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ABSTRACT
Transport demand and operational concerns need to be aligned in
large urban centers. As such, this dissertation aims to contribute to
a more sustainable mobility solution by proposing and empirically
testing methods to assess the resilience of a multimodal transport sys-
tem. Resilience is seen in both static and dynamic settings, looking
at aspects in the network topology and user’s flow and demand. Our
hypothesis is that the appropriate multi-layered and traffic-sensitive
modelling of this network can promote the integrated analysis of
different transport modes and support improved resilience analysis.
To this end, we propose three major contributions, a robustness as-
sessment model along with the analysis of dynamics and the demand
and supply changes as a means to characterize resilience. Within this
multilayer network, citizens’ mobility patterns can be understood
and represented. In particular we resort to the the use of agglom-
erative hierarchical clustering and weighted digraphs to this end.
The results of this research allow decision-makers to understand
the vulnerabilities and ongoing changes to the multimodal usage
patterns within the network. Moreover, we highlighted the changes
in passenger traffic demand during Covid-19 pandemic.

1 INTRODUCTION
Numerous studies attempt to optimize transportation systems plan-
ning and usage in urban scenarios [10, 40]. Among the studied
solutions, the importance of a multimodal transportation system
arises due to high demand of some traffic corridors. As the demand
for transport services rises, so does the possibility of safety, effi-
ciency and comfort concerns that affect users’ daily mobility. This
raises the question of how resilient are these transportation systems.
This characteristic is applied both at a static - topological level - and
at a dynamic level - demand response.

For this research, the city of Lisbon is used as an example to
improve the integration of the current multimodal transport network.
This analysis is fundamental in the context of the Lisbon Metropoli-
tan Area (LMA), where the average occupancy rate for individual
private transport (cars) is 1.60 passengers per vehicle, and the daily
traffic inflow in the county of Lisbon is also the cumulative result
of commuting traffic inflows between Lisbon and the eighteen mu-
nicipalities that integrate the Lisbon Metropolitan Area (LMA) [30].
Several road traffic corridors are flooded daily with single occupancy
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vehicles that could possibly use other public transport alternative.
Despite the stable establishments and the integration of the operators’
systems with a single card, challenges to the integrated operation
and multimodal planning of the public transport network still persist
within LMA. The current study aims to contribute to the literature
with a more comprehensive review of how to objectively model
multimodal transportation systems and quantitatively assess their
resilience. These concepts are applied to the Lisbon multimodal
transport network in the context of the ILU project. More informa-
tion about this project can be found at web.ist.utl.pt/rmch/ilu/.

The need for an objective and transparent coordination between
different transport modes as a means to reduce congestion and fail-
ures in different streams has become apparent. To further understand
the usage of multimodal transport, the inclusion of resilience assess-
ment model offers a crucial perspective to the improvement of our
public services. This starts by understanding how to quantitatively
assess robustness [59]. However, there is a need to go beyond a
monomodal rubostness assessment and focus on a method to assess
the resilience of a transportation network with different modalities.
In this context, the natural subsequent research question is: How to
measure the resilience of a multimodal transport network covering
several transport modes?

Moreover, there is also a lack of understanding of the changes
in flow patterns of travellers within complex multimodal public
transportation systems [45]. This statement is highly relevant since
some measures to contain the pandemic have heavily impacted the
transportation sector. In this sense, how can we assess resilience to
continuously changing demand patterns?

This research aims to propose a method to assess the resilience
of a multimodal transportation network. After comprehensively as-
sessing topological resilience, the research aims at moving to a more
dynamic view of traffic vulnerabilities. To this end, we propose the
usage of pattern mining techniques to understand the flow of the
travellers within a complex multimodal transportation network. The
search for patterns aims to improve the management of different
transportation modalities, by providing non-trivial and usage pat-
terns to the knowledge base of the public transportation’s information
system. The main goals of this work are the following:

• Model the current multimodal transport system into a multi-
layer network;

• Propose an assessment of multimodality that is sensible to
topology and network robustness;

• Discover main differences in subway, bus, and tramways
usage data ( e.g. using passenger flow data before and after
the COVID-19 pandemic or other disruptive events);

• Discover actionable public transport usage patterns;
• Measure resilience of a multimodal transportation system.
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Figure 1: Methodological phases of the present research, based on Peffers et al [47] framework

Build Evaluate Theorize Justify

Construct Public Transportation
Lean Resilience

- - -

Model - - Resilience model;
User profile impact

Usage patterns;
Clusters of users.

Method Network resilience
measurement process:

LINES

Robustness testing
comparing multi
and singleplex

- -

Instatiation
Network modelling;
Usage patterns and
resilience analysis

Software;

Robustness tests;
Cluster solutions

- -

Table 1: Research outputs

2 METHODOLOGICAL APPROACH
To achieve the afore mentioned research objectives, a design science
research methodology [27, 32, 47] was conducted. Figure 1 illus-
trates the research methodological phases. Phase 1 comprehends
the problem identification and its scientific motivation. Phase 2 de-
fines the objectives of the solution (research objectives). Phase 3
presents the design an development of the artifact - muLtImodal
traNsportation rEsilience analySis (LINES) Process based on theory.
Phase 4 describes the demonstration of the validity and usage of the
artifacts to solve the problem. Phase 5 comprehends the various eval-
uation methods used to assess the demonstration phase and Phase 6
comprehends the communication of the process and the results.

To summarize the main contributions of the thesis, we present
the March and Smith research output framework [39]. The main
contributions of this research work ae on Table 1. These are mainly
composed by design science research outputs.

3 BACKGROUND
The concept of multimodality is central to this research. Claudia
Nobis [46] states that: “multimodality is defined as the use of at least
two modes of transportation — bicycle, car, or public transportation
— in 1 week”. However, multimodality is more “commonly defined
as the use of more than one transport mode to complete a trip”
[19]. This is the undertaken stance by this work. The concept of
crossmodality can also be used as a synonymous of multimodality.

According to Buehler and Hamre [9], multimodality is a sub-field
of intrapersonal variability of travel behaviour, that is characterised
by four dimensions: modal, purpose, spatial and temporal. Hence,
the spatiotemporal data driven nature of the approaches proposed
in this research, as these dimensions are markedly present. The
focus of the analysis performed is a contribution to more sustainable
mobility planning and management. Hence, defining it is important.
This has as its primary objective increasing urban accessibility and
delivering high-quality, long-term mobility and transportation to,

through, and within the city [15]. The more interconnected and
diversified sustainable mobility alternatives are, the more efficient
and resilient the transportation system as a whole will be [55].

The definition of transport resilience is defined by four main
dimensions: robustness, redundancy, resourcefulness and rapidity
and these have major effects on: fewer repercussions, reliability and
quicker recuperation [53]. Nevertheless, the way these dimensions
are understood and measured has been a fairly active research theme.
First, we may look at topological features such as centrality [13, 33]
and connectivity [59], these may be used to characterize robustness
and how the network can be affected based on simulations. On a
dynamic prospective, the throughput, travel time [22] and weighted
networks’ [41] that result from these measurements may also char-
acterize resilience in terms of functionality. Additionally, there is
a stance firstly introduced by Bruneau et al. [8], where resilience
is characterized by a curve based on the time to recover from a ini-
tial degradation event. This stance originated the resilience triangle
and the resilience index, later formalized by Reed et al. [48]. This
resilience index in the context of a networked infrastructure can be
calculated as

R
t2
t1 Qtdt
t2 � t1

, (1)

where Qt is the system functionality between t1 and t2. This index
offers a generalization of the concept of resilience. As we may
measure the resilience of any dimension regarding system qualities.
In the context of our work, we may instantiate Qt as the ratio between
the transportation demand and supply.

Hierarchical clustering has been used in the context of spatio-
temporal data in the transportation sector [4] and particularly to
analyse smart card data [56]. This method is characterized by both
distances and linkage. The Euclidean distance, also called L2 dis-
tance and the Manhattan distance also called L1 distance are not
prepared to measure temporal dependencies in time series another
family of metrics is introduced. Cross-correlation based distances
are very common in time-series analysis and describes the correla-
tion between two curves as one of them is shifted. The concept of
linkage is core to hierarchical clustering since it is what determines
the distance between sets of observations. To assess the generated
solutions we use the silhouette score and the Calinski Harabaz In-
dex. The first is a metric that measures both the cohesion within the
clusters, resulting in a bounded metric between 1 and -1. Where -1
would be complete dissimilarity and 1 the opposite. The value of
0 indicates that the that element is between two clusters. Further
on we use the average value for this metric of all elements in all
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clusters, as the reference silhouettes. The Calinski Harabaz Index
measures dispersion inter and between clusters and it is not bounded
like the silhouette. This metric measures the distance of every ele-
ment to the centroid of a cluster, the average of all dimensions of the
elements in a said cluster. The idea of this metric is to calculate the
variance within, and between clusters, these are covariance measure
that equating to a ratio, result is an index.

Since we have different connection types within the whole trans-
portation system, we cannot model such a network with a simple
monoplex network. Instead, we use multiplex networks. This kind of
representation allows us to analyse the intralayer, interlayer and the
global picture of connections. According to previous literature [18],
multilayer networks are the optimal solution to represent this kind
of metropolitan transportation systems as as each transport mode
should be represented in different layers, and they should also be
kept separate to guarantee efficient coverage.

The modelling of multimodal transportation systems recurring to
multilayer networks has been previously proposed to analyse urban
transportation systems [3]. Different authors have modelled and as-
sessed multimodal transport networks [3, 17, 20, 58]. Orozco et al.
[44] were able to extract data from different multimodal transport
networks from cities all across the globe. His study is relevant not
only because of the extraction task but because it studies the overlap
between layers within the networks extracted and city clustering
based on network similarity. Are urban multimodal networks in fact
more resilient if they exhibit high levels of overlap between different
modal layers? To understand the multimodality behaviours, previ-
ous studies [19] propose the use of indices from other disciplines
to quantitatively measure the usage within different transportation
modalities, e.g. bus, metro, train.

The concept of network resilience is inherently linked to the pas-
senger flow and demand patterns within a transport network [31].
The vulnerabilities of such a network are dependent of topolog-
ical features and on their disruption by severe events. The mere
fluctuation of volume of urban transport users may be viewed as
a disruptive event for the system. As such, it is important to dig
deeper into the types of usage that can be found as a means for
Design-for-Resilience. The understanding of user behaviour can be
considered to design systems that can withstand stronger specific
vulnerabilities [51]. Ivanov [31] noted that resilience capabilities
are frequently seen as passive plans, ready to use in a emergency
scenario, and there is an increasing demand for what is called the
lean resilience. This is an agile, data driven approach to actively
reconfigure a system as a means to manage resilience continually.
This is an emerging trend of research as of this year (2021), COVID
and post-COVID changes are felt abruptly in the world of trans-
portation [25]. This concept has been previously introduced in the
context of supply chain, however here we apply it for the first time
in the context of public transportation. Hence, based on previous
literature [25], we define public transportation lean resilience as a
measurement regarding resilience comprising passenger flow and
transportation supply with continuous adaptability.

Recent studies have approached the passenger demand change un-
derstanding by identifying different usage profiles applying different
clustering techniques. This is the case since individual travel patterns
provide higher detailed description than zonal commuting behaviour
analysis [49, 57], since we can detail what kinds of users are coming

from where. Additionally, Ma et al. [38] noted that understanding
these usage profiles may be a useful tool for targeting and fare reduc-
tion to improve public transportation adoption, and Lathia and Capra
[36] concluded that it was also a way to effectively measure if the
incentives had taken effect. To describe the commuting patterns most
studies have collected smart card data similar to the one available
in the city of Lisbon. Distinctively, Kung et al. explored the usage
patterns based on mobile phone location data [35]. Ma et al. [37]
clustered users according to the number of days, stops, routes and
time in transportation, clustering them in three categories: Absolute
commuters, Average commuters and Non-commuters, using a vari-
ant of K-means. However, this generalization led to a large number
of Non-commuters given the strong assumption that there are only
three commuter profiles. Nevertheless, the distribution of departure
times showed fair results, with a clear separation of profiles.

Other perspectives in transport user profiling include clustering
the usage times. The usage times can be formally described as the
array containing the number of validations each user has in a specific
timespan, this can be though as a daily usage profile. Naturally,
when we think about comparing the distance between two curves
Dynamic Time Wrapping (DTW) comes to mind. However, He et al.
[26] effectively demonstrated that a metric such as cross-correlation
distance (CCD) would yield drastically better results compared to
(DTW), based on an exclusivity and homogeneity criteria. A cross-
correlation distance is characterized by a maximum lag to which
two time-series can diverge from one another, effectively working
as a way to change the granularity of the time series. This means
that a similar task can be achieved by lowering the granularity of
the time intervals and defining distances between the curves using
a less computationally costly distance metric. Morency et al. [43]
used an hourly observation granularity and calculated clusters of
users based on k-means and the hamming distance. Agard [1] used
k-means clustering to group user weeks with similar patterns, with
four time-spans per day and five week days. Later on, Ghaemi et al.
[24] proposed the usage of hierarchical approach that allowed for a
better interpretability of the clusters via a dendogram. The author
argues that this is a considerable advantage since it does not only
help to understand the user behaviour, but also may be used with
other kinds of environmental data and that may help the decision
making in the planning process.

To answer the need for measuring resilience of networks, Klau
and Weiskircher [34] noted in their robustness and resilience review
that, a network should be considered resilient if it sustains a high
number of node failures before it turns disconnected. In that sense,
performing node percolation tests is a way to measure resilience.
Measuring this property in transport networks has been the focus
of several studies. Sulivan et al. [52] has evaluated system-wide
robustness by finding critical isolating links in road networks. They
reduced the link capacity and measured the travel time as a means
to measure robustness, this allowed for a dynamic perspective as
well. Later on Zhou et al. [60] have done a similar study, but induced
the vulnerabilities by blocking lanes instead, same as deleting an
edge, which ranked the links by how critical they were building upon
the much earlier work who did just that [50]. These studies were
very much related with the earlier study of reliability done by Chen
et al. [12], where they measured the reliability of networks given
the demand change based on models of route choice. This study
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extended capacity reliability to network equilibrium models as well
as taking into account the route-choice actions of drivers. Later on
Al-Deek and Eman [2] measured the reliability by network capacity
and travel time by changing demand and inducing link degradation
and non persistent congestion. These studies are in fact very impor-
tant because they showed how different demand levels affects the
capacity reliability in an analytical way. It is important to note that
reliability is fundamentally different to resilience. Reliability usually
measures the interruption of service. Resilience, on the other hand,
measures the ability to recover from such interruption in service
[14]. The importance of the study of system resilience increases due
to the limited ways where systems are either successful or failed in
a binary view of reliability system efficiency. Studies of network
resilience have also been done in the context of multimodal trans-
port. Montes-Orozco [42] recently showed that the same idea of
percolation could be used in multiplex networks. This notion opens
this test for the world of multimodal transport network resilience.
On the other hand, Cats et al. [11] defined a framework to assess ro-
bustness. This helped the description of robustness assessment as an
economic problem. This kind of assessment is highly relevant for the
present research as it provides a baseline to understand the impact
of disruption scenarios in specific links, quantifying the criticality.

With this research, we aim to objectively model and assess the
resilience of a multimodal transportation system. We have seen that
resilience is relevant since it is a stepping stone to minimize the im-
pact of vulnerabilities in the system caused by usage patterns or other
disturbances like natural disasters. By understanding the patterns of
users’ flows and topological characteristics that weaken the system,
we can plan better strategies to avoid and mitigate negative impacts.
In this sense, we will use a network representation capable of captur-
ing dynamic aspects such as passenger demand over time. The search
for patterns in such a network allows for assessing the resilience of
the network, both in responding to variations in demand and iden-
tifying vulnerabilities. This analysis is then followed by studying
emerging patterns, such as the dynamics of the system. Given the
abrupt mobility changes faced due to the SARS-CoV-2 outbreak, we
seek to understand the demand change in the present context. To
further understand how to adapt the current transportation systems
to yield better multimodality resilience, we will be combining the
outputs from the previous two phases to assess the resilience of the
system with the available topological and usage information. In this
section, we list the main goals and the specific activities to tackle
these challenges. Figure 2 presents a Work Breakdown Structure
diagram with the main activities of the LINES Process.

A way to assess the static resilience of a network is by remov-
ing sets of nodes and understanding network metrics’ behaviour.
The simplest one is injecting random failures in the network, i.e.,
randomly removing nodes from the network. We based our attack
strategies on the ones defined by Holme et al. [28]. We attack nodes
as well as edges to be able to compare efficiency in strategies. We
use attributes from the network, such as degree and centrality to
target attacks according to relevance. We used the six following at-
tack strategies for nodes and edges: Random removal, Initial Degree
removal (ID), Initial Betweenness removal (IB), Recalculate Degree
removal (RD), Recalculate Betweenness removal (RB) and Multi-
modal Hubs removal along with Multimodal Hubs removal,removing
entities that connect layers. To understand the impact of the removals

LINES: A Multimodal Transportation

Resilience Analysis Process

Network modeling and

robustness analysis

Understanding
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Figure 2: Interconnectivity of each activity of the proposal using a
WBS diagram, integrating the methodology for assessing the resilience
of a multimodal transportation system.

we use network metrics such as size of the largest strongly connected
component (SCC), average path length (APL) and number of isolated
components (IC’s).

The assessment of the cluster quality will be done according to
the metrics introduced: the silhouette score and the Calinski Harabaz
index. These metrics measure the cohesion and separation of the
clusters, helping us understand which kind of clustering method is
the most adequate. These are adequate measure since the cluster
cohesion and separation is what allows us to assess how different the
usage profiles are. These two metrics were previously used by Tang
et al. [54] to analyse the quality of clusters produced by different
algorithms regarding behavioural analysis of smart card data. To
further assess the quality of the clusters generated we look at size of
the cluster and distribution of users per cluster, we aim to generate
clusters that have sets of users that have similar behaviour and not
unbalanced macro clusters that include every user type and have few
homogene characteristics. Interpretability is also a criteria. It can
be further assessed by field experts, through the visual analysis the
results.

When the transport can recover from the demand overload of
users, the transportation is seen as lean resilient and thus we will
measure lean resilience based on centrality and the equilibrium
between the transportation supply and the demand for the transporta-
tion. This will be quantified with the resilience index Qt as defined
by Reed et al. [48] We measure Qt as the ratio between the demand
and the supply for transportation in a defined time period, using
a data driven approach, by measuring the smart card validations
and estimating supply levels. The result of this approach is a better
prescription of the resilience in the context of multimodal networks.

4 RESULTS: NETWORK MODELLING
This section describes the process of modelling and assessing of
the robustness of a multimodal transport network, highlighting the
differences between a single-layer and a multilayer perspectives.
This work is published in the proceedings of the European Transport
Conference 2021 [6].

Firstly, the criteria used for the inference of the multiplex network
is identified, followed by an analysis of the resilience of the topology
and routing. This analysis will be extended during the thesis to the
dynamic aspects (flows) in the network.

To transform route planning from General Transit Feed Specifica-
tion (GTFS) data files of each mode into a network, we joined the
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shapes and the stops of each one of the transportation modalities:
CARRIS , CP , FERTAGUS , METRO , RODLISBOA , SULFERTA-
GUS , TRANSTEJO , TST . This merge describes each line and
stops connected to one another via their order, within the line. Given
the structure of the data, we created a directed graph (digraph) for
each transportation modality (bus, railway, riverway, subway, tram),
forming a layer for each. We resorted to digraphs for each layer
because transport does not always flow in both directions within
the same path. This allows us to create each layer of our multilayer
network. We apply a multilayer representation because the edges of
different layers have different types that represented different reali-
ties. Modelling such characteristics was not possible with a single
layer (or monolayer) network. Now that we have each layer, we
also have to represent the possible multimodality interactions, i.e.,
the possibility to change different means of transportation within a
trip. These links are of extreme importance because they allow us
to assess the connectivity of the transportation system as a whole.
To accurately understand where these edges could be located, we
created a script that extracted the Lisbon city map and calculated the
walking distance between every two stations and combined it with
a standard coordinate distance calculation to get faster calculations.
After getting this result, we selected the pairs of stations from dif-
ferent modes and linked them based on distance. We connected the
eight modes of transportation in the Lisbon city using the described
method. By programming a 3-dimensional method, for visualizing
such network, using the geographical information available, we were
able to see its structure, see Figure 3 for more detail.

Figure 3: Multilayer Lisbon transport network topology on a 3D rep-
resentation with all the layers

We modeled 1502 edges representing multimodal changes. The
average in and out-degree are approximately the same at 1.4917,
which means that the majority of the edges are reciprocally directed.
As we are studying a directed network, it is essential to assess the
strongly connected components (SCC’s). These are graph partitions,
where the nodes are connected through a path, i. e. transport users
can go from one station to any other station within the component
(or subset of total stations) but not to other components. It is quite
normal to have many single-node SCC’s in unidirectional lines. This
is precisely the case in this network. We observe 417 SCC’s in the
whole network. As some layers such as METRO and CP have only
bidirectional relationships between nodes, this can contribute to a
higher number of SCC’s in the whole network. Some layers such as
METRO and have only bidirectional relationships between nodes.
The giant strongly connected component has 7,512 nodes which
are about 94% of the total nodes of the network. The number of
SCC’s per each layer are: CARRIS : 67, CP : 3, FERTAGUS : 1,
METRO : 1, RODLISBOA : 263, SOFLUSA : 1, SULFERTAGUS : 6,

TRANSTEJO : 3, TST : 177. The fact that the number of SCC’s of the
layers summed is higher than the SCC’s in the multilayer network
means that the multimodal edges are well placed on improving
network connectivity.

How many stops do we have on average between each station? To
answer this question we look at the average path length in number
of stops between two stations (not the length of the path itself). For
the largest mutually connected component, the Average (shortest)
path length (APL) is about 34.6878. This means that on average to
get from a station/stop to any other on the network, we have to go
through about 35 stations/stops before reaching the destination (this
number includes multimodal travels as well). Per layer, this value
is usually smaller (METRO : 7.7176, CP : 10.2072, FERTAGUS :
5.0, CARRIS : 25.8734, RODLISBOA : 36.9525, SULFERTAGUS :
34.7543, TRANSTEJO : 1.5, TST : 43.3558). However, each layer
covers a smaller area than the composition of all the layers. In the
case of TST , the APL is higher than in the composition of all the
layers. This means that multimodality can be useful for passengers
to avoid many stops and additional transfer time.

Which stations connect travellers from different parts of the city?
In the case of transportation networks, it is interesting to measure
the betweenness centrality to understand what are the nodes that
connect different communities of stations, i.e. sets of interconnected
stations within a region. In the multilayer network, we identify some
stations that have a very high centrality (Figure 4), these are mostly
from TST , this may be a sign that TST is kind of bridging layer
in some zones. The left skew on the betweenness centrality may
indicate the same type of distribution on node criticality since the
betweenness centrality on the node measures the number of shortest
paths that include that node. So these results are similar to the ones
found in the literature [11].

Are the central stations directly connected with one another? To
understand the role of degree-degree correlations, we look at de-
gree assortativity. This measures the degree similarity of connected
nodes concerning their degree. In Figure 5, we see the same pat-
tern described by Arruda et al. [17]. This is reasonably simple to
understand since the assortativity is influenced by the high number
of multimodal hubs that connect to one another.

How do different attack strategies affect the connectedness of
the network? We attempt to answer this question by analysing the
behaviour of the size of the largest strongly connected component -
SCC - over time for the duration of the simulation. By implementing
the different extraction strategies discussed previously. For each iter-
ation, we compute the largest SCC and its size. This size decreases
with the removal and if a critical station is removed the size de-
creases even faster. Ergo the strategy which has a faster decrease has
a more significant impact on the network. This means that networks
that exhibit a steeper decrease sooner, as the percentage of iteration

Figure 4: Betweenness centrality distribution
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Figure 5: Assortativity distribution of each layer and network.

Figure 6: Evolution of SCC size along node attack strategies for a sin-
gle layer, CARRIS (left) all layers (middle) and edge removal in multi-
layer network (right).

steps, are less robust. In the same fashion, a high-performance ex-
traction strategy is one which the SCC descends faster. To compare
different strategies, we use the discrete AUC and a normalized AUC
to compare the resilience of the different layers and the multilayer
network. The normalized AUC ⇢ 0,100 allows us to compare the
values of networks with different sizes, and is calculated using the
following formula:

AUCNormalized
c
i0

ti
V

· 100
c

, (2)

where c is the number of steps of the simulation, ti is the size of
the largest strongly connected component at timestep i, and V is the
number of nodes of the network. This measurement allows us to
compare the different resilience side by side. It is important to note
that this metric might have a higher variability (for both inflation
and deflation) in smaller networks given the granularity. Observing
table 2, the most resilient layer is FERTAGUS , and the least resilient
layer is RODLISBOA .

Strategy
Network Random ID IB RD RB
CARRIS 9.8306 4.9715 8.1610 4.4104 1.2501
CP 10.7915 17.3442 14.5977 9.4074 6.0337
FERTAGUS 27.5555 30.2222 27.9999 24.8888 22.2222
METRO 17.9930 18.3006 16.9550 11.8800 10.2652
RODLISBOA 7.0540 2.7484 6.7469 1.7580 0.6569
SULFERTAGUS 2.4251 1.6707 12.4929 2.9098 0.8832
TRANSTEJO 19.0 20.0 20.0 15.0 20.0
TST 5.7429 2.5852 7.3845 2.1839 0.6288
Multilayer 11.4000 6.6333 10.7513 5.9189 8.7007

Table 2: Normalized AUC across all networks: RB is the most effec-
tive node removal strategy in all the networks, with the exception of
TRANSTEJO and the multilayer network.

Looking at the table 2, we can see that the RD and RB strategies
usually yield the best results across all layers. Nevertheless, the RB
strategy tends to have a faster descent among the different layers as
we can see in Figure 6. Moreover, the IB and Random strategies seem
to have the least impact on the size of the largest SCC. There seems
to be no particular reason why the ID strategy has a better result than
the RD. However, this is the case in SULFERTAGUS , and it should
be investigated further. We postulate that this happens because there
may be fairly large components that have nodes with a high degree;
however, removing nodes from these components does not affect
the size of the largest component. So, this phenomena probably has
more to do with the metric we are using than the strategy itself.

How do node and edge targeting affect the average path length? To
understand the evolution of path length when targeting stations and
pathways, we calculated the APL only for existing paths along with
the network. So, if there was no path using the transportation system
between two points, this was not accounted for. It is important to
note that this strategy may not be the best to measure robustness on
road transportation since alternative paths may be available on roads
that are not on the normal route. So, we expect the APL to reduce
along each time step quickly. We ran the result for each layer and
the whole network as well.

Regarding the results for station and pathway targeting of the
CARRIS network on Figure 7, the RD is the best strategy, this is
consistent in all layers. This means that removing the stops with
the highest degree has the highest impact on the length of stations
one can reach. RB providing an efficient strategy indicates a lower
network robustness. In the multimodal network with all the layers
we see that RB is a strategy that promotes a fast decrease the APL.
This indicates a lower network robustness.

Figure 7: Evolution of APL along node attack strategies for METRO
(left) and SULFERTAGUS (right).

How many nodes do we have to delete to fragment the network
into isolated components? Figure 8 shows the evolution of isolated
components for each strategy in the CARRIS layer. In these graphs
we clearly see that RD had the best results, this is the only one
that stopped before the end of the simulation, because there are
only isolated components when it stops. We obtained about the
same results in every layer and for multilayer network is also very
similar. This means that the only effective strategy to measure the
vulnerability of disconnecting the network from different parts of
the city is RD.

Figure 8: Evolution of the Isolated components (IC) in the CARRIS
layer (left) and Multi-modality network (right) for node removal.

What is the impact of removing nodes vs edges? We observed that
attacks to nodes are more efficient than attacking the edges, as we
need more removals to get the same increase of IC’s and decrease of
APL and decrease of SCC. As Figure 6 shows, it takes much more
iterations to destroy a network by attacking the edges.

Should we recalculate the degree and betweenness after each
attack? RB and RD removal strategies can be very effective, yet not
so computationally efficient. Recalculating degree after each node
removal has proven to be beneficial, since it allows for an better
assessment of robustness in both metrics.



, , João Tiago Aparício

5 RESULTS: USAGE BEHAVIOUR
This research is focused on a multimodal prospective , more specif-
ically on the public transport operators METRO and CARRIS .,
among the largest operators in the Lisbon metropolitan area. This sec-
tion aims to discover main differences in subway, bus, and tramways
usage data. In the context of the ILU project, we have conducted a
study [5] that assesses the main differences in terms of multimodal
public transport demand pre and post COVID-19. Additionally, we
aim to discover actionable public transport usage patterns. The in-
formation gathered from this section is derived from the smart card
usage data. Table 3 shows an example of such data. Individual
trips correspond to smart card validations at METRO stations and
CARRIS buses and tramways, monitored through an integrated fare
collection system.

date fleet num-
ber

route
number variant plate num-

ber

trip
num-
ber

direction
stop
num-
ber

card ID
(anonymized) type of title title code stop identi-

fier stop name

24/10/2019
10:03:50 201 76B 0 1 6 CIRC 7 321 Viagem

CA/ML 3032779 100318 R. Cruzeiro
/Tv. Pardal

23/10/2019
12:52:06 201 734 8 1 13 DESC 17 789 Viagem

CA/ML 3032779 816 Martim Mo-
niz

24/10/2019
15:49:36 201 76B 0 1 16 CIRC 3 987 Viagem

CA/ML 3032779 13401 Boa Hora

Table 3: Sample of smart card validation data.

In this study we consider all the individual trips recorded through-
out a typical pre-pandemic month, October 2019, and a post-pandemic
month, May 2020. Along these periods, a total of 38.845.645 and
14.867.335 trips were observed at the METRO and CARRIS net-
works, respectively. An illustrative set of anonymized raw trip records
from CARRIS is provided in Table 3. From this kind of data we can
extract usage patterns that are more detailed than the trivial kind of
pattern we see.

Figure 9: City view of demand variations (2019 vs 2020) along METRO
and CARRIS stations

Figure 9 geographically displays the demand at subway stations
(transparent circles) and bus-tramway stations (opaque circles) be-
fore the pandemic (red-yellow coloring) and during the pandemic
(light-dark blue coloring). A general decrease in passengers’ demand
is observed across METRO (subway) and CARRIS (bus-tramway)
networks across the Lisbon metropolitan area. The demand contrac-
tion on the METRO demand per station (red to light-blue circle
ratio) is considerably higher than the observed contraction on the
CARRIS demand per stop (yellow to dark-blue circle ration). With
greater detail, we can observe that the demand across commuting
routes leading to Amadora and Odivelas (outside the Lisbon area)
was less impacted than the ones leading to Parque das Nações

(north-eastern side of the city of Lisbon), consistently across the two
modes of transport. On the south waterfront zone (Cais do Sodré

to Algés) we observe a clear decrease in the demand at CARRIS
stops. According to the gross reported income per tax household
[29], Amadora and Odivelas, reporting on average 18 157,00 and

19 100,00 euros respectively, have a lower income than the Lisbon
municipality (city center), reporting 25 548,00 euros. Generally, the
observed degree of demand changes appears to be also correlated
with the average land cost near the stations, which serves as a proxy
for the household income and working roles that require circulation
along the city. Demand changes have a lower magnitude in periph-
eral stations and in zones with lower income. To further understand
the causes of this trend further studies are necessary. Figure 10 pro-
vides a coarser-grained view of the daily changes in demand, and the
associated variability, across the major lines of the subway network
and the major clusters of buses. Generally, the higher the number of
stations in the city periphery, the lower the demand contraction.

Figure 10: Daily validations along the lines of METRO network and
the seven clusters of routes of CARRIS network for 2019 versus 2020.

To clearly assess differences on the degree of demand change
within the METRO network, we plotted the demand over the 20
stations with the highest change (left stations in Figure 11) and the
20 stations with lowest change (on the right) across the two time
periods. The difference within this mean of transportation is a stag-
gering order of magnitude in all stations. The three stations suffering
highest demand contraction are: Aeroporto (Lisbon airport), Cidade

Universitária (University of Lisbon) and Saldanha (commercial,
business and service district in central Lisbon). With less than ten
percent of their demand from the previous year, Aeroporto had the
most noticeable change due to air travel restrictions held during the
reference pandemic period. Cidade Universitária also had a con-
siderable change in demand. This station serves many students as
it is one of the main hubs for students to reach several university
campi. Saldanha is a working pole, with a high concentration of
large business offices. The Saldanha station similarly suffered a
significant change in demand due to remote working enforcement
rules by the Portuguese government.

Figure 11: Demand for METRO stations in 2019 versus 2020 and ratio,
top and bottom 20 stations

The changes in demand observed along the CARRIS bus-tramway
network reveals a considerably different reality (Figure 12). For the
stations with top differences in demand, the variation yields two
orders of magnitude, while some stations did not witness significant
changes in demand. In fact, the six stops yielding the least decrease
actually show increased levels of demand for 2020. A higher demand
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in a particular stop may be due to a lack of options on other means
of transportation.

Figure 12: Demand for CARRIS stations in 2019 versus 2020 and ratio,
top and bottom 20 stations

Now based on the differences previously seen, we choose to
analyse the behavior of the users in a pre pandemic scenario. Even
though the study of behaviours during quarantine and post COVID-
19 scenarios might yield more updated results. We resort to clustering
algorithms that allow us to separate the users based on their usage.
This analysis is relevant to understand the resilience of the transport
system to certain user types, also further improve incentives to nudge
the usage of the system itself, as suggested in previous literature. To
preform the clustering, we used aggregated smart card validations,
from random a subsample of 1000 users, per hour for each user
along periods of 24 hours.

Figure 13: Cluster performance using Silhouette Score (above) and
the Calinski Harabaz Index (Below)

We see that the Manhattan distance has a good silhouette score,
however the distribution of user behaviour per cluster is highly unbal-
anced. It is important to note that the silhouette is measured based on
the distance chosen for clustering. This means that correlation-based
clustering has a lower intra-cluster correlation and progressively, as
it decreases the number of series per cluster, the clusters get more
cohesive. It interesting to see this same effect in the Ward Euclidean
as well. On the other hand, the remaining distances start with a high
silhouette and progressively lower as the inter-cluster distances. The
described effects are outlined in Figure 13 a). On the Figure 13 b),
we can observe that the Ward Euclidean agglomerative hierarchical
clustering has the the best Calinski Harabaz score, which measures
the inter and intra-cluster variability in a non bounded way. This
metric is followed by the remaining clustering based metrics. This is
a particularly interesting result since this may mean that correlation
may be a worse way to join the clusters. It is important to note that
since we are analysing time-series and the euclidean space does not
capture the temporal interdependence of observations we expect the
results from this analysis to have poor quality results. However, this

is used as baseline to compare the further clustering solutions. This
yielded particularly inbalanced cluster profiles, grouping users that
are not similar and getting low average values. Within the correlation
based metrics, we see that the cross-correlation is a better performer
with average linkage when we have few clusters and with a complete
linkage between 12 and 18 clusters. Nevertheless to actually under-
stand the efficacy of the cluster formation we look at the balance
between the clusters formed. The cross correlation metric shows
promising results. This is expected since it is an adequate metric to
compare time series, as it captures the distance between the time
series minding time dependence and was also proven to yield better
cluster formation in the context of smart card data by Ghaemi et al.
[23]. Below we look further into cluster formation to understand the
generated clusters and how they can be useful. The average linkage
yields a value for inter and intra cluster correlation that is higher
than other methods for a lower number of clusters (at most 10). How-
ever, the dendogram generated by average cross-correlation shows
that the best cutting point is at about 16 clusters. At this number
of clusters, the complete linkage yields a better cluster cohesion
(Calinski-Harabasz). This resulted in inbalanced cluster sizes and
many clusters with low average values per hour. This leaves us to
wonder if in fact the complete cross-correlation actually yelded bet-
ter results, so we test that. We consider 4 and 6 cluster which are
clear cutting points on the dendogram.

A more balanced number of users per cluster in both cutting
points (Figure 14). Even though, the formation with 6 clusters has a
better balance, the average values per cluster for the solution with
4 clusters have distinct usage behaviour between clusters and fairly
high average values per hour in each cluster, which means that the
elements on the cluster are more similar.

Figure 14: Clusters generated by Complete Cross-correlation

To better understand the results yielded from the cluster forma-
tion, we look at the average number of validations per hour during
the 24 hour period. This will from now on be denoted as the user
profile. In Figure 14 we see the user profiles generated. Based on
the user journey profiles, we can further proceed with the spatial
characterization of the usage. This analysis starts with the station
usage. On the left box plot of Figure 14, we see the outliers identified
for exceptionally high and low percentage of a certain user profile.
We were able to map the origin and destination of each user and
calculated the shortest path within the preexisting lines from one sta-
tion or stop to another. Using this method we weighted the METRO
network with the number of users that go through each pathway (or
edge of the graph) at every hour of the day. In Figure 15, we see
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the user demand in two of the 24 time-spans of the day, at 9AM
and 5PM on a typical Tuesday. The weighted digraphs generated
show a heavy flow of users towards the city center at 9AM. On the
5PM weighted graph, we see the inverse pattern. Users travelling
outwards from the city center, many of them traveling from stations
outlined before.

Figure 15: METRO user demand throughout the network in the 10th
of October of 2019 at 9AM on the left and 5PM on the right.

6 RESULTS: NETWORK RESILIENCE
In this section we aim to measure the resilience of a multimodal trans-
portation system. Nevertheless to actually measure the resilience of
the network to demand changes, we need to measure the dynamics
of the network transportation supply. So we might ask if the sup-
ply for transportation is in fact keeping up with the demand, and
what consequences does the lack of equilibrium entail. To acquire
a viable model of what the Lisbon public network is offering, we
calculated the flow of vehicles based on the established schedules in
GTFS data.Figure 16 depicts the METRO network and the weighted
edges represent the paths that each route has to go through. This
was inferred based on the stop times that allow us to know what
are the progression of stops for each specific route (including the
temporary buses). Since the nature of this data is spatio-temporal
we use two distinct time-spans: 9AM and 5PM .The weighted graph
regarding the supply levels is calculated using the schedule with an
hourly granularity. Per each time there is a scheduled vehicle at a
particular hour, the route is calculated based on the secession of sta-
tions of each passage. And the weight of the segments of the graph
that belong to the line are incremented with the vehicle capacity.
This process is done iteratively through the complete schedule. The
representation of the weighted graph uses hue and line thickness
according to the weight of the segment, to accentuate the value and
priority level of the segments.

We applied this technique to the METRO network, however we
used the average carriage values that have much less variance. These
have on average about a maximum occupancy of 170 passengers,
using the official METRO website data [21]. We also assume a
length of 3 carriages, totaling a 510 maximum occupancy. These
assumptions are made since we were unable to get more detailed
data.

Figure 16: METRO supply in the 10th of October of 2019 at 9AM on
the left and 5PM on the right.

The METRO supply levels (Figure 17) seem to be identical at
both time-spans (9AM and 5PM ). This may be adequate if the user
types are equal and demand the transport equally at those hours.
However, as we have seen that is not the case, so this may be an
indication of low resilience in the afternoon. There is a clear pattern
of outwards mobility from the city center with high congestion in
the same zones and yet again an aggravated effect on the red line
from Saldanha to Oriente. Even though the information in this docu-
ment is static we can easily transpose this to a real time monitoring
system that shows the over demanded segments thorough the day,
outputing a representation similar to the left graph on Figure 17,
which highlights the low resilience links. This would bring further
actionable information.

Figure 17: METRO lean resilience using supply and demand in the
15th of October of 2019 at 9AM (left) and 5PM (right).

To understand the resilience towards a certain user (a user cen-
tered resilience) behavior type we used the sub samples obtained
from the clustering solution and weighted the edges based on the
ratio of demand for the supply levels of a particular hour. The us-
age profile from cluster 0 was previously interpreted as "lunchtime
commuters". These exert more pressure to the system in the city
center, particularly from Saldanha to Cais do Sodré and between En-
trecampos and Cidade Universitária. The usage profile from cluster 1
was seen as the long workday commuters, these exert overall higher
levels of stress to the system than user profile 0 for example. How-
ever this is expected since the cardinality of users is considerably
different. There is a lot of stress from Marquês de Pombal to Cais
do Sodré and moderate levels in the pathways: Jardim Zoológico -
Marquês de Pombal, Baixa Chiado - Alameda and Alameda Oriente.
Cluster 2, previously understood as part-time workday commuters
with shifted intervals, has strains along the Marquês de Pombal -
Baixa Chieado pathway, and generates medium levels of strain from
the city center to Laranjeiras, Campo Grande and Oriente. Lastly,
users belonging to cluster 3 have a have a considerable presence in
all lines, particularly, particularly from Campo grande to Terreiro
do Paço. with noticeble presence in Olivais to Alameda, Collegio
Militar to São Sebastião and Alameda to Cais do Sodré.

It is clear at this moment that there could be some incentives to
alleviate the strain in transport by increasing the level of transport by
the number of the demand-supply ratio achieved from the analysis.
This can be achieved by implementing a gamification system that
attributes usable points for good behavior like in other smart city
gamification systems [16]. The use of past and current data could be
used to generate agent based systems to decide under those circum-
stances [7]. The study of these incentives and the implementation
of similar techniques to the ones used in this research could yield
extremely interesting results. To understand the resilience of the
METRO network, we rely on two perspectives 1) a dynamic, by
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identifying the low resilience links and 2) a static, the topological
critical nodes (in case of layers). By comparing them side by side
(in Figure 18 ). On the left we see the number of times each seg-
ment exceeded capacity throughout the day (these are regarded as
low resilience since they were not resilient to user demand) and on
the right the betweeness centrality of each edge. We see that the
betweeness centrality is important to understand robustness impact
but without a data driven perspective, this metric is nothing but a
hunch to discern usage patterns. Most of the pathways that exceeded
user capacity do not have a particularly high betweeness.

Figure 18: METRO low resilience links in accordance with demand
supply dynamics on the left and topological criticality on the right in
accordance with betweeness centrality.

7 CONCLUSIONS
The main goal of this research is to objectively measure the re-
silience of multimodal transport networks, both dynamic and topo-
logical, contributing to a sustainable transport system. To support
the proposed solution, a method for measuring multimodal transport
resilience, additional concepts of resilience applied to multimodal
transport networks and public transport and time series clustering
were introduced along with a set of studies developed in this context.
Here, we proposed a multiplex network modelling and its assess-
ment, the pattern exploration in this network using dynamic weights
based on demand-supply ratios. To describe the generated solution,
we conducted an agglomerative hierarchical clustering of passengers
for further understanding specific usage behaviour. The evaluation
of the described solution is based on network metrics and cluster
cohesion and separation indices. Results show that the strategies that
depend on recalculating metrics are generally more effective. We
also showed that the resilience tests required removing about half the
network nodes to leave all the remaining nodes wholly disconnected.
This phenomenon happens in all layers and the multilayer network,
suggesting that betweenness targeting is the best way to measure
robustness across the different strategies. Results indicate that higher
assortativity phenomena in multilayered networks, in contrast to sin-
gle layers, highlight the importance of inter-modal hub redundancy.
Based on the robustness tests, we concluded that the most effective
method for targeting nodes is RD (recalculate degree). However, in
some cases, RB (recalculate betweenness) yielded better results for
multilayer APL decadence (both for nodes and edges strategies),
although it showed higher variability. For decreasing the size of the
largest SCC, RD yielded better results for the multilayer network.
However, for most of its individual layers, the best strategy was
RB. To divide a multimodal network into disconnected regions, high
degree station failures have a higher impact than high betweenness
station failures. However, to yield the same result in a single-mode
network, betweenness is a more relevant metric, highlighting the
impact of the network topology as the vulnerabilities linked to a

multimodal network considerably differ from a single layer network.
The gathered results in this study suggest that robustness can be
objectively measured using network metrics and percolation simula-
tions. The impact of such simulations can be compared regardless
of the network size or structure in any multimodal transportation
scenario. Moreover, research findings seem to indicate that we can
use the targeting techniques to understand network recoverability
(resilience stance) by focusing on stations with hub characteristics
(higher centrality) or high betweenness. As practical implications of
this study allow practitioners and urban transportation policymakers
to tackle the impact of negative disruption in multimodal transporta-
tion networks. To assess the resilience of a multimodal transportation
system, we applied a resilience metric on an hourly basis based on
the equilibrium between demand and supply of service. This allowed
us to conclude that the resilience of the network is not only depen-
dent on the topological features such as the betweeness centrality.
The strain of different types of users on the network service was
analysed, yielding fairly different results for each user type. This is
an important analysis since different usage patterns within the same
network with different levels of service throughout the day have
varying results. This implies that the differentiation of user profiles
can be induced to improve the distribution of users in off-peak hours.
The possible solutions may involve gamification. The generated re-
silience graphs for the public transport of the city of Lisbon aim to
improve the lean resilience of the public transport network towards
pasengers’ demand variation using real-time data. These can repro-
duce accurate representations regarding the regarding the uptake
of users by the system, hence the resilience measurement. In the
analysis of lean resilience, a future direction points to the analysis of
the resilience of inter-modal pathways (or links). Nevertheless, we
have contributed to add knowledge on this issue since we empirically
showed that for the Lisbon public transport network, the criticality of
these links is not measured necessarily by the betweenness centrality
of the links but rather from the link degree. This finding is impor-
tant for the city mobility managers because more attention could be
given to the redundancy of high degree stations. This study presents
innovative solutions to understand public transportation multimodal
resilience for the city of Lisbon.�
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