
Attack SureThing!
Offensive security assessment of a

location certification system
José Miguel de Brito Alves Ferrão

Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—The SureThing project is developing a location
certification framework that can prevent location spoofing on
Location Based Services (LBS). The current prototypes using the
framework allow to issue and verify location certificates using
mobile devices in a variety of use cases, including the CROSS
smart tourism application. Despite the best efforts of designers,
a system cannot be said to be truly secure and robust until it has
experienced attacks from skilled and motivated attackers. With
that in mind, we performed an offensive security assessment of
CROSS, composed a smart tourism mobile application that issues
location certificates and a server with a publicly exposed interface
on the Internet. Our assessment involved exercising offensive
security techniques, in the form of vulnerability assessment and
penetration testing. We used generic tools, from different vantage
points in the network, always in the perspective of an attacker.

We present the tools and the techniques that were used to
attack the server of the CROSS system, along with the our
findings and the procedures taken to harden the server after
the detection of vulnerabilities. Our security assessment included
the use of five different tools. Using them, we were able to find
a previously unknown vulnerability that allowed unauthorized
writes to the database of the server.

We also prepared all the necessary materials, allowing the
same offensive approach to be replicated by organizing future
offensive security tournaments, so that the same attacks can be
reproduced in a gamified environment allowing for the future
discovery of new attacks.

Keywords: Vulnerability Assessment, Penetration Testing, Of-
fensive Security, Location Certification Systems

I. INTRODUCTION

Most organizations only rely on certifications for the se-
curity of their system. It is true a certification can be very
thorough and detailed but it does not cover all security aspects,
and may give a false sense of security. Some organizations go
further and subject their system to Vulnerability Assessment
and/or Penetration Testing. While they might be able to detect
some flaws, both lack the (negative) impact a real attack might
have in a system. That is why we fully agree with the following
statement: “A system cannot be said to be truly secure until it
has experienced an attack from a real threat” [1].

With this work, we propose an offensive security assessment
of SureThing [2] by assessing the security of the architecture
and the implementation of CROSS (loCation pROof tech-
niqueS for consumer mobile applicationS) [3], a location cer-
tification system made to support a smart tourism application,
where people go around a specific route in a city and get
rewarded for it. We based our approach in the steps an attacker
would perform, by exercising vulnerability assessment and

penetration techniques. For that we deployed a virtualized
environment with specific requirements to make it as real
as possible, meaning we had to simulate different networks
and multiple machines. We used different tools, distributed
over three iterations of attacks. These attack iterations ranged
from exercising simple vulnerability analysis tools to fuzzing
techniques. We used and assessed each tool individually. The
results of this security assessment allowed us to improve and
harden the security of existing deployment.

Even though this work is specific to a particular system, we
provide some insight and guidelines to perform an offensive
security test so that the assessment can consider the (negative)
impact an attacker might have in a system.

The remainder of this document is structured as follows:
Section II gives a background overview of security concepts
and commonly used attack tools, and works on Location
Certification Systems; Section III describes CROSS - the target
system of this work - and our offensive approach to its security
assessment; Section IV presents the results and our evaluation
of CROSS; and, finally, Section V concludes this article, and
presents some future work directions.

II. BACKGROUND AND RELATED WORK

A threat consists in any intention to cause and inflict
damage to a system [1]. A threat can only be considered as a
potential action when performed by a threat-actor, motivated
and capable enough to do it. In this context, a threat-actor
can either be a group of people or just a single individual.
If successful, a threat has the potential of having a negative
impact on the targeted system. An attack path relates to the
steps a threat-actor has to go through to plan, prepare, and
later execute an attack. An attack vector is then used to refer
to the attack path or the method a threat-actor may use to
gain unauthorized access to a network or a system. In turn,
the attack surface corresponds to the different ways through
which a threat-actor is able to gain access to a system [4],
i.e., the total number of attack vectors a threat-actor can use
to gain access to a system.

A system is likely to have vulnerabilities: both in code and
in the infrastructure. Vulnerabilities may include any errors
that are present in a given system. These errors could have
been introduced either during the design or during the imple-
mentation phase. If and when exploited, such vulnerabilities
may result in the violation of the security assumptions of a

1



system [5]. In essence, vulnerabilities have to be individually
assessed. Furthermore, Tripathi and Singh [5] refer that after
the identification of all existing vulnerabilities, each individual
vulnerability needs to be evaluated based on its risk level1.
That is why the correct use of security tools is important as
they will help detect and even mitigate vulnerabilities.

A. Offensive Security

A system cannot be said to be truly secure until it has
experienced an attack from a real threat. It is then necessary
to include and have in mind the perspective of a threat-actor.
This is where offensive security can help. Offensive security
can be seen as a proactive strategy of protecting a system,
with an emphasis in an adversarial approach.

Vulnerability assessment is the process of analysing a sys-
tem to find, identify, and prioritize vulnerabilities in terms
of their risk. Once identified these vulnerabilities can be
mitigated, leading to the reduction of the attack surface of
the system. Vulnerability assessment is not concerned with
exploiting a vulnerability, even if found in the process [1].

In turn, penetration testing consists in the execution of an
attack targeted at a specific system in order to identify and
measure the risks associated with the possible exploitation of
the attack surface. In other words, penetration testing adds to
vulnerability assessment by performing exploitation [1]. Any
penetration testing execution follows a set of basis sections, as
defined by the Penetration Testing Execution Standard2: Pre-
engagement Interactions, Intelligence Gathering, Threat Mod-
elling, Vulnerability Analysis, Exploitation, Post Exploitation
and Reporting.

One way to perform an offensive security is through the use
of a Red Team. Usually independent of the organization whose
system is being tested, a Red Team is a group of security
professional tasked with testing a system in terms of its
security. The operations taken by a Red Team are designated
as Red Teaming. Red Teaming is the process of using TTPs3 to
emulate an actual threat. This process - known as engagement
- includes all activities performed by a Red Team when testing
a system from the perspective of an attacker. These activities
are not limited to but can include vulnerability assessment and
penetration testing techniques. Red Teaming always assumes
there is an active Blue Team. A Blue Team is usually composed
by in-house members and is responsible to defend a system
from outside threats.

B. Attack Tools

There are a wide variety of available tools. Each tool
usually only focus on a specific goal that can be information
gathering and reconnaissance, resources/assets enumeration,
vulnerability identification or even vulnerability exploitation.

1Metric based on the (negative) impact the exploitability of a vulnerability
may have in a system.

2http://www.pentest-standard.org.
3https://github.com/inesc-id/SecurityTaxonomy/blob/main/Definitions/TTPs.md.

1) Information Gathering Tools: Information Gathering
Tools (or OSINT4) tools are used to gather some initial
information about a target. From a vast list of other existing
tools, we highlight the following: theHarvester5, Metagoofil6,
Automater7.

theHarvester focus on exposing information about a target
that is publicly available on the Internet, gathered from a vari-
ety of public data sources, e.g. search engines. It gathers and
enumerates emails, names, IPs, URLs, and any subdomains
related with the target.

Metagoofil helps in finding publicly accessible documents
of the targeted organization through a Google8 search. The
supported file types include .doc, .xls, .ppt, .odp, .ods, .docx,
.xlsx, .pptx and .pdf files. The tool extracts metadata from
those files. It then generates a report with several resources,
like usernames and servers names.

Automater is a tool aimed at gathering relevant results
about a specific target from various sources. The specified
target can either be a domain, an IP address or a MD5 hash.
Automater relies on ipvoid.com, robtex.com, fortiguard.com,
unshorten.me, urlvoid.com, ThreatExpert, VxVault and Virus-
Total for getting the results.

2) Enumeration Tools: These tools are used to get to know
the target system better. Following are some of those tools:
ident-user-enum9, Nmap10, arp-scan11, AMAP12.

The ident-user-enum tool can determine the owner of the
process that is listening on each TCP port of a given system
by querying the Identification Protocol13, helping in the pri-
oritization of processes. For instance, it might be more worth
it to target a system where the authenticated user is already
running with privileged access, e.g. root or superuser in Unix-
like systems.

Nmap is a tool that can determine what hosts are available
in a network. It also finds out what services and Operating
System a host is running. To achieve this, Nmap relies on raw
IP packets.

The arp-scan allows its users to know about any currently
active devices in a local network by discovering and identify-
ing all active devices in a local subnet. For that, the arp-scan
tool relies on the Address Resolution Protocol (ARP)14.

AMAP is a scanning tool that tries to identify applications
running on a giving host, even if they are running on a different
port than usual.

3) Vulnerability Analysis Tools: These tools are designed to
assess computer systems, networks or applications for known
weaknesses. Vulnerability analysis tools can help identify

4https://github.com/inesc-id/SecurityTaxonomy/blob/main/Definitions/OSINT.md
5https://github.com/laramies/theHarvester
6http://www.edge-security.com/metagoofil.php
7www.tekdefense.com/automater
8Search engine. Available at https://www.google.com
9http://pentestmonkey.net/tools/user-enumeration/ident-user-enum
10Network Mapper. Available at https://nmap.org
11https://github.com/royhills/arp-scan
12Application MAPper. Available at https://www.thc.org/
13https://tools.ietf.org/html/rfc1413
14https://tools.ietf.org/html/rfc826

2



outdated software versions, missing patches, and misconfigu-
rations. This is done by identifying the Operating System and
major software applications running on a system and matching
it with information about known vulnerabilities. Two of them
are OpenVAS15 and Google Tsunami16.

OpenVAS is a vulnerability assessment tool that helps iden-
tify a system for known weaknesses. It does so by matching
known vulnerabilities of a specific system with the version of
the software running on the scanned system.

Google Tsunami is a general purpose network security
scanner that aims at detecting high severity vulnerabilities with
high confidence, by offering an extensible engine through the
use of plugins. It uses a two-step process: reconnaissance and
vulnerability verification. In the first step it uses Nmap as a
port scanner to detect any open ports. Only then uses some
fingerprinting techniques to try to identify the services running
on each of the previously scanned open ports.

4) Fuzzing Tools: Checking that an application or a system
does what it was designed to do is rather straightforward.
On the other hand, validating that an application or a system
does not have an unexpected behaviour or that it does not
do something that it is not intended to do is more difficult
to test. This is directly related to the fact that the amount
of possible combinations of invalid test cases is considerably
larger than the number of so-called positive tests. Generating
invalid input data addressed to a given application or system
is a difficult task, not to mention it is time consuming. This
is where fuzzing techniques can help. The main idea behind
fuzzing is to generate and submit malformed data to a given
application or system. Any malformed data consists of semi-
valid data, i.e. data that is valid enough to be accepted by the
targeted application but that is still invalid enough to have a
negative impact. A fuzzer starts by submitting the malformed
data to the application or system that is being tested. If the
used data manages to cause errors or problems of any kind
in the targeted application, the fuzzing tool saves this data for
subsequent analysis. This process continues until it reaches
the last iteration of malformed data. The fuzzer may still save
data even if in any of the iterations the malformed data does
not affect the application in question. Otherwise the fuzzer
may just exclude the data and continue with the iteration
process [6].

We highlight some freely available fuzzers: FFUF17, Web-
Slayer18, and Wfuzz19.

FFUF is an open-source web fuzzer written in Go, with an
emphasis on speed.

WebSlayer is designed to bruteforce web applications, that
comes with a payload generator.

15Open Vulnerability Assessment System. Available at
https://www.openvas.org

16https://github.com/google/tsunami-security-scanner
17Fuzz Faster U Fool. Available at https://github.com/ffuf/ffuf
18The web application bruteforcer. Available at http://www.edge-

security.com/webslayer.php
19The Web Fuzzer. Available at http://www.edge-security.com/wfuzz.php

Wfuzz provides a framework that allows to automate secu-
rity assessments of web applications.

C. Location Proof Systems

Many applications rely on the location of its users in order
to provide them with services, but many times the information
is not verified. Without proper verification, the applications
are susceptible to location spoofing attacks [3]. Users of a
system that know about this problem may use it for their
own benefit. This is where location proof systems can help.
Unlike only relying on the location of, e.g., the GPS signal
or the geographical source of the IP address of the device
of an end-user, these systems provide additional security to
applications by issuing location certificates [3]. These systems
use the definition of location proof made by Saroiu and
Wolman [7] and implement verification procedures. Zhu and
Cao [8] proposed APPLAUS and introduced users themselves
as witnesses to verify claims. Many other systems follow a
similar approach, such as VeriPlace [9], and, SureThing [2],
to name a few. These systems, just like any others, rely on the
isolation of processes and on the absence of vulnerabilities
to make sure that the defined security policies are correctly
enforced.

III. ATTACK APPROACH

We start by describing the target system of our attacks.
Followed by a description of the deployed testbed and the
considered network topologies. Next, we present our toolset.
We end with a description of the methodology we followed in
our attack approach.

A. Target System

The SureThing [2] framework defines a model for location
certification, and provides libraries and services to develop
systems that issue, verify and store location certificates. One
of those systems is CROSS [3] (loCation pROof techniqueS
for consumer mobile applicationS), a location proof system
that supports a smart tourism application that rewards its users
after they visit a set of predefined points of interest in a city.

1) Architecture: The architecture of CROSS is composed
by four main components, represented in Figure 1. Those are
server, client, Wi-Fi Access Point (used as part of the TOTP
strategy, described in III-A2), and kiosk (used as part of the
Kiosk strategy, described in III-A2). The client, represented in
the lower-left side of Figure 1, is an Android application for
smartphones. The server is available over the Internet and can
accessed by its users with their smartphones through a REST
API. Its internal structure is represented on the upper-left side
of Figure 1. The server is the central component of the system
and is responsible to assign rewards, verify location certificates
received from clients, provide information about the available
points of interest (that consist in tourism routes), and manage
the authentication of users and provide information about each
specific user.

3



Reward assigner

Database
Catalog

User information

Location proof verifier

API request handler
System operator

Internal storage
Proofs pending

submission

Cache
Catalog

User interface

Location proof producer

API client/Serializer

GNSS receiver

Camera

Bluetooth radio

Wi-Fi radio

Android OSClient (Android application)

Wi-Fi Access Point

Kiosk

TouristAPI

Internet

Server

Fig. 1: Architecture of the CROSS system.

2) Location Certification Strategies: The CROSS system
makes location proofs with one of three different strate-
gies: Scavenging, Time-based One-time Password (TOTP), and
Kiosk.

The scavenging strategy, represented in Figure 2, simply
relies on the already existing Wi-Fi networks infrastructure in
an urban area - either public or private - where each network
is associated with a timestamp. Meaning a user just needs to
be at a certain location and the client mobile application will
scan the nearby networks.

NEO-39CB21 Go-WiFi-Free

eduroam

Location A

94:CA:1E NEO-39CB21 @ 10:21 (trigger)
E3:21:09 Go-WiFi-Free @ 10:21
44:FA:EE eduroam @ 10:22
48:11:BC John's Home @ 10:34
39:DC:A2 Belem-Free-Net @ 11:12 (trigger)
02:1F:3D AliceFamily @ 11:15
0C:AF:E4 Pasteis de Nata @ 11:15

John's Home

AliceFamily Belem-Free-Net

Pasteis de Nata

Location B

Fig. 2: Representation of a typical usage of the scavenging
strategy.

The TOTP strategy, represented in Figure 3, relies on special
Access Points (APs) that broadcast one-time values as SSID
(Service Set Identifier), the identifier a user sees for each Wi-Fi
network as its name. Each value is determined by the current
time and by a keyed hash function.

CROSS-C-2393

12:34

CROSS-C-9198

12:36

CROSS-C-1091

12:38

CROSS-D-5527

14:02

CROSS-D-2322

14:04

CROSS-D-9003

14:06

Location C Location D

2C:3E:B6 CROSS-C-2393 @ 12:34
2C:3E:B6 CROSS-C-9198 @ 12:36
2C:3E:B6 CROSS-C-1091 @ 12:38
5F:39:A0 CROSS-D-5527 @ 14:02
5F:39:A0 CROSS-D-2322 @ 14:04
5F:39:A0 CROSS-D-9003 @ 14:06

Fig. 3: Representation of a typical usage of the TOTP strategy.

This strategy prevails over the scavenging strategy if both
strategies are in place at a given location.

Finally, the kiosk strategy relies on interactions of the user
with a physical device placed at a specific location that, in
practice, requires the user to be physically present. The kiosk
acts as a trusted witness and is more effective than the previous
strategies at preventing Sybil attacks [10], i.e., avoiding users
with multiple accounts. It is worth mentioning that this strategy
was not available in the implementation of the CROSS system
that was tested but it is an ongoing work.

3) Potential Attacks: An user can cheat in the scavenging
strategy once the existing networks at a given location are
known and do not change. The scavenging strategy is also
subject to network/Wi-Fi spoofing attacks [11] because it
relies on an unmanaged infrastructure, formed by the already
existing Wi-Fi networks. This third-party infrastructure is not
controlled and not authenticated, making it exploitable by what
is also known as an evil twin attack [12].

The TOTP strategy offers a stronger security guarantee than
the scavenging strategy. The TOTP value changes from time
to time and is only known by each AP and by the server for
verification purposes. This strategy is still vulnerable to a user,
now being an attacker, that relays values to another user.

The kiosk strategy is able to prevent the two mentioned
attacks but is still vulnerable to Denial of Service (DoS)
attacks.

B. Testbed

The deployed testbed consisted in several virtual machines,
provisioned by VirtualBox20.

The core of the testbed is composed by the CROSS server
and client (Android mobile application), the attacker machine,
and additional virtual machines to simulate the rest of the
network. The CROSS server runs 64-bit Ubuntu Linux 20.04.
The CROSS client runs Android 5.1, emulated using Geny-
motion. The attacker machine is a 64-bit Kali Linux version
2020.4. Following what a real attacker would do, we allowed
the machine of the attacker to run in promiscuous mode21. The
routers run pfSense CE 2.5.0. We deployed another Ubuntu
20.04 machine to hold the CROSS client mobile application
source code. Thus, the code of the Android application can
be provisioned through Android Studio to the virtual machine
running the emulator of the CROSS client when needed.

We deployed two different network topologies, but the core
of the testbed, as described in III-B, remained the same. The
main difference is where the virtual machine of the attacker
is positioned in the network.

We opted to use the internal network mode composed
only of virtual machines. One of the network adapters of
the “Internet” router uses bridged network mode, allowing
all virtual machines to have Internet access Only the virtual
machine with the code of the CROSS client mobile application
and the Genymotion emulator are connected to each other

20Virtualization hypervisor. Available at: https://www.virtualbox.org/
21In promiscuous mode the wired or wireless network interface controller

is allowed to intercept and pass all network traffic it receives to the central
processing unit (CPU), even if not specifically meant to it.

4



through the host-only network mode of VirtualBox. This host-
only network mode allows virtual machines to communicate
with other virtual machines, as well as with the host system.
Allowing these two virtual machines to be connected without
the need to create and have a separate (internal) network. The
virtual machine with the code of the CROSS client then uses
the Network Address Translation (NAT) mode in order to have
Internet access, e.g., to perform software updates.

1) Attacker Inside the Network: One topology, represented
in Figure 4, places the attacker inside the network. It is
either part of the network of the CROSS client or has already
managed to gain access to it. In the figure, “S” stands for
server and represents the router of the subnetwork where the
CROSS server is placed. Also in the figure, “I” stands for ISP
(Internet Service Provider) of the CROSS client.

1

4

2 2

2

2

CROSS server
(Ubuntu VM)

CROSS client 
(Genymotion) 

Attacker
(Kali Linux VM)

CROSS client's code 
(Ubuntu VM)

3

Server's subnetwork
(192.168.21.x/24) Internet

(192.168.11.x/24)

Client's ISP subnetwork
(192.168.22.x/24)

S 
Internet
(pfSense) 

VirtualBox's host-only network
(192.168.3.x/24) 

I 

Fig. 4: Topology of the network when the attacker is inside
the network of the client. The solid red arrows represent
the attacks that were performed, and the dashed red arrows
represent the attacks that were considered but not performed.

In terms of each subnetwork shown in Figure 4. The “In-
ternet” subnetwork works in the 192.168.11.0/24 IP addresses
range. More specifically, the “Internet” router, the router of
the subnetwork of the CROSS server, and the router of the
subnetwork of the CROSS client are statically assigned with
the 192.168.11.1, 192.168.11.11 and the 192.168.11.12 IP
addresses, respectively. The IP addresses of the remaining vir-
tual machines are assigned through DHCP22. The subnetwork
where the CROSS server is in runs in the 192.168.21.11/24
- 192.168.21.255/24 range. With the subnetwork of the ISP
of the CROSS client is working in the 192.168.22.11/24 -
192.168.22.255/24 range.

2) Attacker Outside the Network: In the other topology,
the attacker is outside the network, i.e., it has no access to
the network where the CROSS client is placed, as shown in
Figure 5. In the figure, “A” stands for attacker and represents
the ISP of the attacker. Again, “S” stands for server and is
used to represent the router that belongs to the subnetwork
of the CROSS server. With “I” standing for the ISP of the
CROSS client.

22The Dynamic Host Configuration Protocol can automatically assign and
distribute IP addresses within a network.

1
4

2 22 2
3CROSS server

(Ubuntu VM) CROSS client 
(Genymotion) 

Attacker
(Kali Linux VM)

CROSS client code 
(Ubuntu VM)

VirtualBox's host-only network
(192.168.3.x/24) 

Attacker's ISP subnetwork
(192.168.23.x/24)

Client's ISP subnetwork
(192.168.22.x/24)

Internet
(pfSense) 

Internet
(192.168.11.x/24)

Server's subnetwork
(192.168.21.x/24)

S I 

A

Fig. 5: Topology of the network when the attacker is outside
the network of the client. The solid red arrows represent
the attacks that were performed, and the dashed red arrows
represent the attacks that were considered but not performed.

Concerning each subnetwork of Figure 5 and corresponding
network IP addresses ranges. The “Internet” subnetwork works
in the range of the 192.168.11.0/24 IP addresses. Namely, the
“Internet” router is statically assigned the 192.168.11.1 IP ad-
dress. The routers of the subnetworks of the CROSS server and
of the CROSS client are statically assigned the 192.168.11.11
and the 192.168.11.12 IP addresses, respectively. Finally, the
router of the subnetwork where the machine of the attacker is
is statically assigned the 192.168.11.13 IP address. While the
IP addresses of the rest of the virtual machines were assigned
through DHCP. The subnetwork where the CROSS server is
in runs in the 192.168.21.11/24 - 192.168.21.255/24 range. In
turn, the subnetwork of the ISP of the CROSS client works in
the 192.168.22.11/24 - 192.168.22.255/24 range. Finally, the
subnetwork where the attacker is in uses the 192.168.23.11/24
- 192.168.23.255/24 IP addresses range.

It is worth mentioning there was a need to add an “any-to-
any rule” to the routers to allow the required communication
between the virtual machines.

C. Attack Tools

Here we describe our toolset, that included: enumeration,
vulnerability assessment, and fuzzing tools.

1) Enumeration Tools: We used Nmap and complemented
it with AMAP, as enumeration tools. We opted for Nmap as
it is a widely known and used port scanner/mapper. Another
advantageous aspect is its well-structured and helpful docu-
mentation. While not as popular or without a service version
detection database as large as Nmap, AMAP is still a good
choice to use as a second option.

2) Vulnerability Assessment Tools: For vulnerability anal-
ysis, we used OpenVAS and Google Tsunami. We opted to
use OpenVAS because of its popularity and connection with
large vulnerabilities databases. Google Tsunami was used as
a network security scanner. While quite new, Google Tsunami
is part of a Google which was the main reason for choosing
it.

5



3) Fuzzing Tools: We used fuzzing techniques to verify if
the CROSS server (III-A) would stop its normal operation to
the point where it would no longer respond to the requests of
the deployed client (III-B). We had the constrained that we
needed a fuzzer that could be used through the network. After
comparing several available fuzzers, we decided to use FFUF.
Among the fuzzers that were considered, we highlight the
following ones: SIPArmyKnie, WebSlayer, sfuzz, Wfuzz, and
Powerfuzzer. We compared those fuzzers through a series of
steps, for instance:

• We did several a Google searches and compared the
number of returned results for each fuzzer that was
initially considered;

• Used Google Trends23 to compare the search volume of
each different considered fuzzer throughout the time;

• Took into consideration the novelty and the advertised
speed at which each fuzzer performs.

D. Attack Iterations

Once we deployed our testbed, we started our approach by
using the target system without the intention of performing
any offensive actions. The system was first used as a possible
non-malicious end user would use it. This way we were able
to get an overview of the whole system while putting together
some possible attack scenarios. Allowing us to gather some
evidence about the attack surface of the target system.

Before starting any offensive-focused activities we had to
make sure all data produced during the attacks was properly
and automatically logged. It includes commands or any raw
data that entered in a terminal/console, known as terminal logs.
With that in mind, we opted to use the Linux script command24

when performing the attacks from the machine of the attacker.
Our approach consisted in three sequential steps of testing

the CROSS server - the target system (Section III-A) of our
work. These steps will be hereinafter referred as iterations
or loops. we performed the attacks with the machine of the
attacker placed at the two previously defined network positions
it can be: inside of the network of the client and outside of
it, respectively described in III-B1 and in III-B2. We followed
an incremental approach, by introducing a new tool (either
offensive or not) at each new iteration. The results gathered
from previous iterations were used as the basis for the next
ones, that way we could incrementally harden our target
system.

The three iterations were divided in two main stage: vul-
nerability analysis and custom attacks. Figure 6 shows a
representation of the attack iterations that were performed. As
part of the vulnerability analysis stage, we did two separate
iterations. The first iteration involved using Nmap II-B2 and
OpenVAS (II-B3), in this order. In the second iteration we used
Google Tsunami (II-B3). As part of the second stage, we did
a single iteration where we introduced some custom attacks

23Google Trends analyzes and compares the popularity of Google search
queries. Available at https://trends.google.com/trends.

24https://man7.org/linux/man-pages/man1/script.1.html

in the form of fuzzing techniques. Those fuzzing techniques
were performed by exercising the FFUF (II-B4) fuzzing tool.

Vulnerability
analysis

Custom
attacks

Fuzzing
techniques

Google
Tsunami OpenVAS

Nmap

Fig. 6: Different iterations of the performed attacks.

IV. EVALUATION

As we described in III-D, we performed the attacks from
the two vantage network positions we assumed an attacker can
be. That is with the attacker inside the network of the client
or outside of it, respectively described in III-B1 and in III-B2.
The following presented results correspond to only one of the
cases, as the gathered results were the same in both cases as
we were expecting.

We use and assess each attack tool listed in Section III-C
individually. The output of several tools can be combined in
the future to perform more advanced attacks.

We started by finding the IP address of the CROSS server,
even though we knew the IP of all deployed virtual machines
beforehand. Next, we present the steps taken to find it:

1) Initialization of Wireshark25;
2) Start capture of packets on the eth0 interface;
3) Use the CROSS client application to request the rewards

page
(/v1/users/@me/rewards);

4) Infer that the IP address of the server is 192.168.21.14,
by inspecting the exchanged packets shown in Figure 7;

5) Conclude that the CROSS server service is running at
TCP port 13000, by inspecting the packets exchanged
between the CROSS client application and the CROSS
server;

6) Infer all available paths are sub-directories of the root
/v1 path.

A. Nmap Results

We used Nmap to perform several ports scans of the target
system with the 192.168.21.14 IP address. Starting with the
simple default port scan, we used the option to probe any open
ports to determine the service and version running at each port.
By default Nmap only scans the most commonly used 1000
TCP ports. As a result, this initial port scan did not detect any
open ports; we only gathered the information that the target
system is at a distance of 4 hops from the attacker machine.

We next moved on to perform a broader port scan including
all TCP and UDP ports, again probing any open ports for

25Wireshark is a free and open-source network packet analyzer. Available
at https://www.wireshark.org/.

6



Fig. 7: Wireshark packet captures done by the attacker machine
that shows some of the exchanged packets between the CROSS
client mobile application and the CROSS server after a user
requests its rewards. The ‘length info’ rows correspond to rows
1-7 of the captures.

their service. This time Nmap was able to detect that TCP
port 13000 was open, as we would expect. Yet Nmap wrongly
detected its service, detecting it as a DAAP service26. We used
the daap-set-library script from the Nmap Scripting Engine
(NSE) to try to get more information about this service but we
did not get any further information. UDP ports 631, 5353 and
53574 were also detected but as open|filtered, meaning Nmap
was not able to determine if these ports were actually open or
simply filtered since it did not get a response from them. A
port that Nmap reports as open|filtered may also mean that the
probe used by Nmap was dropped by a packet filter, which
was not the case, given the testbed configuration (described
in Section III-B) and deployed network topologies. UDP port
631 was detected by Nmap and is usually used for running the
IPP27 service. In the used Linux machine, the service running
at port 631 was CUPS28. UDP port 5353 was detected by
Nmap and is registered as the port to run the mDNS29 protocol.
The third UDP port Nmap detected as open|filtered - 53574
- has no common service associated with it. Perhaps for that
same reason, Nmap was not able to detect the service listening
at that port.

Overall, Nmap correctly detected the operating system of
the virtual machine where the CROSS server is running. Yet,
it did not detect its Linux kernel version nor the exact Linux
distribution (Ubuntu). These results could be related with the
fact that the target system is running inside a virtual machine.

Furthermore, Nmap was also able to detect the PostgreSQL
database used by the CROSS server, listening at port 5432,
but only after we explicitly configured PostgreSQL to accept
outside connections.

We decided to scan port 13000 also with AMAP, since

26The Digital Audio Access Protocol is a proprietary protocol introduced
by Apple in its iTunes software to share media across a local network.

27The Internet Printing Protocol is used to allow client devices, such as
computers, to communicate with printers.

28The Common Unix Printing System allows a Unix-based computer to
operate as a printing server.

29The multicast DNS protocol can resolve hostnames to the corresponding
IP addresses within a small network.

Nmap was unable to correctly determine the service running
there. After making sure AMAP also reported TCP port 13000
was open, we tried to map the service running at that port by
sending some triggers and analysing their responses, which did
produce any relevant information. AMAP was also not able to
gather useful data about the specific service running at TCP
port 13000.

B. OpenVAS Results

OpenVAS was used to perform various scans. These in-
cluded scans to all ports of both TCP and UDP, all ports of
one of the protocols (TCP or UDP), or only targeted at the
TCP port 13000. The only vulnerability OpenVAS was able to
detect was the implementation of TCP timestamps30 active in
the CROSS server virtual machine. This vulnerability is scored
2.6 in the base group of CVSS31 and is therefore considered
a low severity vulnerability.

1) Changes: Based on the results gathered after running
OpenVAS, we moved on to make the suggested changes in
order to harden the target system. The solution involved editing
the /etc/sysctl.conf file, which required root privileges, to
add the line net.ipv4.tcp timestamps = 0 and then execute
the command sysctl -p to apply the change to Linux. The
equivalent procedure would be different for other operating
systems. Figure 8 represents the change on the configuration
of the target system.

Disable the implementation/usage of TCP timestamps

Stock configuration
(Virtual machine snapshot version 1.0.0)

Hardened configuration
(Virtual machine snapshot version1.0.1)

Fig. 8: Changes made to the configuration of the CROSS
server to harden it according to the changes suggested by
OpenVAS.

2) Avoided Attacks: The TCP timestamps feature can be
used by an attacker to compute the uptime of a system,
i.e., compute for how long that system has been booted.
An attacker may then be able to infer if a system is still
running a previous version of its operating system or installed
software, as some updates or patches require a system reboot.
By changing this setting, these attacks are made more difficult.

C. Tsunami Results

By default, Tsunami only uses Nmap to scan the most com-
mon 1000 TCP ports. Therefore the port where the CROSS
server is listening at (13000) was not detected. Tsunami did

30TCP timestamps are defined in RFC 7323, TCP Extensions for High
Performance. Available at https://tools.ietf.org/html/7323.

31Scoring system used to describe and rate IT vulnerabilities. More infor-
mation available at: https://www.first.org/cvss/.

7



not proceed to the next step of vulnerability verification. We
decided to change the configuration Tsunami uses by default,
as we knew TCP port 13000 was open. The port was promptly
detected once we overrode the default values that specify
which ports Nmap should scan. This allowed the process
employed by Tsunami to continue since it detected an open
port. Namely, it moved to use fingerprinting techniques to try
to identify which service is running on the port. As expected
because of the use of Nmap, it was again detected as a
DAAP service. Finally, Tsunami used its default vulnerability
detection plugins targeted at the TCP port 13000, but they did
not find vulnerabilities.

D. Fuzzing Results

FFUF was used with two collections of wordlists: SecLists32

and RobotsDisallowed33. SecLists contains a collection of
multiple wordlists: from usernames and passwords to data
pattern matching. RobotsDisallowed holds a list of the most
commonly disallowed directories present in robots.txt from top
websites.

Directory discovery was done assuming the existence of
the /v1 path, considering previously gathered information
described in the beginning of this section. We used two
different wordlists, with the second being larger than the first
one which allowed us to get further results. We were able to
find the following seven directories under the /v1 path:

• /users, that returned the 405 (Method Not Allowed)
HTTP code;

• /meta, which returned a 200 (OK) HTTP code;
• /rewards, which returned a 200 (OK) HTTP code;
• /trips, that returned the 401 (Unauthorized) HTTP

code;
• /routes, which returned a 200 (OK) HTTP code;
• /datasets, which returned a 200 (OK) HTTP code;
• /pairs, that returned the 405 (Method Not Allowed)

HTTP code.
Using a wordlist from the RobotsDisallowed list

we discovered a sub-directory of the /trips path -
/trips/upcoming - that also returned a 401 HTTP code.

We decided to send some POST requests as both /users
and /pairs paths and the server returned a 405 (Method
Not Allowed) HTTP code to the requests. We used different
wordlists, each containing a list of values meant to disrupt
the normal function of a system. Both paths accepted the null
value, returning a 200 (OK) as the response status code. In
the following requests containing the null value we got a 409
(Conflict) HTTP code as response. Namely, the /users path
responded with the following: “message”: Username in use.
This meant that we were trying to insert it in the same table of
the database. The remaining values either failed or could not be
decoded, all returning 400 (Bad Request) status codes. None
of these values managed to stop the normal operation of the
CROSS server. Yet, we managed to write the null value to the

32https://github.com/danielmiessler/SecLists
33https://github.com/danielmiessler/RobotsDisallowed

table where the existing users and corresponding usernames
are kept using the /users path. As for the /pairs path,
the null value was written to a different table of the database.

We tried to do database enumeration by sending some
POST requests, using two different wordlists. Yet, we were
not able to do any evident damage. Nor were we able to
get any further information through database enumeration.
Actually, all responses returned a 400 (Bad Request) HTTP
code followed by the “invalid character” response.

We also tried to do file discovery targeted at the /users
and /meta paths. Together with a wordlist designed to
perform directory discovery, we used two other wordlists con-
taining different known file extensions. One of these wordlists
contained the most commonly used file extensions, while the
other contained common web file extensions.

We also tried to do a directory discovery for any sub-
directories of the /users and /meta paths but we were
not able to find any. Considering these results, we suspected
the results would be the same for the remaining discovered
paths. Therefore we did not try to continue with the directory
discovery for any of the other 5 previously discovered paths.

Performing these fuzzing techniques produced quite a large
number of requests, almost creating a Denial of Service
(DoS) attack. We could attest this by using the CROSS client
application at the same time and seeing the CROSS server
indeed took much more time to respond to the requests.

V. CONCLUSION

Different systems will apply diverging security-related de-
fensive mechanisms, yet there are common ways and strategies
that can be followed in order to have a system tested in terms
of the (negative) impact a given threat might have in it. This
work showed an offensive assessment of a deployed system
that involved vulnerability assessment and penetration testing
techniques from the perspective of an attacker.

A. Achievements

Our whole attention was on the security of a specific
location certification system, namely CROSS (loCation pROof
techniqueS for consumer mobile applicationS) but our ap-
proach can be adapted to other systems. We suggested some
general guidelines to perform vulnerability assessment and
penetration testing techniques when applied and including the
perspective of a real attacker.

Our security assessment was done with different tools,
including Nmap, AMAP, OpenVAS, Google Tsunami, and
FFUF. Nmap and AMAP ran several port scans but were not
able to find unnecessary open ports that could be used as an
entry point. OpenVAS was only able to detected a low severity
TCP-related vulnerability. Using a specific value, we were able
to make unauthorized writes in the database using FFUF. Even
though it did not make much damage, it was an unknown
vulnerability, and showed that this approach has merits. The
results we obtained were then used to improve and harden the
target system and reduce its attack surface.

8



Once all the ground work was done - full virtual envi-
ronment and tool survey - we were able to prepare all the
materials for organized tournaments, where multiple red teams
can compete. Allowing a system to be under the evaluation
of quite different backgrounds and ways of conducting an
offensive security test.

B. Future Work

This work would benefit from the addition of more attack
tools to the toolset, namely exploitation tools.

Apart from that, there are some specific attacks that could
enrich this work. Those include:

• Impersonation/spoofing attacks, where an attacker as-
sumes the identity of an already existing user of the
system;

• Replay attacks - where an attacker captures a given
message (or part of it) intended to a specific user and,
after saving it for a certain period of time, sends it to the
recipient at a later time;

• Network spoofing attacks;
• Ultimately trying to disrupt the main contribution of

CROSS and SureThing by claiming false location cer-
tificates, i.e., claim a certificate for a location where the
attacker is not in fact, achieving location spoofing.

The whole architecture of CROSS could only be considered
as more secure after the mobile client Android application
is also assessed in terms of its security through the same
offensive security assessment proposed in this work.

Finally, organizing several tournaments where multiple
teams will have the chance to perform the same attacks
we proposed but in a gamified environment, allowing the
discovery of new attacks. These tournaments can be gradually
opened to more teams/players at each new tournament. The
results from these tournaments could then be collected and
analyzed to further enrich the offensive security assessment.
This way allowing CROSS to be under the evaluation of
quite different backgrounds and ways of conducting an of-
fensive security test. We include materials and guidelines
for organizing such tournaments in https://github.com/inesc-
id/SureThingTournament/tree/main/tournament materials.

ACKNOWLEDGEMENTS

First of all I have to thank my advisor, Professor Dr. Miguel
Pardal, and Dr. Samih Eisa for all their help and support
throughout these yet somewhat uncertain times, and their
invaluable comments which greatly improved this work.

I also have to dedicate some thank you words to João
Machado for his very well detailed taxonomy that was used
as a reference.

Last, but not least, I would also like to thank my mother for
her constant support. Even if not always aware of what was
going on, by my choice, I know I could always count on her.

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with refer-
ence UIDB/50021/2020 (INESC-ID) and through project with
reference PTDC/CCI-COM/31440/2017 (SureThing).

REFERENCES

[1] J. Tubberville and J. Vest, Red Team Development and Operations: A
Practical Guide. Independently Published, 2020.

[2] J. Ferreira and M. L. Pardal, “Witness-based location proofs for mobile
devices,” in 17th IEEE International Symposium on Network Computing
and Applications (NCA), Nov. 2018.

[3] M. L. P. Gabriel A. Maia, Rui L. Claro, “CROSS City: Wi-Fi Location
Proofs for Smart Tourism,” 2020.

[4] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 371–386, 2010.

[5] A. Tripathi and U. K. Singh, “Towards standardization of vulnerability
taxonomy,” in 2010 2nd International Conference on Computer Tech-
nology and Development. IEEE, 2010, pp. 379–384.

[6] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Security &
Privacy, vol. 3, no. 2, pp. 58–62, 2005.

[7] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs,” in Proceedings of the 10th workshop on Mobile
Computing Systems and Applications, 2009, pp. 1–6.

[8] Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof
updating system for location-based services,” in 2011 Proceedings IEEE
INFOCOM. IEEE, 2011, pp. 1889–1897.

[9] W. Luo and U. Hengartner, “Veriplace: a privacy-aware location proof
architecture,” in Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2010, pp.
23–32.

[10] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[11] L. Tamilselvan and D. V. Sankaranarayanan, “Prevention of imperson-
ation attack in wireless mobile ad hoc networks,” International Journal
of Computer Science and Network Security (IJCSNS), vol. 7, no. 3, pp.
118–123, 2007.

[12] D. Mónica and C. Ribeiro, “Wifihop-mitigating the evil twin attack
through multi-hop detection,” in European Symposium on Research in
Computer Security. Springer, 2011, pp. 21–39.

9


