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ABSTRACT
Mobile devices are now more than ever present in our everyday
lives. They have multiple hardware components that can enrich
user experience, like WiFi, cameras, and GPS. When developing
mobile applications that utilize these resources, the developer has
to carefully manipulate when to acquire and when to release them.
Not managing to do so has an energy impact, causing the applica-
tion to consume more battery than necessary and, in some cases,
causing the resource to not function properly. This problem is
known as a resource leak and can affect any Android application
that uses hardware components available on the device. To help
developers fix this problem, we present an extension EcoAndroid,
an Android Studio plugin that improves the energy efficiency of
Android applications, with the ability detect resource leaks and
present their location in the code to the developer. We implemented
our detection on top of Soot, FlowDroid, and Heros, which provide
a static-analysis environment capable of processing Android ap-
plications and performing inter-procedural analysis with the IFDS
framework. It currently supports the detection of four Android
resources - Cursor, SQLiteDatabase, Wakelock, and Camera. We
evaluated our tool with the DroidLeaks benchmark and compared
it with 8 other resource leak detectors. We obtained a precision
of 72.5% and a recall of 83.1% on all the leaks detected. Our tool
was able to uncover 194 previously unidentified leaks in this bench-
mark. These results show how our analysis can help developers on
discovering resource leaks.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis.
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1 INTRODUCTION
Mobile devices are more than ever prevailing in our society. The
number of smartphone users in 2020 is estimated to be around 3.8
billion worldwide [20]. Of the two most used operating systems in
smartphones, Android is in the top one, with its market share hitting
an estimated 85%, followed by iOS with 15% [7]. The market for
Android applications has also grown throughout the years, totaling
a number of 3 million applications on the Google Play Store [2, 8].

Recent research has been uncovering energy problems and ineffi-
ciencies, created by application developers, that decrease the battery
life of Android devices [3, 5, 25]. Taking action to solve these energy
problems and increasing the overall energy efficiency of Android
applications can have an impact in user experience. A 2013 study

has shown that approximately 18% of the complaints in the Google
Play Store were related to energy problems in applications [26].

Another factor that gives rise to new energy problems in mo-
bile applications is the evolution of smartphones. Smartphones
have been evolving, and the diversity of sensors they provide have
also been growing [1]. The sensors and resources that smartphones
possess (e.g. camera, GPS, etc) allow the developers to create applica-
tions that interact with them. This interaction between applications
and sensors can be handled manually by the developer through
the API provided by Android; however, if not well implemented,
this can have huge costs on the battery life of the device [18]. One
problem that may arise from this incorrect implementation of re-
sources is known as resource leak, and happens when the developer
acquires a resource to be used by the application, but forgets to
release it (i.e. turning off the resource). Recent research around re-
source leaks shows that this problem is prevalent regarding energy
and performance in Android devices [4, 18, 28], but not always have
researchers been able to find resource leaks in applications [9].

2 OBJECTIVES AND CONTRIBUTIONS
The main goal of this project is to extend EcoAndroid [22] – an
Android Studio plugin – with the ability to automatically detect
resource leaks in Android applications. In this work, we also (1) in-
troduce basic notions of the Android framework that are relevant
for our work (2) research about the topic of static analysis and
some existing techniques that could be applied to our project, and
(3) discuss the current research around energy problems in Android
applications and existing tools to detect and fix these problems.

Our main contribution translates in the creation of a fully-precise
context- and flow-sensitive inter-procedural static analysis capable
of detecting resource leaks in Android applications, integrated in
an IntelliJ plugin. Currently, our analysis supports the detection
of 4 resources: Cursor, SQLiteDatabase, Wakelock and Camera.
These resources were chosen based on how frequently Android
developers use them, and the impact they have on the mobile device
if a leak occurs[18].

We evaluated our analysis on DroidLeaks, a publicly available
resource leaks benchmark, and managed to detect 203 leaks, where
194 are new and undiscovered leaks. From the 50 experimented
leaks of this benchmark, we obtained a bug detection rate of 18%
and a false alarm rate of 2%. Regarding all the detected leaks, our
tool achieved a precision of 72.5%, a recall of 83.2%, and an F-Score
of 77.5%.

Contributions summary. The main contributions achieved from
our work can be summarized as follows:



• a fully-precise context- and flow-sensitive inter-procedural
static analysis capable of detecting resource leaks in Android
applications

• integration of the aforementioned resource leak analysis on
two IDE: IntelliJ and Android Studio

• the extension of the DroidLeaks benchmark, with the addi-
tion of 194 new resource leaks identified and described

3 ANDROID ARCHITECTURE
Android applications are built upon four essential components [13,
17, 24]. Figure 1 illustrates how these components interact with
each other.

(1) Activity. It represents a screen with a user interface and
handles all user interaction.

(2) Service. Component that runs in the background to per-
form time intensive operations and work related to remote
processes. It does not provide a user interface.

(3) Broadcast Receivers. Allows an application to receive events
from the user or the system.

(4) Content Provider. Is used to manage shared data between
multiple applications.

Figure 1: Android component communication (adapted from
Li et al. [17])

An activity can transition through multiple states as the user
interacts with the application and with the system itself. There are
four states an activity can go through: running, paused, stopped, and
destroyed. The developer has to explicitly program how an activity
transitions between these states. This is done using callbacks pro-
vided by the Android API: onCreate(), onStart(), onResume(),
onPause(), onStop(), and onDestroy() [14, 24]. The complete
lifecycle and state transitions of an activity are illustrated in Fig-
ure 2.

The Android system starts a new Linux process when an appli-
cation component starts and no other component from that appli-
cation is running. After that, all components from an application
run in the same process and in the same thread, unless otherwise
specified. The thread created when the application is launched is
called the main thread. It is responsible for dispatching events to
the user interface widgets, and is almost always the thread that
interacts with the components from the Android UI toolkit, and so
it is often called the UI thread. To avoid blocking the UI thread, as
to keep the application responsive, tasks that are not instantaneous
should be done using a separate thread [14].

The Android framework is mainly event-driven [27]. Event-
based programs make use of callbacks, which are functions that are
called after certain events are completed. An example of callbacks
are the functions used in the activity lifecycle to transition between
states. These functions are called after certain events occur, and
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Figure 2: Android activity lifecycle (adapted from Android
Guide [14] and Android Fundamentals [12])

are responsible for managing the activity’s state. A more specific
callbacks are event handlers, which are functions that are executed
after a certain event related to the user interaction happens (e.g. the
function that executes when a user clicks on a button) [15, 18, 19].

4 RESOURCE LEAKS

1 private static SQLiteDatabase upgradeDB(...) {
2 (...)
3 Cursor c = mMetaDb.rawQuery(...);
4 int columnNumber = c.getCount();
5 if (columnNumber > 0) {
6 if (columnNumber < 7) {
7 (...)
8 }
9 } else {
10 mMetaDb.execSQL(...);
11 }
12 mMetaDb.setVersion(databaseVersion);
13 Timber.i(...);
14 //leak! missing call to c.close()
15 return mMetaDb;
16 }

Listing 1: Resource leak of a database cursor on an old version
of AnkiDroid

As introduced in this work, the number of sensors and hardware
components in mobile devices has been growing over the years.
These components – also called resources – are known for being
one of the biggest energy consumers in Android devices [29]. When
a developer wants to use a resource, they must do it manually. This
is done via Android-specific API calls, which vary from resource
to resource [18]. Here, we show an example from an older version
of AnkiDroid1. In Listing 1, we see a resource – in this case, a
database cursor – being acquired at the beggining of a function.
1https://github.com/ankidroid/Anki-Android
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The developer performs some operations but, at the end of the
function, forgets to close the database cursor, creating a resource
leak 2. A resource leak occurs when a programmer forgets to release
a resource they previously acquired, after it is done being used. A
resource leak causes components to stay active and consume battery,
even if they are not being used. Apart from the unnecessary battery
usage, the leak of some resources may cause them to not function
properly for other applications or even cause the Android system
to crash [18, 29].

5 IMPLEMENTATION
The proposed work extends EcoAndroid in order to automatically
detect resource leaks in Android applications, and is built upon
some of the existing features of the plugin, while integrating static
analysis frameworks required for the detection. The extension is
fully compatible with energy pattern detection, which remains fully
functional. The automated detection of resource leaks is divided
into two main components – the Analysis Component and the
Results Component – each one responsible for a specific step in the
detection of resource leaks.

5.1 Analysis Component
The Analysis component is one of the the two main components
of our tool. It is responsible for creating and setting up the envi-
ronment for the analysis, and is also responsible for running the
analysis itself. It is implemented on top Soot, FlowDroid, and Heros.

These three frameworks are built to be easily integrated with
each other, as they are maintained by the same group of developers.
To connect Heros to a program analysis framework only requires
the user to implement a version of the interprocedural CFG. The
framework’s authors already provide an implementation for the
Soot framework. Heros implements a solver for the IFDS framework,
and provides the four flow functions we need to implement in our
work. Each flow-function serves a different purpose in the IFDS
framework. Our implementation of them reflects this fact, as we
describe their use in our work next:

• In the getNormalFlowFunction: handles acquiring and re-
leasing class-scope resources and to handle the flow of data-
flow facts when dealing with if statements.

• In the getCallFlowFunction: is responsible for handling
flow of facts when a method is called

• getReturnFlowFunction: is responsible for the flow of facts
when returning from a method. There are two important
cases to deal with: (1) when a resource is acquired in the
called method, and returned to the callee, and (2) when a
resource is passed by reference from the callee to the called
method.

• getCallToReturnFlow: is responsible for acquiring and re-
leasing method-scope resources and also for their correct
flow, in conjunction with getReturnFlowFunction.

5.2 Results Component
The Results component is the other main component of our tool.
It is responsible for acquiring the results at the end of the analysis
2Commit at https://github.com/ankidroid/Anki-Android/commit/
3725ce75828aaf4fa0b7bc36416a973f2ea6a157

and then, from these results, collect the location of possible leaks,
process them, and present the final results to the user.

5.2.1 Collection of Results. To collect the results, we first need
to know how to gather them after the analysis is finished. Heros’
IFDS solver provides a method to gather results from individual
statements of analyzed methods. The results are a set containing
the data-flow facts at any given statement of the analyzed methods.
Considering the properties of our problem, we designed a simple
collection algorithm. As previously said, our data-flow facts are
used to indicate if a given resource is acquired at some point in the
code. If, in some statement, we have a data-flow fact, it means that,
prior to that statement, a resource was acquired and has not yet
been released. Having this in mind, our algorithm gathers, under
certain conditions, the return statements where there are data-flow
facts present. The conditions in which we gather the results depend
mainly on the scope of the (possibly) leaked resource.

5.2.2 Processing of Collected Results. This step focus on filtering
false positives collected in the previous step. When using our al-
gorithm, it is not enough to collect leaks at the end of a method’s
execution – we have to keep in mind the inter-procedural nature
of the analysis, and that the collected leaks may not be real leaks
(i.e. they can be false positives). This problem can be presented in a
simple example.

False positive example. Let us imagine that methodA acquires a
resource r and then calls methodB with r as a parameter. Then,
methodB uses r but does not release it neither does return it. Then,
after the call to methodB, methodA releases the resource r, meaning
that the resource is not leaked. In this example, our analysis would
propagate to methodB the fact that r was acquired in methodA. Then,
our algorithm would collect a leak in methodB – seeing that this
method does not return the resource and that there is a data-flow
fact regarding r in the method’s return statement.

With this problem inmind, we developed an algorithm to process
the results. The algorithm goes through the previously collected pos-
sible leaks and, for method-scoped resources, checks if the callers of
the method where the leak was found use the leaked resource and
also have the leak; if so, this means we have a leak. For class-scoped
resources, there is a leak if the resource was leaked in the method
where it was supposed to be released.

5.2.3 Result Storage and Presentation. Weneed to take into account
how to store the results depending on how the tool is being run –
on IntelliJ IDEA/Android Studio or standalone. To know how to
store the results, we first need to evaluate how we want to present
them to the user.

For the standalone version, the results are to be presented in
CSV files. For this purpose, we simply store the leaks in three sets:
one for the intra-procedural, one for the inter-procedural analysis,
and one containing the leaks from both analysis. The CSV files
are generated at the very end of the detection process, having the
information contained in all the leaks, plus the class where the
resource was declared and the class where the resource was leaked,
and performance metrics.

For the IntelliJ IDEA version, we wish to follow the current
methodology in EcoAndroid, which is to give warnings in the code,
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1 public static String getContactName(
2 final Context context, final String address)
3 {
4 //(...)
5 Cursor cursor = getContact(context, address);
6 //(...)
7 return cursor.getString(
8 ContactsWrapper.FILTER_INDEX_NAME);
9 }
10

11 public Cursor getContact(
12 final ContentResolver cr, final String number)
13 {
14 //(...)
15 final Uri uri = Uri.withAppendedPath(
16 Contacts.Phones.CONTENT_FILTER_URL, n);
17 final Cursor c = cr.query(
18 uri, PROJECTION_FILTER, null, null, null);
19 //(...)
20 return c;
21 }

Listing 2: Resource leak (simplified) of an older version of
SMSDroid

as well as to make them available as results of a code inspection. To
allow this, we first identify the PsiMethods corresponding to the
leakedMethod in the reported leaks, and we map the leaks to the
corresponding PsiMethodwhere they were leaked. To present them
to the user, we implement a code inspection responsible for visiting
each PsiMethod in the PSI tree and checking, in the reported results,
if there are any leaks in the visited PsiMethods. At the end of
the detection process, we force IntelliJ Code Analyzer Daemon to
restart, which causes the code to be inspected and code warnings
to appear without the user needing to run a full code analysis.

5.3 Illustrative example
To illustrate and better understand how the IFDS framework

and our analysis work, we provide a real-world example of a leak
detected by our tool and taken from the DroidLeaks dataset, shown
in Listing 2. This is a cursor leak that spans two different methods,
getContact and getContactName in a version of SMSDroid 3. In
getContact, the cursor c is acquired (line 11) and returned (line
13). The getContactName then calls getContact (line 3), and uses
the cursor to return a string. From here, reference to c and cursor
are lost, and the resource is never released, therefore, c is leaked.
In Figure 3, we see the exploded super-graph of this example. The
graph provides an overview of all the different type of edges defined
in the IFDS framework, and how data flows through them. In this
specific example, there are only two facts present: the zero value
– that represents a fact that is always valid, and used to generate

3Source code at https://github.com/felixb/smsdroid/blob/
5020594a25c7dd1d77b5e4571bce2135f4a17138/src/de/ub0r/android/smsdroid/
AsyncHelper.java and https://github.com/felixb/ub0rlib/blob/master/lib/src/main/java/
de/ub0r/android/lib/apis/ContactsWrapper3.java

another data-flow facts – and the C fact – that is our data-flow fact
representing the cursor that is leaked. C is generated from the zero
value when c is acquired, and flows through getContact until the
end of getContactName since no release operation for cursor was
performed.

6 EVALUATION
6.1 Methodology
6.1.1 Resource LeakDataset. Researchers have created public datasets
containing resource leaks in multiple applications. We have cho-
sen DroidLeaks [18] as our golden standard for evaluation. The
DroidLeaks dataset provides information on resource leaks found
on 32 popular and large-scale open-source Android applications,
taken from F-Droid. The authors collected a total of 292 resource
leaks from 33 resource classes, which include the 4 resources –
Cursor, SQLite Database, Wakelock, and Camera – our tool is able
to identify.

The authors of DroidLeaks also evaluated 8 resource leak detec-
tors with the dataset, to help future researchers create and improve
resource leak detection tools. For the evaluation of each tool t,
the authors defined two metrics: the Bug Detection Rate, denoted
BDR(t), and the False Alarm Rate, denoted FAR(t). A detected leak
ahppens when a tool detects one of the specified leaks on the faulty
version of the application. A false alarm happenswhen a tool detects
one of the specified leaks on the patched version of the application
(it should not since the leak is fixed).

The Bug Detection Rate and False Alarm Rate are calculated as
follows:

𝐵𝐷𝑅(𝑡) = # bugs detected by t on buggy app versions
# bugs experimented on t (1)

𝐹𝐴𝑅(𝑡) = # false alarms reported by t on patched app versions
# bugs experimented on t

(2)
The authors of DroidLeaks made the decision to evaluate only

116 of the 292 resource leaks found, due to the labor-intensive
work of compiling all APK found. The 116 leaks they have chosen
also include leaks from all the patterns described in their work
which, according to them, is enough for their evaluation. For our
evaluation, we are only interested in resource leaks regarding the
resources our tool is able to detect. From those 116 resource leaks
only 50 fit our criteria (herafter "reduced dataset"). We will use
the reduced dataset to evaluate our tool with DroidLeaks. Table 1
shows, regarding the reduced dataset, the number of leaks from
each resource class, as well as the applications where they were
identified.

There is a publicly available website 4 that contains all the infor-
mation about the dataset. From the available information, there is
a spreadsheet 5 containing the 292 identified leaks together with
their relevant information:

• name of the application where the leak was found
• the concerned class, i.e. the resource class
• the version of the application where the problem was dis-
covered, and the version where the problem was resolved

4http://sccpu2.cse.ust.hk/droidleaks/
5http://sccpu2.cse.ust.hk/droidleaks/project_data/droidleaks.xlsx

4
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Cursor cursor = getContact(...)

return cursor.getString(...)

final Uri uri = Uri.withAppendedPath(...)

final Cursor c = cr.query(...)

return c
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Figure 3: Exploded super-graph for the example in Listing 2

Resource class # leaks Related applications

Cursor 38

, AnySoftKeyboard,
APG, BankDroid,
ChatSecure, CSipSimple,
Google Authenticator,
IRCCloud, Osmand,
OSMTracker, Owncloud,
SMSDroid, TransDroid,
WordPress

SQLiteDatabase 3
AnySoftKeyboard, ConnectBot,
FBReader

Wakelock 8
CallMeter, ConnectBot,
CSipSimple, K-9 Mail,

Camera 1 SipDroid
Table 1: Distribution of the subset of resource leaks evaluated

• the problematic method, and the file where this method is
implemented

• the bug report, if exists
• for the 8 evaluated resource leaks detectors, whether they
detected the resource leak or not

• information regarding leak: if is related to component life
cycle, if the resource escapes local context, and the extent of
the leak (complete leak, only in certain paths, etc)

Additionally, the authors of DroidLeaks provide the APK used in
the evaluation they performed. There is a total of 137 made publicly
available6 – which includes the versions were the leaks were found
and the versions where the leaks were fixed. From what we have
verified, only 129 APK were used in DroidLeak’s evaluation of the
8 resource leak detectors. In our evaluation, we will consider the
137 available APK, as described next.

6.1.2 Data Collection and Analysis. To gather the results, we will
run our analysis on the 137 provided APK by DroidLeaks (hereafter
"full analysis"). We will first consider the evaluation with reduced
dataset to compare the efficiency of our tool with the others eval-
uated in DroidLeaks. We will use the Bug Detection Rate and the
False Alarm Rate, as to also compare with the other 8 tools evalu-
ated in DroidLeaks. Additionally, we will measure three metrics:
precision, recall, and F-Score [6]. This metrics will be calculated
based on the full analysis. As for performance, we will calculate the
average and median time that our tool took to analyze the provided
applications.

We ran our evaluation on the standalone version of our anal-
ysis, on an Intel i5-8265U (8 cores) machine, with 8GB of RAM
running Ubuntu 18.04.5 LTS. The process used to evaluate our tool
is summarized below:

(1) Run our analysis in standalone mode on the 137 APK from
DroidLeaks

(2) Collect and organize the obtained results into a spreadsheet

6http://sccpu2.cse.ust.hk/droidleaks/bugs/apks.php
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(3) Compare the obtained results with the reduced dataset to
identify correctly detected leaks and non-detected leaks (i.e.
true positives and false negatives, respectively).

(4) Manually categorize the remaining results (i.e. the results
obtained and not described in the reduced dataset)

(5) Calculate the analysis’ detection rate and compare with the
tools evaluated in DroidLeaks, from the reduced dataset

(6) Calculate the remaining efficiency metrics – precision, recall,
and F-Score – based on the full analysis and false negatives
obtained from DroidLeaks

(7) Calculate performance metrics – average and median dura-
tion of the analysis – based on the full analysis.

6.2 Results
6.2.1 Errors in the Analysis. From the 137 APK provided by Droi-
dLeaks, our analysis failed to run on 30 due to call graph generation
failure in Soot and FlowDroid. We define a call graph generation
failure as the failure to generate a call graph in under 5 minutes.
The applications suffering from this failure and their versions can
be seen on Table 2. For these applications, our analysis is unable to
run and detect resource leaks. Regarding evaluation on the reduced
dataset, this means that the cursor leak on version 1747b81da8 of
BankDroid can not be evaluated, but will be accounted in our eval-
uation as a call graph generation failure. Regarding the evaluation
of the full analysis, this means that we will only consider 107 out
of the 137 APK provided by DroidLeaks.

Application Versions

K-9 Mail

0a07250417, 0e03f262b3, 1596ddfaab,
2df436e7bc, 3077e6a2d7, 3171ee969f,
378acbd313, 57e55734c4, 58efee8be2,
71a8ffc2b5, 7e1501499f, acd18291f2

Cgeo
23bf7d5801, 253c271b34, 8987674ab4
e2c320b5f9, ea04b619e0, fb2d9a3a57

BankDroid
1747b81da8, 265504aa4, 2b0345b5c2,
bf136c7b0a, f4fbbfd966

Ushahidi
337b48f5f2, 52525168b5, 9d0aa75b84,
d578c72309

ConnectBot 2dfa7ae033, ef8ab06c34
CallMeter 4e9106ccf2

Table 2: Applications that suffered fromcall graph generation
failure

6.2.2 Reduced Dataset. With everything considered in this Chap-
ter, we evaluated our tool on the reduced dataset obtained from
DroidLeaks. For the 50 resource leaks in the reduced dataset, our
tool was able to detect 9 (18%), while failing to detect the remaining
41 (82%), meaning we achieved a Bug Detection Rate of 18% and
a False Alarm Rate of 2%. We have investigated the cause of this
results and observed that, for the 41 that our tool failed to detect,
the two main reasons were due to Soot and Heros not analyzing

the method where the resource was leaked, which happened in
25 (61%) of the leaks, and also due to special mechanisms used by
some resources and not supported by our tool, which happened in
7 (17%) of the leaks. Table 3 shows each cause for failure to detect
the leaks in the reduced dataset, together with their corresponding
number of cases (percentage is calculated based on only the 41
leaks our tool failed to detect, and does not account for 100% due
to approximation errors).

Cause for failing to detect # of cases % of cases

Method not analyzed 25 61%
Logic not supported 8 20%
Unresolved bug in tool 5 12%
Call graph generation failure 1 2%
Call graph generation error 1 2%
Unknown cause 1 2%

Total 41 100%
Table 3: Causes for failing to detect leaks in reduced dataset

As mention before, the authors of DroidLeaks performed an
evaluation of 8 resource leak detectors with their dataset, calculat-
ing their detection rate. Table 4 shows how the tools evaluated in
DroidLeaks and EcoAndroid performed on the reduced dataset.

6.2.3 Full Analysis. As previously said, we also evaluated our tool
on all 137 avaliable APK provided by DroidLeaks. Due to call graph
generation failures on 37 APK, we only consider 107 for the evalua-
tion of the full analysis presented in this section.

Our tool reported a total of 312 leaks, from which 203 (65%) are
true positives, 77 are false positives (25%), 27 (9%) were not classified
due to missing code in the application’s repository and due to the
leak being reported in an Android class, and 5 (1%) suffered from
errors in the Jimple translation. We obtained a precision of 72.5%, a
recall (with false negatives based on the reduced dataset) of 83.2%,
and an F-Score of 77.5%.

We observed that some of the reported leaks were duplicated in
different versions of the same application. This phenomenon can be
seen, for example, in WordPress: in four versions of this application
(57c0808aa4, 4b1d15cb26, 42de8a232c, and 3f6227e2d4) we have
uncovered several identical reported leaks. Since this happens in
several applications, we decided to also present the results of our
tool taking into account only unique reported leaks. In this case,
our tool reported 127 leaks, from which 86 (67.7%) are true positives,
28 (22%) are false positives, 9 (7.1%) were unclassified, and 4 (3.1%)
suffered errors in the Jimple translation. For the unique reported
leaks, we obtained a precision of 75.4%, a recall (with false negatives
based on the reduced dataset) of 67.7%, and an F-Score of 71.4%.
Table 5 summarizes the results obtained and the efficency metrics
calculated regarding the full analysis.

Table 6 shows the results obtained from the full analysis, from
both all reported leaks and unique reported leaks, but categorized
by each resource. Percentages in each column are calculated based
on the sum of their respective column.
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Tool # experimented leaks
# detected leaks
(Bug Detection Rate)

# false alarms
(False Alarm Rate)

EcoAndroid 50 9 (18.0%) 1 (2.0%)
Code Inspections 41 32 (78.0%) 19 (46.3%)
Infer 38 23 (60.5%) 2 (5.3%)
Lint 38 12 (31.6%) 0 (0.0%)
Relda2-FS 9 7 (77.8%) 7 (77.8%)
Relda2-FI 9 3 (33.4%) 2 (22.2%)
Elite 8 7 (87.5%) 5 (62.5)
Verifier 8 4 (50.0%) 3 (37.5%)

Table 4: Performance of evaluated tools in DroidLeaks, from the reduced dataset

Full reported
leaks

Unique reported
leaks

Total apps analyzed 107

Number of leaks reported 312 127
Unclassified leaks 27 9
Errors 5 4
True positives (TP) 203 86
False positives (FP) 77 28
False negatives (FN) 41 (from reduced dataset)

Precision 0.725 0.754
Recall 0.832 0.677
F-Score 0.775 0.714

Table 5: Results obtained from full analysis

For performance evaluation, we recorded the time our tool took
to setup and run the analysis. To setup the analysis, our tool took,
on average, 43941 milliseconds and, on median, 20577 milliseconds.
To run the analysis it took, on average, 3520 milliseconds and, on
median, 3869 milliseconds. Table 7 shows this recorded times, as
well as total time, presented in milliseconds and in minutes.

7 CONCLUSION
The main objective for this work was to extend EcoAndroid with
automated detection of resource leaks in Android applications. This
result was achieved through the design and implementation of
a fully-precise context- and flow-sensitive inter-procedural static
analysis with the IFDS framework. Our analysis supports the detec-
tion of leaks regarding four frequently used and impactful Android
resources, and can be run in EcoAndroid, in IntelliJ IDEA or An-
droid Studio, and as a command-line tool, if needed. When using
our tool to analyze 107 Android applications from the DroidLeaks
dataset, we have been able to detect 194 previously undetected leaks.
Our analysis achieved a low Bug Detection Rate due to problems
in the frameworks used, but our False Alarm Rate was one of the

best when comparing to the 8 resource leak detectors evaluated in
DroidLeaks. We also obtained a precision of 72.5% and a recall of
83.2% when evaluating the leaks detected in the 107 applications
provided by DroidLeaks.

8 FUTUREWORK
Architecture. While we designed and implemented our extension

with the creation of other analysis in mind, the resulting archi-
tecture can be further improved. Taking into account the need to
run the analysis as a standalone tool, one can abstract the whole
Analysis and Results components into a separated module. This
module could be implemented in such a way that could be used
as a library by any developer. This would allow, for example, a
implementation of our analysis in another IDE like Eclipse.

Use of static analysis frameworks. While static analysis frame-
works like Soot provide the necessary tools to build static analysis,
these frameworks also have problems of their own. In our extension
we observed that Soot’s and FlowDroid’s call graph generation can
sometimes fail, which makes it impossible to run our analysis. An-
other problem that can also happen is the erroneous construction of
call graphs. Although that, in this case, it is possible to run the anal-
ysis, this can cause false positives or false negatives. Unfortunately,
we could not uncover the causes nor fix this type of failures.

Improving intra-procedural analysis. As previously mentioned,
although we have implemented an intra-procedural analysis, our
inter-procedural analysis outperforms it and so it is currently dis-
abled. The intra-procedural analysis could be revisited and im-
proved as much as possible, with the goal of implementing single-
method resource leak analysis in EcoAndroid.

Special mechanisms used by resources. Throughout testing and
evaluation of our analysis, we uncovered that, for the resources
supported, many possess different kinds of mechanisms that affect
how they are acquired and released. One massive improved to our
tool would be taking into account as many special mechanisms
as possible, to improve the true positives detected, and reduce the
false positives.

Refactoring resource leaks. An obvious step in our extension
would be to implement automated refactoring of the detected leaks.

7



2*Resource Full reported leaks Unique reported leaks

Total (%) TP (%) FP (%) Total (%) TP (%) FP (%)

Cursor 165 (53%) 108 (53%) 42 (55%) 63 (50%) 40 (47%) 14 (50%)
SQLite Database 114 (37%) 90 (44%) 20 (26%) 51 (40%) 43 (50%) 6 (21%)
Wakelock 31 (9%) 5 (3%) 13 (17%) 12 (9%) 3 (3%) 7 (25%)
Camera 2 (1%) 0 (0%) 2 (2%) 1 (1%) 0 (0%) 1 (4%)

Sum 312 203 77 127 86 28
Table 6: Results obtained from full analysis, organized per resource

Setup Analysis Total

Average time (ms) 43941 3520 47461
Median time (ms) 20577 3869 24356

Average time (min) 0.73235 0.05866 0.79102
Median time (min) 0.34295 0.06448 0.40593
Table 7: Time performance of the analysis

This would require a greater expertise of how each resource works
and the leaks express themselves in the code, so that the refactoring
would not impact the rest of the application. A similar mechanism
to the refactor of energy patterns could be used.

Broader evaluation. Although the user interacts directly with our
extension, we did not perform user tests due to time constraints. For
future work, an evaluation regarding usability could be performed
and the interaction process improved based on these results.

9 RELATEDWORK
Cruz and Abreu [10] define 22 energy patterns for Android appli-
cations. The detection of 5 of these patterns (i.e. Dynamic Retry
Delay, Push Over Poll, Reduce Size, Cache, and Avoid Extraneous
Graphics and Animations) is already implemented in the current
version of EcoAndroid.

Jiang et al. [16] list typical energy bugs, divided into resource
leaks and layout defects. Resource leaks bugs (also called no-sleep
bugs) refer to when some sensors or wakelocks are acquired, but
never released. Layout defects are related to how the layout of the
activities is constructed.

Pathak and Jindal [21] specify no-sleep bugs into three categories:
no-sleep code path (i.e. when there is a code path that acquires a
component wakelock, but never releases), no-sleep race condition
(i.e. when the power management of a particular component was
carried out by different threads in the application), and finally no-
sleep dilation (i.e. when a component is put to sleep, but after a
long period of time than necessary).

Liu et al. [18] create DroidLeaks, a benchmark of 292 leaks from
33 different resource classes, contained in 32 pouplar and large-scale
open-source Android applications. They categorize the resource

leaks into 2 categories: Android platform resources, and Java plat-
form resources, providing examples on how to acquire and release
them.

Guo et al. [15] create Relda, a tool that detects resource leaks.
Relda uses Androguard to translate the application APK into Dalvik
bytecode. The bytecode is then traversed in sequential order to
build the control-flow graph of the application. To find resource
leaks, an algorithm that uses depth-first search is run, producing a
resource summary.

Wu et al. [28] develop a tool called Relda2 (the successor of the
aforementioned Relda [15]) capable of detecting resource leaks.
Unlike most tools that are built on top of frameworks like Soot and
WALA, Relda2 analyzes Dalvik bytecode directly, leveraging only
Androguard to disassemble the app into the Dalvik bytecode. It
first preprocesses the application and builds a function call graph
to perform inter-procedural analysis which can be flow-sensitive
or flow-insensitive.

Vekris et al. [24] create a tool to verify if an Android application
complies with a set of energy policies, focused on the acquiring
and releasing of wakelocks. The analysis is done by using inter-
procedural data-flow analysis from WALA on a control-flow graph
that has the notion of the Android lifecycle in it.

The Automated Android Energy-Efficiency InspectiON (AEON)
[23] is an IntelliJ IDEA plugin capable of inspecting energy problems
related to the Android API. The plugin is able to detect resource
leaks, mainly focusing on wakelocks. It is also capable of estimating
the energy consumption of methods and has integration with Trepn
profiler. AEON was used in the work of Deng et al. [11] to design
the WakeLock Release Deletion mutation operator, used to mimic
an energy bug.
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