
Dense Template Retrieval for Customer Support

Tiago Mesquita

University of Lisbon, Instituto Superior Técnico and INESC-ID,
Av. Rovisco Pais 1049-001 Lisboa, Portugal,
tiago.mesquita.98@tecnico.ulisboa.pt

Abstract. Templated answers are used extensively in customer support
scenarios, providing an efficient way to cover a plethora of topics, with
an easily maintainable small collection of templates. Still, the number of
templates is often too high for an agent to search. Automatically sug-
gesting the correct template for a given question can improve the service
efficiency, reducing costs and leading to a better customer satisfaction.
In this work, we adapt the dense retrieval framework for the customer
support scenario, modifying the commonly used in-batch negatives tech-
nique to support unpaired sampling of queries and templates. We also
propose a novel loss that extends the typical query-centric similarity, ex-
ploiting other similarity relations in the training data. Experiments on
private and public datasets show that our approach achieves considerable
improvements in terms of performance and training speed.

1 Introduction

Customer support makes extensive use of templates for replies. Given a cus-
tomer’s query, an agent can pick a response from within a collection of predefined
templates, with answers to common questions. Having a collection of templates
saves time when replying to repetitive questions from customers. However, cus-
tomer support centers can have hundreds of templates. Finding the best template
for a question is not an easy task, particularly for unexperienced agents. Auto-
matically sorting and suggesting customer support templates [1,21,18,13] can
facilitate agent’s work, reducing reply times, accelerating the learning curve of
new agents, helping agents to focus on more added valued tasks, and overall
providing a better support at reduced costs.

The recent advances in large pre-trained language models [5,19], together
with their successful use in question-answering [8,12] and information retrieval
[20,24,23], motivates the use of dense retrieval for template selection. Dense re-
trieval can be used to rank instances from the template collection, facilitating the
selection of the correct template. Still, template ranking has specific character-
istics when compared with more common retrieval scenarios in the literature: i)
we have a strict many-to-one relation between queries and templates, in contrast
to other common retrieval tasks [11]; ii) the collection of templates is relatively
small and generally in the order of hundreds, although also dynamically updated
over time; iii) the length of the queries (emails from costumers) tends to be long.

2 Tiago Mesquita

Given real-time and computation constrains in the template suggestion prob-
lem, this work focuses on bi-encoder models [22], which at prediction time only
need to compute dense representations of queries and make a fast comparison
with pre-computed representations of template candidates. We discard cross-
encoder models that, despite often achieving higher retrieval performance[22] can
have problems processing long queries and/or documents and cannot take advan-
tage of pre-computed template representations. Despite that, our contributions
are model independent, being also applicable to cross-encoders. We specifically
make the following main research contributions:

• We compared classic and recent dense retrieval approaches in the task of
template retrieval in customer support;

• We created and released1 a corpus for template retrieval based on the Cus-
tomer Support on Twitter dataset that is available on Kaggle2, in order to
motivate further research and benchmarking on the topic;

• We proposed a new in-batch sampling strategy, that preserves the distribu-
tions of queries and templates to better select the information within batches,
while exploring all possible query-template pairs in a batch;

• We proposed a new loss function that exploits not only query-template simi-
larity relations, but also query-query and template-template relations, yield-
ing better representations for retrieval.

Detailed experiments, using both public and real-life private customer sup-
port datasets, show that both the in-batch sampling strategy and the expanded
loss lead to improvements, in terms of template suggestion and training speed.

2 Related Work

Template retrieval for customer support has seen limited research in recent
times. Most previous work has addressed the task as template classification
with simple machine learning approaches (e.g., support vector machines or näıve
Bayes) on top of extracted representations, either from bags-of-words [1,21] or
tailored pattern matching [18]. A combination of retrieval and generative ap-
proaches is explored in [13], but without taking advantage of Transformer-based
pre-trained language models. To the best of our knowledge, public literature on
the topic has not explored recent advances in dense retrieval.

Most recent dense retrieval methods follow a BERT-based dual-encoder archi-
tecture and use a similarity function (e.g., cosine similarity) to produce ranking
scores [22]. The simplicity of the similarity function is crucial, allowing efficient
similarity searches by leveraging recent developments in Approximate Nearest
Neighbour (ANN) retrieval, such as FAISS [7]. ANN enables search speeds com-
parable with simpler sparse retrieval methods (e.g., BM25 [17]), whilst retaining
better performance in most scenarios. Given the simplicity of the architecture,

1We will release the corpus after paper acceptance.
2https://www.kaggle.com/thoughtvector/customer-support-on-twitter

https://www.kaggle.com/thoughtvector/customer-support-on-twitter

Dense Template Retrieval for Customer Support 3

most research has focused on improving the training procedure, namely by care-
ful selection of the query-document pairs. For each query, the model should
maximize similarity with all related documents (i.e., positives), whilst minimiz-
ing it for all unrelated documents (i.e., negatives). Most approaches have focused
on the negative selection problem and usually fall under one of two categories:
(1) maximizing the quantity of negatives, trough efficient batching techniques or
(2) maximizing the quality of negatives, prioritizing their selection but generally
sacrificing training efficiency.

In the first category, methods aim to maximize the amount of negatives
available within the batches. The most efficient way to achieve this is by sharing
negatives between all queries in the batch, an approach known as in-batch neg-
atives [8]. More recent studies have proposed sharing negatives between GPUs,
allowing for massive batch sizes under parallel training [12].

Although the previous techniques maximize the number of negatives seen
during training, most of the instances are easily distinguishable, providing weak
contributions to the loss function (i.e., easy negatives). Studies under the second
category focus on the careful selection of negatives per query, looking for those
that are useful for learning (i.e., hard negatives). The earliest approaches lever-
aged other retrieval methods to pool hard negatives, namely BM25 [17] , picking
highly ranked although irrelevant documents [8,20]. Despite being effective at
picking static hard negatives, these approaches fail to adapt, as the model learns
to rank the instances accordingly. ANCE [20] addresses this by using the model
itself to pool hard negatives, dynamically adjusting the selection as the train-
ing progresses. In practice, dynamically generating and indexing embeddings
for large document collections is costly, requiring separate GPUs to periodically
maintain and refresh the index with prior checkpoints, whilst training in paral-
lel. LTRe [24] and later ADORE [23] further refined these ideas, by freezing the
weights of the document encoder and eliminating the need to refresh the index.

Although most approaches generally focus on a single category, some have
tried to leverage techniques from both. DPR [8] was one of the first studies
to explore this idea, combining randomly pooled in-batch negatives with BM25
hard-negatives per query. Recently, STAR [23] took the idea even further, by
using static hard negatives pooled from the pre-trained model, but sharing them
between all queries in the batch, similarly to in-batch negatives. Results showed
that the combination provides an effective tool for stabilizing the biases intro-
duced by the use of static negatives. Our technique also combines ideas from
both categories, adapting in-batch negatives to the specific scenario of template
retrieval, and performing hard negative sampling from all the in-batch negatives.

Most previous studies on dense retrieval have generally also considered loss
functions that enforce query-centric similarity relations, as these are explicitly
related to the retrieval task. However, as shown in PAIR [16], models may bene-
fit from exploring passage-centric similarity relations, potentially improving the
representations. In our template retrieval task, this technique has the poten-
tial to be even more effective. Since templates are purposely distinct, enforcing
the distinctiveness of their representations can perhaps improve result quality.

4 Tiago Mesquita

Furthermore, since queries are related to a single template, queries sharing a
template should have closer representations than queries related to different
templates. Enforcing these relations with labeled in-batch negatives is trivial, as
the labels provide the information needed to pair all related texts (i.e., queries
and templates with the same label) and unrelated texts (i.e., different labels).

3 Simple Dense Template Retrieval

Following the customer support application introduced in Section 1, we for-
mally define the problem of template retrieval as follows: given a query q, the
model must retrieve the single template t, from a relatively small collection of
Nt templates, that better answers the query.

Architecture: Let us consider the commonly used dual-encoder architecture,
as presented in DPR [8], in which 2 independent encoders EQ(·) and ET (·)
encode a query q and a template t into d-dimensional vectors, with different
representation spaces. For ranking the templates, the cosine similarity between
a query q and a template t is computed from the respective representations:

s(q, t) = cosine-sim (EQ(q), ET (t)) . (1)

Loss Function: The loss function for training the encoders should maximize
the similarity between positive query-template pairs s(q, t+) and minimize the
similarity between negative query-template pairs s(q, t−). A commonly used loss
term for this retrieval task is the negative log likelihood comparing the positive
template t+ against a set of negative templates T −:

Lq(q, t+, T −) = − log

(
es(q,t

+)

es(q,t+) +
∑

t−∈T − es(q,t
−)

)
. (2)

The final loss is then obtained by averaging the per-query loss from Equation
2 over all queries (and template lists) considered in a batch from the dataset.

In-batch Negatives: Selecting negative examples for training dense retrievers
is still an open problem, as seen in Section 2. Given the dynamic nature of
customer support, we have chosen to focus on methods that maximize training
efficiency. simple in-batch negatives, as described in DPR [8], makes optimal
use of the batch space, by simply sampling query-passage positive pairs and
considering, for each query, all other passages within the batch as negatives.
However, hidden in its simplicity lie 2 important assumptions: (1) the in-batch
negatives are in fact negative passages; (2) the shared negatives provide a good
estimation of instances within the full dataset. The weight of both assumptions
is small for large corpora, where each document has a limited amount of related
queries and vice-versa, making false in-batch negatives unlikely. Still, for smaller

Dense Template Retrieval for Customer Support 5

corpora such as those from customer support with templates, the assumptions
can be problematic, requiring careful selection of the pairs.

4 Improved Dense Template Retrieval

To improve on the method outlined in the previous section, we propose the
two orthogonal innovative contributions that are described next. The first relates
to the in-batch sampling strategy, whilst the second refers to an expanded loss
function that exploits different similarity relations for queries and templates.

4.1 Batch Generation

Template retrieval relates queries and templates in a strictly many-to-one
correspondence, at the same time involving a small template collection. More-
over, since templates see different use, the number of queries per template varies
considerably. These characteristics actively challenge the assumptions of vanilla
in-batch negatives. In order to guarantee that the in-batch negatives are in fact
negative, the sampled pairs must have different templates. This condition influ-
ences the distribution of training examples, penalizing frequently used templates
and resulting in a distribution of negatives within the batch that follows the dis-
tribution of the templates, and not the real one.

Labeled In-batch Negatives: Given that each query has a single related
template, labelling each text (i.e., query or template) in a training batch with
the corresponding template identifier provides sufficient information to create
all valid positive and negative pairs. More specifically, let ti correspond to the
i-th template and qi,j to the j-th query, from the sub-collection of queries that
is answered by ti. Given a batch of Nq queries and Nt templates, with each
text labeled with the corresponding template index i, we consider for each query
qi,j the template ti as positive, and all other templates tn within the batch,
with n 6= i, as negatives. This technique, wich we refer to as labeled in-batch
negatives, not only prevents in-batch false negatives, but also eliminates the
paired sampling restrictions (i.e., the training examples do not have to be explicit
query-template pairs) imposed by vanilla in-batch negatives.

Semi-independent Query-Template Sampling: As a general rule, train-
ing instances should follow 2 principles: (1) uniform sampling of positive pairs,
since these offer explicitly labeled relevance information that should be uniformly
explored; (2) sampling negatives according to a distribution that is consistent
with the corpus. Vanilla in-batch negatives fails to follow both principles, as the
distribution of negatives within the batch follows the distribution of templates
available in the positive pairs, and not the real one. With labeled in-batch neg-
atives, on the other hand, positives and negatives are not directly tied, enabling
the consideration of both principles. To respect them, whilst maximizing the

6 Tiago Mesquita

utility of the instances within the batch, we devised a semi-independent query-
template sampling strategy, as follows: For a batch size of b, we start by sampling
b templates uniformly, in accordance with the second principle. From the set T
of sampled templates, we compose the set QT of all possible queries that are
answered by templates included in T . Finally, we produce the set Q, by ran-
domly sampling b queries from QT and labeling them accordingly. This ensures
that Q roughly follows the distribution of training examples, respecting the first
principle.

4.2 Expanded Loss Function

We also propose a novel loss function that is expanded at the batch level,
considering interactions not only between query-template pairs, but also query-
query, template-template and template-query. For that, let us first notice that
each text in a batch (which can be either from a query or a template) is given
a label corresponding to the correct template. The loss function for each batch
can be defined with basis on the following generic loss term that takes two sets
(A and B) of labeled texts (that can be queries or templates) from the batch:

L(A,B) = − 1

|A|
∑
i∈I

∑
ai∈Ai

1

|Bi|
∑
bi∈Bi

log

 es(ai, bi)

es(ai, bi) +
∑
j 6=i

∑
bj∈Bj

es(ai, bj)

 , (3)

where I is the set of all labels in the batch while Ai is the set of texts in A that
have label i (i.e., those that correspond to template i) and Bi is the set of texts
in B that have label i.

Combining Different Loss Terms: The final loss of a batch is given by a
weighted sum of four terms:

Lbatch = αL(Q, T) + β L(Q,Q) + γ L(T , T) + θL(T ,Q), (4)

where α, β, γ and θ are adjustable hyper-parameters, and where the different
loss terms are as follows:

1. L(Q, T); A = Q is the set of all queries in a batch and B = T is the set
of all templates. This term corresponds to averaging the loss of each query
q ∈ Q, using the negative log likelihood of the positive template (Equation
2) combined with each possible negative template in the batch;

2. L(T , T); A = T and B = T both correspond to the set of all templates in
the batch. This term enforces the dissimilarity between templates;

3. L(Q,Q); A = Q and B = Q both correspond to the set of all queries in the
batch. This term enforces the dissimilarity between query representations
from different templates, and promotes the similarity of representations for
queries from the same template;

Dense Template Retrieval for Customer Support 7

4. L(T ,Q); A = T is the set of all templates in a batch and B = Q is the set
of all queries in the batch. This term is the transpose of the first one, having
a similar effect but acting on each template instead of each query;

In-batch Top-k Negatives: Section 2 discussed recent methods that use the
model’s own representations to guide the selection of hard-negatives [20,24,23].
Although potentially effective, these techniques are computationally more de-
manding than the ones we propose, missing our efficiency goals. Inspired by
these approaches, we consider a cheaper alternative of in-batch top-k negatives,
that instead of retrieving the top-k negatives over the entire corpus, retrieves
them from within the batch. By reusing the representations within a batch, this
approach is much cheaper while also guaranteeing that the representations are
synchronous. Unlike ANCE [20] and the other methods, the value of selecting
the in-batch top-k negatives is not on the selected hard negatives, since they are
already present in the batch, but in discarding all others. This delays over-fitting
on simpler negatives, allowing the model to learn the harder ones.

5 Experiments

This section presents the experimental validation of our contributions in two
datasets of costumer support interactions.

5.1 Datasets and Metrics

The experiments were mainly conducted on a private dataset (CS-Private)
consisting of real customer support interactions made over email, where a human
agent handpicked templates for answering customer requests. Built from real
interactions, this dataset is the most representative of the task at hand, although
it cannot be made available due to company/client restrictions.

In the interest of reproducibility and to further stimulate research on the
topic, we also crafted a dataset with public content3 that corresponds to cus-
tomer support interactions and approximates the task at hand. To create this
public dataset (CS-Twitter), we built on previous work [6], in which the authors
handcrafted a customer support dataset for chatbots, from the public Customer
Support on Twitter data that is available on Kaggle4. We followed the same
preprocessing, isolating the tweets related to Apple support and filtering out the
noisy ones. We nonetheless processed the data further, to attend the needs of our
problem. Given the apparent use of templated responses, we started by filtering
out all tweets beyond the first interaction, as these were context specific and
less likely to include templated answers. For the remaining tweets, we clustered
similar responses, hopefully sharing a template, and assumed the clusters to be
the golden template identifiers for the tweets in the clusters.

3The dataset will be made available after paper acceptance.
4https://www.kaggle.com/thoughtvector/customer-support-on-twitter

https://www.kaggle.com/thoughtvector/customer-support-on-twitter

8 Tiago Mesquita

Dataset
#query-response pairs P80% token-length

train val test #templates queries templates

CS-Twitter 7969 1425 2884 480 113 396
CS-Private 17858 3127 3918 415 34 35

Table 1: Statistics for CS-Twitter and CS-Private datasets. Token-length indi-
cates the number of tokens of texts, in terms of DistilmBERTbase tokens.

After analysing various text distances, we decided to capture the similari-
ties between response tweets leveraging a pre-trained model from the Sentence-
Transformers library [15] to produce sentence embeddings. In order to aggre-
gate the similar sentences, we used HDBSCAN [2] to produce clusters over the
response embeddings. Finally, we removed all clusters containing less than 5
elements and selected, for each cluster, the response that is closest to the cen-
troid, as the template. From inspection of the produced data, HDBSCAN could
provide better clusters than alternative methods, such as DBSCAN or k-means.

We split both datasets into 3 partitions, namely train, val, and test. The test
split is composed of the most recent customer interactions , simulating the real
scenario, whilst the train and val splits are composed of the remaining examples
on a 85/15 stratified split (see Table 1 for a characterization of the datasets).

Evaluation Metrics: We adopted the recall at k (R@k) and the Mean Recip-
rocal Rank (MRR) metrics to evaluate the rankings. Given that for each query
a single template is correct, MRR calculates the averaged reciprocal rank of the
correct template, while R@k measures the percentage of queries in which the
top-k ranked templates contain the correct one.

5.2 Experimental Setup

Baselines: As a sparse retrieval baseline we consider a traditional BM25 [10]
approach. For a dense retrieval baseline, we tested all multilingual models in
Sentence-Transformers [14], in a 0-shot manner, and report results for the best:
distiluse-base-multilingual-cased-v1. Finally, as an alternative to retrieval,
and given the small size of the template space, we considered a simple multi-class
classifier baseline, where each class corresponds to a template and we use the
predicted probabilities as the ranking scores.

Pre-trained Language Models: Although our datasets were mostly in en-
glish, we only considered multilingual models in accordance with the real world
scenario where we envision the models will be applied. Both encoders, on the
trained dense retrievers, were initialized with the parameters of the distiluse-

base-multilingual-cased-v1 model from the Sentence-Transformers libraary
[14], as this was the best model in 0-shot retrieval. For the classifier baseline, we
used DistilmBERTbase model.

Dense Template Retrieval for Customer Support 9

Methods
CS-Private CS-Twitter

MRR@10 R@3 R@10 Epochs MRR@10 R@3 R@10 Epochs

Classifier 41.2 46.9 65.4 17 5.6 7.3 12.9 35

BM25 8.5 10.1 19.0 - 2.6 3.2 6.7 -
SBERT 0-shot 10.2 12.0 25.3 - 3.2 4.0 8.6 -

Random negatives 40.2 45.9 65.5 16 7.6 8.9 18.2 16
In-batch negt 38.2 44.8 63.8 24 6.6 7.7 14.7 44
In-batch negq 32.9 37.7 51.1 26 6.9 7.8 15.4 48
Labeled in-batch negq 39.2 45.6 63.7 4 7.2 8.4 16.7 6
Labeled in-batch negt,q 41.8 47.0 67.5 6 7.8 9.6 19.1 6

Proposed approach 42.7 48.4 68.3 3 8.6 10.6 18.9 8

Table 2: Experimental results on CS-Twitter and CS-Private.

Hyper-parameters: The batch-size (B) used for training was 32 for CS-Private,
and 192 for CS-Twitter, in all experiments with in-batch negatives. For exper-
iments with random negatives, we used B=8 in CS-Private and B=64, for CS-
Twitter, sampling N = 4 negatives in both cases. We used larger batch-sizes for
CS-twitter because the texts are much smaller then the emails in CS-Private. We
also set the maximum number of training epochs to 30, for CS-Private, and 50
for CS-Twitter. Finally, we used linear learning-rate scheduling with 500 warmup
steps, and the ADAM optimizer [9] with a learning-rate of 3e-5.

5.3 Experimental Results

Besides the baselines and proposed approach, we also considered 5 other
settings corresponding to the use of the vanilla loss (L(Q, T)), but with different
mechanisms to construct the negative instances:

• Random negatives: randomly samplesN negative templates for each query-
template pair;

• In-batch negt: samples B templates, uniformly and without repetition,
along with a positive query for each template;

• In-batch negq: samples B templates, weighed by frequency of positive
queries and without repetition, and a positive query for each template;

• Labeled in-batch negq: samples B queries, uniformly and without repeti-
tion, along with each positive template. If this produces repeated templates,
we swap them with uniformly sampled templates not present in the batch;

• Labeled in-batch negt,q: corresponds to the proposed sampling technique,
as described in Section 4;

Table 2 presents the obtained results, from which we can infer the following
main conclusions:

10 Tiago Mesquita

1. The proposed sampling technique not only outperforms all the alternative
methods in both datasets, but it does so with considerably less training.
As expected, vanilla in-batch negatives is sub-optimal for template retrieval.
The labeled in-batch negatives were key in overcoming the sampling limita-
tions, and the proposed technique makes good use of its capabilities.

2. The proposed loss, that also considers template-template and query-query
similarity relations, yields a significant performance boost. This result sug-
gests that exploring semantic relations beyond the ranking task is beneficial,
likely being a result of learning more robust representations with better gen-
eralization capabilities.

3. The overall poor performance on CS-Twitter exposes potential problems
with the dataset, probably because it was created semi-automatically with
reduced human supervision. Despite this, most results seem to be in agree-
ment with those from CS-Private, enforcing the validity of the conclusions.
In fact, the only noticeable discrepancy occurs in the experiment involving
the in-batch negq strategy, with CS-Twitter exhibiting better relative per-
formance. The discrepancy can be explained by the large batch-size (192),
corresponding to almost half of the total number of templates. Since each
batch will include a large number of sampled templates, the model is able
to better explore the full corpus, independently of the sampling strategy.

4. The poor performance of BM25 exposes the difficulty of the template re-
trieval task. Since each template covers a range of queries, the text is gen-
erally unspecific, resulting in reduced term overlap between templates and
queries. Trained dense retrievers, or the classification model, on the other
hand, were able to achieve good performance, showing that semantic rela-
tions are effectively superior to simple term matching.

5. The classification baseline is in fact quite strong, outperforming several of the
retrieval methods. This can be attributed to the small number of templates,
although it should be emphasised that template collections can be highly
dynamic in real settings, motivating the use of retrieval methods that can
adapt to the collection without model re-training.

Analysis on the Sampling Techniques: The experiments in Table 2 already
compare the different sampling techniques. To provide better insights over the
practical differences of each method, we plot the distributions of templates and
queries, throughout training, for each technique. To collect the data points, we
record the template identifiers of the sampled queries and templates, at each
step, for a total of 10 epochs in CS-Private. The result of this study is presented
in Figure 1, which confirms the intuitions behind the design of the proposed
sampling technique. As expected, vanilla in-batch negatives mirrors the distri-
butions of queries and templates, as they are sampled in pairs. This results
in techniques that are only capable of optimizing the distribution of templates
(i.e., in-batch negt) or queries (in-batch negq), but not both, resulting in
sub-optimal performance. Labeled in-batch negatives are effectively able to de-
couple both distributions, being key in providing good estimations. Labeled

Dense Template Retrieval for Customer Support 11

0 100 200 300 400
Queries according to Identifiers

10 4

10 3

10 2
Pr

ob
ab

ilit
y

0 100 200 300 400
Templates according to Identifiers

In-batch negq

In-batch negt

Labeled in-batch negq

Labeled in-batch negt, q

Random neg
Real

Fig. 1: Comparison between the real and observed distributions obtained with
different sampling techniques, during training, for queries (LEFT) and templates
(RIGHT). The template identifiers are ordered by the real distribution and we
plot the mean over bins of 10 templates, to reduce the number of data points
and generate smoother lines that are easier to interpret.

in-batch negq provides a good estimation over the distribution of queries, al-
though, the observed distribution of templates is slightly biased towards the most
frequent. This results from the query-guided sampling technique, which explains
the slightly worse performance. Labeled in-batch negt,q, on the other hand,
is able to provide a uniform distribution of templates, whilst maintaining a dis-
tribution of queries very close to the real one, providing by far, the best balance
and accompanying best performance. Random negatives, despite selecting
templates on a per-query basis, is still slightly biased towards the most frequent
templates, a result of the positive examples still following the query distribution.
This, coupled with the reduced number of negatives, are likely the main factors
for the lower performance. Overall, the results seem to imply a strong correlation
between the quality of the sampling techniques, as an estimator of the involved
distributions, and the observed retrieval performance.

Analysis on the Loss Terms: The proposed loss function combines different
negative log-likelihoods, each enforcing a different similarity relation. In order
to assess the contribution of each component, along with their interaction, we
tested 5 different combinations:

• L(Q, T): corresponds to the control experiment and simply considers the
common negative log likelihood over the positive template;

• L(Q, T) + L(T , T): considers equal contribution of and template-template
and query-template relations,

• L(Q, T)+L(Q,Q): considers equal contribution of query-template and query-
query relations;

• L(Q, T)+0.5(L(Q,Q)+L(T , T): combines the query-template relations with
equally contributing template-template and query-query relations;

• L(Q, T) + L(Q,Q) + L(T , T) + L(T ,Q): similar to the previous loss, but
additionally considering template-query relation.

12 Tiago Mesquita

Loss
in-batch CS-Private CS-Twitter

top-k neg MRR@10 R@3 R@10 MRR@10 R@3 R@10

L(Q,T)
7 41.8 47.0 67.5 7.8 9.6 19.1
3 41.9 48.3 67.9 8.1 9.6 18.4

L(Q,T)+L(T ,T)
7 38.7 45.3 65.4 7.2 8.7 18.0
3 39.7 45.9 65.6 7.6 8.8 18.0

L(Q,T)+L(Q,Q)
7 41.5 46.7 67.8 8.0 9.6 17.8
3 41.6 48.4 67.1 7.7 9.2 18.6

L(Q,T)+0.5(L(Q,Q)+L(T ,T))
7 41.8 47.0 67.7 8.6 10.6 18.9
3 42.7 48.4 68.3 8.3 10.3 18.3

L(Q,T)+L(Q,Q)+L(T ,T)+L(T ,Q)
7 41.3 47.0 65.9 8.4 10.2 19.0
3 41.4 47.7 67.4 7.5 8.7 16.8

Table 3: Ablation study on the components of the loss and in-batch top-k sam-
pling, on CS-Twitter and CS-Private.

For each of the considered losses, we also test the impact of using in-batch
top-k negatives. We selected values for k experimentally, after testing different
powers of 2, resulting in k = 4 for CS-Private and k = 24 for CS-Twitter. The
results of these experiments are presented in Table 3.

Just as reported in PAIR [16], the loss that combines query-template and
template-template relations under-performs, suggesting some misalignment with
the retrieval task. Similarly, combining query-template and query-query relations
also appears ineffective. The combination of both, however, produces a consider-
able gains, suggesting complementarity. Moreover, in CS-Private, in-batch top-k
sampling improved performance consistently, regardless of the considered loss.
The same is however not true in the case of CS-Twitter. We believe this dis-
crepancy relates to potential problems in the dataset. Specifically, during the
construction of the dataset, the cases where the clustering algorithm failed to
group responses sharing an underlying template produce incorrect hard negatives
that are harmful for training, often being picked up in the top-k lists.

6 Conclusions

This paper discusses challenges associated with retrieving templates for an-
swering customer support questions, proposing a dense retrieval framework to
address the task. The proposed framework features innovative contributions in
terms of (a) extending in-batch negatives to support unpaired sampling of queries
and templates, and (b) a novel loss function that considers more similarity re-
lations from the training data within each batch. Experiments on two different
datasets of customer support interactions attest to improvements brought for-
ward by the proposed ideas. For future work, we plan to adapt and test the
proposed techniques in other tasks that involve unbalanced corpora and large
texts, such as general FAQ retrieval or question answering [3,4].

Dense Template Retrieval for Customer Support 13

References

1. Bonatti, R., De Paula, A.G., Lamarca, V.S., Cozman, F.G.: Effect of part-of-speech
and lemmatization filtering in email classification for automatic reply. In: Work-
shops at the AAAI Conference on Artificial Intelligence (2016)

2. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on
hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu,
G. (eds.) Advances in Knowledge Discovery and Data Mining (2013)

3. Clark, J.H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V.,
Palomaki, J.: TyDi QA: A benchmark for information-seeking question answering
in typologically diverse languages. Transactions of the Association for Computa-
tional Linguistics 8 (2020)

4. De Bruyn, M., Lotfi, E., Buhmann, J., Daelemans, W.: MFAQ: A multilingual
FAQ dataset (2021)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North (2019)

6. Hardalov, M., Koychev, I., Nakov, P.: Towards automated customer support. In:
International Conference on Artificial Intelligence: Methodology, Systems, and Ap-
plications. Springer (2018)

7. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. IEEE
Transactions on Big Data (2019)

8. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., tau Yih,
W.: Dense passage retrieval for open-domain question answering. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (2020)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2015)

10. Lin, J., Ma, X., Lin, S.C., Yang, J.H., Pradeep, R., Nogueira, R.: Pyserini: A
python toolkit for reproducible information retrieval research with sparse and dense
representations. In: Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (2021)

11. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng,
L.: MS MARCO: A human generated machine reading comprehension dataset. In:
CoCo@ NIPS (2016)

12. Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, W.X., Dong, D., Wu, H., Wang,
H.: RocketQA: An optimized training approach to dense passage retrieval for open-
domain question answering. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (2021)

13. Rei, R., Coheur, L., Graça, J.: Towards a Data-Driven Automation of Customer
Support. Master’s thesis, Instituto Superior Técnico of the University of Lisbon
(2019)

14. Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual
using knowledge distillation. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (2020)

15. Reimers, N., Gurevych, I., Reimers, N., Gurevych, I., Thakur, N., Reimers, N.,
Daxenberger, J., Gurevych, I., Reimers, N., Gurevych, I., et al.: Sentence-bert:
Sentence embeddings using siamese bert-networks. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics (2019)

14 Tiago Mesquita

16. Ren, R., Lv, S., Qu, Y., Liu, J., Zhao, W.X., She, Q., Wu, H., Wang, H., Wen,
J.R.: PAIR: Leveraging passage-centric similarity relation for improving dense pas-
sage retrieval. In: Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021 (2021)

17. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: Bm25 and
beyond. Found. Trends Inf. Retr. 3(4) (2009)

18. Sneiders, E., Sjöbergh, J., Alfalahi, A.: Email answering by matching question and
context-specific text patterns: Performance and error analysis. In: New advances
in information systems and technologies. Springer (2016)

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems (2017)

20. Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P.N., Ahmed, J., Over-
wijk, A.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In: International Conference on Learning Representations (2021)

21. Yang, W., Kwok, L.: Improving the automatic email responding system for com-
puter manufacturers via machine learning. In: 2012 International Conference on
Information Management, Innovation Management and Industrial Engineering.
vol. 3. IEEE (2012)

22. Yates, A., Nogueira, R., Lin, J.: Pretrained transformers for text ranking: Bert and
beyond. In: Proceedings of the 14th ACM International Conference on Web Search
and Data Mining (2021)

23. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing Dense Retrieval
Model Training with Hard Negatives (2021)

24. Zhan, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: Learning to retrieve: How to train
a dense retrieval model effectively and efficiently. arXiv preprint arXiv:2010.10469
(2020)

	Dense Template Retrieval for Customer Support

