
Vertex Connection and Merging with Vulkan

Pedro Miguel Silva Rodrigues
pedro.m.rodrigues@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

Physically-based rendering algorithms are capable of producing high-quality images of virtual envi-
ronments. Since its introduction, Vertex Connection and Merging (VCM) has proven to be a consistent,
robust, and efficient algorithm. VCM takes advantage of two algorithms, Bidirectional Path Tracing
(BDPT) and Photon Mapping (PM), to generate an image with the strong points of the two referred
algorithms. The problem with these algorithms is the time they take when generating a photo-realistic
image. A solution to this problem may be the use of the Graphics Processing Unit (GPU) instead of
the Central Processing Unit (CPU). To implement this solution, we will use the Vulkan Ray Tracing
extension, a low-level API that was developed to take advantage of the hardware support for ray tracing
present in NVIDIA RTX graphic cards. This thesis intends to explore the implementation of Vertex
Connection and Merging in GLSL and its conversion from the original implementation in the CPU to
the GPU. To have a better understanding of VCM we also implemented separately Vertex Connection
and Vertex Merging, so that we could analyse its impact on the final image.
Keywords: VCM, VUlkan RTX, GPU, Real-time Rendering

1. Introduction

Real-time ray tracing is experiencing an extensive
and fast growth, with special hardware dedicated
to it being developed by many companies in the
field, from the manufacturers of game consoles to
the companies specialized in GPU as Nvidia and
AMD. Even with this technology, full real-time ray
tracing is still difficult to achieve. The best algo-
rithms used in ray-tracing trace many rays per pixel
or many iterations of the same image to get the best
result. This process is very demanding and com-
plex, this way requiring a long runtime. So, the
use of denoising algorithms to improve the image
quality is becoming an industry standard. Using
denoising, we can achieve the same or close results
with less rays per pixel and less iterations. With
the introduction of the NVIDIA RTX graphic card
and the use of denoising algorithms, real-time ray
tracing has become a possibility. However, the algo-
rithms developed until now were optimized to run
in the CPU, so it is important to port them and op-
timize them to the GPU and to find the algorithms
best suited to real-time ray tracing while still deliv-
ering good photo-realistic results.

1.1. Objectives

The main objective of our project is to implement
Vertex Connection and Merging and integrate it
in the Lift [9] Framework, an educational interac-

tive Stochastic Ray Tracing Framework with AI-
Accelerated Denoiser, which uses the Vulkan ray
tracing API in order to find out if it can achieve
photo-realist results while keeping a real time per-
formance and to compare it to other global illu-
mination algorithms that do not achieve the same
quality results but that are less complex. Further-
more, we also want to improve the Framework by
implementing a better bidirectional scattering dis-
tribution function following the Phong model and
another one capable of rendering microfacets.

2. Background

2.1. Ray Tracing

Photo-realistic rendering is the process of generat-
ing an image from a 3D scene description that is
indistinguishable from a photograph of the same
scene, employing techniques that model the interac-
tion between light and matter using physics princi-
ples to simulate reality. The best method to achieve
realistic results is ray tracing (RT). Turner Whitted
introduced Ray tracing in 1980 [15], and he used the
behaviour of light in the real world as inspiration.
Where a light source emits photons, and when they
hit an object, they can be reflected or refracted and
may be absorbed by someone’s eyes. However, in-
stead of having a light source as origin, it originates
from the camera, considering that the probability
of a ray that originated on a light source hit the

1

camera is very low. Therefore, it is more efficient
to start from the camera. Rays are cast from the
camera to the scene, and when they hit an object,
they can be reflected or refracted, originating more
rays, and using next-even estimation, a shadow ray
is cast in the direction of the light source, adding
its contribution.

2.2. The Light Transport Equation
The light transport equation or the rendering equa-
tion, proposed by Kajiya [6], is a mathematical for-
mula that describes the distribution of light in an
equilibrium state. It determines the radiance leav-
ing a point by calculating the sum of the light emit-
ted in direction ωo at point x, plus the radiance in-
cident from all directions scattered in direction ωo.

2.3. Monte Carlo integration
Monte Carlo integration is used to help evaluate
the light transport equation. Solving the integral
of the light transport equation is usually impossible
due to the high dimension and frequent discontinu-
ities. However, Monte Carlo integration solves this
by using random sampling to estimate the values
of integrals. This is done by independently sam-
pling random points according to some probability
density function (pdf) and then computing the es-
timate, turning the integral into a discrete sum.

Fn =
1

N

N∑
i=1

f(Xi)

p(Xi)
(1)

Where N is the number of samples, Xi is the ran-
dom variable from which the samples are drawn,
f(x) is the function to be integrated, p(x) is the
probability density function. The major advantages
of Monte Carlo integration are that, in order to es-
timate the value of

∫
f(x)dx, it only needs to be

able to evaluate it at an arbitrary point in the do-
main, making it easy to implement. Additionally, it
converges at a rate of O(N−1/2) in any dimension,
regardless of the continuity of the integral[11].

2.4. Real-time Rendering
Real-time rendering focuses on rapidly making im-
ages on the computer. As an image appears on
the screen, the viewer acts or reacts, and this feed-
back affects what generated next. This cycle of
rendering and reacting needs to happen at a fast
enough rate that the viewer does not see still im-
ages. Although rasterization is still the most com-
mon and efficient way to achieve real-time render-
ing, ray tracing achieves the results with more re-
alism. Ray tracing light transport methods, path
tracing or derived methods as bidirectional path
tracing or vertex connection and merging are usu-
ally favoured when implementing a real-time ray
tracing renderer due to their scalability and algo-
rithmic complexity. These methods work by solving

the light transport equation[6], using Monte Carlo
integration, so the more rays they send during the
render process, the better the final result, but in
real-time rendering there is a limited, finite time to
render each image, which will result in noisy im-
ages, so a denoiser is usually helpful to improve the
final result while keeping it fast and interactive.

2.5. Path Tracing

When Kajiya[6] proposed the rendering equation,
he also proposed the Path Tracing method to try
and solve it. The Path Tracing algorithm is an
extension of Ray Tracing, so like Ray Tracing, it
is an unbiased method. In this method, rays are
traced originating from the camera to the scene:
every time a ray intersects an object, the bidirec-
tional scattering distribution function (BSDF) is
taken into account. New rays are generated in a
random direction, and trace the scene generating
new rays if an object is intersected until they find
a light source.

2.6. Light Tracing

Light tracing[2] preserves the same ideas as Path
Tracing, with the big difference that the rays, in-
stead of having the camera as their origin, have the
light sources. Rays originate at the light sources,
are traced to the scene, and when they intersect an
object, a new ray is traced to the camera. The
colour contribution is added to the pixel corre-
sponding to the intersection between the ray and
the image plane. Light tracing has some drawbacks
considering that some pixels on the image plane
may never be hit at all. Nonetheless, it is a very
efficient method to find caustics and indirect illu-
mination, which is difficult or impossible to find us-
ing Path Tracing due to the probability of sampling
paths that contribute to these effects being propor-
tional to their impact on the final image.

2.7. Multiple Importance Sampling

Multiple Importance Sampling (MIS) was intro-
duced by Veach in 1995 [13] and is crucial for Monte
Carlo methods. It allows combining samples from
different techniques while minimizing the variance.
To achieve this, it calculates the weight of each
technique used by taking into account the probabil-
ity density function (pdf) values of each technique.
The estimator used:

I =

n∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
(2)

Where n is the number of sampling techniques,
ni the number of samples from technique i and wi

the weighting function. The weights have to sum
up to one and the weighting function is usually the
power heuristic.

2

Figure 1: Sampling the light source, Sampling
the BRDF and Sampling the MIS (Source:Veach
1995[13])

2.8. Bidirectional Path Tracing
Bidirectional Path Tracing[7] (BDPT) was devel-
oped to try and take advantage of the benefits of
Path Tracing and Light Tracing without any of the
drawbacks. Just as in these two methods, paths
are traced originating from both the camera and the
light sources, forming the camera path and the light
path, respectively. Both paths are initiated simulta-
neously. At each iteration, the camera path vertices
are connected to the vertices of the light path. Then
using Multiple Importance Sampling (MIS)[13] each
path contribution is added to determine the result-
ing colour. Even though BDPT has the advantages
of both Path Tracing and Light Tracing, there are
still paths that present difficulties. More precisely,
specular-diffuse-specular (SDS) paths are very chal-
lenging to BPT and other methods because they are
hard to find but have a high impact on the final im-
age.

2.9. Photon Mapping
Photon Mapping[5] is a biased two-pass method
that, contrasting to BDPT, is very effective at cap-
turing SDS paths. In the first pass, photons are
shot originating from the light sources and stored
on a photon map when they intersect an object.
The second pass is identical to Path Tracing. Paths
are traced starting at the camera. Every time it
intersects an object, the photon map is accessed to
compute an estimation of photon density around
the intersection point. From this estimation a bias
is introduced.

Figure 2: A ray traced image (left). The photons
in the corresponding photon map (right). (Source:
H. W. Jensen 1996[5])

2.10. Metropolis Light Transport
Metropolis Light Transport[12] is a method of the
Markov chain Monte Carlo (MCMC) family, pro-
posed to improve Path Tracing methods by mutat-

ing already found paths that carry light. Each new
mutated path depends only on the previous path,
forming a Markov chain. The mutation can be ap-
plied by adding, deleting, or replacing a small set
of vertices on the current path. The resulting path
still needs to be accepted, so, to improve the effi-
ciency of this method, the mutation strategies need
to be carefully designed to guarantee that it not
only generates valid paths but that these paths are
also significantly different, thus making the imple-
mentation of Metropolis Light Transport quite chal-
lenging.

Figure 3: MLT (left), BPT (middle)
and PPM(right) outputs of the same
scene.(Source:Georgiev 2012 [4])

Figure 3 clearly shows that MLT finds more and
better light paths than BDPT. However, sometimes
it can get stuck in an area leading to brighter zones,
as we can see in the front mirror of the car.

3. Vertex Connection and Merging

Vertex Connection and Merging[4] (VCM) is a two-
pass algorithm developed to try and take advantage
of the benefits of photon mapping and bidirectional
path tracing, keeping the high asymptotic perfor-
mance from BDPT for most light path types while
having PM efficiency to reproduce specular-diffuse-
specular lightning effects. In the first stage, it traces
the light paths, connects them to the camera, and
stores the light vertices in a hash grid. In the second
stage, it performs three techniques and, using mul-
tiple importance sampling, adds their contributions
to the pixel resulting colour. It starts by tracing a
camera path to each pixel and then, for each node
in the camera path it connects them to the light
source, it connects them to the light vertices pro-
cessed in the first stage and it merges them with
the light vertices within a predefined merge radius.
VCM can be implemented in an iterative manner
where for every iteration the merge radius is re-
duced, decreasing the bias introduced in the final
image.

3

Figure 4: Comparison between VCM, BDPT and
PM results of the same scene. (Source:Georgiev [4])

As we have discussed, BDPT suffers with
specular-diffuse-specular paths and PM with dif-
fuse illumination. The goal of Vertex Connection
and Merging is to use BDPT to deal with diffuse il-
lumination and to use PM to find SDS paths. This
combination was thought to be impossible, but as
we can see in Figure 4, VCM successfully combined
both techniques. This was only possible thanks to
a reformulation of the process to calculate the MIS
weight of each path by Gerogiev [3].

4. Vertex Connection and Merging
This section consists of a more detailed analysis of
Vertex Connection and Merging algorithm and how
it calculates the MIS weights for each type of path.

4.1. Algorithm Overview

Listing 1: VCM algorithm.

VCMRenderer (){
l i gh tPaths [numPixels] ;
for (int i = 1 ; i <= numPixels ; i++){
LightNode lNode = TraceRay (P ixe l (i)) ;
while (lNode . i sVa l i d ()){
i f (! lNode . Specu lar){
l i gh tPaths . storeLighNode (lNode) ;
ConnectToCamera (lNode) ;

}
lNode = SampleScatter () ;

}
}
BuildRangeStructure (l i gh tPaths) ;
Color c o l o r ;
for (j = 1 ; j <= numPixels ; j++){
CameraNode cNode = TraceRay (i) ;
while (cNode . i sVa l i d ()){
i f (emi s s i v e mate r i a l){
c o l o r += cNode . c o l o r ∗ GetLight () ;
break ;

}
i f (not spe cu l a r) {
c o l o r += ConnectVert ices () ;
c o l o r += MergeVert ices () ;

}
cNode = SampleScatter () ;

}
}

}

Every modern global illumination algorithm has
the objective of efficiently solving the formulated
light transport equation. Veach[11] formulated light
transport over a three dimensional scene as a pure
integration problem. The integral is solved by a
process called Monte Carlo integration. The final
colour of each pixel is expressed as different integra-
tion problems. The values estimated by algorithms
like PT, LT, BDPT or VCM are all approximations
of the real value of the integral, and have some bias
(the difference between the estimated value and the
real value of the integral). The algorithms that have
less bias, called unbiased, are usually favoured over
the others, since they provide more accurate results.

Figure 5: VCM overview. (Source:Georgiev 2012
[4])

Vertex Connection and Merging is the combina-
tion of BDPT and PM, so it uses techniques from
both algorithms. Like BDPT and PM, its first pass
is light tracing. It traces light paths from the light
sources to the scene, connects the light nodes to
the camera and stores the light nodes in a range
structure. The second pass of VCM is where all
computations to estimate the pixel final colour are.
It starts by shooting a ray from the camera to the
scene and every time it intersects an object, it ac-
cesses the stored light nodes to calculate the final
colour using two different techniques, Vertex Con-
nection and Vertex Merging. Vertex Connection
(Stage 2 a) in Figure 5), connects the camera vertex
to all visible light nodes, just like in BDPT. This
technique allows VCM to find paths that carry light
in a fast and efficient way, easily dealing with diffuse
lighting. Vertex Merging (Stage 2 b) in Figure 5),
merges the camera vertex with all light nodes within
merging range, just like PM. With a high number
of light nodes it is important to use a range search
structure to speed up this process. This technique
is capable of finding SDS paths easily. By calculat-
ing the photon density around the camera vertex,
it increases the weight of these kind of paths that
are very hard to find but that have a big impact on
the final result.

5. Implementation
We used SmallVCM as base to develop and inte-
grate VCM in in Lift, a framework developed by
Gonçalo Soares [9], that uses the Vulkan API and

4

its ray tracing extension (VKRay) to take advan-
tage of the RTX graphic card family.

5.1. Vulkan
Vulkan is a standard API that provides high-
efficiency, cross-platform access to modern GPUs.
It is hardware-agnostic, meaning that it does not
require any special hardware adaptations nor its ex-
tension VKRay. One important feature we used in
this thesis is shader programming. In our solution,
we used GLSL to implement VC, VM and VCM. In
recent years, Vulkan has taken the place of OpenGL
as the industry standard for 3D graphics, improving
on its predecessor by providing more control to the
programmer. Like OpenGL, Vulkan works around
the concept of handles, where VulkanObjects are
recognized at the API level as unique IDs passed
by the drivers. Vulkan is located at a lower-level
than OpenGL, which means it can use pointers to
the hardware memory buffers being able to access
VRAM from the CPU side.

5.1.1 Vulkan Ray-Tracing extension

Vulkan Ray-Tracing pipeline is different from the
traditional rasterization pipeline. The rasteriza-
tion pipeline contains two programmable shaders,
the Vertex shader and Fragment shader. The Ver-
tex shader is responsible for identifying the triangle
primitive being drawn and pass it to the Fragment
shader where the primitive colour will be calculated.
While in the ray-tracing pipeline there are five pro-
grammable shaders, every shader on the pipeline
must be available for execution at any time, and the
one executed is chosen at runtime. The five different
types of ray-tracing shaders are: Ray Generation,
Intersection, Any Hit, Closest Hit, Miss.

Figure 6: Vulkan Ray tracing Shaders domains and
relationships.

Ray-Tracing requires testing each ray against all
scene primitives, a slow and expensive process. So
Vulkan uses acceleration structures that store the
geometric information of the primitives in the scene
necessary to render, spatially sorted from the cam-
era location, in order to reject potential intersec-
tions in a fast and straightforward way. VKRay

uses acceleration structures modelled as a two-level
structure composed by the bottom level structures
and the top level structures. Bottom level accelera-
tion structures contain geometry data of the objects
in the scene, while Top level acceleration structures
contain a list of references to bottom level nodes.
Bottom level nodes are stored in a tree where its
root is a Top level node representing an object, and
every leaf is a Bottom level node representing the
primitives that constitute that object.

5.2. Lift Framework

The implementation of VCM algorithm was inte-
grated in the Lift framework developed by Gonçalo
Soares[9]. Lift was designed around a rendering ar-
chitecture with progressive refinement that allows
the choice of one of the two light transport tech-
niques, PT or BDPT, the selection of the input
scene and the enabling of a feature to denoise every
frame being generated or just the last one [10].

Figure 7: Lift Framework.

Lift, as we can see in Figure 7, gives the user sev-
eral options: It has the option to activate or deac-
tivate the denoiser and to accumulate rays between
frames; It gives the user the option to define a tar-
get number of accumulated samples or a desired
rendering elapsed time, which can be used to evalu-
ate the different algorithms integrated in the frame-
work. The algorithms integrated are Path Trac-
ing and Bidirectional Path Tracing. We integrated
three more algorithms: Vertex Connection, Vertex
Connection and Merging and an experimental im-
plementation of Vertex Merging to show its impact
in VCM. To compare these global illumination al-
gorithms, Lift provides a different set of statistics:
Frame Size, Frame Rate, Total Frame Duration, De-
noiser Duration, Total Samples and Total Elapsed
Time. Lift also lets the user change the camera set-
tings, the camera move speed and the mouse move
speed.It has some post-processing features that can
be activated or deactivated, Gamma Correction and
Tone Map and lets the user change the exposure
level of the scene. We changed the BRDF used in
the framework and added Phong shading and GGX
materials. To let the users understand the impact
of the roughness value in GGX materials, we added
the option so that users could change the roughness
value of this type of materials. To add value to Lift,

5

we also added more scenes to the list with different
characteristics: ”Cornell Box Dragon 2”, the scene
shown in Figure 7, that shows the impact of dif-
fuse lighting and SDS paths; ”Veach Ajar”, a scene
where the only light source is out of the scene and
can only be accessed through a semi-closed door;
”Gold Ball”, the scene shown in Figure 8 that has
as main element a goldball rendered using GGXma-
terials.

Figure 8: Gold ball with GGX material.

5.3. SmallVCM

Our solution uses SmallVCM, the implementation
given by the authors of VCM [4] as a starting point.
However their implementation was CPU based so
we needed to port it and adapt it to GPU. Small-
VCM was developed in C++ and uses OpenMP to
concurrently render many frames all with different
merging radius.

Figure 9: SmallVCM parallel execution model.

Vulkan initiates the ray-tracing rendering by
sending a 2D grid of rays from the camera plane
to scene, so our shaders must be developed taking
in mind the camera path instead of the calculation
of the frame. This introduces some complications,
namely if and how to reduce the merge radius and
how to handle the light path. Since our solution
needs to be integrated in Lift framework that has
the goal of being able to change the scene being
rendered and the algorithm being used without the
need to recompile it, we implemented the light path
in a non optimized way but that can assure the goal
of the framework.

5.4. Vertex Connection

As we have seen, in the Vulkan ray-tracing pipeline,
there are five different types of programmable
shaders, all important when implementing a global
illumination algorithm. In our implementation of
Vertex Connection, a variant of bidirectional path
tracing[7] implemented in SmallVCM using the re-
cursive formulation developed by Georgiev [3], we
only had to develop the Ray Generation shaders,
as the other shaders had already been developed in
a simple and efficient way that allowed them to be
used in different algorithms. The Vertex Connec-
tion implementation in SmallVCM starts like Ver-
tex Merging and Vertex Connection and Merging.,
by shooting rays from the light source to the scene
and storing the resulting light vertices. However,
Vulkan Ray Generation shader, the starting point
of the VKRay pipeline, sends a ray from the camera
to a pixel. So, we cannot generate all light paths
beforehand. To solve this problem, we start the
ray generation shader by shooting a ray from the
light source to the scene in a random direction and
storing the vertices along its path, which leads to a
lower number of light vertices available when con-
necting light and camera vertices. But the possibil-
ity to accumulate rays between frames provided by
Lift mitigates this problem.

5.5. Vertex Merging

Vertex Merging is a variant of the algorithm Photon
Mapping [5] implemented in SmallVCM using the
recursive formulation developed by Georgiev [3]. It
is used to calculate the photon density of a scene.
Our implementation of VM uses a small number
of light paths to calculate the final colour of each
pixel, because of the way the Vulkan API functions,
namely setting different render contexts for each
pixel.

6

5.6. Vertex Connection and Merging
Vertex Connection and Merging is the result of com-
bining the previous two algorithms, using multiple
importance sampling (MIS) in order to retain the
best qualities of each algorithm. This is the rea-
son why implementing VCM and integrating it in
Lift [9] is the goal of this thesis, since VCM com-
bines the best of Bidirectional Path Tracing and
Photon Mapping, something that until its introduc-
tion by Georgiev [4] was thought to be impossible.

Figure 10: VCM render of Cornell Box.

To implement VCM we had to use the light trac-
ing component of VC. Create the light paths and
store its vertices along the way and their sub-vertex
data to calculate the MIS weight of each path. The
contributions of the techniques VC and VM are
added to the pixel colour during the camera tracing
loop. At every non-specular intersection we con-
nect the camera vertex to the stored light vertices
and merge the camera vertex with the light vertives
within range.

5.7. Phong Shading
BSDF can be decomposed into two components,
BRDF bidirectional reflectance distribution func-
tion when referring only to the reflected compo-
nent and BTDF bidirectional transmittance distri-
bution function, referring to the scattered transmit-
ted through a material.

5.8. Sampling Multiple Lobes BSDF
Most of the time, when light intercepts a surface, it
produces scattering with multiple different charac-
teristics at the same time. When light intersects a
glass like object, it showcases reflection and refrac-
tion simultaneously with different weights for each
component. The way light interacts with surfaces
can be divided into different components, which are
generally called lobes: Diffuse, Specular, Reflection
and Refraction. VCM functions using path trac-
ing and light tracing, meaning that every time a
path intercepts an object, it can only create one
new path instead of several paths, creating a tree
where paths divide themselves at each intersection.
To ensure that only one new path is created, it is
calculated the probability of each lobe for every ma-
terial, taking into consideration the contribution of
each lobe to the final result.

5.9. Lobes and Shading Models
The Phong BSDF is composed by a Lambertian
term for diffuse reflection plus the Phong specular
term for glossy reflection:

fr(ωi, ωo) =
ρD
π

+ ρS
α+ 2

2π
(ωo ·R)α (3)

To sample the diffuse term the importance distri-
bution used is a cosine-weighted distribution, while
the one used to sample the specular term is derived
from its expression. It does not use the same dis-
tribution because of the spiked shape of the glossy
term.

5.10. Cook-Torrance BSDF
Cook-Torrance BSDF [1], just like the BSDF func-
tion we have just explained, can be divided into
different components. The difference between both
BSDF function lies in the Specular component.
Cook-Torrance BSDF is capable of rendering mi-
crofacet models that describe the roughness of sur-
faces as a compilation of small microfacets, very
small perfect reflectors described by three different
functions D, F and G.

fspecular =
DFG

4(ωo · n)(ωi · n)
(4)

D is the distribution function. It statistically de-
scribes the amount of microfacets that are aligned
with the halfway vector, which is the vector between
the surface normal and the light direction. There
are many distribution functions that can be used
to calculate D and we used the Trowbridge-Reitz
GGX [14] distribution function:

D(n, h, α) =
α2

π((n · h)2(α2 − 1) + 1)2
(5)

Where α is the roughness of the surface and 0 ≤
α ≤ 1.

7

Figure 11: GGX Distribution. Roughness values.

When the surface is smooth, its roughness value
us closer to zero, which means that there is a high
number of microfacets concentrated in a small ra-
dius pointing to the halfway vector. And as the
roughness increases, so does the number of micro-
facets pointing to the halfway vector. However,
they are much more dispersed, leading to a grey-
ish result. The geometry function, G, is used to
describe how the microfacets shadow each other,
leading to an attenuation of the light. It calculates
the probability of a given point in a surface being
shadowed by the surrounding microfacets. The ge-
ometry function we will use is derived from the dis-
tribution function:

GGGX(n, h, k) =
n · v

(n · v)(1− k) + k
(6)

k =
(α+ 1)2

8
(7)

Figure 12: GGX Geometry. Roughness values.

The geometry function returns a value between
[0,1] and as we can see, the higher the roughness
of the surface, the lower the value returned from
the geometry function. This is because the surfaces
with higher values of roughness will have more mi-
crofacets shadowing each other, leading to darker
colours. The fresnel function, F , simulates the way
light interacts with a surface at different angles, cal-
culating the percentage of light that gets reflected.
Every material has a base level of reflectivity when
looked directly upon. But when looking at it from
different angles, its reflections become more appar-
ent. Theoretically all surfaces reflect light when
seen from a 90 degree angle. This is called the
fresnel effect. However, the fresnel equations are
very complex and they differ from conductive to di-
electrics materials so we will use an approximation
introduced by Shlick [8]:

FShlick(h, v, F0) = F0 + (1− F0)(1− (h · v)5) (8)

Where F0 represents the base reflectivity, and is
calculated using the index of refraction (IOR) of the
medias present at the intersection point.

6. Evaluation

To evaluate if our implementation of VCM im-
proves on the already developed algorithms, PT and
BDPT we needed to evaluate the quality of its out-
put. We also evaluated its performance to confirm
if it can keep a real-time performance.

6.1. Evaluation Methodology

To evaluate the algorithms implemented, VC and
VCM, and compare them with the algorithms al-
ready developed and integrated in Lift, PT and
BDPT, we use a set of scenes with different char-
acteristics such as reflected caustics, low light and
difficult to reach light sources. All the results were
obtained in the same hardware.

6.2. NVIDIA Nsight Graphics

NVIDIA Nsight Graphics is a powerful tool used
to debug, profile and export frames from applica-
tions that use the Vulkan API, among others. It
is a complex tool with many configurations: Frame
Debugger, Frame Profiler, Generate C++ Capture,
GPU Trace and System trace (Figure 13).

Figure 13: Nsight Graphics launch menu.

We used the options Frame Profiler and GPU
Trace to analyze the performance of our implemen-
tation and compare it to other algorithms in Lift.
Frame Profiler gives the option to analyze the be-
haviour of our implementation and of the hardware
when rendering one frame. As we can see from Fig-
ure ??, Lift is very efficient and after ending the
Render Pass, it was rendering the next frame in less
than one millisecond. Since we had the opportunity,
we also used the option to profile the shaders and
evaluate the time distribution between them when
rendering one frame. From Figure ??, we can con-
firm what we have discussed in Section 5.2. When
rendering a frame, 49% of the time is spent in the

8

Ray Generation shader. This was expected as the
complex calculations to find the pixel final colour
are all done in this shader. We also did this eval-
uation with VCM to understand the impact of its
higher complexity, and as we can see in VCM, the
Ray Generation shader takes even a bigger percent-
age of the time.

6.2.1 Structural Dissimilarity

Structure Dissimilarity Index Metric (DSSIM) is an
image quality metric that compares the differences
between two images. It returns a positive value and
the closer the images look alike, the closer its value
is to 0, and if it returns 0, it means that there are no
differences in the two images. DSSIM is calculated
using SSIM, DSSIM = 1/SSIM − 1.

6.2.2 Peak Signal-To-Noise Ratio

Image quality can be subjective, and so Peak
Signal-To-Noise Ratio (PSNR) works as an approx-
imation to the human perception of reconstruction
quality. PSNR is used to measure the noise in a dis-
torted image when compared to the reference image.
It can be used to evaluate compression or render-
ing algorithms. The higher the value it returns, the
closer the distorted image is to the reference one.
For an 8-bit image, values closer to 50db mean that
there is almost no noise in the rendered image.

6.2.3 Frames per Second

This metric evaluates the number of frames ren-
dered per second. We will calculate the average
and calculate how much time it took to render each
frame. This metric is important to evaluate the
responsiveness of our implementation and if it can
keep a real-time performance perceived as a mini-
mum of 30 frames per second.

6.2.4 Time to Converge

This metric will be used in a static scene to mea-
sure how the quality of the output of each algorithm
evolves and how long it takes to converge to the ref-
erence image. We will also evaluate how the quality
of the image evolves per frame rendered. This way
we can evaluate the algorithms that need less

7. Test Scenes
To test the performance and the quality of our so-
lution we have chosen scenes with different levels of
complexity and different characteristics.

7.0.1 Japanese Classroom

These results confirm how efficiently VCM deals
with diffuse lighting. In spite of the fact that BDPT

is an algorithm that also deals deals well with dif-
fuse lighting, it is clear that the implementation in-
tegrated in Lift does not reach the expected results,
achieving worse results than VC. Even though VM
adds complexity to VCMin scenes with no caustics
and where the low number of light paths leads to
a reduced impact by VM,VCM still keeps up with
VC, getting the same DSSIM over time.

Figure 14: VCM classroom render after 4096
frames.

0 0.5 1 1.5 2 2.5 3 3.5

2

4

6

Time[s]

D
S
S
IM

Classroom

Path Tracer
VCCM
VC

Figure 15: Japanese Classroom DSSIM over time

7.0.2 Dining Room

This scene is composed almost exclusively of diffuse
materials and the only light in the scene is coming
from a semi closed window. VCM is able to find dif-
ficult to reach light carrying paths easier than PT.
However, in this scene PT is still able to outperform
BDPT and VCM in time and iterations needed to
converge to the solution.

Figure 16: PT dining room render after 4096
frames.

9

Table 1: DSSIM evolution over frames rendered.

Implementation Frames DSSIM PSNR

PT 1 1.477086946 17.34
PT 256 0.669449082 27.43
PT 1024 0.286339079 32.22
PT 4096 0.083306251 38.68
VCM 1 1.341920375 17.77
VCM 256 0.674761347 24.56
VCM 1024 0.366493577 25.9
VCM 4096 0.231982259 26.49

8. Conclusions

With the results obtained during this thesis we can
conclude that for more complex scenes Vertex Con-
nection and Merging will achieve better results than
Path Tracing and Bidirectional Path Tracing. How-
ever, those are the same scenes where it canot keep
a real-time performance. It would be interesting to
evaluate this implementation with the new NVIDIA
Geforce RTX 3080 to see if this implementation is
capable of keeping a real-time performance with the
best hardware available today. It would be impor-
tant in the future to try and reformulate the Frame-
work to be able to construct the light paths before
starting the rendering process. It would reduce the
rendering time of BDPT, VCM and VC. This way,
all light vertices would be available during the cam-
era tracing process, which would lead to better final
results. However it would also be necessary to use
a hash grid, as a range search structure, to iden-
tify the light vertices that are within range of the
camera vertex. With this improvement, it would
be easy to implement a Progressive Photon Map-
ping [5], which would add even more value to Lift.

Acknowledgements

I would like to thank Instituto Superior Técnico for
the high quality education provided to me, and in
particular to my thesis supervisor for always being
available to help and support me during this pro-
cess.

References

[1] R. L. Cook and K. E. Torrance. A reflectance
model for computer graphics. ACM Trans.
Graph., 1:7–24, 1982.

[2] Ph. Dutré, E. P. Lafortune, and Y. D. Willems.
Monte carlo light tracing with direct compu-
tation of pixel intensities. In 3rd Interna-
tional Conference on Computational Graphics
and Visualisation Techniques, pages 128–137,
Alvor, Portugal, December 1993.

[3] I. Georgiev. Implementing vertex connection
and merging. Technical report, Saarland Uni-
versity, 2012.

[4] I. Georgiev, J. Křivánek, T. Davidovič, and
P. Slusallek. Light transport simulation with
vertex connection and merging. ACM Trans.
Graph., 31(6), Nov. 2012.

[5] H. W. Jensen. Global illumination using pho-
ton maps. In X. Pueyo and P. Schröder, ed-
itors, Rendering Techniques ’96, pages 21–30,
Vienna, 1996. Springer Vienna.

[6] J. T. Kajiya. The rendering equation. ACM
Siggraph Computer Graphics, 20(4):143–150,
Aug. 1986. doi:10.1145/15886.15902.

[7] E. P. Lafortune and Y. D. Willems. Bi-
directional path tracing. In Proceedings of
Third International Conference on Computa-
tional Graphics and Visualization Techniques
(Compugraphics ’93), pages 145–153, Alvor,
Portugal, December 1993.

[8] C. Schlick. An inexpensive brdf model for
physically-based rendering. Computer Graph-
ics Forum, 13(3):233–246, 1994.

[9] G. Soares. Interactive physics-based rendering
with ai-accelerated denoiser. Master’s thesis,
Instituto Superior Técnico, 2020.

[10] G. Soares and J. M. Pereira. Lift: An educa-
tional interactive stochastic ray tracing frame-
work with ai-accelerated denoiser. WSCG
2021: full papers proceedings: 29, pages 325–
334, 2021.

[11] E. Veach. Robust Monte Carlo Methods for
Light Transport Simulation. PhD thesis, Stan-
ford, CA, USA, 1998. AAI9837162.

[12] E. Veach and L. Guibas. Metropolis light
transport. Computer Graphics (SIGGRAPH
’97 Proceedings), 31, 02 1970.

[13] E. Veach and L. J. Guibas. Optimally combin-
ing sampling techniques for monte carlo ren-
dering. In Proceedings of the 22nd Annual Con-
ference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, page 419–428,
New York, NY, USA, 1995. Association for
Computing Machinery.

[14] B. Walter, S. R. Marschner, H. Li, and K. E.
Torrance. Microfacet models for refraction
through rough surfaces. In Proceedings of the
18th Eurographics Conference on Rendering
Techniques, EGSR’07, page 195–206, Goslar,
DEU, 2007. Eurographics Association.

[15] T. Whitted. An improved illumination
model for shaded display. Commun. ACM,
23(6):343–349, June 1980.

10

