Formal Verification of Password Generation Algorithms
used in Password Managers

Miguel Grilo
miguel.grilo@tecnico.ulisboa.pt
Instituto Superior Técnico, Lisboa, Portugal

Abstract

Password managers are important tools that enable us to use stronger passwords, freeing us from
the cognitive burden of remembering them. Despite this, there are still many users who do not fully trust
password managers. In this work, we focus on a feature that most password managers offer that might
impact the user’s trust, which is the process of generating random passwords. We survey which algo-
rithms and protocols are most commonly used and we propose a solution for a formally verified reference
implementation of a password generation algorithm. Finally, we realize this reference implementation
in Jasmin and we prove that the concrete implementation preserves the verified properties. We use
EasyCrypt as our proof framework and Jasmin as our programming language.

Keywords: Password Manager, Random Password Generator, Formal Verification, EasyCrypt, Jasmin.

1. Introduction

Passwords are still one of the most commonly-
used means of user authentication. Although there
are lots of research around password-based au-
thentication [14, 7, 17, 19], there are still many
problems and vulnerabilities regarding password
authentication [9, 20, 15]. So, in general, secu-
rity experts recommend using password managers
(PMs) for both storing and generating strong ran-
dom passwords [13]. Despite these recommenda-
tions, users tend to reject PMs partly because they
do not fully trust these applications [1, 16, 4].

While trying to understand why users adopt PMs,
different researchers observed that users consider
the generation of random passwords as one im-
portant feature that makes them use these appli-
cations [1]. Moreover, users who do not use PMs
with built-in password generators more often have
weaker passwords and tend to reuse them [16].
Security experts have already warned about how
dangerous it is to have weak passwords and, even
worse, to reuse those weak passwords [12]. These
studies suggest that a strong password generator
that users can fully trust is a must-have feature for
PMs, and guaranteeing that the generator is func-
tionally correct and secure is an important concern.

1.1. Work Objectives

In this thesis, we have as main objectives the de-
velopment of a formally verified reference imple-
mentation of a random password generator (RPG)
and the implementation of it using Jasmin [2], both
having to verified properties: functional correct-
ness (generated passwords always satisfy the in-

put password composition policy) and security (the
probability of one password being generated is the
same as any other password).

This reference implementation and the proper-
ties will be specified in EasyCrypt [5], an interac-
tive framework for verifying the security of crypto-
graphic constructions and protocols.

To understand the state of the art on random
password generation we survey currently used and
popular PMs password generators.

Regarding the Jasmin implementation, we want
to integrate it into a PM, as a proof-of-concept of
our solution.

2. Background
2.1. RPG Survey

As our first objective, we surveyed the algorithms
and protocols for generating random passwords
used by different PMs.

We studied a total of 15 PMs, but in this
work we focus on three of them: Google
Chrome’s Password Manager (v89.0.4364.1), Bit-
warden (v1.47.1), and KeePass (v2.46).

2.1.1 Password Composition Policy

All studied PMs allow users to define a password
composition policy regarding the password to be
generated. These policies define the structure of
the password, and they are the input given to the
RPG. Policy structures are really identical between
the differents studied PMs. The user is, in all of
them, available to define the length of the gener-
ated password and the set of characters that can
appear in the password. Chrome and Bitwarden al-
low the user to define the minimum and maximum

occurrences of characters per set in the password,
while in KeePass a user is able to define a charac-
ter set “by hand” (i.e., choose any arbitrary set to
sample characters from).

2.1.2 Random Password Generation

Almost all PMs use different algorithms to generate
random passwords. However, the way they do it is
very similar.

The main idea of these algorithms is to gener-
ate random characters from the union of the differ-
ent character sets defined in the composition policy
until the password length is fulfilled. To show how
this is achieved, we present in pseudo-code (Algo-
rithm 1) a generalization of the algorithms of the
three PMs, being more closely related to Chrome’s
algorithm.

Algorithm 1 General Password Generation Algo-
rithm

1: procedure GENERALGENERATE(policy)

2: password <+ €
3 foreach set € policy.charSets do
4 fori=1,2,...,set.minOccurences do
5 char < Sample uniformly at random from set

6: password < password ||char
7
8
9

0

end for
end for
while len(password) < policy.length do
char < Sample uniformly at random a char from the
union of sets which have not yet reached their maximum
number of occurrences of characters

—_

11: password < password ||char
12: end while
13: Generate a random permutation of password

14: Output password
15: end procedure

In general, these algorithms first iterate over
all the sets from which they should sample from,
according to the policy, and samples minOccur-
rences characters from each of them, appending
them to the initially empty string password. Then,
while the length of password is smaller than the
length defined in the policy, the algorithm samples
a character from the union of sets which have not
yet reached their maximum number of occurrences
of characters, and appends it to password. Finally,
it outputs a permutation of password.

As said before, the previously described algo-
rithm is essentially the same as Chrome’s. KeeP-
ass’s algorithm is simpler, since the user is not able
to establish neither the minimum nor the maximum
number of occurrences of characters per set. So
there is no need to generate any string permuta-
tion, one just needs to define the single set of char-
acters, which is the union of all available sets, and
then randomly generate characters from that set.

Regarding Bitwarden, the only difference com-
pared to the general algorithm described before is
that is makes the permutation before generating

the characters (i.e., it creates a string like ‘llluunl’ to
say that the first three characters are lowercase let-
ters, the following two are uppercase letters, then a
number, and finally another lowercase letter. Only
then it generates the characters from the sets and
places them in their respective position).

2.1.3 Random Character Generator

The process of uniformly sampling characters from
a set is trivial if we possess a random number gen-
erator (defined next in Section 2.1.5). One just
needs to index each character from the set (this
comes automatically if we instantiate our sets as
lists) and then we generate a number from 0 to the
size of the set uniformly at random, and we output
the character with that number as index.

2.1.4 String Permutation

Given the need to generate a random permuta-
tion of the characters of a string, Bitwarden and
Chrome both implement the Fisher-Yates shuffle

[8].

2.1.5 Random Number Generator

As we can see from Sections 2.1.3 and 2.1.4, the
RPG needs to implement a Random Number Gen-
erator (RNG) have some source of randomness
to generate the characters and a permutation of
strings of characters.

After inspecting the code of the three PMs, we
noticed that Chrome and KeePass had an identical
RNG, because they generate numbers from 0 to
an input range. The main idea of these two PMs is
to generate random bytes, then casting them to an
integer, and then return that value modulo range,
so the value it generates is between 0 and range.

To generate random bytes, the three PMs
considered had different approaches. Chrome
uses different system calls based on the oper-
ating system the PM is running, Bitwarden uses
NodeJS randomBytes() method, while KeePass
defines their own random bytes generator based
on ChaCha20.

On uniformity and maximum integer values.
One must be careful with the approach described
above because, since there is a finite maximum
value for the random integer (which is 2™ — 1 for
n-bit words). This may lead to a non-uniform dis-
tribution over the possible values. For example, if
we represent integers using 3-bit words (having the
maximum possible value 22 — 1 = 7) and if the in-
put range is 5, then a result of 1 would be twice as
likely as a result of 3 or 4.

So, some of the possible numbers generated by
the random bytes generator must be discarded be
rejection sampling. While this not guarantees ter-
mination, it allows the RNG to sample numbers uni-

formly, with a very high probability of terminating in
very few tries. We explain Chrome’s solution to this
problem (KeePass is slightly different, but follows a
similar idea).

In Chrome, the RNG first s the maximum 64-bit
unsigned integer maxValue such that, given an in-
put range, maxValue = range — 1 mod range (i.e.,
the greatest multiple of range that can be written
in 64 bits, subtracted by 1). Then, generates ran-
dom values until it is generated a number which is
smaller or equal to maxValue. Since this maxValue
is the maximum value in these conditions, there is
a high probability of generating a valid number in
very few tries.

Chrome algorithm is described in pseudo-code
in Algorithm 2.

Bitwarden RNG is more complex since it gener-
ates numbers from an arbitrary minimum value up
to an arbitrary maximum value, so we will not go
into detail.

Algorithm 2 RNG with maximum range

1: procedure CHROMERNG(range)

2: mazValue < (uint64.maxV alue/range) * range — 1
3 do

4: value + (uint64) GenerateRandomBytes

5: while value > mazValue
6
7:

return value mod range
end procedure

While both Chrome’s and KeePass’s algorithms
sample uniformly and are very efficient at doing it
(i.e., reject a very small number of samples) they
are still not ideal. We noticed that, for both RNGs,
in some situations there are numbers being re-
jected that, if accepted, would still produce an uni-
form distribution (e.g., with Chrome’s RNG, if we
use 3-bit words to represent our integers (maxi-
mum value of 7), and if the input range is 4, this
RNG will reject samples greater than 3 (since max-
Value will take the value of (7/4)*4-1=3). So, from
the interval [0;7] the algorithm only accepts inte-
gers in the interval [0; 3], but could also accept in-
tegers from [4; 7] and the distribution would still be
uniform and the algorithm more efficient.

2.2. Technology Used
2.2.1 EasyCrypt

We use EasyCrypt to implement our RPG refer-
ence implementation and to reason about it. Easy-
Crypt [5] is an interactive framework for verify-
ing the security of cryptographic constructions and
protocols using the game-based approach. Cryp-
tographic games and algorithms are modeled as
modules, which consist of typed global variables
and procedures written in a simple imperative lan-
guage featuring random sampling operations.
Built around these modules, EasyCrypt imple-
ments program logics for proving properties of im-

perative programs.

Hoare Logic. It is a formal system composed of
a set of rules for each syntactic construct of an im-
perative language used to reason compositionally
about the correctness of programs. In EasyCrypt,
an HL judgement has the form

hoare [M.p : A ==> B]

where p is a procedure of module M; A is an
assertion (precondition) on the initial memory that
may involve global variables of declared modules
as well as parameters of M.p; B is an assertion
(postcondition) on the final memory which may in-
volve the term res which is the returned value of
M.p, as well as global variables of declared mod-
ules.

The informal meaning of the HL judgment is that,
for an initial memory &m satisfying 4, if running the
body of M.p in &m results in termination with an-
other memory &m’, &m’ satisfies B.

Probabilistic Hoare Logic. Similar to HL, but al-
lows carrying out proofs about the probability of a
procedure’s execution resulting in a memory satis-
fying a given postcondition. In EasyCrypt, a pHL
judgement has one of the forms

phoare [M.p : A ==> B] < e
phoare [M.p : A ==>B] = e
phoare [M.p : A ==> B] > e

where p is a procedure of module M; A is an
assertion (precondition) on the initial memory that
may involve global variables of declared modules
as well as parameters of M.p; B is an assertion
(postcondition) on the final memory which may in-
volve the term res which is the returned value of
M.p, as well as global variables of declared mod-
ules; e is an expression of type real.

The informal meaning of the pHL judgment is
that, for an initial memory &m satisfying A, the prob-
ability of running the body of M.p in &m and it re-
sulting in termination with a memory &m’ satisfying
B, has the indicated relation to the value of e.

Probabilistic Relational Hoare Logic. Variant
of HL which reasons about two programs are re-
lated to each other. In EasyCrypt, a pRHL judge-
ment has the form

equiv [M.p ” N.q : A ==> B]

where p is a procedure of module M and q is a
procedure of module N; A is an assertion (precon-
dition) on memories &m1 and &m2 (where module
M and N will be run, respectively) that may involve

global variables of declared modules as well as pa-
rameters of M.p and N.q which must be respec-
tively interpreted in memories &m1 and &m2; B is
an assertion (postcondition) on the final memory
distributions (since both programs might be proba-
bilistic) which may involve the term res{1} which is
the returned value of M.p and res{2} which is the
returned value of N.q, as well as global variables
of declared modules.

The informal meaning of the pRHL judgment is
that, for an initial memories &m1 and &m2 satis-
fying A, then the distributions on memories d&m1’
and d&mz2’, respectively obtained by running M.p
on &m1 and N.q on &m2, satisfy B.

All of these judgements can be used to write
lemmas in EasyCrypt, that must be resolved using
tactics, which are logical rules embodying general
reasoning principles, which transform lemmas into
zero or more subgoals — sufficient conditions for
the lemma to hold. If there are no more subgoals
to solve, we have proved our lemma. The following
code shows an example of a simple lemma writ-
ten in EasyCrypt, which formalizes the symmetry
property of the equality relation between integers:
int)

lemma Sym (x y : X =y =>y=x.

2.2.2 Jasmin
We use Jasmin to have a concrete implementation
of the reference implementation that can be linked
with a PM. Jasmin [2] is a framework for develop-
ing high-speed and high-assurance cryptographic
software, which is structured around the Jasmin
programming language and its compiler. The pro-
gramming language combines high-level (struc-
tured control-flow, variables, etc.) and low-level
(assembly instructions, flag manipulation, etc.)
constructs while guaranteeing verifiability of mem-
ory safety and constant-time security. The compiler
transforms Jasmin programs into assembly, while
preserving behavior, safety, and constant-time se-
curity of the source code. Almeida et al [2] men-
tioned that this programming language, while be-
ing easily verifiable, is as efficient as some state-
of-the-art high-speed software such as ghasm [6].
Programs that are compiled from Jasmin are
guaranteed to preserve their behaviour when com-
piled to assembly, which ensures that properties of
programs in Jasmin provably carry to their assem-
bly implementations. Jasmin’s compiler has this
property proven in Coq'.

2.2.3 Why EasyCrypt with Jasmin
As previously mentioned, EasyCrypt was chosen
because it provides the essential logics to reason

"https://coq.inria.fr/

about cryptographic constructions using the game-
based approach, which is necessary to prove the
security property of the generator.

Regarding Jasmin, it was chosen because it al-
lows us to build a low-level efficient algorithm, with
the necessary high-level constructs that help us
reason about our implementation.

Also, the Jasmin framework provides a way of
automatically generating the model of a Jasmin
program to EasyCrypt, while having the assur-
ance that we are reasoning about that exact Jas-
min code. Moreover, these frameworks when
used together have shown good results on build-
ing and verifying high-assurance and high-speed
cryptographic code, such as the ChaCha20 and
Poly1305 implementations proposed by Almeida et
al [3].

3. RPG Implementation

In this thesis, based on the information obtained
from our survey presented in Section 2, we pro-
pose a solution for a formal verified RPG, which is
first specified in EasyCrypt as a reference imple-
mentation, and then implemented in Jasmin.

3.1. Reference Implementation

We propose a reference implementation for an
RPG which offers the following policy adjustments:
(1) the user can define the password length in the
interval [1;200]; (2) the user can choose which sets
to use (from Lowercase Letters, Uppercase Let-
ters, Numbers, and Special Characters); (3) the
user can define the minimum and maximum occur-
rences of characters per set.

3.1.1 Definitions on Password Composition Poli-

cies
We say that a policy is a record with the following
fields: Length, LowercaseMin, LowercaseMax, Up-
percaseMin, UppercaseMax, NumbersMin, Num-
bersMax, SpecialMin, and SpecialMax.

Password composition policies can satisfiable or
unsatisfiable. A satisfiable password composition
policy implies the existence of a password that is
able to satisfy all of the different constraints speci-
fied in the policy. On the other hand, no password
is able to satisfy all of the constraints of an unsat-
isfiable policy.

In our case, it is easy to see that a policy is
satisfiable if its field length is greater than 0, if all
min values are non-negative, if all max values are
greater or equal to the corresponding min value, if
the sum of all min values is less or equal to length,
and if the sum of all max values is greater or equal
to length. If any of these conditions is not true, then
no password is able to satisfy the policy.

We also add to this definition the restriction of the
length and also all max fields being less or equal to

200, because we impose that the user cannot gen-
erate passwords with a length greater than 200.

3.1.2 Algorithm

The entry point of our algorithm is GENER-
ATEPASSWORD, which receives as input a pass-
word composition policy and, if it is satisfiable, a
password is generated and returned. Otherwise, a
password is not generated and null is returned.

Then, to generate passwords, the algorithm fol-
lows the idea from the general Algorithm 1 pre-
sented in Section 2. Both the random character
generator and the string permutation method are
very essentially the same as the ones from Algo-
rithm 1.

However, the RNG we decided to implement has
some modifications when compared to the ones
shown in Section 2.1.5, in order to fix the previously
mentioned problem of not having an ideal RNG re-
garding efficiency.

Regarding the random bytes generator, we use
the x86 instruction RDRAND. In this work we as-
sume that this procedure is secure (i.e., samples
bytes according to a uniform distribution).

All of these methods are captured by the
pseudo-code presented in Algorithm 3.

Algorithm 3 Reference Implementation Pseudo-
Code

1: procedure GENERATEPASSWORD(policy)
2 if policy is satisfiable then

3 password < &

4 foreach set € policy.charSets do
5: set.available < set.max
6
7
8

for:=0,1,...,set.minOccurrences do
char < RANDOMCHARGENERATOR(set)
password < password||char

set.available < set.available — 1
10: end for
11: end for
12: while len(password) < policy.length do
13: unionSet < UsetEpolicy.charSets set such that
set.available > 0
14: char < RANDOMCHARGENERATOR (unionSet)
15: password < password||char
16: set.available <+ set.available — 1
17: end while
18: password < PERMUTATION(password)
19: return password
20: else
21: return null
22: end if

23: end procedure

3.2. Reference Implementation in EasyCrypt

In EasyCrypt we call our reference implementation
RPGRef and we say that it is of type RPG_T. Modules
of this type must implement a generate_password
method which receives a policy and outputs a
passwrord option

Regarding type definitions on EasyCrypt, in-

stances of type char are integers (which can be
directly mapped to the corresponding ASCII char-
acter), and both the types password and charSet
are lists of chars. The type policy is a record type
with its fields instantiated as integers.

We note the use of password option for the out-
put of the generate_password method, which ex-
tends the password type with the extra element
None. This allows us to return Some password in
case the policy is satisfiable, and None otherwise.

Regarding methods, it is fairly easy to see how
the abstract version of this module maps to the
EasyCrypt implementation.

However, there are some small differences. The
most noticeable is the definition of union of sets.
In the abstract implementation, we simply the
standard mathematical notation for union set. In
EasyCrypt we have the method define_union_set
which implements this process. This algorithm can
be found online?.

3.3. Jasmin Implementation

The code of our Jasmin implementation is closely
related to the reference implementation. But, being
Jasmin a low-level programming language, there
are obviously some specific implementation partic-
ularities.

Due to the nature of the programming language,
the first difference is that everything is represented
as bit words. The different policy fields are 64 bit
words and characters are 8 bit words. Policies,
characters sets, and passwords are arrays of these
bit words.

Another difference is on the input/output. The
generate_password method receives as input two
pointers, one where the input policy is stored in
memory, and one for the memory region where the
program is supposed to write the generated pass-
word, in case the policy is satisfiable.

The Jasmin implementation outputs an integer
which gives feedback about the generated pass-
word. In case the output is positive, it means
that the input policy was satisfiable and the Jas-
min implementation wrote on memory the gener-
ated password. In case it is negative, it means that
the input policy was unsatisfiable and nothing was
written on memory. The Jasmin implementation
also provides some additional feedback on why the
policy is unsatisfiable, compared to the reference
implementation. The output can take different neg-
ative values depending on the reason why the pol-
icy unsatisfiable (e.g., if the output is -1 it means
that the length field is greater than 200).

Another noticeable difference is that arrays must
have a constant size in Jasmin. So our variable that

%https://github.com/passcert-project/
random-password-generator/blob/main/EC/
passCertRPGSpec.ec

Correctness* G (policy)

if policy is satisfiable
pwd <+ RPG.generate_password(policy)
return satisfiesPolicy(policy, pwd)

else
return isNull(pwd)

fi

Listing 1: Correctness Experiment (Abstract)

stores the union of sets as a size of 76 positions,
independently of the sets that compose it. We fill
the unnecessary positions with zeros.

The Jasmin implementation is available online®.
We also provide an example of a simple program
calling our Jasmin implementation written in C*.

3.4. Jasmin Implementation modelled in EasyCrypt
The Jasmin framework implements an embed-
ding of Jasmin programs in EasyCrypt, where x86
instructions over 64-bit words and the memory
model of Jasmin are encoded.

This feature enables automatic extraction of Jas-
min programs into an equivalent EasyCrypt model
of that same program. This is true provided that
the Jasmin program is safe [3]. Broadly speak-
ing, safety entails termination, array accesses are
in bounds, memory accesses are valid and arith-
metic operations are applied to valid arguments.

Given that our RNG is not guaranteed to termi-
nate, one cannot say that the implementation is
safe. So we cannot automatically derive that the
real Jasmin implementation and the one modelled
in EasyCrypt are equivalent. But we argue that, by
inspection, these two modules are equivalent.

The code of this EasyCrypt model can be found
online®.

4. Formal Proofs

4.1. Functional Correctness

We say that an RPG is functionally correct if, given
any policy, every password it generates satisfies
that policy. This property guarantees that users
will always get an output according to their expec-
tations.

We follow the standard approach of expressing
correctness of a scheme by using a probabilistic
experiment that checks if the specification is ful-
filled.

Figure 1 shows the Correctness experiment,

Shttps://github.com/passcert-project/
random-password-generator/blob/main/Jasmin/
passCertRPG. jazz

4https://github.com/passcert-project/
random-password-generator/blob/main/C/RPG_app.c

Shttps://github.com/passcert-project/
random-password-generator/blob/main/EC/passCertRPG_
jazz.ec

which is parameterized by an RPG implementation
that, for any policy, outputs true if the RPG behaves
according to the specification.

Specifically, if the experiment receives as input
a policy that is satisfiable, it checks if the param-
eterized RPG generates a password that satisfies
that policy. Otherwise, it checks if the RPG outputs
null.

We want to prove that this experiment param-
eterized by our reference implementation outputs
true with probability 1 (for any input policy).

4.1.1 EasyCrypt Definition

In EasyCrypt, the correctness experiment is mod-
elled as the module Correctness®, shown in Fig-
ure 2.

module Correctness(RPG : RPG_T) =
proc main(policy:policy) : bool
var pw : password option;
var satisfied : bool;

{
={

pw <@ RPG.generate_password(policy) ;
if (satisfiablePolicy policy) {
satisfied <- is_some pw /\
satisfiesPolicy policy (oget pw);
}
else {
satisfied <- is_none pw;

}

return satisfied;
}
}.
Listing 2: Correctness Experiment (EasyCrypt)

The correctness property can be expressed in
EasyCrypt as follows:

lemma rpg_correctness :

Pr[Correctness(RPGRef) .main : true ==> res] = 1Yr.

It states that, running the correctness experi-
ment (main method) of the Correctness module
instantiated with our RPG reference implementa-
tion, produces the output true with probability 1 (for
any input policy).

4.1.2 EasyCrypt Proof

The proof of this lemma amounts essentially to
proving termination of the main method, which also
entails termination of the generation procedure,
while also proving, using Hoare logic, that this
method always returns true, independently on the
policy given as input. These two properties can
be expressed by the two following lemmas, respec-
tively:

https://github.com/passcert-project/
random-password-generator/blob/main/EC/RPGTh.eca

lemma c_lossless :
islossless Correctness(RPGRef) .main.

lemma c_correct p :

hoare [Correctness(RPGRef).main : policy = p
==> res].
The assertion islossless states that

Correctness (RPGRef) .main always terminates,
for any input. This can be easily proved if we prove
termination of our RPG, since the main method is
composed by an if-else statement, regular assign-
ments, and a call to RPGRef . generate_password.
Proving that the RPG terminates amounts to
proving that each of the while loops of the algo-
rithm will eventually finish. We proved it for all of
the whiles in the algorithm, except for the one from
the RNG. In fact, we are not able to prove that this
loop terminates, but, as shown in Section 2.1.5, the
number of iterations we need to perform before ex-
iting the loop is, most likely, very small, and it will
eventually finish. So, we have the axiom

axiom rng_11 : islossless RPGRef.rng.

which states that the RNG terminates. So, we
are able to prove termination of the RPG, thus
proving termination of the Correctness module.

The second lemma is an Hoare triple, as pre-
sented in Section 2.2.1. To prove this Hoare triple,
we need to prove that the main method outputs a
password that satisfies the input policy, in case it is
satisfiable, and None if it is not satisfiable.

With these two lemmas proved, we can combine
them to prove our main lemma rpg_correctness,
which ensures that our RPG implementation is cor-
rect.

4.2. Security

The security of an RPG shall be assessed by mea-
suring how difficult it is, for an attacker, to success-
fully guess the generated password. Considering
that the attacker has no access to side-channels
and is only able to see the input and the output of
the generation process, the hardest way for the at-
tacker to guess the output is if all the passwords
that can possibly be generated by the input policy
have the same probability of being generated. This
means that, ideally, our RPG should produce a uni-
form distribution over its output.

So, we say that an RPG is secure if, given any
policy, the generated password has the same prob-
ability of being generated as any other possible
password that satisfies that policy. To prove this
property we can use the game-based approach for
cryptographic security proofs [18].

We create a module called /dealRPG which, in
case it receives as input a satisfiable policy, out-
puts a password sampled from the subset of pass-

words that satisfy the policy, according to a uniform
distribution over that subset.

If the policy is not satisfiable, it outputs null. This
module is shown in Figure 3. In order to consider
our implementation secure, we must show that any
program (e.g., attacker) that has oracle access to
the IdealRPG and our RPG can not distinguish
whether it is interacting with one or the other.

proc IdealRPG(policy)

if policy is satisfiable
password <+$ p C P
return password

else
return null

fi

Listing 3: Ideal RPG. p is the subset of the set of all possible
passwords P that satisfy the given policy.

To achieve this, we use probabilistic relational
Hoare Logic (pRHL) to show that both modules’
generate_password methods produce the same
result (they have the same distribution over their
output, given any input). We can avoid directly rea-
soning about the indistinguishability between these
two modules, since their implementations are sig-
nificantly different. By using the game-based ap-
proach, we implement intermediate modules that
are more closely related, thus breaking the proof
into smaller steps, easier to justify.

4.2.1 EasyCrypt Definition
In EasyCrypt we can write the lemma that we need
to prove to consider our RPG secure:

lemma rpg_security :
equiv [IdealRPG.generate_password ~
RPGRef .generate_password :
={policy} ==> ={res}].

This is a pRHL judgement which means that for
all memories &m1 and &m2 (sets of variables of
IdealRPG and RPGRef, respectively) if ={policy}
holds (the input policy, has the same value in
both memories), then the distribution on memo-
ries d&m1’ and d&mz2’, obtained by running the
respective methods from the initial memory, sat-
isfy ={res} (res, the output value, has the same
mass in both distributions). If we prove this lemma
for our RPG reference implementation, we prove
that these methods produce the same distributions
over their output, hence establishing security of the
RPG reference implementation.

4.2.2 Proof Sketch
To prove the security lemma stated above, we need
to establish that the induced distribution from the

execution of RPGRef.generate_password iS uni-
form among all passwords satisfying the policy. It
requires fairly detailed reasoning on the distribu-
tion level in EasyCrypt. The general structure of
the argument follows the structure of Algorithm 1:
(1) It starts by generating a password that satisfies
the length and the different set bounds defined in
the policy, placing them at specific positions; (2) It
randomly shuffles the password. The result follows
from arguing that the combination of characters af-
ter step (1) are sampled according to a uniform dis-
tribution, and that the final shuffle allows to reach,
with the same probability, any possible password
satisfying the policy.

4.3. Jasmin Implementation Verification
4.3.1 Equivalence between Jasmin and Reference
Implementation

To prove this equivalence, one needs to prove
the equivalence between the corresponding sub-
procedures of each module, so we can prove that
the main generate_password methods are equiv-
alent. Since in the reference implementation types
are modelled using integers, while in Jasmin every-
thing is modelled as 64-bit or 8-bit words, during
the proofs one must take into account some upper
and lower bounds on arithmetic operations on in-
tegers that are represented as bit words, to avoid
over and underflows.

In order to make the lemma more readable and
easy to reason about, we implement a module of
type RPG_T which is parameterized by our Jasmin
implementation that serves as a “bridge” between
the reference implementation world and the Jas-
min world, named ConcreteScheme. This module
just transforms policies specified in EasyCrypt and
writes them in memory and, after the RPG gen-
erates a password, extracts it from memory and
transforms it into the type password”.

So, we can easily write the lemma that states
that both modules are equivalent, using probabilis-
tic relational Hoare logic (pRHL):

lemma implementation_reference_equiv :
equiv [ConcreteScheme.generate_password ~
RPGRef.generate_password :
={policy} /\ policyFitsW64 policy{2}
==> ={res}]

It states that running the ConcreteScheme and
the reference implementation with the same input
policy, with the assumption that each field of the
policy fits in 64 bits, results in the same output in
both programs (the distribution on the possible val-
ues for res is the same).

"https://github.com/passcert-project/
random-password-generator/blob/main/EC/passCertRPG_
jazz_proof.ec

To prove this lemma, we need to prove that if the
the policy is satisfiable, the respective distributions
on the possible passwords that can be generated
are the same. On the other hand, if the policy is
unsatisfiable, one must prove that both programs
output None.

The second part of the proof is simple. The refer-
ence implementation always outputs None when it
receives an unsatisfiable policy (as shown in Sec-
tion 4.1.2), and the ConcreteScheme outputs None
if the Jasmin implementation outputs a negative
value. So, one needs to check if indeed the Jas-
min outputs a negative value whenever it receives
an unsatisfiable true, which is easy to verify.

The challenge arises when proving, for satisfi-
able policies, that the distribution of the Jasmin im-
plementation output mapped into a password is the
same as the reference implementation. To prove
this property, operands that express equality be-
tween the types from one module to the other were
naturally defined as such:

op EqWordChar word char = W8.to_uint word = char.
op EqWordInt word int = W64.to_uint word = int.
op EqWordIntSet (memSet:W8.t Array76.t)
(specSet:charSet) =
forall n, n \in range O (size specSet)
=> EqWordChar memSet.[n] (nth (-1) specSet n).

The first two operands express equality between
bit words and integers (to_uint converts words
to integers), and EqWordIntSet expresses equality
between word arrays from the Jasmin model and
character sets written in EasyCrypt.

Using these simple definitions, we write the lem-
mas that formalize the equivalence between the
corresponding sub-procedures of each module®.

After proving all these equivalences, it is easy
to prove that on satisfiable policies, both mod-
ules produce the same output. So, we can prove
the lemma that states equivalence between the
Jasmin RPG and the reference implementation,
implementation_reference_equiv.

4.3.2 Correctness and Security of the Jasmin Im-
plementation

To prove that our Jasmin implementation is func-
tionally correct and secure, we subject it to the cor-
rectness experiment and the security game.
Having the equivalence between the reference
implementation and the ConcreteScheme module
proved and having proved that the reference imple-
mentation satisfies these two properties, these two
lemmas are trivial to prove. The argument is that
we can replace the ConcreteScheme by the refer-
ence implementation, since they are interchange-

8https://github.com/passcert-project/
random-password-generator/blob/main/EC/passCertRPG_
jazz_proof.ec

able, and then we apply the lemmas where the
functional correctness and security of the refer-
ence implementation are proved.

5. Evaluation

5.1. Integration with Bitwarden

As proof-of-concept, we integrate our solution with
the CLI application®. It is written in TypeScript so,
in order to adapt it to run our code, we use NodeJS
child-process module to spawn a shell which exe-
cutes the command that runs our implementation.

5.2. Performance

We evaluate the performance of our implementa-
tion by comparing Bitwarden CLI running with its
original RPG to it running with out RPG. To do so,
we measure the time that it takes to perform the
generation of a password for both solutions for 4
different policies.

Results Figure 4 shows the average results.

[sitwarden

0200 Maasmin

0,150

0,100

Average (ms)

0,050

0,000

PIN 2class12 3class12 2class16

Policy

Listing 4: Comparison of Bitwarden CLI using its own RPG and
Bitwarden CLI using our RPG implemented in Jasmin.

The results show that the Bitwarden original
RPG is slightly more efficient compared to ours.
However, if we think in absolute values, the gener-
ation process of our implementation takes essen-
tially the same time, mostly because we are com-
paring times that are of a really small order of mag-
nitude. Also, one must take into account the over-
head of binding our Jasmin implementation with
the TypeScript of Bitwarden, which suggests that,
without this overhead, our implementation would
be even more similar to Bitwarden’s.

It is also possible to see that, the complexity of
the policies did not have much impact on the per-
formance, at least for these policies which do not
sample very big passwords, but are some of the
most commonly used.

Shttps://github.com/bitwarden/cli

6. Conclusions

We propose a reference implementation of an RPG
that, given a password composition policy, is as-
sured to generate passwords compliant with the
policy, and we formalize the property that the gen-
erator samples the set of passwords according to
a uniform distribution. In addition, we realized this
reference implementation with a concrete one writ-
ten in Jasmin that preserves the properties.

As for future work, the next natural step to be
done after this work, is to prove with EasyCrypt
the security property for the reference implemen-
tation, following the proposed structure on Sec-
tion 4.2.2. Another relevant property that could
be proved about our RPG is side-channel protec-
tion. The Jasmin framework provides a method
that supports these proofs (sometimes automati-
cally) which can also be explored.

During the development of this thesis, two arti-
cles were written [11, 10].

Acknowledgments. This work was partially
funded by the PassCert project, a CMU Portu-
gal Exploratory Project funded by Fundagéo para
a Ciéncia e Tecnologia (FCT), with reference
CMU/TIC/0006/2019.

References

[1]1 N. Alkaldi and K. Renaud. Why do people
adopt, or reject, smartphone password man-
agers? 2016.

[2] J. B. Almeida, M. Barbosa, G. Barthe,
A. Blot, B. Grégoire, V. Laporte, T. Oliveira,
H. Pacheco, B. Schmidt, and P.-Y. Strub. Jas-
min: High-assurance and high-speed cryp-
tography. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and
Communications Security, pages 1807-1823,

2017.

[3] J. B. Almeida, M. Barbosa, G. Barthe,
B. Grégoire, A. Koutsos, V. Laporte,
T. Oliveira, and P.-Y. Strub. The last mile:
High-assurance and high-speed crypto-
graphic implementations. In 2020 IEEE
Symposium on Security and Privacy (SP),

pages 965-982. IEEE, 2020.
[4]

S. Aurigemma, T. Mattson, and L. Leonard.
So much promise, so little use: What is stop-
ping home end-users from using password

manager applications? 2017.

[5] G. Barthe, F. Dupressoir, B. Grégoire,
C. Kunz, B. Schmidt, and P.-Y. Strub. Easy-
crypt: A tutorial. In Foundations of secu-
rity analysis and design vii, pages 146—166.

Springer, 2013.

[6] D. Berstein. Writing high-speed software.

[7] J. F Ferreira, S. Johnson, A. Mendes, and
P. J. Brooke. Certified password quality—a
case study using Coq and Linux pluggable au-
thentication modules. In International Confer-
ence on Integrated Formal Methods, pages
407-421. Springer, 2017.

[8] R. A. Fisher, F. Yates, et al. Statistical ta-
bles for biological, agricultural and medical re-
search, edited by ra fisher and f. yates. Edin-
burgh: Oliver and Boyd, 1963.

[9] D. Florencio and C. Herley. A large-scale
study of web password habits. In Proceedings
of the 16th international conference on World
Wide Web, pages 657-666, 2007.

[10] M. Girilo, J. Campos, J. F. Ferreira, J. B.
Almeida, and A. Mendes. Verified password
generation from password composition poli-
cies, 2021. Submitted for publication. Draft
available from authors.

[11] M. Girilo, J. F. Ferreira, and J. B. Almeida. To-
wards formal verification of password gener-
ation algorithms used in password managers.
arXiv preprint arXiv:2106.03626, 2021.

[12] T. Hunt. Password reuse, credential stuff-
ing and another billion records in have i been
pwned. troyhunt. com, 2017.

[13] T. Hunt. Passwords evolved: Authentication
guidance for the modern era. troyhunt. com,
2017.

[14] S. Johnson, J. F. Ferreira, A. Mendes, and
J. Cordry. Skeptic: Automatic, justified and
privacy-preserving password composition pol-
icy selection. In Proceedings of the 15th ACM
Asia Conference on Computer and Communi-
cations Security, pages 101-115, 2020.

[15] P-H. Kamp, P. Godefroid, M. Levin, D. Mol-
nar, P. McKenzie, R. Stapleton-Gray, B. Wood-
cock, and G. Neville-Neil. Linkedin password
leak: salt their hide. ACM Queue, 10(6):20,
2012.

[16] S. Pearman, S. A. Zhang, L. Bauer,
N. Christin, and L. F. Cranor. Why people
(don’t) use password managers effectively. In
SOUPS, pages 319-338, 2019.

[17] D. Pereira, J. F. Ferreira, and A. Mendes. Eval-
uating the accuracy of password strength me-
ters using off-the-shelf guessing attacks. In
2020 |IEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISS-
REW), pages 237-242. IEEE, 2020.

10

(18]

[19]

(20]

V. Shoup. Sequences of games: a tool for
taming complexity in security proofs. /ACR
Cryptol. ePrint Arch., 2004:332, 2004.

S. K. Sood, A. K. Sarje, and K. Singh. Crypt-
analysis of password authentication schemes:
Current status and key issues. In 2009
Proceeding of International Conference on
Methods and Models in Computer Science
(ICM2CS), pages 1-7. IEEE, 2009.

C. Zuo, Z. Lin, and Y. Zhang. Why does your
data leak? uncovering the data leakage in
cloud from mobile apps. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages
1296—-1310. IEEE, 2019.

