 3:00 PM. 

https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.mathworks.com/products/matlab.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
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the results of segmentation, WM and CSF masks were created and binarized in the structural space. 

Moreover, the bias field consists of spatial intensity variations (slower signal changes) corresponding 

to B1 inhomogeneities. Its correction originates a restored bias field-corrected structural image. 

(iii) Motion correction with the Motion Correction FMRIB’s Linear Registration Tool (MCFLIRT)7 

due to the movement of the patient’s head during the acquisition. The first step is estimating the six 

motion parameters (three directions of translation and three directions of rotation) for each volume 

with respect to the middle one, defined as the initial template image (reference). This process works 

on a mathematical framework of optimising an intensity-based cost function [106]. Then, a rigid body 

(RB) geometrical transformation is applied based on the motion parameters, and all volumes are 

aligned to the reference. 

(iv) EPI distortion correction (unwarping) and registration with the epi_reg script8. The EPI 

distortions (geometric distortions and signal loss) arise from B0 inhomogeneities due to magnetic 

susceptibility differences between tissues within the head (e.g. air/bone and air/tissue interfaces in 

the sinuses) and are corrected using a field map image. Regarding the registration, it is a two-stage 

process. The first step is performed with FLIRT_Boundary-Based Registration (BBR)9, suitable for 

registrations from the EPI to the structural space, which aligns the subject’s functional and structural 

images using a linear RB transformation with six degrees of freedom so that there is consistency in 

the anatomical areas over time with perfect correspondence between voxels. The second step uses 

the FMRIB’s Non-Linear Registration Tool (FNIRT)10 to perform the registration from the structural 

to the MNI152 standard space (2 mm), a T1-averaged structural template image created by the 

Montreal Neurological Institute with 152 structural images, using a non-linear transformation [107]. 

The WM and CSF masks were also registered into the functional space and eroded with a spherical 

Gaussian kernel of 2.2 mm and 1.8 mm radius, respectively, to minimize PVEs. 

(v) Semi-automatic classification of ICA components into the signal of interest, noise or unknown 

(the latter needs to be manually classified by the operator), with the FMRIB’s ICA-based Xnoiseifier 

(FIX)11, followed by visual inspection. ICA noise clean-up to regress the noise components out of 

the original fMRI data [65][108].  

(vi) Nuisance regression, in which nuisance time series are regressed out of the data. The nuisance 

regressors considered were the six RB motion parameters, the motion outliers (time points with 

abrupt motion, identified with the FSLMotionOutliers tool12), and average WM and CSF signal, since 

 
7 MCFLIRT: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT. Accessed in 15 July 2021 at 3:20 PM. 
8 epi_reg: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide#epi_reg. Accessed in 15 July 2021 at 3:25 PM. 
9 FLIRT_BBR: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT_BBR. Accessed in 15 July 2021 at 3:40 PM. 
10 FNIRT: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT. Accessed in 15 July 2021 at 3:45 PM. 
11 FIX: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX. Accessed in 15 July 2021 at 3:50 PM. 
12 FSLMotionOutliers: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers. Accessed in 15 July 2021 at 4:00 

PM.  

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide#epi_reg
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT_BBR
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers
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these likely only reflect physiological noise sources. These regressors enter into a General Linear 

Model fitted to the data using FSL’s tool FEAT13 [109]. 

(vii) High-pass filtering with a cut-off period of 100 s to remove the very low-frequency fluctuations 

from the data (e.g. instrumentation, scanner drift and RF coil), using the FSL’s tool FEAT13 [109]. 

(viii) Spatial smoothing (low-pass filtering) using the FSL’s tool SUSAN14, which consists of 

convolving the BOLD signal with a Gaussian kernel, increasing the SNR and validating the 

assumptions of the Random Gaussian Field theory, used to correct for multiple comparisons in 

voxelwise statistical tests. The full width at half maximum of this function, which determines the extent 

of data smoothing, was set to 3.3 mm (1.5 times the voxel size) [8][110].  
 

The following processing steps were performed using the MATLAB 2016b software®, and the LEiDA 

was applied following Cabral et al.’s pipeline15 [86]. 

One should note that the HCP rs-fMRI data followed a minimal preprocessing pipeline to minimize 

the amount of information removed from the data while ensuring a minimum quality standard [102]. 

Briefly, these steps included the correction of field map distortions, EPI distortions, eddy-current-induced 

distortions, gradient-nonlinearities and motion and registration. 

3.2.2.  Parcellation 

Since one of the goals of this work was to identify potential similarities and/or discrepancies between 

the FC results derived from different brain parcellations, four commonly used atlases were evaluated: 

AAL atlas with 90 cortical and subcortical ROIs15, hereinafter called the AAL90 [72]; AAL atlas with 116 

cortical, subcortical and cerebellar ROIs16, the AAL116 [72]; Desikan atlas with 66 cortical ROIs15 [73]; 

and Harvard-Oxford atlas with 63 cortical and subcortical ROIs15. 

One should note that the Desikan atlas was initially extracted with codification for 70 ROIs, including 

areas corresponding to the left and right WM and left and right corpus callosum. Hence, only to keep 

the GM regions for averaging the BOLD signal, the atlas was recoded, yielding the remaining 66 ROIs.  

Furthermore, the cortical and subcortical Harvard-Oxford atlases were extracted separately, with 48 

and 21 ROIs, respectively. Regarding the subcortical atlas, it was recoded not to consider the regions 

corresponding to the left and right WM, left and right ventricles and left and right cerebral cortices (that 

would already be studied with better resolution in the cortical atlas), yielding 15 ROIs. After merging 

both cortical and subcortical atlases, the final Harvard-Oxford atlas exhibited 63 ROIs. 

The labels of the ROIs corresponding to the AAL90, AAL116, Desikan and Harvard-Oxford brain 

parcellation schemes and their respective brain location – cortical (frontal, parietal, temporal or occipital 

lobe), subcortical or cerebellar region – are listed in Figure 3.1. 

 
13 FEAT: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT. Accessed in 15 July 2021 at 4:00 PM. 
14 SUSAN: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SUSAN. Accessed in 15 July 2021 at 4:10 PM. 
15 Github Joana Cabral: https://github.com/juanitacabral/LEiDA. Accessed in 20 Mar. 2021 at 18:00 PM. 
16 Neurodata: https://github.com/neurodata/neuroparc/tree/master/atlases/label/Human. Accessed in 1 Ap. 2021 

at 15:00 PM. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SUSAN
https://github.com/neurodata/neuroparc/tree/master/atlases/label/Human
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Figure 3.1. Labels of the ROIs belonging to the AAL90, AAL116, Desikan and Harvard-Oxford brain 
parcellation schemes, characterised by their brain spatial location with the color on the right – cortical 
(frontal, parietal, temporal or occipital lobe), subcortical or cerebellar region. 
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3.2.3.  dFC Estimation 

The estimation of the dFC was performed using two different approaches: the SW and the PC. 

The first step for both methods consisted of filtering the preprocessed ROI-averaged BOLD signal in 

the low-frequency range of 0.01-0.1 Hz using a second-order Butterworth band-pass filter (Figure 3.2.A). 

This filter focuses on the most meaningful frequencies of resting-state fluctuations by discarding the 

signal coming from non-neuronal causes, such as slow drifts (< 0.01 Hz) and high frequencies 

associated with cardiac and respiratory signals (> 0.1 Hz) [56][75]. 

3.2.3.1.  SW Method 

To implement the SW analysis (described in section 2.2.2.4. (i)) it was necessary to choose the 

window size and step. According to the literature, window sizes in the range of 30 s to 60 s are a 

reasonable choice to capture dFC patterns, and steps of 1 TR are commonly used [96]. Thus, three 

windows with different sizes were studied – 25 TR (corresponding to 31.5 s), 35 TR (44.1 s) and 45 TR 

(56.7 s) – to evaluate the whole range used in previous studies, slid in steps of 1 TR (1.26 s). Afterwards, 

the pairwise Pearson correlation coefficient was computed within each window for all pairs of filtered 

ROI-averaged BOLD time courses (Equation (2.1)), yielding an N × N symmetric dFC matrix per window 

(time) and subject, in which N stands for the number of brain regions of the atlas. 

3.2.3.2.  PC Method 

The PC analysis was performed resorting to the Hilbert transform approach (in section 2.2.2.4. (ii)). 

The filtered ROI-averaged BOLD signals were Hilbert transformed and converted into its complex 

analytic version, from which it was extracted the instantaneous phase of each region over time (Figure 

3.2.B). Finally, the dFC was obtained by computing the phase synchronisation for all pairs of ROIs 

(Equation (2.6)), originating an N × N symmetric dFC matrix per TR and subject, capturing the BOLD 

phase synchronisation through the whole brain over time. This matrix is illustrated in Figure 3.2.C, with 

the colours ranging from red (full synchrony of BOLD phases) to blue (phase difference of 180o). 

3.2.3.3.  Comparison of dFC Matrices Between SW and PC Methods 

In order to evaluate the degree of similarity between the dFC matrices obtained with both methods, 

the cosine similarity coefficient was used. The literature suggests that this metric provides better results 

than the Pearson correlation [86]. Thus, the dFC matrices obtained per TR with the PC (higher temporal 

resolution) were averaged within each window used in the SW approach. Then, the cosine similarity 

coefficient (𝐶𝑆𝑆𝑊,𝑃𝐶) was computed between the N×(N-1)/2 upper triangular elements (concatenated into 

a vector) of the dFC matrices obtained with the SW (𝑥𝑆𝑊) and the averaged ones obtained with the PC 

(𝑥𝑃𝐶). The expression is described in Equation (3.1): 

𝐶𝑆𝑆𝑊,𝑃𝐶 =  
𝑥𝑆𝑊 ∙ 𝑥𝑃𝐶

‖𝑥𝑆𝑊‖‖𝑥𝑃𝐶 ‖
 

where ‖  ‖ is the Euclidean norm. The cosine similarity is equal to 1 for maximal similarity and -1 for 

maximal dissimilarity.  

 

(3.1) 
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3.2.4.  dFC States 

3.2.4.1.  LEiDA 

After estimating the connectivity time courses, the LEiDA was implemented following Cabral et al.’s 

pipeline [86] to reduce the dimensionality of the data and improve clustering performance (consult 

section 2.2.2.5. for more detail). This method was implemented into the dFC matrices yielded by PC 

and SW since the leading eigenvectors were able to explain the majority of the dFC variance in both 

metrics.  

Regarding the PC method, which characterises each brain region by the respective instantaneous 

phase, V1 describes the main orientation of BOLD signal phases across the N brain regions over time, 

and each element of V1 represents the projection of the BOLD phase of the given brain region into this 

leading eigenvector (Figure 3.2.D). If all elements of V1 have the same sign, then all BOLD phases are 

pointing in the same direction and following the main orientation determined by V1 (strong coherence), 

also called the global mode of BOLD signal fluctuation. Instead, if BOLD signals have different 

orientations with respect to V1 (positive and negative signs), the brain can be divided into two 

communities according to the BOLD phase relationships between the brain regions. The magnitude of 

each element of V1 represents the strength with which brain regions belong to those communities [89]. 

The present work used the convention that the global mode is characterized by positive values of V1 

across all brain regions, so detachments from the global mode are represented by negative values.  

3.2.4.2.  Estimation and Characterisation 

In order to identify recurrent FC patterns, the k-means clustering algorithm was implemented at a 

group-level in the migraine interictal dataset (8 subjects, total of 8 samples); in a group composed of the 

interictal and ictal dataset (5 subjects in the interictal and ictal phases of the migraine cycle, total of 10 

samples); and, finally, in a group including the interictal and healthy controls dataset (6 subjects in the 

interictal phase of the migraine cycle and 6 healthy controls, total of 12 samples).  

This factorisation technique received as input the leading eigenvectors estimated from the dFC 

matrices concatenated over time and subjects (Figure 3.2.E) and was run with k ranging from 3 to 15 

(i.e., dividing the total number of leading eigenvectors into 3 to 15 clusters) to cover the range of 

functional networks that is commonly found in the literature [89][111]. Moreover, the cosine distance 

was chosen as the distance metric for minimization since it gave more meaningful results than the 

squared euclidean distance (higher specificity in detecting well-established RSNs). To increase the 

likelihood of escaping local minima and ensure consistency in the results, the k-means clustering 

algorithm was run 1000 times, and the best result that minimized the distance between the cluster point 

and its centroid was selected. 

After implementing this method, the leading eigenvectors were reorganised into a predefined k 

number of clusters or dFC states representing recurrent patterns of BOLD phase coherence. Each FC 

pattern was described through its N×1 cluster centroid vector Vc (c = 1, …, k) (leading eigenvector of 

the dFC state) in three different ways (Figure 3.2.F (i), (ii) and (iv)), and through its N×N dFC matrix, 

corresponding to the average of the dFC matrix over the time points in which the respective state 

occurred (Figure 3.2.F (iii)) [86][89].  
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Figure 3.2. Pipeline for the identification of recurrent dFC patterns using LEiDA, with the AAL90 atlas chosen as the brain parcellation scheme and the PC 
selected as the method to compute the dFC. A) The BOLD signal in a given brain region n (green) is band-pass filtered between 0.01 and 0.1 Hz (blue) and 
Hilbert transformed into a complex analytic signal. The signal phase is represented by eiθ over time t (black line) and at each TR (red arrows), where the real 
part is given by cos(θn) and the imaginary part by sin(θn). B) The BOLD phases of all N = 90 brain regions at t, θn(t), are represented in (i) cortical space, with 
arrows centered at the center of gravity of each ROI and (ii) in the complex plane, with phases centered in the origin of a unit circle with real and imaginary 
axis. C) The PC matrix (dFC(t)) captures the BOLD phase synchronisation between all pairs of regions over t. D) The leading eigenvector of the dFC matrix 
(V1(t)) represents the main orientation of all BOLD phases over t with respect to V1 (black dashed arrow in B). E) The eigenvectors estimated from the dFC 
matrices are concatenated over time and across subjects and partitioned into a predefined number of clusters or dFC states (k), which describe recurrent 
patterns of BOLD phase coherence, using the k-means clustering algorithm. F) dFC states are displayed according to their decreasing probability of occurrence 
and represented by the respective Vc: (i) as a network in the AAL90 cortical space (axial slice), in which the elements of Vc are placed at the center of gravity 
of the respective brain region, shaped as spheres colored according to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to dark 
blue represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with blue edges; (ii) by the outer product VcVc

T, that represents a N×N 
connectivity pattern where each Vc(n) weights the contribution of each brain region n to that pattern; and (iv) as a bar plot displaying the projection of the 
BOLD phase in each brain region into Vc. dFC states are also characterised by their (iii) dFC matrix. 
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(3.2) 

In Figure 3.2.F (i), the cluster centroid vector is represented as a network in the atlas cortical space. 

Each element of Vc is represented as a sphere placed at the centre of gravity of the respective brain 

region and coloured according to the respective value of the element of Vc (yellow-to-red spheres 

represented regions with positive values of Vc following the global mode, and blue-to-cyan spheres 

represent regions with negative values of Vc detaching from the global mode). To distinguish the network 

created by the smallest community of brain regions and facilitate the interpretation of the dFC states, 

areas with elements of Vc equal or inferior to 0.1 were linked with blue edges. Several thresholds for the 

links were tested, though, this value allowed for better specificity in the network detection. Furthermore, 

Figure 3.2.F (ii) represents the cluster centroid vectors of the dFC states back into matrix format through 

the outer product of Vc with Vc
T. This results in an N×N connectivity pattern with rank 1 (since the matrix 

is obtained from a single vector), with each element weighting the contribution of each brain region to 

that pattern. Positive red values are set to pairs of brain regions with the same sign of Vc (coherent 

BOLD signals) and negative blue values to pair of areas with different signs of Vc. Finally, Figure 3.2.F 

(iv) displays Vc as a bar plot, showing the projection of the BOLD phase of each brain region into Vc. 

After estimating the dFC states, they were characterised in terms of their temporal metrics (mean 

lifetime, probability of occurrence and switching profile), as described in section 2.2.2.5. 

3.2.4.3.  dFC Labels: Temporal Smoothing Algorithm 

After k-means clustering, a temporal smoothing algorithm adapted from Pascual-Marqui and 

colleagues [112][113] was applied to the dFC labels of the states. This algorithm guarantees that the 

detected FC patterns do not switch faster than the highest frequency of the BOLD signal (0.1 Hz) by 

ensuring that the assignment of the dFC labels to the leading eigenvectors is not based only on the 

distance between the leading eigenvector (𝑥𝑠) and cluster centroid (𝑐𝑘) but also on the dFC labels of the 

neighbouring leading eigenvectors. Thus, the temporal filter minimizes the distance function in Equation 

(3.2), in which the first term corresponds to the cosine distance (1 - cosine similarity [114]) between the 

leading eigenvector and cluster centroid and the second one to the temporal smoothing. 

𝑑𝑘𝑠
2 = (1 −

𝑥𝑠 ∙ 𝑐𝑘

‖𝑥𝑠‖‖𝑐𝑘‖
) − λ𝑏𝑘𝑠 

The k corresponds to the dFC label of the cluster, s is the sample, λ represents the weight of temporal 

smoothing and 𝑏𝑘𝑠 is the number of time points with the corresponding dFC label in a window 

surrounding the given sample. The parameter λ was set to 0.5 (intermediate degree of smoothing) after 

testing it with the values 0.3, 0.5 and 0.8, and the window size chosen was 10 s, which corresponds to 

the highest frequency of the BOLD signal. The effect of the temporal smoothing implemented on the 

dFC labels for the partition model k = 5 and a single subject, with one colour representing each cluster, 

is displayed in Figure 3.3. 
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3.2.5.  Statistical Analysis 

3.2.5.1.  Correlation of dFC States with RSNs 

While RSNs consist of temporal patterns that replicate across space, dFC states represent spatial 

patterns that replicate over time [86]. Nevertheless, the latter are expected to reveal sub-parts of specific 

RSNs, combinations of different RSNs or even resemble entire RSNs.  

In order to assess the correspondence of the obtained dFC states with well-established RSNs 

reported in the literature, the correlation of the cluster centroid vectors with the vectors corresponding 

to the RSNs in atlases spaces was computed, following the method used by Cabral and colleagues  [86] 

[111][115]. 

Firstly, the seven Yeo RSNs defined in 2 mm3 MNI space by Yeo and colleagues [61] were 

transformed into the atlas (AAL90, AAL116, Desikan and Harvard-Oxford) space. This process yielded 

a matrix with size N ROIs × 7 RSNs, i.e., seven vectors with as many elements as the number of ROIs 

of the given atlas, where each element corresponds to the number of voxels in each brain area belonging 

to the corresponding Yeo network. Since the network contrasting from the global mode in each state is 

represented by elements with a negative sign in the respective element of Vc, the RSNs vectors were 

transformed to their symmetric, so that they could be compared to the Vc’s. This transformation is 

depicted in Figure 3.4. for the AAL90 atlas and Figure A.1. of Appendix A for the remaining parcellation 

schemes. Moreover, since the global mode does not define a functional network of BOLD signal 

decoupling, the correlation with RSNs was not computed for this state. 

This sequence of steps was also applied to the ten RSNs defined by Smith and colleagues in 2 mm3 

MNI space [62], and the results are shown in Figure A.2. of Appendix A. 

 After this transformation, the Pearson correlation coefficient was computed between the cluster 

centroid vectors of the dFC states corresponding to the partition model being studied and the 

transformed RSNs vectors. For all partition models studied with the k-means clustering, k hypotheses 

were tested for each FC repertoire. Therefore, to correct for multiple comparisons, the standard 

significance threshold 0.05 was adjusted with a Bonferroni correction to 0.05/k, and the statistically 

significant correlations were those with the respective p-values inferior to that threshold [89]. 

 

Figure 3.3. Cluster time course (i) before and (ii) after the implementation of the temporal smoothing 
algorithm to the dFC labels of a single subject obtained for a k-means clustering algorithm ran with 5 
clusters (one colour for each cluster), for the AAL90 as the brain parcellation scheme and PC as the 
method to compute dFC. 
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3.2.5.2.  Comparison Between Groups 

In order to statistically assess between-group significant differences in terms of the temporal metrics 

(mean lifetime and probability of occurrence) of the obtained dFC states, non-parametric permutation-

based t-tests with 10,000 permutations were implemented on these two metrics. This non-parametric 

two-sample hypothesis test resorts to permutations of group labels to build an empirical estimate of the 

null distribution, which is determined independently for each population instead of relying on the test-

type standard distribution [111][116]. In the results obtained with the group composed of the migraine 

patients in the interictal and ictal sessions, a permutation-based paired t-test was implemented, since it 

compared paired observations of the same subject in two different conditions. Instead, in the results 

obtained with the group including the migraine patients scanned in the interictal phase and healthy 

controls, a permutation-based unpaired t-test was applied, since it compared two unrelated and 

independent groups [116]. Afterwards, the results were analysed by plotting the p-values for the whole 

FC repertoire over the range of ks. The significance of the results was evaluated using as reference 

three thresholds for the p-values: the standard significance threshold, 0.05; the Bonferroni corrected 

significance threshold, 0.05/k, to correct for multiple comparisons by considering the number of states 

(independent hypotheses) compared within each partition model; and the corrected significance 

threshold, 0.05/Σk, to correct for multiple comparisons by considering all hypothesis independent across 

models, including the whole sample of tests performed [89]. 

Figure 3.4. Yeo repertoire transformed into the AAL90 atlas space and represented through RSN 
vectors by (i) the distribution of the number of 2 mm3 MNI voxels in each AAL90 brain area belonging 
to the corresponding RSN, obtaining a vector with N = 90 elements that can be correlated with the 
cluster centroid vectors of the dFC states and the functional network that detach from the global mode 
of BOLD signal fluctuation represented in the AAL90 atlas cortical space ((ii) axial and (iii) sagittal 
slices). The brain areas contributing to each RSN are displayed with dark blue color and those without 
any voxel belonging to the RSN are displayed with grey color. The brain areas with more than 400 MNI 
voxels contributing to the RSN are linked with blue edges. VN = Visual Network; SMN = Somatomotor 
Network; DAN = Dorsal Attention Network; VAN = Ventral Attention Network; LN = Limbic Network;      
FPN = Frontoparietal Network; DMN = Default Mode Network. 
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 Chapter 4  

Capítul1  

 

 

4   Results and Discussion 
 

 
This chapter provides the reader with the results of the present work and their discussion. Firstly, section 

4.1. compares the connectivity information obtained with the PC and SW methods. Secondly, section 

4.2. shows the results of the proportion of variance explained by the leading eigenvectors in PC and SW 

methods. Then, section 4.3. comprises an exploratory analysis of the migraine interictal dataset with the 

AAL90 atlas, and section 4.4. displays the results obtained with the same dataset across different 

atlases. Finally, section 4.5. provides the statistical analyses and comparisons between groups. 

   
 

4.1.  Comparison between dFC matrices: SW vs. PC methods 

In order to compare the dFC matrices estimated for the AAL90, AAL116, Desikan and Harvard-

Oxford atlases with the SW and PC methods in the interictal dataset, the cosine similarity was computed 

between the dFC matrices obtained with the SW and the averaged ones obtained with PC within the 

respective window (sizes of 25 TR, 35 TR and 45 TR and step of 1 TR), as described in section 3.2.3.3. 

The results are depicted in Figure 4.1. 
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Figure 4.1. Cosine similarity values computed between the dFC matrices obtained with the SW and the 
averaged ones obtained with PC within the respective window (size of (i) 25 TR, (ii) 35 TR, and (iii) 45 
TR, all slid in steps of 1 TR), for the AAL90, AAL116, Desikan and Harvard-Oxford atlases in the interictal 
group. The median is represented by the horizontal line within the box plot, the mean value is denoted 
with a black asterisk (∗) and the outliers are marked with the red plus (+). 

 

(i) PC vs. SW (25 TR) (ii) PC vs. SW (35 TR) (iii) PC vs. SW (45 TR) 
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By looking at the box plots, it is possible to observe that, regardless of the brain parcellation scheme 

and the window size chosen for the SW, the cosine similarity values are always above 0.650, the 

medians above 0.960 and the means above 0.940.  Furthermore, it was found that the distribution of 

data points tends to narrow for larger window sizes (fewer outliers with lower cosine similarity values), 

resulting in a slight increase in the medians and means. This observation might be associated with the 

fact that larger window sizes lead to the inclusion of more data points in the average of the PC dFC 

matrices within the window and, consequently, to the increase of the SNR, which would explain a slightly 

higher similarity between the dFC matrices obtained with the PC and SW with a size of 45 TR. 

Thus, despite the methodological differences between the SW and PC, these results suggest that 

the connectivity information they provide is overall similar.  

 

4.2.  Variance explained by the leading eigenvector 

After estimating the connectivity patterns using SW and PC methods, the LEiDA approach was 

applied [86]. To confirm the prior assumption that the reduced dimensionality of the leading eigenvector 

could still explain the majority of dFC data, the proportion of variance explained by this vector was 

computed for each TR and all subjects by dividing the leading eigenvalue by the sum of all eigenvalues. 

The results are shown in Figure 4.2. 

For the PC method, the percentage of variance explained by the leading eigenvector is above 50 % 

for all data points across the brain parcellation schemes (by definition), and the median and mean values 

are above 70 %. This observation is consistent with the findings reported by Cabral et al. [86][111][115] 

and results from the fact that in this case only two eigenvalues exist and, consequently, the leading 

eigenvalue represents more than half of the total sum of the eigenvalues. Instead, for the SW method, 

although the leading eigenvector explains less than 50 % of the total variance in some data points, the 

mean and median values are still above 60 % for the three sliding windows. Therefore, the leading 

eigenvector was considered an appropriate method to represent the dFC matrices computed by both PC 

and SW methods. 

(i) PC (ii) SW (25 TR) (iii) SW (35 TR) (iv) SW (45 TR) 
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Figure 4.2.  Proportion of variance explained by the leading eigenvector for all subjects and the AAL90, 
AAL116, Desikan and Harvard-Oxford atlases, obtained from the dFC matrices computed with the            
(i) PC and SW of (ii) 25 TR, (iii) 35 TR and (iv) 45 TR, slid in steps of 1 TR. The median is represented 
by the horizontal line within the boxes and the mean value is denoted with a black asterisk (*). 
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4.3.  Analysis of migraine interictal dataset: AAL90 atlas 

      After extracting the leading eigenvectors of the dFC matrices estimated with both PC and SW 

methods, the k-means clustering algorithm was implemented in the interictal group with the predefined 

number of clusters ranging from k = 3 to k = 15, in order to assess changes in the dFC repertoire. The 

recurrent FC states obtained with the AAL90 atlas and PC method are displayed in Figure 4.3., 

according to their decreasing probability of occurrence within each k. This atlas was chosen as the brain 

parcellation scheme of reference as it is the most commonly used in literature [83][86][111]. 

The results obtained with the remaining atlases are depicted in Figure B.1. of Appendix B. 

Figure 4.3. dFC states obtained with the k-means clustering algorithm (k = 3 to k = 15), displayed 
according to their decreasing probability of occurrence within each k, for the AAL90 atlas as the brain 
parcellation scheme and PC as the method to compute dFC. Each dFC state is represented by its Vc 
as a network in the AAL90 cortical space (axial slice), in which the elements of Vc are placed at the 
center of gravity of the respective brain region, shaped as spheres colored according to their sign (red 
to yellow spheres represent positive elements from 1 to 0, cyan to dark blue spheres represent negative 
elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges. States marked with 
coloured rectangles reappear throughout the FC repertoire. 
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By looking at Figure 4.3., it was found that state 1 (coloured in grey for the lowest k in which it is 

observable) appears consistently across all clustering solutions and, regardless of the chosen k, is the 

most prevalent state. This fully connected cluster exhibits all brain regions with BOLD phases aligned 

with each other and projected toward the same direction into the leading eigenvector (i.e., only positive 

red elements in the cluster centroid vector), and does not show the separation of any particular 

subsystem nor a significant correlation with RSNs of reference, being called the global mode. This state 

is extensively reported in the literature [83][86][89]. 

From the second state on, small groups of brain regions exhibit BOLD phases that deviate from the 

global coherence state and start to form functional networks (areas with Vc equal or inferior to 0.1 linked 

by the dark blue edges). For example, state 2 for k = 3 (coloured in brown) is characterised by a network 

composed of regions from the frontal lobe (frontal superior medial gyrus, rectal gyrus, and frontal medial 

orbital, olfactory, anterior and posterior cingulate cortices); parietal lobe (angular gyrus); temporal lobe 

(middle temporal pole); and subcortical regions (hippocampus and amygdala). This state reappears in 

other k’s, such as in k = 4 to k = 6 (state 3), k = 7 to k = 9 (state 4) and k = 14 (state 7), and is reported 

in several studies [89][111][115]. 

Furthermore, this pattern can be identified with some modifications. It appears in a lesser extent in  

k = 7 to k = 11 (state 2), k = 14 (state 4) and k = 15 (state 2) (coloured in yellow), and with additional 

regions in k = 10 (state 6), k = 11 and k = 12 (state 7), k = 13 (state 10) and k = 15 (state 7) (coloured 

in pink), namely including the frontal lobe (frontal superior gyrus, frontal superior, middle and inferior 

orbital gyri, and frontal inferior triangular gyrus); parietal lobe (parietal inferior gyrus); temporal lobe 

(Heschl’s and temporal inferior gyri); and subcortical regions (caudate nucleus and lenticular nucleus 

putamen). Other variations of this network can be identified, one including less regions in the frontal 

lobe for k = 11 (state 9), k = 12 (state 10), k = 13 (state 9), k = 14 (state 12) and k = 15 (state 13) (colored 

in purple), and another one extending to the occipital lobe for k = 6 (state 6), k = 7 (state 7),  k = 8      

(state 8), k = 9 and k = 10 (state 7), k = 11 (state 10), k = 12 (state 9), k = 13 (state 11), k = 14 (state 

10) and k = 15 (state 9) (colored in orange). 

 Another FC configuration characteristic of all k’s is the network composed of regions from the 

occipital lobe, mainly including the calcarine fissure, cuneus cortex, occipital superior, middle and inferior 

gyrus, and lingual gyrus, as well as the network including the frontal pole (frontal superior and middle 

orbital gyri, frontal middle gyrus, frontal inferior opercular and triangular gyri, and rolandic operculum); 

insular cortex, located deep within the lateral sulcus and hidden bellow parts of the frontal, parietal and 

temporal lobes [117]; parietal lobe (supramarginal gyrus); and subcortical regions (lenticular nuclei 

putamen and pallidum). The first functional subsystem is observed in state 2 for k = 4 to k = 6, state 3 

for k = 7 to k = 14 and state 4 for k = 15 (dark blue), and the second one is present in state 4 for k  = 4 

to k  = 6, state 5 for k  = 7 to k  = 9, state 4 for k = 10, state 5 for k = 11 to k  = 13, state 9 for k  = 14 and 

state 15 for k  = 15 (red). Both networks are aligned to the findings reported in the literature [83][89][111]. 

Moreover, it is also interesting to notice that one cluster appears for the first time in k = 8 (state 6), but 

is consistently verified for higher k’s (state 8 for k = 9 to k = 12, state 7 for k = 13 and state 8 for k = 14 

and k = 15) (cyan blue) and in the literature [89][111][115]. 

By examining the formation of the functional networks throughout the whole range of k’s, it was found 
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that higher values of k provide more fine-grained network configurations, which tend to be less frequent 

and, in some cases, less symmetric. Results also reveal that, when k increases, some networks 

reappear throughout the range of k’s (and sometimes within each k), often covering a wider set of brain 

regions and forming more extensive networks.  

4.3.1. Impact of a robust preprocessing (ICA clean-up and nuisance regression) 

rs-fMRI data analysed in Figure 4.3. underwent a preprocessing sequence including the semi-

automatic classification of ICs into the signal of interest or noise, with the subsequent ICA noise clean-

up and nuisance regression, as described in section 3.2.1. To evaluate the influence on the dFC states 

of performing these additional clean-up steps in the rs-fMRI data preprocessing, the dFC analysis was 

repeated on minimally preprocessed rs-fMRI data, which did not include ICA clean-up and nuisance re-

gression. The obtained FC repertoire for k = 3 to k = 15 can be consulted in Figure B.2. of Appendix B. 

The recurrent dFC states obtained without the two denoising techniques revealed similarities with 

those obtained without their implementation, exhibiting the same characteristic FC patterns described 

in the previous section. However, a major discrepancy was found: a remarkable frontal pattern (see 

Figure 4.4.), which was not identified in the results obtained with the ICA clean-up and nuisance 

regression, appeared in the group analysis without these steps from k = 6 to k = 14, with the second-

highest probability of occurrence until k = 13 and the third-highest one in k = 14. For the partition model 

represented in Figure 4.4. (k = 6), this state is the second most prevalent functional subsystem 

(probability of occurrence ± standard error = 0.146 ± 0.007) and the third longest-lasting state on 

average (mean lifetime ± standard error = 4.28 ± 0.46 TR). It is characterised by a set of frontal regions 

whose BOLD phases deviate from the global mode, namely the frontal superior and middle orbital gyri, 

gyrus rectus, and frontal medial orbital and olfactory cortices (Figure 3.1.). 

A plausible explanation for the emergence of this dFC state in the repertoire obtained without the 

more refined preprocessing is its artefactual origin. The frontal location of the functional network 

suggests that it could correlate with susceptibility artefacts arisen from field inhomogeneities due to the 

magnetic susceptibility difference in the air/bone tissue interface, which would make the effect of any 

motion (e.g. head motion or eye movement) more impactful. Hence, the removal of such susceptibility 

artefact with the ICA clean-up would explain its absence in the repertoire obtained with that 

preprocessing step and its prevalence in the results obtained with the denoising. 

Figure 4.4. Frontal state obtained with the k-means clustering algorithm (state 2, k = 6), for the rs-fMRI 
data preprocessing without the ICA clean-up and nuisance regression steps, for the AAL90 atlas and PC 
method. This dFC state is represented by its Vc: (i) as a network in the AAL90 cortical space (axial slice), 
in which the elements of Vc are placed at the center of gravity of the respective brain region, shaped as 
spheres colored according to their sign (red to yellow spheres represent positive elements from 1 to 0, 
cyan to dark blue spheres represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked 
with dark blue edges; (ii) by the outer product VcVc

T; and (iv) as a bar plot displaying the projection of 
the BOLD phase in each brain region into Vc. This dFC state is also characterised by its (iii) dFC matrix. 

(i) (ii) (iii) (iv) 
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4.3.1.1.  Correlation of dFC states with RSNs 

     In order to understand the impact of implementing the ICA clean-up and nuisance regression 

preprocessing steps in the relative validity of results, the cluster centroid vectors of the dFC states 

obtained with and without the denoising were compared to well-established RSNs, as explained before 

in section 3.2.5.1. Figure 4.5. displays the Pearson correlation coefficient computed between the cluster 

centroid vectors of the dFC states obtained for the partition model k = 6, with and without implementing 

these two additional preprocessing steps, and the seven Yeo transformed RSNs vectors.  

Results show that, regardless of implementing the ICA clean-up and nuisance regression steps, 

there are statistically significant correlations of the dFC states with the VN, SMN, VAN and DMN. 

Notwithstanding, it can be inferred that the results obtained with the denoising show more specificity in 

detecting RSNs, as on the right plot of Figure 4.5., the SMN and VAN appear intermingled in state 5.  

Furthermore, it is interesting to note that, in the results obtained without the ICA clean-up and 

nuisance regression steps, the frontal state 2, previously associated with susceptibility artefacts, exhibits 

a significant correlation to the LN (Pearson correlation coefficient r = 0.36, p-value = 5.44 ∗ 10-4), and 

state 6 appears correlated with the FPN (r = 0.51, p-value = 2.13 ∗ 10-7). These two functional 

subsystems do not arise in the results obtained with the denoising for k = 6, which leads to question 

whether this state has, in fact, an artefactual origin, or the ICA clean-up incorrectly eliminated frontal 

and limbic components that were not purely artefactual. 

Hence, to clarify the relevance of performing a robust preprocessing in rs-fMRI data, the auto-

classification of ICs should be reviewed across subjects that spent more time in the frontal state (see 

Figure 4.6., subjects 3 and 8) or held that synchronisation pattern in specific epochs (Figure 4.6., subject 

7). In both cases, the correlation of the occurrence of the frontal state with the motion parameters (time 

courses) of the respective subject could be a strong evidence of artefactual origin. However, this was 

not evident in our data. 

With ICA clean-up and nuisance regression 
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Figure 4.5. Pearson correlation coefficient computed between the cluster centroid vectors of the dFC 
states (k = 6) obtained with the PC method and the seven Yeo RSNs transformed into the AAL90 space, 
with and without the ICA clean-up and nuisance regression preprocessing steps. *: Statistically 
significant correlations after correcting for the number of clusters (p-value < 0.05/k); VN = Visual 
Network; SMN = Somatomotor Network; DAN = Dorsal Attention Network; VAN = Ventral Attention 
Network; LN = Limbic Network; FPN = Frontoparietal Network; DMN = Default Mode Network. 
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4.3.2.  Comparison between SW and PC methods 

In order to evaluate how dFC states varied between methods, the k-means clustering algorithm with 

k = 5 was run for both PC and SW (with sizes of 25 TR, 35 TR and 45 TR and step of 1 TR). This 

partition model was chosen since it has been used in several studies as the best clustering solution to 

represent FC data [83][86] and provides a low set of synchronisation patterns, facilitating the following 

analyses. The results are depicted in Figure 4.7. 

    

State 1        State 2        State 3       State 4        State 5   

PC SW (Size = 25 TR) 

Figure 4.7. dFC states obtained with the k-means clustering algorithm (k = 5), displayed according to their 
decreasing probability of occurrence, for the AAL90 atlas and PC and SW (sizes of 25 TR, 35 TR and 45 
TR, step of 1 TR) methods. Each dFC state is represented by its Vc: (i) as a network in the AAL90 cortical 
space (axial slice), in which the elements of Vc are placed at the center of gravity of the respective brain 
region, shaped as spheres colored according to their sign (red to yellow spheres represent positive 
elements from 1 to 0, cyan to dark blue spheres represent negative elements from 0 to -1), and areas 
with Vc ≤ 0.1 are linked with dark blue edges; (ii) by the outer product VcVc

T; and (iv) as a bar plot 
displaying the projection of the BOLD phase in each brain region into Vc. Each dFC state is also 
characterised by its (iii) dFC matrix. 
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Figure 4.6. Cluster time courses (k = 6) across subjects 3, 7 and 8, obtained with the PC and without 
the ICA clean-up and nuisance regression preprocessing steps. The subjects 3, 7 and 8 spent, 
respectively, 38.7 %, 11.7 % and 23.1 % of the total acquisition time on the frontal state (state 2). The 
occurrence of the frontal state in a specific epoch is denoted with a black arrow. Sub. = Subject. 
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Although the average dFC matrices yielded by PC method presented a high degree of similarity with 

those yielded by SW (Figure 4.1.), results obtained with the k-means clustering algorithm for k = 5 reveal 

that the dFC states differ greatly between both methods. 

By qualitative analysis of Figure 4.7., the FC patterns identified with the PC seem to be more 

consistent with those obtained with the SW of 25 TR, showing notable deviations compared to the results 

of SWs with larger sizes (35 TR and 45 TR) that present more irregular states. In particular, the occipital 

state, which is observed in the PC FC repertoire from k = 4 to k = 15 (see Figure 4.3.) and validated in 

the PC literature [86][118], can be identified in the results obtained with the SW of 25 TR (although with 

less pronunciation than in PC) but it does not appear for the wider SWs. 

4.3.2.1.  Correlation of cluster centroid vectors between methods 

   To quantitatively understand the similarities between the dFC states obtained with different methods, 

the Pearson correlation coefficient was computed for each pair of cluster centroid vectors (excluding the 

global mode) obtained with the PC and SW methods for the partition model k =5 (Figure 4.8.). 
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Figure 4.8. Pearson correlation coefficient computed between the cluster centroid vectors of the dFC 
states (k = 5) obtained with the PC method and the SW of (i) 25 TR, (ii) 35 TR and (iii) 45 TR. 
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Figure 4.7. (Continued) 
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   By analysing the correlation matrices, it was not found any univocal correlation between states of 

different methods. However, results from Figure 4.8. (i) reveal that the centroid vectors of state 2, state 

3 and state 5 obtained with PC and those of state 2, state 4 and state 3 identified with the SW with a 

size of 25 TR are, respectively, meaningfully correlated. For the dFC states yielded by larger SWs, the 

number of correlated states increases, such that a single state from the PC FC repertoire presents 

multiple meaningful correlations with states yielded by SW (e.g., in Figure 4.8. (iii), the state 3 obtained 

with the PC is greatly correlated with state 3 and state 5 yielded by SW of 45 TR). This suggests that, 

contrarily to the PC, the functional subsystems identified with the SW start to appear intermingled within 

each cluster, such that the correlation departs from univocity. 

     Furthermore, results show that the wider the window, the lower the correlation with the centroid 

vectors obtained with the PC (the maximum r in Figure 4.8. (i), (ii) and (iii) is 0.95, 0.75 and 0.69, 

respectively). Hence, this quantitative analysis reinforces the higher degree of similarity between the 

repertoire obtained with the PC and the SW of 25 TR, and the divergence of results for larger windows, 

as expected. In fact, although the connectivity time courses yielded by PC and SW of 45 TR display 

slightly higher similarity (Figure 4.1.), smaller SWs produce dynamic analyses on closer temporal scales 

(or resolution), and therefore yield more similar dFC states. 

4.3.2.2.  Correlation of dFC states with RSNs 

In order to quantitatively assess the influence of using the PC or SW on the relative validity of the 

results, the cluster centroid vectors of the dFC states obtained with both methods were compared to 

well-established RSNs from literature. Figure 4.9. shows the Pearson correlation coefficient computed 

between the cluster centroid vectors of the dFC states obtained with the PC and the SWs for k = 5 and 

the seven Yeo transformed RSNs vectors. 

Results reveal that the FC patterns obtained with the PC present statistically significant correlations 

with the VN (r = 0.80, p-value = 2.27 ∗ 10-21), SMN (r = 0.73, p-value = 5.27 ∗ 10-16), VAN  (r = 0.58, p-

value = 1.53 ∗ 10-9) and DMN (r = 0.28, p-value = 7.40 ∗ 10-3) in distinct clusters. 

In the SW of 25 TR, the VN is also detected separately in state 2, although it does not present a 

statistically significant correlation with the Yeo RSN. Regarding the remaining SWs, the VN arises in the 

state 5 obtained with the window of 35 TR (r = -0.31, p-value = 2.80 ∗ 10-3) and 45 TR (r = -0.32,                

p-value = 2.10 ∗ 10--3), though, it is not detected separately, as it appears intermingled with the DMN 

with lower correlation coefficients (absolute value) and statistical significance (r = 0.38,                                  

p-value = 2.29 ∗ 10-4 for the SW of 35 TR and r = 0.34, p-value = 1.00 ∗ 10-3 for a size of 45 TR). In the 

SW of 25 TR, the DMN arises separately in state 4 (r = 0.34, p-value = 9.10 ∗ 10-4). Regarding the SMN, 

it appears for the three SWs (r = 0.66, p-value = 1.02 ∗ 10-12 for the SW of 25 TR, r = 0.42,                               

p-value = 3.76 ∗ 10-5 for a size of 35 TR, and r = 0.52, p-value = 1.89 ∗ 10-7 for a size of 45 TR). 

In contrast to the PC method, none of the SWs can detect the VAN. However, in the results obtained 

with the window of 45 TR, the DAN arises in state 4 (r = 0.41, p-value = 6.36 ∗ 10-5). This network does 

not correlate with any dFC state obtained with the PC. 
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Hence, results suggest that the recurrent states obtained with the PC method are more similar to the 

functional networks of reference VN and SMN than those obtained with the SW method (higher 

correlation coefficients) and present stronger statistical significance, i.e., lower p-values. Furthermore, 

excluding the global mode, while each of the four dFC states obtained with the PC method presents a 

statistically significant correlation to one network of reference (in total, four Yeo RSNs are detected), 

states obtained with the SWs of 25 TR, 35 TR, and 45 TR significantly correlate with a total of two, three, 

and four Yeo RSNs, respectively. These observations show that, for the shortest window size, just half 

of the Yeo RSNs is significantly detected compared to the PC results, and for larger window sizes, the 

overlap with the Yeo RSNs increases, but they start to appear intermingled within each state. Thus, we 

may speculate that the PC is more sensitive than SW in detecting RSNs, presumably due to the 

inherently higher temporal resolution 

As explored previously in section 2.2.2.4., whereas the PC method allows for a maximal temporal 

resolution, estimating the instantaneous synchronisation of BOLD phases (one connectivity matrix per 

TR), the SW describes statistical relationships between brain regions within successive fixed-length 

windows (25 TR, 35 TR and 45 TR, in this case). Thus, the concept underlying the SW method implies 

focusing on the lower frequencies of the data (introduction of 31.5 s, 44.1 s and 56.7 s of period, 

respectively), which worsens the temporal resolution and may affect the detection of recurrent FC 

patterns with shorter mean lifetimes (i.e., that occur more rapidly). It should also be noted that the 

percentage of variance explained by the leading eigenvector was not above 50 % for all data points in 

PC SW (Size = 25 TR) 

Figure 4.9. Pearson correlation coefficient computed between the cluster centroid vectors of the dFC 
states (k = 5) obtained with the PC and SW (sizes of 25 TR, 35 TR and 45 TR) methods and the seven 
Yeo RSNs transformed into the AAL90 space. *: Statistically significant correlations after correcting for 
the number of clusters (p-value < 0.05/k); VN = Visual Network; SMN = Somatomotor Network;              
DAN = Dorsal Attention Network; VAN = Ventral Attention Network; LN = Limbic Network;                         
FPN = Frontoparietal Network; DMN = Default Mode Network. 
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the SW, which may have led to a misleading representation of the FC dominant pattern by the leading 

eigenvectors in some cases, and affected the representation of dFC states. 

Therefore, although the PC presents more susceptibility to noise than the SW, results suggest that 

it is more suitable to assess faster fluctuations of dFC, since it captures a dynamic that effectively exists 

and is not purely noise (otherwise the SW would probably detect it more reliably). This conclusion was 

also presented by Cabral and colleagues [83], which suggested the existence of a fast dynamic of 

functional FC patterns evolving, at least, at the temporal resolution of acquisition (in this case, 

corresponding to TR = 1.26 s), which would only be detected by keeping the high frequency components 

of the BOLD signal.  

4.3.2.3.  Dynamics of FC states 

     In order to compare the dynamics of dFC states obtained with the PC and SW methods, their mean 

lifetime and probability of occurrence are displayed in Figure 4.10. for the partition model k = 5. 

Furthermore, the impact of implementing a temporal smoothing algorithm on the dFC labels of the states 

was also analysed. 

Firstly, by comparing the mean lifetimes across the dFC states obtained with the PC, without (Figure 

4.10. (i)) and with (Figure 4.10. (ii)) the temporal smoothing of the dFC labels, the global mode presents 

the longest mean lifetime in both cases (16.96 ± 2.15 TR and 31.88 ± 7.05 TR, respectively). The 

remaining states (state 2 to state 5) last less than 5 TR without the temporal filter (4.44 ± 0.41 TR, 3.76 

± 0.45 TR, 3.71 ± 0.65 TR and 3.56 ± 0.78 TR, respectively), and more than 6.5 TR with the filter (9.54 
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Figure 4.10. Mean lifetime (i, ii) and probability of occurrence (iii, iv) of each dFC state (k = 5), obtained 
without and with the implementation of the temporal smoothing algorithm to the dFC labels, respectively, 
for the PC and SW with window sizes of 25 TR, 35 TR and 45 TR. 

(i) 

 

(iii) 

 

With temporal smoothing 

PC SW 

(Size = 25 TR) 
SW 

(Size = 35 TR) 

SW 

(Size = 45 TR) 

P
ro

b
a
b
ili

ty
 o

f 
O

c
c
u
rr

e
n
c
e

 

(ii) 

 

(iv) 

 



56 

 

± 0.97 TR, 6.52 ± 0.77 TR, 6.53 ± 1.12 TR and 7.50 ± 1.48 TR, respectively). 

In fact, the main impact of implementing the temporal smoothing is the increase of the duration of 

the states, since it imposes a minimum lifetime for the FC patterns (10 s, corresponding to 7.94 TR), 

ensuring that they do not switch faster than the highest frequency of the BOLD signal (0.1 Hz). Table 

4.1. shows the increased averaged mean lifetimes across states with the temporal smoothing algorithm 

vs. without its implementation. However, since the temporal smoothing is not strict (no imposition of a 

cut-off frequency), the duration of the states can be slightly inferior to 7.94 TR, which is verified for state 

3 to state 5 obtained with the PC (Figure 4.10. (ii)). Also, since the filter affects all states equally, the 

relative probabilities of occurrence present similar behaviours (Figure 4.10. (iii) and (iv)). 
 

Table 4.1. Average of mean lifetimes across the five dFC states (k = 5) obtained with the AAL90 atlas, 
without and with temporal smoothing of the state labels. 

Next, by comparing the temporal metrics between the PC and SW methods without the 

implementation of the temporal smoothing to the dFC labels (see Figure 4.10. (i) and first row of Table 

4.1), it was found that the mean lifetimes of the dFC states are higher in the SW. Within the SW method, 

since the duration of the states tends to increase for wider window sizes, the mean lifetime of the global 

mode decreases, approximating the duration of the remaining patterns.  

In fact, as described in the previous section, the SW method focuses on the lower frequency 

components of the BOLD signal. This method introduces by itself a temporal smoothing (or low-pass 

filtering) during the estimation of the FC within successive intervals of time, which increases the period 

of fluctuations and the mean lifetimes of the dFC states. Thus, synchronisation patterns with mean 

lifetimes shorter than the window size are hardly detected by this method. Following the same reasoning, 

wider window sizes (stricter low-pass filter) are expected to originate dFC states with higher mean 

lifetimes on average, which is also observed (except for the SW with a size of 45 TR). 

The findings above do not clarify whether the FC patterns present short mean lifetimes that appear 

longer in the SW because the method extends their duration over time and excludes shorter instances, 

or if the states have, in fact, high mean lifetimes, being better detected by filtering the high frequencies 

of the signal. Nonetheless, the correlation with the Yeo repertoire analysed in section 4.3.2.2. shows the 

importance of a fine-grained temporal specificity in detecting functional networks, and Cabral et al. [83] 

emphasize the relevance of keeping the higher frequencies of the BOLD signal to detect the fast 

evolution of the dFC at a scale at least as fast as the acquisition TR. These observations point to the 

ability of the PC method to capture a fast functional dynamic that exists and approximates the dynamic 

of the rs-fMRI (0.01 Hz to 0.1 Hz), which can not be reproduced with the SW method. 

Furthermore, Figure 4.10. (iii) reveals that, without implementing the temporal filter to the dFC labels, 

the global coherence state tends to be more prevalent (higher probability of occurrence) and occur in 
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shorter continuous time periods (lower mean lifetime) for the SW method than the PC method. As 

expected, the higher the probability of occurrence of the global mode, the lower the probabilities of the 

remaining FC patterns, which is visually detected in the same figure. 

Since the goal of the PC method is to analyse the dFC at each TR (maximal temporal resolution) 

and detect states that can evolve, at least, at the temporal resolution of acquisition, the application of 

the temporal smoothing algorithm was not considered in the following analyses. 

(i) Comparison between SW and PC methods in the HCP dataset 

The main goal of repeating the previous analyses in the HCP dataset was to validate the results 

obtained in sections 4.3.2.2. and 4.3.2.3. in a larger dataset. The results can be found in Appendix C. 

Comparing PC and SW, both methods provide similar dFC states significantly correlated with the 

same RSNs, contrarily to the migraine dataset. This is consistent with findings from Pedersan et al. [119] 

and Honari et al. [120], which also analyse the HCP dataset and suggest that PC and SW convey 

comparable connectivity information and similar brain states, with PC ensuring finer temporal resolution. 

In fact, since the Yeo’s template was originated from a large dataset [61], reference RSNs are expected 

to be more easily recoverable when more data are analysed. Hence, this observation suggests that the 

choice of the method to compute the dFC (either through the synchronisation of BOLD phases or the 

pairwise Pearson correlation coefficient) is more critical for smaller datasets.  

Moreover, the analysis of the temporal metrics of the dFC states for the partition model k = 5 in the 

HCP dataset reinforces the dynamic behaviour described for the migraine dataset.  The duration of dFC 

states is overall higher in the SW method, and the wider the window, the higher the mean lifetimes. One 

should note that this trend revealed a more linear behaviour for the HCP dataset, which was expected 

due to the much higher number of subjects. Regarding the probabilities of occurrence, the global mode 

is again the most likely state to occur. Furthermore, its probability of occurrence is higher in the SW 

method when compared to the PC, and displays a positive tendency for larger sizes.  

4.3.2.4.  Subject-level assessment 

The k-means clustering analysis at a group-level contributed to evaluating the recurrent FC patterns 

across the whole interictal dataset. In this section, the subject-level differences are explored, concerning 

the cluster time courses and the sFC analyses. 

(i) Cluster time courses 

Figure 4.11. displays the dFC labels obtained for each subject with the PC and SW of 25 TR over 

time, for k = 5. Firstly, by comparing the cluster time courses between the PC and SW, the longer 

duration of the states obtained with the second method is visually ascertained (each pattern occurs in 

longer continuous time periods).  

Then, results reveal that the distribution of recurrent FC patterns over time is highly heterogeneous 

across subjects. Whereas some participants exhibit synchronisation patterns that switch between all 

states over time (all subjects for the PC method except subject 2 and 4, and subjects 6 and 7 for the 

SW), others present patterns transiting from the global mode to just one (subjects 5 for the SW), two 

(subjects 2, 3 and 8 for the SW) or three (subjects 2 and 4 for the PC, subject 1 for the SW) states. 
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Regarding subject 4, the PC method detects fluctuations of FC from the global mode to states 2, 3 and 

4, and the SW does not detect any transition during the whole rs-fMRI scan (the participant remains in 

the global mode). These observations confirm that the number of detected states for each subject is 

overall higher in PC and show how the reduced temporal resolution of SW may lead the method to fail 

in capturing some recurrent states.  

(ii) sFC analysis 

     To assess the behaviour of the FC assuming stationarity over short time periods at a subject-level, 

Figure 4.12. displays the sFC observed for each subject during the acquisition time, obtained by avera- 

Figure 4.11. Cluster time courses (k = 5) across subjects obtained with the PC and SW with a size of 
25 TR. Sub. = Subject. 
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ging the dFC matrices obtained with the PC and the SW of 25 TR over time.  

     Firstly, the average of the FC over the acquisition time is not expected to vary greatly between 

methods, which is observable in Figure 4.12. 

Furthermore, results reveal evident differences across participants. Subjects 2 and 4 spent most of 

the scan duration in the global coherence state (94.0 % and 93.4 % of the time, respectively, with the 

PC, and 98.7 % and 100 % of the time, respectively, with the SW), as already visualised in Figure 4.11. 

Thus, since the longer the duration of the dFC state, the closer it gets to the averaged static connectivity, 

the sFC of these subjects reveal a strong (FC ≥ 0.8) fully connected state following the global mode.  

Moreover, the strong positive sFC patterns (FC ≥ 0.8) obtained for subject 1 reveal the predominance 

of the occipital state (VN), which is extensively found across the clustering results obtained for the group-

level analysis (Figure 4.3). For the same subject, the negative sFC patterns reveal a functional 

subsystem that, by visual analysis, seems to be forming the DMN. 

Despite the few common synchronisation patterns identified with the sFC and dFC analyses, results 

prove that the dFC assessment captures FC alterations that are not detected with the conventional sFC, 

being the first method better suited to model the dynamic changes of the human brain. 

Next, in order to evaluate the similarities between the sFC matrices obtained for all subjects and the 

ones obtained with the dFC analysis for each method (PC and SW with three window sizes), the Pearson 

correlation coefficient was computed between the sFC matrix averaged across all subjects and the sum 

of the VcVc
T matrices (Figure 4.7. (ii)) weighted with the probability of occurrence of the states. The 

correlation coefficients obtained for the PC and SWs of 25 TR, 35 TR and 45 TR were, respectively,        

r = 0.80, r = 0.72, r = 0.70 and r = 0.69 for the partition model k = 5. These results show that the sFC 

matrix can be fairly described as a linear combination of the five eigenvectors in all methods, but the PC 

better captures the coupling between BOLD signals than the SW, which tends to get worse for larger 

sizes. In turn, for k = 10, the results obtained with these methods were, respectively, r = 0.81, r = 0.74, 
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Figure 4.12. sFC across subjects obtained with the PC and SW with a size of 25 TR. Subj. = Subject;        
FC = Functional Connectivity. 
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r = 0.72 and r = 0.71, which suggests that the higher the number of eigenvectors (higher k), the better 

the approximation of the weighted sum of the VcVc
T matrices to the sFC matrix averaged across all 

subjects. 

 

4.4.  Analysis of migraine interictal dataset across atlases: PC method 

In order to understand the impact of choosing different brain parcellation schemes in the FC 

repertoire, the results obtained with the k-means clustering algorithm (k = 5 to k = 12) and PC method 

are depicted in Figure 4.13 for the AAL90, AAL116, Desikan and Harvard-Oxford atlases. 

AAL90 atlas 

Figure 4.13. dFC states obtained with the k-means clustering algorithm (k = 5 to k = 12), displayed according 
to their decreasing probability of occurrence within each k, for the AAL90, AAL116, Desikan and Harvard-
Oxford atlases. Each state is represented by its Vc as a network in the respective atlas cortical space (axial 
slice), in which the elements of Vc are placed at the center of gravity of the respective brain region, shaped 
as spheres colored according to their sign (red to yellow spheres represent positive elements from 1 to 0, 
cyan to dark blue spheres represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked 
with dark blue edges. The colored rectangles represent the Yeo transformed RSNs to which the given 
cluster centroid vector presents a statistically significant Pearson correlation (p-value < 0.05/k). 

AAL116 atlas 
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The statistically significant correlations between the cluster centroid vectors of the dFC states and 

the seven Yeo transformed RSNs vectors are surrounded with rectangles, coloured according to the 

Yeo RSN to which the given cluster centroid vector is correlated. One should note that this range of k’s 

was enough to capture non-redundantly the maximum of Yeo RSNs possible across atlases. 

The qualitative inspection of Figure 4.13. reveals that the most similar distributions of dFC states are 

those obtained with the AAL90 and AAL116 atlases, which was expected since the brain parcels are 

overall identical (see Figure 3.1.: labels 1 to 90 of AAL90 atlas and 1 to 94 of AAL116 atlas). The major 

difference between these two versions of AAL is the addition of cerebellar regions in the AAL116 atlas 

(Figure 3.1.: labels 95 to 116). Furthermore, it is interesting to note that the inclusion of the cerebellum 

in the FC analysis does not contribute to a redistribution of the dFC states. Instead, it appears 

intermingled with the functional networks as an additional area with a BOLD phase detaching from the 

global coherence. 

Desikan atlas 

Harvard-Oxford atlas 

Figure 4.13. (Continued). 
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 This statement is easily noted in Figure 4.14. for the partition model k = 7 and states 3, 4, 6 and 7. 

Additionally, a prevalent dFC state identified in the results obtained with the four atlases is the 

occipital state, significantly correlated with the VN. To assess its peculiarities in terms of 

neuromorphology and temporal metrics, this synchronisation pattern is displayed in Figure 4.15.  

Figure 4.15. reveals that the occipital state includes the cuneus cortex and lingual gyrus deviating 

from the global mode across the results of the four atlases. Furthermore, regions belonging to the 

calcarine part of the cortex are identified in those obtained with the AAL90 and AAL116 (calcarine 

fissure), Desikan (pericalcarine cortex) and Harvard-Oxford (intracalcarine and supracalcarine cortices). 

Also, the cortical resolution of the AAL90 and AAL116 parcellation schemes makes it possible to detect 

shifts in the BOLD phase of the superior, middle and inferior occipital gyri with the first one and in the 

parahippocampal gyrus with the second one. Some subcortical regions are also identified, such as the 

amygdala and cerebellum (vermis 1,2) with the AAL116 and the amygdala with the Harvard-Oxford. 

Regarding the duration of the occipital state, the mean lifetime is consistent across the AAL90       

(3.89 ± 0.43 TR), Desikan (3.40 ± 0.39 TR) and Harvard-Oxford (3.74 ± 0.30 TR) atlases. For the 

AAL116, the duration of this pattern is discrepantly higher (7.82 ± 0.83 TR). In terms of probabilities of 

occurrence, this state is more prevalent when obtained from the Harvard-Oxford atlas (probability of 

0.094 ± 0.006) and less prevalent when yielded from Desikan (0.063 ± 0.005). For the AAL90 and 

AAL116 atlases, the probability is similar (0.077 ± 0.006 and 0.076 ± 0.006, respectively). 

Figure 4.14. dFC states obtained with the k-means clustering algorithm (k = 7), displayed according to 
their decreasing probability of occurrence, for the AAL90 and AAL116 atlases. Each state is 
represented by its Vc as (i) a network in the respective atlas cortical space (axial slice), in which the 
elements of Vc are placed at the center of gravity of the respective brain region, shaped as spheres 
colored according to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to 
dark blue spheres represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with 
dark blue edges; and (ii) a bar plot, showing the projection of the BOLD phase in each brain region 
into Vc. The black rectangle points out the labels of the AAL116 atlas corresponding to the cerebellum. 

State 1    State 2      State 3    State 4      State 5     State 6      State 7  State 1      State 2    State 3      State 4      State 5      State 6       State 7  
(i) 

(ii) 

(i) 

(ii) 

AAL90 AAL116 
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4.4.1.  Correlation of dFC states with RSNs 

By analysing Figure 4.13., it is interesting to notice the effect of distinct brain parcellation schemes, 

with different ROIs and cortical resolutions, in the ability to obtain separated reference RSNs.  

In addition to the VN, results suggest that the SMN and DMN are the only Yeo RSNs identified 

separately across the studied atlases. Furthermore, the VAN, which can be identified independently in 

the dFC states obtained with the AAL90, AAL116 and Harvard-Oxford atlases, appears intermingled 

with the SMN in the repertoire obtained with the Desikan atlas. In contrast, the results obtained with the 

Desikan atlas are the only ones where the FPN can be detected separately, without other significant 

correlations with Yeo RSNs in the same state. Regarding the DAN, it appears together with the FPN in 

the AAL90 atlas, and with VAN, SMN and FPN in the AAL116 atlas, but it can not be detected separately 

in any parcellation scheme. Moreover, the LN only appears in the AAL116 atlas.  

Hence, it is possible to observe that the higher the number of ROIs considered in the parcellation 

scheme (better cortical resolution), the wider the number of statistically significant correlations 

established with Yeo RSNs: in the AAL116 atlas, all seven RSNs are detected; in the AAL90 atlas, only 

six RSNs are identified (the LN does not appear); in the Desikan atlas, there is a register of five RSNs 

(without any FC pattern significantly correlated with the DAN and LN); and, finally, in the Harvard-Oxford 

atlas, only 5 RSNs are identified (the DAN, LN and FPN do not appear). 

The discrepancies found in the dFC states obtained with the four atlases justify per se the importance 

of comparing different criteria to divide the brain when assessing the FC repertoire at a group-level. 

Figure 4.15. Occipital state obtained with the k-means clustering algorithm (state 3, k = 12), for the 
AAL90, AAL116, Desikan and Harvard-Oxford atlases and the PC method. This dFC state is 
represented by its Vc: (i) as a network in the AAL90 cortical space (axial slice), in which the elements of 
Vc are placed at the center of gravity of the respective brain region, shaped as spheres colored according 
to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to dark blue spheres 
represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges; (ii) 
by the outer product VcVc

T; and (iv) as a bar plot displaying the projection of the BOLD phase in each 
brain region into Vc. This dFC state is also characterised by its (iii) dFC matrix. 

.. 

AAL116 

 (i) (ii) (iii) (iv) 

AAL90 
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Relevant functional networks may not be detected in the results obtained with a specific parcellation 

scheme but may be notable with others. However, despite the differences highlighted above, the 

resemblances exhibited by the results obtained with the four atlases were expected due to the 

meaningful degree of similarity between them. As seen in Figure 2.6., the adjusted mutual information 

scores computed between the AAL, Desikan and Harvard-Oxford atlases ranged, approximately, from 

0.5 to 0.6).  

 

4.5.  Comparison between groups 

4.5.1.  Migraineurs: Interictal vs. Ictal sessions 

   Migraine interictal and ictal sessions were compared by implementing a permutation-based paired      

t-test on the mean lifetime and probability of occurrence of the dFC states. Then, the FC patterns with 

statistically significant between-session differences on those temporal metrics were analysed. The          

p-values associated with the solutions obtained for the whole FC repertoire studied (k = 3 to k = 15) with 

the AAL90 atlas and PC method are displayed in Figure 4.16. 

  The red dashed line represents the standard significance threshold, p-value = 0.05; the green dashed 

line corresponds to the Bonferroni corrected significance threshold to correct for multiple comparisons 

by considering the number of states (independent hypotheses) compared within each partition model, 

p-value = 0.05/k; and the blue dashed line represents the corrected significance threshold to correct for 

multiple comparisons by considering all hypothesis independent across models, including the whole 

sample of tests performed, p-value = 0.05/Σk [89]. 
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Figure 4.16. Significance of differences in the (i) probability of occurrence and (ii) mean lifetime of dFC 
states obtained with the AAL90 atlas and PC method, between migraine interictal and ictal sessions, as 
a function of k. The red, green and blue dashed lines represent p-values equal to 0.05, 0.05/k and 
0.05/Σk, respectively. Thus, all dFC states noted with a black asterisk (above the red line) passed the 
null hypothesis, i.e., present no significant difference between sessions; the FC patterns marked with a 
red asterisk (above the green and below the red lines, p-value < 0.05, > 95 % of confidence) rejected 
the null hypothesis but did not pass the correction for multiple comparisons, being considered possible 
false positives; the states noted with a green asterisk (above the blue and below the green lines) rejected 
the null hypothesis with p-value < 0.05/k; and the states noted with a blue asterisk (below the blue line) 
rejected the null hypothesis with p-value < 0.05/Σk). 
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Of the clustering solutions considered, most dFC states did not present any significant difference 

between the interictal and ictal sessions (black asterisks). Moreover, several solutions obtained for the 

probability of occurrence and mean lifetime were revealed to be possible false positives (red asterisks). 

Only two solutions survived the correction for multiple comparisons: state 6 for k = 7 (green asterisk,     

p-value < 0.05/k) and state 8 for k = 10 (blue asterisk, p-value < 0.05/Σk), with significant between-

session differences in the probability of occurrence and mean lifetime, respectively.   

For the subsequent analyses, the partition model with the lowest k and, simultaneously, with the 

solution displaying the p-value below the most significant threshold will be studied. For example, the 

chosen partition model for this atlas will be k = 10, since it is the shortest repertoire displaying a solution 

below the most significant threshold (p-value < 0.05/Σk). Furthermore, the FC pattern with significant 

between-session differences in temporal metrics will be analysed and correlated with reference RSNs 

(Yeo and Smith repertoires).  

4.5.1.1.  Analysis of relevant dFC states: temporal metrics and correlation with RSNs 

The partition model k = 10 obtained with the AAL90 atlas and PC method is displayed in Figure 4.17.  

In detail, for the partition model k = 10, state 8 displays a statistically significant between-session 

difference in the mean lifetime (p-value = 5.92 ∗ 10-6), spending longer continuous time periods in the 

ictal session (averaged mean lifetime ± standard error = 5.05 ± 0.46 TR) than in the interictal session 

(1.80 ± 0.92 TR). Furthermore, the frequency of this FC pattern is also significantly higher during the 

ictal phase (averaged probability of occurrence ± standard error = 0.088 ± 0.023) than in the interictal 

phase (0.015 ± 0.009), although this metric did not pass the correction for multiple comparisons. 

Figure 4.17. dFC states obtained with the k-means clustering algorithm (k = 10), displayed according 
to their decreasing probability of occurrence, for the AAL90 atlas and PC method. Each dFC state is 
represented by its Vc as: a network in the AAL90 cortical space (axial slice), in which the elements of 
Vc are placed at the center of gravity of the respective brain region, shaped as spheres coloured 
according to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to dark 
blue spheres represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark 
blue edges; and by the outer product VcVc

T. Below the representation of each state, the respective 
probabilities of occurrence and mean lifetimes are displayed for the migraine patients in the interictal 
and ictal sessions. The rectangle marks states with statistically significant between-session 
differences and correlation to any Yeo RSN, with the colours representing the RSN. * Significant 
difference before correcting for multiple comparisons (p-value < 0.05); ** Significant difference after 
correcting for multiple comparisons (p-value < 0.05/k); *** Significant difference after correcting for 
multiple comparisons (p-value < 0.05/Σk). 
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In order to evaluate the correlation of state 8 with the well-established functional networks, the 

Pearson correlation coefficient computed between the cluster centroid vector of this dFC state with the 

Yeo and Smith transformed RSNs vectors is presented in Figure 4.18. 

By analysing Figure 4.18., it is possible to observe that the functional network detaching from the 

global mode in state 8 is composed of regions mainly from the frontal lobe (frontal inferior orbital and 

frontal superior medial gyri, gyrus rectus, olfactory cortex, frontal medial orbital cortex, and anterior and 

posterior cingulate cortices). However, it also presents areas from the parietal lobe (angular gyrus and 

precuneus cortex); temporal lobe (parahippocampal gyrus, temporal middle gyrus and temporal superior 

and middle poles); and subcortical regions (hippocampus, amygdala and caudate nucleus). 

In terms of correlation to well-established functional templates, this FC pattern significantly overlaps 

with the DAN (r = 0.38, p-value = 2.02 ∗ 10-4) and FPN (r = 0.60, p-value = 5.00 ∗ 10-10) of Yeo repertoire, 

and with the left FPN (r = 0.54, p-value = 4.92 ∗ 10-8) of Smith repertoire.  

Next, to evaluate the FC strength of dFC states (how coherent paired brain regions are), especially 

in those revealing significant between-session differences in terms of temporal metrics, the eigenvalues 

of dFC matrices were averaged over the time points in which the respective FC patterns occurred in the 

interictal and ictal sessions, which is displayed in Figure 4.19. 

Figure 4.19. reveals that the DAN/FPN state (state 8) presents significantly different (p-value = 0.015) 

mean eigenvalues between both sessions, with stronger FC during the ictal phase (mean eigenvalue of 

Figure 4.18. State obtained with the k-means clustering algorithm (state 8, k = 10), for the AAL90 atlas 
and PC method, and its Pearson correlation with Yeo and Smith repertoires. This dFC state is 
represented by its Vc: (i) as a network in the AAL90 cortical space (axial slice), in which the elements of 
Vc are placed at the center of gravity of the respective brain region, shaped as spheres coloured 
according to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to dark blue 
spheres represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue 
edges; (ii) by the outer product VcVc

T; and (iv) as a bar plot displaying the projection of the BOLD phase 
in each brain region into Vc. Each dFC state is also characterised by its (iii) dFC matrix. **: Statistically 
significant correlations after correcting for the number of clusters (p-value < 0.05/k); *** Significant 
difference after correcting for multiple comparisons (p-value < 0.05/Σk). VN = Visual Network; SMN = 
Somatomotor Network; DAN = Dorsal Attention Network; VAN = Ventral Attention Network; LN = Limbic 
Network; (R/L) FPN = (Right/Left) Frontoparietal Network; DMN = Default Mode Network; VMedN = 
Visual Medial Network; VOccN = Visual Occipital Network; VLatN = Visual Lateral Network; CbN = 
Cerebellar Network; AudN = Auditory Network; ECN = Executive Control Network. 

(i)  (ii) (iii) (iv) 
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56.16 ± 1.34) than in the interictal phase (52.28 ± 0.73), and lower eigenvalues than the global mode in 

both sessions. Indeed, the global mode is the most strongly connected state regardless of the phase of 

the migraine cycle (higher mean eigenvalues in both sessions in comparison to the remaining states), 

exhibiting significantly higher FC strength (p-value < 0.05) when occurring in the interictal session (mean 

eigenvalue of 70.94 ± 2.61) than in the ictal session (64.36 ± 0.88). 

     Furthermore, state 3, which is significantly correlated with Yeo’s VN and Smith’s VMedN, VOccN and 

VLatN (p-value < 0.05/Σk), and state 7, without any significant correlation to Yeo RSNs, both reveal 

significantly higher FC strength (p-values < 0.05 and 0.05/k, respectively) in the ictal session than in the 

interictal session. The VN in state 3 is composed of regions from the occipital lobe (calcarine fissure, 

cuneus cortex, lingual gyrus, occipital superior, middle and inferior gyri); fusiform gyrus, belonging to 

both occipital and temporal lobes; and parietal lobe (parietal superior gyrus). 

     Hence, results suggest that during the migraine attack, besides the higher mean lifetime and 

probability of occurrence of the DAN/FPN state, this network also presents stronger FC in comparison 

to the attack-free period. This observation is also valid for the VN (state 3), however, the differences in 

terms of mean lifetime and probability of occurrence did not present statistical significance for this atlas. 

Regarding the remaining atlases, the p-values of the solutions with statistically significant differences 

in terms of the temporal metrics can be consulted in Figure D.1. of Appendix D. The partition models 

chosen to be analysed for each atlas followed the aforementioned criteria, being k = 14 for the AAL116, 

k = 9 for Desikan and k = 13 for Harvard-Oxford. A more detailed description of the states is displayed 

in Figure D.2. of the same appendix.  

Firstly, the DAN/FPN functional system described for the AAL90 atlas (state 8, k = 10) can also be 

found with significant between-session differences in the results obtained with the AAL116 atlas – state 

10 (k = 14), significantly correlated with Yeo’s DAN and FPN and Smith’s left FPN (r = 0.28, 0.57 and 

0.52, respectively) – and the Harvard-Oxford atlas – state 9 (k = 13), significantly correlated with Yeo’s 

DAN and FPN and Smith’s right and left FPN (r = 0.54, 0.47, 0.56 and 0.64, respectively). Regarding 

the Desikan atlas, state 9 (k = 9) overlaps with Yeo’s FPN and Smith’s left FPN (r = 0.46 and 0.46, 

respectively). One should note that all the correlations with RSNs passed the significance threshold 

corrected for the whole sample of tests performed (p-value < 0.05/Σk).  

Similar to the AAL90 atlas, the DAN/FPN state presents significantly higher mean lifetime (p-value < 

0.05/Σk), probability of occurrence (p-value < 0.05) and FC strength (p-value < 0.05) in the ictal session 

Figure 4.19. Mean eigenvalues of each dFC state obtained with the k-means clustering algorithm             
(k = 10), for the AAL90 atlas and PC method, displayed for the interictal and ictal sessions. * Significant 
difference before correcting for multiple comparisons (p-value < 0.05); ** Significant difference after 
correcting for multiple comparisons (p-value < 0.05/k); *** Significant difference after correcting for 
multiple comparisons (p-value < 0.05/Σk). The rectangle marks states with statistically significant 
between-group differences and correlation to any Yeo RSN, with the colors representing the RSN. The 
black rectangle marks the global mode.                   
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than in the interictal session for the AAL116 and Harvard-Oxford atlases. For the Desikan atlas, the FPN 

occurs in significantly longer continuous time periods (p-value < 0.05/k), with a higher probability (p-va- 

lue < 0.05/Σk) and stronger FC (p-value < 0.05) in the ictal session than in the interictal session. 

Also, besides the DAN/FPN, other states correlated to well-established RSNs (p-value < 0.05/Σk) 

presented significant between-session differences for the partition models studied before.  

The global mode revealed a mean lifetime (AAL116 and Desikan, p-value < 0.05), probability of 

occurrence (Desikan, p-value < 0.05) and FC strength (Harvard-Oxford atlas, p-value < 0.05/k) 

significantly higher in the interictal session when compared to the ictal session. 

Regarding the VN, state 5 (Yeo’s VN) and state 8 (Yeo’s VN and Smith’s VMedN, VOccN and VLatN) 

obtained with the AAL116 and state 5 (Yeo’s VN and Smith’s VMedN) obtained with the Harvard-Oxford 

revealed significantly higher mean lifetime and probability of occurrence (p-value < 0.05) in the ictal 

session than in the interictal session. 

Finally, with respect to the SMN, state 8 (Yeo’s SMN and Smith’s SMN and AudN) obtained with 

Desikan showed significantly higher mean lifetime and probability of occurrence (p-value < 0.05) and 

FC strength (p-value < 0.05/Σk) for the ictal session than the interictal session. This state is composed 

of regions from the frontal lobe (precentral gyrus, orbitofrontal medial cortex, anterior cingulate cortex 

rostral, posterior cingulate cortex); parietal lobe (postcentral gyrus); paracentral gyrus, belonging to both 

parietal and frontal lobes; and temporal lobe (temporal superior gyrus, banks superior temporal sulcus, 

entorhinal cortex, temporal pole and temporal transverse cortex). 

The VN and SMN, which displayed statistically significant between-session differences across 

atlases, are displayed in Figure 4.20. The first one was obtained with the AAL90 atlas, and the second 

one was yielded with Desikan. 

The switching profile of the dFC states characteristic of each session, with the probabilities of 

switching from a given dFC state to another, was also obtained for k = 10 with the AAL90 atlas. However, 

none of the transition probabilities revealed statistically significant between-session differences 

surviving the thresholds for multiple comparisons. The results can be found in Figure D.3. 

Figure 4.20. States obtained with the k-means clustering algorithm for the AAL90 (state 3, k = 10) and 
Desikan (state 8, k = 9) atlases and PC method, represented by their Vc: (i) as a network in the atlas 
cortical space (axial slice), in which the elements of Vc are placed at the center of gravity of the respective 
brain region, shaped as spheres colored according to their sign (red to yellow spheres represent positive 
elements from 1 to 0, cyan to dark blue spheres represent negative elements from 0 to -1), and areas 
with Vc ≤ 0.1 are linked with dark blue edges; (ii) by the outer product VcVc

T; and (iv) as a bar plot 
displaying the projection of the BOLD phase in each brain region into Vc. Each dFC state is also 
characterised by its (iii) dFC matrix. 

(i) (ii) (iii) (iv) 
State 3, k = 10 (AAL90) 

State 8, k = 9 (Desikan) 
(i) (ii) (iii) (iv) 
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 Next, a permutation-based paired t-test was also applied on the mean lifetime and probability of 

occurrence of the dFC states obtained with the AAL90 atlas and the SW of 25 TR instead of the PC, in 

order to evaluate the impact of changing the method to estimate dFC in the between-session differences 

(see Figure D.1. and Figure D.2. of Appendix D). 

The results obtained with the SW reveal more solutions surviving the threshold corrected for the 

whole sample of tests performed (p-value < 0.05/Σk) compared to the results obtained with the PC, 

especially regarding the mean lifetimes. However, most of these states poorly resemble well-established 

RSNs from Yeo and Smith repertoires, contrary to those obtained from the PC method. This observation 

reinforces, once again, the reduced specificity of the SW in detecting functional networks.  

Regarding the solutions showing statistically significant between-session differences and correlation 

with Yeo and Smith RSNs (p-value < 0.05/k), state 2 for k = 3 (significantly correlated with Yeo’s and 

Smith’s SMN) reveals significantly higher mean lifetime (p-value < 0.05/Σk) in the ictal session; state 9 

for k = 12 (Yeo’s DAN and FPN and Smith’s left FPN) presents significantly higher mean lifetime (p-

value < 0.05) in the ictal session; and state 6 for k = 15 (Yeo’s and Smith’s SMN) shows significantly 

higher mean lifetime (p-value < 0.05) and probability of occurrence (p-value < 0.05) in the ictal session, 

all compared to the interictal session. These observations suggest consistency across the PC and the 

SW methods. 

4.5.2.  Migraineurs vs. Controls 

    Regarding migraine patients scanned in the interictal phase and healthy controls, the groups were 

compared by applying a permutation-based unpaired t-test on the temporal metrics of the dFC states. 

The p-values associated with the solutions obtained for the whole FC repertoire (k = 3 to k = 15) with 

the AAL90 atlas and PC method are displayed in Figure 4.21. 

     Results in Figure 4.21. show that the global mode displays statistically significant between-group 

differences in the probability of occurrence and mean lifetime from k = 4 to k = 15 (0.05/Σk < p-value <  
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Figure 4.21. Significance of between-group differences in the (i) probability of occurrence and (ii) mean 
lifetime of each dFC state, obtained with the AAL90 atlas and PC method, between migraine patients 
scanned in the interictal phase and healthy controls, as a function of k. The red, green and blue dashed 
lines represent p-values equal to 0.05, 0.05/k and 0.05/Σk, respectively.  
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< 0.05) between migraine patients scanned in the interictal phase and healthy controls. In this case, 

the partition model chosen to be analysed is k = 4, following the aforementioned criteria. 

4.5.2.1.  Analysis of relevant dFC states: temporal metrics and correlation with RSNs 

 Figure 4.22. displays the clustering solution k = 4 in more detail, including the states' temporal 

properties and mean eigenvalues for both patients and controls.  

For k = 4, the global mode reveals a significantly higher probability of occurrence (p-value =                    

= 7.23 ∗ 10-3), mean lifetime (p-value = 3.40 ∗ 10-2) and FC strength (p-value = 1.40 ∗ 10-3) in migraine 

patients in the interictal session compared to healthy controls. This state occurs with a probability of 

0.687 ± 0.099, mean lifetime of 20.08 ± 7.08 TR, and FC strength of 67.91 ± 2.50 for the migraine group, 

and probability of 0.391 ± 0.057, mean lifetime of 7.88 ± 0.72 TR, and FC strength of 59.63 ± 1.22 for 

the control group. As expected, and similarly to the behaviour observed when comparing the two phases 

of the migraine cycle (section 4.5.1.1.), the global coherence state is the only FC pattern with a higher 

probability of occurrence (and in this case, higher mean lifetime) in migraineurs scanned in the interictal 

phase compared to control group. Thus, these findings suggest that, during the interictal phase, patients 

spend longer continuous time periods in the global mode and present a lower probability of occurring in 

the remaining synchronisation patterns.  

Other patterns that show significant between-group differences in this partition model, although not 

surviving multiple comparisons correction, are states 2 and 3, in which healthy controls reveal higher 

Figure 4.22. dFC states obtained with the k-means clustering algorithm (k = 4), displayed according 
to their decreasing probability of occurrence, for the AAL90 atlas and PC method. Each dFC state is 
represented by its Vc as: a network in the AAL90 cortical space (axial slice), in which the elements 
of Vc are placed at the center of gravity of the respective brain region, shaped as spheres colored 
according to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to dark 
blue spheres represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark 
blue edges; and by the outer product VcVc

T. Below the representation of each state, the respective 
probabilities of occurrence, mean lifetimes and mean eigenvalues are displayed for the migraine 
patients in the interictal phase and healthy controls. The rectangle marks states with statistically 
significant between-group differences and correlation to any Yeo RSN, with the colors representing 
the RSN. The black rectangle marks the global mode. * Significant difference before correcting for 
multiple comparisons (p-value < 0.05); ** Significant diffence after correcting for multiple 
comparisons (p-value < 0.05/k); *** Significant difference after correcting for multiple comparisons 
(p-value < 0.05/Σk). HC = Healthy Controls. 
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mean lifetime and probability of occurrence than migraineurs, respectively. State 2 does not present any 

significant correlation with well-established RSNs, being composed of regions from the frontal lobe 

(frontal superior medial gyrus, frontal medial orbital cortex, gyrus rectus, olfactory cortex, and anterior 

and posterior cingulate cortices); parietal lobe (angular gyrus); temporal lobe (parahippocampal gyrus 

and temporal middle pole); and subcortical regions (hippocampus and amygdala). Moreover, state 3 is 

significantly correlated with Yeo’s SMN and Smith’s SMN and AudN and exhibits a functional network 

composed of regions from the frontal lobe (precentral gyrus, frontal middle gyrus, frontal middle orbital 

gyrus, frontal inferior opercular and triangular gyri, rolandic operculum and supplementary motor area);  

insular cortex; parietal lobe (postcentral gyrus, parietal superior and inferior gyri and supramarginal 

gyrus); paracentral lobe, which is part of the parietal and frontal lobes; temporal lobe (Hechl’s gyrus, 

temporal superior and inferior gyri); and subcortical regions (lenticular nuclei putamen and pallidum). 

These functional subsystems are more weakly connected than the global mode. 

Regarding the remaining atlases, the p-values of the solutions with significant differences in terms of 

the temporal metrics can be consulted in Figure D.4. of Appendix D. The partition models chosen to be 

analysed for each atlas following the aforementioned criteria were k = 5 for the AAL116, k = 5 for Desikan 

and k = 4 for Harvard-Oxford. A more detailed description of the states is displayed in Figure D.5. of the 

same appendix. 

The significant differences found in the global mode obtained with the AAL90 atlas can also be 

verified with statistical significance in the repertoires obtained with the remaining parcellation schemes. 

Furthermore, other states present statistically significant between-group differences and significant 

overlap with Yeo and Smith RSNs (p-value < 0.05/ Σk). In the results obtained with the AAL116 atlas, 

state 5 (significantly correlated with Yeo’s SMN and Smith’s SMN and AudN) revealed significantly 

higher mean lifetime (p-value < 0.05) and probability of occurrence (p-value < 0.05/Σk) in migraineurs 

scanned in the interictal phase compared to controls. Regarding the FC repertoire obtained with the 

Harvard-Oxford atlas, state 4 (Yeo’s VN and Smith’s VMedN and VOccN) displayed significantly higher 

mean lifetime (p-value < 0.05) and probability of occurrence (p-value < 0.05) for patients than controls. 

Although the partition models were studied following the criterium of lowest k and p-value below the 

most significant threshold, to observe the behaviour of the DAN/FPN network found in section 4.5.1.1. 

in the present comparison, the partition model k = 14 obtained with the AAL90 was analysed (Figure 

D.4. of Appendix D). For this clustering solution, it was found that state 13, which significantly (p-value 

< 0.05/Σk) overlaps with Yeo’s DAN and FPN and Smith’s right and left FPN, exhibits lower mean lifetime 

and probability of occurrence (p-value < 0.05) in the patients group than in controls.  

Regarding the switching profile of the dFC states characteristic of patient and control groups obtained 

for k = 4 with the AAL90 atlas (consult Figure D.6.), no statistically significant between-group differences 

surviving the thresholds for multiple comparisons were registered. However, it is interesting to note that 

the only transition in which migraineurs in the interictal phase present a significantly higher (p-value < 

0.05) transition probability than controls is from state 4 to the global mode, which reinforces the tendency 

of patients to align the BOLD phases towards the main orientation determined by the leading eigenvector 

and switch to the global mode in this phase of the migraine cycle. 
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4.5.3.  Interpretation of results and association with migraine pathophysiology 

A summary of the results obtained in the statistical comparisons across atlases and with the PC 

method between migraineurs in the interictal and ictal phases and between migraineurs in the interictal 

phase and healthy controls is displayed in Table 4.2. The stronger statistical significance (lower p-value) 

associated with the results across atlases is also registered on the table. Also, the labels of the AAL 

atlas were chosen to describe the composition of the RSN detaching from the global mode. 
 

Table 4.2. Summary of the results obtained with the statistical comparisons between the migraine 
interictal session vs. ictal session and migraine interictal session vs. healthy controls. 

 

 

Abbreviations: A = Anterior; Amg = Amygdala; An = Angular; C = Cortex; CalFis = Calcarine Fissure; CC = Cingulate Cortex; 

Cd(N) = Caudate (Nucleus); Ce = Central; Cun = Cuneus; F = Frontal; FC = Functional connectivity; Fus = Fusiform; G = Gyrus; 

HC = Healthy Controls; HiC = Hippocampus; I = Inferior; Ins = Insular; L = Left; LentN = Lentiform Nucleus; Lin = Lingual;              

LT = Mean Lifetime; M = Middle; Med = Medial; O = Orbital; Olf = Olfactory; Occ = Occipital; Op = Opercular; P = Posterior;       

Par = Parietal; Precun = Precuneus; Pal = Pallidum; PO = Probability of occurrence; Put = Putamen; Rec = Rectus;                   

RolOp = Rolandic Operculum; S = Superior; SC = Subcortical; Sup = Supramarginal; SuppMoA = Supplementary Motor Area;  

T = Temporal; Tri = Triangular; ↑/↓ = Increased/Decreased; * Significant difference before correcting for multiple comparisons         

(p-value < 0.05); ** Significant difference after correcting for multiple comparisons (p-value < 0.05/k); *** Significant difference 

after correcting for multiple comparisons (p-value < 0.05/Σk). 

Over the past years, neuroimaging studies have revealed alterations in the functional state of 

migraineurs’ brain compared to the normal brain condition [121]. One of the main goals of this work was 

to identify those FC variations between migraine patients scanned in the interictal and ictal phases, and 

between migraineurs and healthy controls, which could potentially constitute clinical neuroimaging 

biomarkers helpful to predict migraine attacks and more accurately diagnose and understand the 

disorder pathophysiology. 

Neuroimaging studies reveal that the pathological alteration of the migraine brain involves the 

sensitivity of FC to plastic and developmental changes in the functional architecture. This sensitivity may 

lead to the adaptation of cortical networks and reshape of functional connections to altered cognitive 

and emotional demands, such as chronic pain [122]. Indeed, converging evidence suggests that the 

increased nociceptive synaptic transmission derived from recurring headaches involves a survival pain 

experience that demands attention and is intimately associated with learning. Thus, the unconditioned 

pain stimuli may bring cognitive and sensory processing-related regions to a heightened state [123].  

FC pattern 
 

Composition of the RSN detaching from global mode 
 

 

Main findings 

Global 
mode 

– 

 

Interictal vs. Ictal 
↑ LT*, PO*, FC** 
Interictal vs. HC 
↑ LT*, PO**, FC*** 
 

 

DAN/FPN 
 

F lobe (FIOG, IOG, OlfC, FSMedG, FMedOC, GRec, ACC, 
PCC); Par lobe (AnG, PrecunC); T lobe (ParaHiCG, TMG, 
TS and TM poles); SC regions (HiC, Amg, CdN) (AAL90) 

 

Interictal vs. Ictal 
↓ LT***, PO*, FC* 
Interictal vs. HC 
↓ LT*, PO* 
 

 

VN 

Occ lobe (CalFis, CunC, LinG, OccSG, OccMG, OccIG); 
Occ/T lobe (FusG); Par lobe (ParSG) (AAL90) 

 

Interictal vs. Ictal 
↓ LT*, PO*, FC* 
Interictal vs. HC 
↓ LT*, PO* 
 

 

SMN/AudN 

 

F lobe (PreCeG, FMG, FMOG, FIOpG, FITriG, RolOp, 
SuppMoA); Par/T lobes (InsC); Par lobe (PostCeG, ParSG, 
ParIG, SupG); Par/F lobes (ParaCe lobe); T lobe (Hechl’s G, 
TSG, TIG); SC regions (LentNPut, LentNPal) (AAL116) 
 

Interictal vs. Ictal 
↓ LT*, PO*, FC*** 
Interictal vs. HC 
↓ LT*, PO*** 
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4.5.3.1.  DAN/FPN 

The DAN and FPN play an essential role in cognitive and executive processes, involving goal-

directed attention, working memory, stimulus processing and perception-somesthesis-pain (consult 

Table 2.1.) [62][121]. Hence, the study of dFC changes in these brain networks may provide indirect 

information about brain cognitive and executive integrity. 

The present work results suggest that migraineurs spend longer continuous time periods, with a 

higher probability of occurrence and more strongly coherent brain regions in a state composed of the 

DAN and FPN during the ictal phase compared to the interictal phase. The temporal metrics of this FC 

pattern are also higher for controls than for migraine patients in the interictal phase.  

To the best of our knowledge, comparisons throughout the migraine cycle and between migraineurs 

and healthy controls in terms of dynamics of FC states have not been performed so far. In contrast, FC 

findings have already been reported in several studies comparing these groups, although lacking 

consistency and reproducibility ( Table 2.2. and Table 2.3.). 

Regarding the DAN, Niddam et al. [124] suggest an increased sFC between the DAN and the orbital, 

rectal, fusiform and parahippocampal gyri, and middle temporal and occipital gyri in migraine patients 

scanned in the interictal phase compared to controls. 

With respect to the FPN, Russo et al. [125] report a decrease in the sFC of the FPN with the middle 

frontal gyrus and dorsal anterior cingulate cortex, Li et al. [126] suggest a decrease in the sFC of the 

right FPN with the precuneus and Lee and colleagues [81] point to a decrease in the dFC of FPN, all 

during the migraine interictal phase compared to controls.  In contrast, findings from Xue and colleagues 

[127] report an increased sFC within the frontoparietal central executive network (FPCEN), more 

precisely in the left inferior frontal gyrus for the left FPCEN and right middle frontal gyrus for the right 

FPCEN, and an increased sFC between the right FPCEN and the anterior insula in migraine patients 

scanned in the interictal phase compared to controls. 

Regarding the comparison between migraine interictal and ictal phases, literature is scarce, and as 

far as we are aware no statistically significant results have been published. 

Converging evidence has suggested that pain and cognition systems are partially overlapped and 

share resources. Indeed, the “pain-cognition interactions” consist of connections between brain regions 

with altered activity involved in pain processing and modulation, namely amygdala, anterior cingulate 

cortex, middle prefrontal cortex (affective components of pain) and S1, S2, and insula (sensory 

components of pain), and areas belonging to the FPN that act on the cognitive control of pain 

(ventrolateral and dorsolateral cortices and parietal gyrus). Some of these interactions may begin before 

the migraine attack but are more prevalent during the ictal phase [5][24][127].  

Two main mechanisms have been hypothesized regarding the functioning of pain-cognition 

interactions during the attack. When simultaneously activated, pain and cognition systems may compete 

for resources. In those conditions, whereas healthy individuals show a mildly reduced brain activity in 

response to acute pain, and pain has a low ability to affect the performance of cognitive systems, 

migraineurs reveal a decreased cognitive task-related brain activity in response to painful stimulation 

[24]. This decrease can be explained by a “self-compensatory adaptation response” driven when the 

brain is exposed to a high sensorial load (nociceptive inputs), which induces a distraction or filtering 
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mechanism to guarantee a less painful experience and avoid suffering [126]. Furthermore, the sole 

activation of pain systems (resting-state condition) is interpreted by several authors as an “additional 

cognitive load” that requires focused attention and management. In that case, pain enhances activity in 

attention-specific networks (DAN) that share resources with cognitive-related networks (FPN) [98]. 

Following this reasoning, it is rational to expect that, during the attack, migraineurs spend longer 

continuous time periods in a goal-directed attentional and cognitive state, with a higher probability of 

occurrence and FC strength than in the attack-free period.  

Seminowics et al. [128] describe an fMRI study that exposes healthy subjects to an attention-

demanding cognitive task and painful stimulation. Interestingly, results show that participants subjected 

solely to the cognitive task or solely to the painful stimulation reveal alterations in an attention-specific 

network, including increased activity in the inferior frontal cortex, superior parietal cortex, premotor 

cortex, and anterior insula cortex, and decreased activity in the precuneus/posterior cingulate cortex, 

medial frontal cortex and inferior parietal/temporal cortex. The authors suggest that, in the presence of 

increased cognitive demand, the task-positive subsystem suppresses the task-negative one, ensuring 

a “common platform” for the pain and cognition circuits to interact. Furthermore, they propose that the 

same mechanism could underlie patients with chronic pain during resting-state, in which the focus would 

be centred on ongoing pain, operating a more active task-positive network in that condition [128]. This 

statement is consistent with the present findings. 

4.5.3.2.  SMN and VN 

The SMN and the VN are sensory RSNs both involved in processing external stimuli [98]. The SMN 

plays a vital role in action-execution motor tasks and perception-somesthesis paradigms, and the VN is 

associated with the visual behavioural domain, namely the processing of simple, complex emotional and 

high-order visual stimuli [62][129]. For some partition models studied, the SMN appears intermingled 

with the AudN, which is also integrated into the sensory system and associated with action-execution, 

cognition-language, and perception-audition-speech paradigms [62]. 

The present work suggests that migraineurs hold the SMN for longer periods, with a higher probability 

of occurrence and more strongly coherent brain regions during the ictal phase than in the interictal 

phase. This behaviour of temporal metrics is also repeated for the VN in the ictal phase compared to 

the interictal phase, and for both networks in controls compared to patients in the interictal phase. 

Comparing migraineurs in the interictal session with healthy controls. Zang et al. [130] suggest an 

increased sFC between the left S1 and right S1, anterior, superior parietal and temporal lobes, bilateral 

premotor cortex, inferior frontal gyrus, insula, primary motor cortex, and middle occipital gyrus in the 

interictal phase. Moreover, Tu et al. [96] point to an enhanced dFC between the SMN and VN, and a 

decrease in the dFC of VN dFC, both in the interictal group compared to the control group. 

Comparing migraine ictal and interictal sessions, Araújo [131] reports a decrease in the sFC within 

the SMN (somatomotor cortex), and Hougaard and colleagues [132] suggest an increase of the sFC be- 

tween the visual cortex (aura-side V5) and the lower middle frontal gyrus, both for the ictal session. 

One possible theory to explain the observed increased permanence and FC strength in the SMN 

during the ictal phase compared to attack-free periods is that the recurrent brain activation to persistent 

migraine attacks enhances the strength of the functional connections between brain regions involved in 
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nociceptive processing, or in other words, it evokes the activity of pain processing networks [97]. For 

that matter, besides the stronger FC, it would be plausible to speculate that patients in the ictal phase 

spend significantly longer periods and with a higher probability in a network involved in processing pain 

information (SMN). Another hypothesis to support the increased permanence of migraineurs in this 

synchronisation pattern during the attack is the “psychological manipulation” theory [133]. Studies have 

shown that pain experience is hugely influenced by attention and emotion, and several brain regions 

associated with attentional/cognitive and emotional processes also participate in pain processing. Thus, 

it has been suggested that psychological manipulation (e.g. distraction) can profoundly impact on our 

perception of pain, such does the emotional state: a positive state lowers the pain and a negative state 

increases the pain [133]. Hence, the attempt of migraineurs in the ictal phase to distract from pain and 

return to a normal state may justify its frequency in dFC states participating in attention/cognitive and 

pain processing systems such as in a normal brain condition (healthy subjects). 

Furthermore, following the reasoning of Dumkrieger and colleagues [97], the communication of 

sensory-discriminative pain processing regions (SMN) with stimulus processing regions (VN and AudN) 

may be indicative of a relationship that is inherent to the migraine brain. In fact, evidence has shown 

that in the presence of simultaneous sensory stimulation, such as visual stimuli, and pain stimulation, 

both inputs are sent from posterior thalamic neurons via dural and retinalthalamocortical pathways to 

the cortex, which might affect the external sensory sensitivity in migraine patients: the perception of pain 

stimulation is amplified in the presence of visual inputs, converging in an increased pain sensation, and 

the saliency of visual inputs is enhanced in the presence of pain [98][134]. This could explain a higher 

mean lifetime, probability of occurrence and FC strength of a visual processing-related network during 

the ictal phase of the migraine cycle compared to the interictal phase. 

Additionally, previous migraine studies have reported associations between enhanced sensitivity to 

sensory inputs and hyperactivation in brain regions involved in their processing [135]. For example, 

migraine patients reporting hypersensitivity to light during the attack revealed photoresponsive areas in 

the visual cortex and increased BOLD response in the primary visual cortex and high-order visual areas 

[135]. In the present study, four of the five participants scanned in the ictal phase reported photophobia 

as a common symptom during the attack (see section 3.1.), which could also explain the higher 

permanence in the VN during the ictal phase when compared to the interictal phase. 

It is important to be noted that the previously mentioned functional subsystems deviating from the 

global mode with higher temporal metrics in the ictal session than in the interictal session also comprise 

areas directly involved in pain processing, such as the anterior cingulate cortex, frontal medial orbital 

cortex, supplementary motor area, amygdala and insula. Indeed, neuroimaging studies suggest that 

increased activity in regions belonging to the pain matrix (namely in the S1, S2, prefrontal cortex, 

thalamus, basal ganglia, anterior cingulate cortex, supplementary motor area, amygdala, and insula) 

may be one of the possible factors that drive pain sensation [101]. 

4.5.3.3.  The global mode 

Results of the present work reveal that migraine patients scanned in the interictal phase spend longer 

continuous time periods in the global mode of BOLD signal fluctuation with a higher probability and FC 

strength compared to the ictal phase and healthy controls, presenting less tendency to occur in other 
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functional subsystems. Therefore, interestingly, migraineurs reveal a more similar behaviour to the 

healthy controls during the attack than in the attack-free period. This effect might be associated with the 

habituating response deficit characteristic of migraine patients in this phase of the cycle. 

The habituation effect is proposed to be a cortical mechanism of protection against sensory overload, 

consisting of a decreased response to repeated stimuli (see section 2.1.1.). In patients with migraines, 

the repetition of sensory (visual, auditory, olfactory, somatosensitive, and nociceptive) inputs leads, on 

the contrary, to a successive intensification of the response with each repetition of the stimuli, which 

requires a higher energy demand [24][28]. This deficit contributes to the cortical hyperexcitability and 

vulnerability of sensory signals in migraine. 

Coppola et al. [28] report that, during the days preceding the migraine attack (interictal phase), the 

habituation deficit reaches its maximum, with an exaggerated habituation decrease to sensory and 

stress overload accompanied by increased energy demand, lower thalamo-cortical activity and thalamic 

control. The decreased cortical activity and increased energy demand required by migraineurs in this 

phase of the cycle could explain its permanence in a strongly coherent state (which reflects an increased 

power and connectome energy [83]), and its lower probability to occur in other functional subsystems 

detaching from the global BOLD phase coherence (attractor states or energy landscapes characterised 

by local energy minima [136]) compared to the ictal phase or healthy subjects.  

Furthermore, sequential recordings show that, within the interval of 12 hours to 24 hours that precede 

the attack (preictal phase), and with the appearance of the premonitory symptoms, the electrocortical 

patterns and energy demand tend to normalize, such as the habituation response. During the attack 

(ictal phase), this normalization is even more notable, so a higher tendency of migraineurs to occur in 

functional subsystems deviated from the global coherence state compared to the interictal period could 

be expected. Indeed, this is verified in the present work, since overall migraineurs present a higher mean 

lifetime and probability of occurrence in dFC states misaligned from the global mode in the ictal phase 

compared to the interictal phase (and in controls compared to migraineurs in the interictal phase).  

Approximately one or two days after the attack (postictal phase), the electrocortical patterns tend to 

destabilize again, with the disruption of thalamo-cortical loops between the sensory cortex and the 

thalamus, the increased energy demand and the deficit in the habituation response (Figure 4.23.).  

Therefore, these results suggest that the migraine cycle might be characterised by an increased 

permanence in the global mode during the interictal phase due to the habituation response deficit and 

an increased probability to occur in attentional/cognitive and stimulus processing-related functional 

networks during the attack. 

Figure 4.23. Schematic representation of changes in the habituation response, energy demands and 
thalamo-cortical circuits throughout the migraine cycle (interictal, preictal and ictal phases). Figure 
extracted from Coppola et al. [28]. 
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 Chapter 5  

Capítul1  

 

 

5   Conclusion 
 

 
This chapter highlights the main conclusions of the present dissertation. Additionally, section 5.1. points 

out a few limitations and suggestions for future work. 

 
 

The main goal of the present dissertation was to study dFC in the migraine brain, which is still a novel 

field in the literature, and compare the temporal properties and FC strength of the recurrent dFC states 

between migraine patients scanned in the interictal and the ictal sessions, and between patients 

scanned in the interictal phase and healthy controls, in order to infer the relation of these alterations to 

the disorder mechanisms and the possibility of them constituting neuroimaging biomarkers to predict 

migraine progression or response to treatment. 

A number of tests were first performed on the migraine interictal dataset to investigate the impact of 

different methodological options in the LEiDA approach. In particular, we verified that the proportion of 

variance explained by the leading eigenvector for the PC and SW methods with the AAL90 atlas was 

generally over 50 % and hence that the leading eigenvectors of the dFC matrices serve effectively to 

characterise brain activity over time by its whole-brain BOLD phase pattern, allowing for a significant 

reduction of the dimensionality of the data while explaining the majority of its variance.  

Furthermore, the implementation of an ICA clean-up step in the preprocessing of rs-fMRI data was 

revealed to be important, as a dFC state potentially correlated with susceptibility artefacts appeared 

throughout the FC repertoire for the dataset without this denoising step. Nevertheless, this observation 

needs further analyses and validation, as explained in the next section. 

The comparison between SW and PC revealed that, although both metrics provided similar 

connectivity matrices, the dFC states obtained with the k-means clustering algorithm differed between 

methods. The interpretation proposed for this divergence of results is that the SW fails in capturing 

synchronisation patterns that switch more rapidly to other functional subsystems due to the inherent 

temporal smoothing (increased period of fluctuations) that this method entails when computing the 

Pearson correlation coefficient between pairs of BOLD time courses within fixed-length windows. Thus, 

we observed a general increase in the mean lifetimes of dFC states in the SW compared to the PC, 

which was also validated for a larger (HCP) dataset, and this effect was more prominent for wider 

windows. Moreover, it was also found that this behaviour affects the specificity of SW to detect well-

established RSNs (Yeo and Smith templates) for shorter datasets, which points to the PC as the best 

choice to compute dFC and model dynamic aspects of the migraine brain.  
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Also, the cluster timecourses and sFC analyses at a subject-level demonstrated the high inter-subject 

variability in the migraine interictal dataset and corroborated the idea that dFC better reflects the FC 

alterations of the migraine brain compared to the sFC, which looses information when averaging the 

connectivity time courses over time. 

Regarding the application of a temporal smoothing algorithm to the dFC labels over time, it can be 

important in studies in which the duration of FC patterns is relevant to be controlled (for example, to 

ensure that dFC states last less than the faster oscillations of the BOLD signal). However, if the goal is 

to analyse dFC at each TR (maximal temporal resolution) and detect dFC states that can evolve, at 

least, at the temporal resolution of acquisition, the application of this filter might be counter-intuitive.  

Furthermore, by comparing the results across different parcellation schemes, the FC repertoires 

exhibited partition models with similar dFC states. However, the number of statistically significant 

correlations with Yeo RSNs was higher for better cortical resolutions (higher number of ROIs). 

Additionally, some functional subsystems were only found with specific atlases, which justified the 

importance of exploring several brain parcellation schemes in the analysis. 

Finally, between-group comparisons revealed statistically significant altered dynamics in four specific 

BOLD phase patterns: the DAN/FPN system, associated with attentional/cognitive processes; the SMN, 

involved in pain processing; the VN, associated with visual processing; and the global mode of BOLD 

signal fluctuation (fully connected state). Migraine patients scanned in the ictal phase and controls 

revealed higher mean lifetime and probability of occurrence in the first three networks than patients in 

the interictal phase, and, on the contrary, patients scanned in the interictal session were revealed to 

spend longer continuous time periods and with a higher frequency in the global mode.  

 

5.1.  Limitations and Future Work 
 

This study presents some limitations with regards to the rs-fMRI imaging technique.  

Firstly, the BOLD-fMRI signal is an indirect measure of neuronal activity due to the haemodynamic 

delay, and the misunderstanding of the neurovascular coupling mechanism that explains this 

relationship, along with its variability across subjects, hampers the homogeneity across clinical fMRI 

studies and is one of the most significant sources of error in their interpretation [53][64]. 

Secondly, rs-fMRI is particularly sensitive to multiple confounders due to the absence of any task. 

These confounders are hardly controlled and include alertness, cognition, fatigue, eye-opening or 

closing and mood. Thus, there is an additional exigence of keeping the experimental procedures 

constant, and the participants instructed. Future studies may include simultaneous EEG recordings 

(multimodal EEG-fMRI) to control for sleep, eye-opening or closing, and basic brain activity, and provide 

additional information regarding the relationship between the neuronal activity and the HRF [137][138]. 

Additionally, identifying and removing artefacts without a prior hypothesis hinders the identification 

of the signal derived from neuronal activity and noise. This process becomes even more challenging 

with the possibility of artefacts sharing spatial or spectral overlap with the functional networks [8]. Thus, 

despite preprocessing rs-fMRI data, the monitorisation of cardiac and respiratory fluctuations could be 

performed during scanning to regress these signals out of the data in the nuisance regression step. 
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Concerning the study population, this work includes a small sample size with a high inter-subject 

variability, which might limit the generalisability of the results. The most straightforward solution to 

validate and increase the statistical power of the present findings is to repeat the pipeline followed in 

this study in a larger dataset. Also, it would be interesting to reproduce the between-group comparisons 

throughout the migraine cycle by recruiting patients in the preictal and postictal phases and healthy 

controls scanned in the corresponding menstrual phase to control for hormonal variation. 

Regarding the analysis, some aspects of the present study could be explored in future work. 

One of them concerns the use of data-driven approaches to parcellate rs-fMRI data. The anatomical 

atlases used in this study ensure spatial contiguity and non-overlap of brain regions, however, they may 

lead to low BOLD signal homogeneity within ROIs compared to FC-based strategies and hamper the 

definition of brain functional characteristics in terms of large-scale brain networks [74]. Future work 

should explore data-driven techniques that prioritise functional homogeneity, such as the group ICA, 

which was not implemented in the present study due to the small cohort. 

Regarding the implementation of the ICA clean-up and nuisance regression preprocessing steps, an 

additional analysis should be performed to clarify the influence of robust preprocessing in the specificity 

of detecting functional subsystems. The auto-classification of ICs should be reviewed across subjects, 

especially those who spent more time in the dFC frontal state or held that synchronisation pattern in 

specific epochs, and the occurrence of this state could be correlated with the motion parameters (time 

courses). Additionally, the impact of this denoising step could also be reproduced in a larger dataset to 

validate the present findings. 

With respect to the PC method, it should be evaluated if the Hilbert transform approach is the best 

option for estimating the dFC matrices. The same applies to the k-means clustering algorithm to cluster 

dFC data. Even though this algorithm has been extensively used in the literature [83][86][111], it has 

also been associated with difficulties in separating clusters with different sizes and high susceptibility to 

outliers [11]. 

Furthermore, the analyses performed to compare both SW and PC methods (correlation of cluster 

centroid vectors between methods, correlation of dFC states with RSNs, dynamics of dFC states and 

subject-level assessment) could be repeated for higher k’s in which statistically significant between-

group differences in terms of temporal metrics were identified (for example, k = 10). Regarding the HCP 

dataset, the analyses could also be reproduced for larger k’s and different brain parcellation schemes 

(AAL116, Desikan and Harvard-Oxford). 

Also, the temporal metrics of dFC states at a subject-level could be correlated with individual clinical 

variables (e.g. mean pain intensity of the attack, hypersensitivity to sensory stimuli and cognitive 

evaluation). 

To sum up, the results of the present dissertation extended previous findings and represent novel 

evidence to the literature, revealing that the dysfunction of the migraine brain may be associated with 

altered dynamics, especially increased mean lifetime and probability of occurrence, in 

attentional/cognitive and sensory processing systems during the migraine attack, and in the global mode 

during the attack-free phase. 
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Furthermore, the study of FC fluctuations over time instead of the conventional sFC analysis 

corroborated evidence for the dynamic nature of the migraine brain during rest and emphasised the 

suitability of this analysis to detect and assess the evolution of brain signals. 

Hence, this work contributes to further elucidate the migraine mechanisms, and if replicated in a 

larger sample, may potentially point towards neuroimaging biomarkers for disease progression and 

response to treatment. 
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Appendix A 
 

 

 

RSNs vectors into the atlases spaces 
 

A.1.  Transformation of Yeo repertoire 
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Figure A.1. Yeo repertoire transformed into the atlases (AAL116, Desikan and Harvard-Oxford) spaces 
and represented through RSN vectors by (i) the distribution of the number of 2 mm3 MNI voxels in each 
brain area belonging to the corresponding RSN, obtaining a vector with N (number of brain areas) 
elements that can be correlated with the cluster centroid vectors of the dFC states and the functional 
network that detach from the global mode of BOLD signal fluctuation represented in the atlas cortical 
space ((ii) axial and (iii) sagittal slices). The brain areas contributing to each RSN are displayed with 
dark blue color and those without any voxel belonging to the RSN are displayed with grey color. The 
brain areas with more than 400 MNI voxels contributing to the RSN are linked with blue edges.                 
VN = Visual Network; SMN = Somatomotor Network; DAN = Dorsal Attention Network; VAN = Ventral 
Attention Network; LN = Limbic Network; FPN = Frontoparietal Network; DMN = Default Mode Network. 
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Figure A.1. (Continued). 
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A.2.  Transformation of Smith repertoire 
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Figure A.2. Smith repertoire transformed into the atlases (AAL116, Desikan and Harvard-Oxford) 
spaces and represented through RSN vectors by (i) the distribution of the number of 2 mm3 MNI voxels 
in each brain area belonging to the corresponding RSN, obtaining a vector with N (number of brain 
areas) elements that can be correlated with the cluster centroid vectors of the dFC states and the 
functional network that detach from the global mode of BOLD signal fluctuation represented in the atlas 
cortical space ((ii) axial and (iii) sagittal slices). The brain areas contributing to each RSN are displayed 
with dark blue color and those without any voxel belonging to the RSN are displayed with grey color. 
The brain areas with more than 200 MNI voxels contributing to the RSN are linked with blue edges.        
VMedN = Visual Medial Network; VOccN = Visual Occipital Network; VLatN = Visual Lateral Network; 
DMN = Default Mode Network; CbN = Cerebellar Network; SMN = Sensorimotor Network;                      
AudN = Auditory Network; ECN = Executive Control Network; R/L FPN = Right/Left Frontoparietal 
Network. 
 



92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

B
ra

in
 a

re
a

s
 o

f 
H

a
rv

a
rd

-O
x
fo

rd
 a

tl
a

s
 

Number of voxels belonging to the RSNs 

VMedN

   
CbN DMN SMN AudN R FPN L FPN 

(ii) 

(i) 

(iii) 

Harvard-Oxford atlas 

VOccN

   

VLatN

   
ECN 

Figure A.2. (Continued). 
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Appendix B 
 

 

 

Results obtained with the k-means 

clustering algorithm 
 

B.1.  Migraine interictal dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. dFC states obtained with the k-means clustering algorithm (k = 3 to k = 15), displayed 
according to their decreasing probability of occurrence within each k, for the AAL116, Desikan and 
Harvard-Oxford atlases, and the PC method. Each dFC state is represented by its Vc as a network in 
the AAL90 cortical space (axial slice), in which the elements of Vc are placed at the center of gravity of 
the respective brain region, shaped as spheres colored according to their sign (red to yellow spheres 
represent positive elements from 1 to 0, cyan to dark blue spheres represent negative elements from 0 
to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges. 

AAL116 atlas 
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AAL116 atlas (Continued) 

Desikan atlas 

Figure B.1. (Continued) 
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Harvard-Oxford atlas 

Figure B.1. (Continued) 
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B.2.  Migraine interictal dataset without the ICA clean-up and nuisance 

regression preprocessing steps 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAL90 atlas 

Figure B.2. dFC states obtained with the k-means clustering algorithm (k = 3 to k = 15), displayed 
according to their decreasing probability of occurrence within each k, for the AAL90 atlas and the PC 
method without the ICA clean-up and nuisance regression preprocessing steps. Each dFC state is 
represented by its Vc as a network in the AAL90 cortical space (axial slice), in which the elements of Vc 
are placed at the center of gravity of the respective brain region, shaped as spheres colored according 
to their sign (red to yellow spheres represent positive elements from 1 to 0, cyan to dark blue spheres 
represent negative elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges. The 
black rectangles mark the frontal state. 
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Appendix C 
 

 

 

Results obtained for the HCP dataset 
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Figure C.1. dFC states obtained with the k-means clustering algorithm (k = 5), displayed according 
to their decreasing probability of occurrence, for the AAL90 atlas and PC and SW (sizes of 25 TR, 
35 TR and 45 TR, step of 1 TR) methods. Each dFC state is represented by its Vc: (i) as a network 
in the AAL90 cortical space (axial slice), in which the elements of Vc are placed at the center of 
gravity of the respective brain region, shaped as spheres colored according to their sign (red to yellow 
spheres represent positive elements from 1 to 0, cyan to dark blue spheres represent negative 
elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges; (ii) by the outer 
product VcVc

T; and (iii) as a bar plot displaying the projection of the BOLD phase in each brain region 
into Vc. 
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Figure C.2. Mean lifetime (i) and probability of occurrence (ii) of each dFC state obtained with the k-
means clustering algorithm (k = 5), for the AAL90 atlas and the PC and SW with window sizes of 25 
TR, 35 TR and 45 TR. 

SW (Size = 35 TR, Step = 1 TR) 
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SW (Size = 45 TR, Step = 1 TR) 
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Figure C.1. (Continued). 
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Figure C.3. Pearson correlation coefficient computed between the cluster centroid vectors of the dFC 
states (k = 10) obtained with the PC and SW (sizes of 25 TR, 35 TR and 45 TR) methods and the 
seven Yeo RSNs transformed into the AAL90 space. *: Statistically significant correlations                    
(p-value < 0.005); VN = Visual Network; SMN = Somatomotor Network; DAN = Dorsal Attention 
Network; VAN = Ventral Attention Network; LN = Limbic Network; FPN = Frontoparietal Network; 
DMN = Default Mode Network. 
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SW (Size = 35 TR, Step = 1 TR) 

SW (Size = 45 TR, Step = 1 TR) 

Figure C.3. (Continued). 
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Appendix D 
 

 

 

Comparison Between Groups 
 

D.1.  Migraineurs: Interictal vs. Ictal sessions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1. Significance of differences in the (i) probabilities of occurrence and (ii) mean lifetimes of 
dFC states obtained with the AAL116, Desikan and Harvard-Oxford atlases and the PC method, and 
AAL90 atlas and the SW method (size of 25 TR), between migraine interictal and ictal sessions, as 
a function of k. The red, green and blue dashed lines represent p-values equal to 0.05, 0.05/k and 
0.05/Σk, respectively. Thus, all dFC states noted with a black asterisk (above the red line) passed 
the null hypothesis, i.e., present no significant difference between groups; the FC patterns marked 
with a red asterisk (above the green and below the red lines, p-value < 0.05, > 95 % of confidence) 
rejected the null hypothesis but did not pass the correction for multiple comparisons, being 
considered possible false positives; the states noted with a green asterisk (above the blue and below 
the green lines) rejected the null hypothesis with p-value < 0.05/k; and the states noted with a blue 
asterisk (below the blue line) rejected the null hypothesis with p-value < 0.05/Σk). 
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(i) Differences in the probability of occurrence (ii) Differences in the mean lifetime 

Desikan atlas and PC 
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Harvard-Oxford atlas and PC 

Figure D.1. (Continued). 
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Figure D.1. (Continued). 
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AAL116 atlas and PC 

Figure D.2. dFC states obtained with the k-means clustering algorithm, displayed according to their 
decreasing probability of occurrence, for the AAL116 (k = 14), Desikan (k = 9), Harvard-Oxford              
(k = 13) and AAL90 (k = 7) atlases and PC method, and for the AAL90 atlas (k = 3, k = 12 and                
k = 15) and the SW method (size of 25 TR). Each dFC state is represented by its Vc as: a network 
in the atlas cortical space (axial slice), in which the elements of Vc are placed at the center of gravity 
of the respective brain region, shaped as spheres coloured according to their sign (red to yellow 
spheres represent positive elements from 1 to 0, cyan to dark blue spheres represent negative 
elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges; and by the outer 
product VcVc

T. Below the representation of each state, the respective probabilities of occurrence, 
mean lifetimes and mean eigenvalues are displayed for the migraine patients in the interictal and 
ictal sessions. The rectangle marks states with statistically significant between-group differences and 
correlation to any Yeo RSN, with the colours representing the RSN. The black rectangle marks the 
global mode. * Significant difference before correcting for multiple comparisons (p-value < 0.05);            
** Significant difference after correcting for multiple comparisons (p-value < 0.05/k); *** Significant 
difference after correcting for multiple comparisons (p-value < 0.05/Σk). 
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Figure D.2. (Continued) 
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(i) (ii) 

AAL90 atlas and SW (Size = 25 TR) (Continued) 

Figure D.3. Switching profile between dFC states (k = 10) obtained with the AAL90 atlas and PC 
method for the interictal and ictal sessions. (i) Transition matrices indicating the probability of, being 
in a given dFC state (rows), transitioning to another dFC state (columns). * Significant difference 
before correcting for multiple comparisons (p-value < 0.05). (ii) Plot exhibiting the significantly 
different transitions denoted with an asterisk in (i). Purple arrows indicate the state-to-state 
transitions that occur with higher probability in the interictal session, and orange arrows represent 
those which are more prevalent in the ictal session.  

More frequent transition for the interictal session 

More frequent transition for the ictal session 

Figure D.2. (Continued) 
 



106 

 

D.2.  Migraineurs vs. Controls 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.4. Significance of between-group differences in the (i) probabilities of occurrence and (ii) 
mean lifetimes of each dFC state, obtained with the AAL116, Desikan and Harvard-Oxford atlases 
and the PC method, between migraine patients scanned in the interictal phase and healthy controls, 
as a function of k. The red, green and blue dashed lines represent p-values equal to 0.05, 0.05/k and 
0.05/Σk, respectively. Thus, all dFC states noted with a black asterisk (above the red line) passed 
the null hypothesis, i.e., present no significant difference between groups; the FC patterns marked 
with a red asterisk (above the green and below the red lines, p-value < 0.05, > 95 % of confidence) 
rejected the null hypothesis but did not pass the correction for multiple comparisons, being 
considered possible false positives; the states noted with a green asterisk (above the blue and below 
the green lines) rejected the null hypothesis with p-value < 0.05/k; and the states noted with a blue 
asterisk (below the blue line) rejected the null hypothesis with p-value < 0.05/Σk). 

 

Desikan atlas and PC 

D
if
fe

re
n
c
e
 (

p
-v

a
lu

e
) 

Number of clusters (k) Number of clusters (k) 

(ii) Differences in the mean lifetime (i) Differences in the probability of occurrence 

D
if
fe

re
n
c
e
 (

p
-v

a
lu

e
) 

AAL116 atlas and PC 

D
if
fe

re
n
c
e
 (

p
-v

a
lu

e
) 

Number of clusters (k) Number of clusters (k) 

(ii) Differences in the mean lifetime (i) Differences in the probability of occurrence 

D
if
fe

re
n
c
e
 (

p
-v

a
lu

e
) 



107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Harvard-Oxford atlas and PC 
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Figure D.4. (Continued) 

 
AAL116 atlas and PC 

Figure D.5. dFC states obtained with the k-means clustering algorithm, displayed according to their 
decreasing probability of occurrence, for the AAL116 (k = 5), Desikan (k = 5), Harvard-Oxford (k = 
4) and AAL90 (k = 14) atlases and PC method. Each dFC state is represented by its Vc as: a network 
in the atlas cortical space (axial slice), in which the elements of Vc are placed at the center of gravity 
of the respective brain region, shaped as spheres colored according to their sign (red to yellow 
spheres represent positive elements from 1 to 0, cyan to dark blue spheres represent negative 
elements from 0 to -1), and areas with Vc ≤ 0.1 are linked with dark blue edges; and by the outer 
product VcVc

T. Below the representation of each state, the respective probabilities of occurrence,  
mean lifetimes and mean eigenvalues are displayed for the migraine patients in the interictal phase 
and healthy controls. The rectangle marks states with statistically significant between-group 
differences and correlation to any Yeo RSN, with the colors representing the RSN. The black 
rectangle marks the global mode. * Significant difference before correcting for multiple comparisons 
(p-value < 0.05); ** Significant diffence after correcting for multiple comparisons (p-value < 0.05/k); 
*** Significant difference after correcting for multiple comparisons (p-value < 0.05/Σk). HC = Healthy 
Controls. 
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Figure D.5. (Continued) 
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Interictal group Healthy control group 

(i) (ii) 

Figure D.6. Switching profile between dFC states (k = 4) obtained with the AAL90 atlas and PC method 
for the interictal group and healthy control group. (i) Transition matrices indicating the probability of, 
being in a given dFC state (rows), transitioning to another dFC state (columns). * Significant difference 
before correcting for multiple comparisons (p-value < 0.05). (ii) Plot exhibiting the significantly different 
transitions denoted with an asterisk in (i). Purple arrows indicate the state-to-state transitions that occur 
with higher probability in the interictal group, and orange arrows represent those which are more 
prevalent in the healthy controls group. 

More frequent transition for the interictal group 

More frequent transition for the control group 
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