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ABSTRACT
In this work, we present a novel Bayesian online prediction algo-
rithm for the problem setting of ad hoc teamwork under partial
observability (ATPO), which enables on-the-fly collaboration with
unknown teammates performing an unknown task without needing
a pre-coordination protocol. Unlike previous works that assume a
fully observable state of the environment, ATPO accommodates par-
tial observability, using the agent’s observations to identify which
teammate it is cooperating with as well as which task is being
performed by the teammate. This approach does not assume that
the teammate’s actions are visible. We explore different scenarios
such as the need to identify and adapt to its teammates according
to their behaviour, as well as identifying which of the known tasks
its teammate is looking to accomplish, and act accordingly. The
results show that ATPO can efficiently and robustly identity which
capture its teammate is working towards as well as performing
reasonably at identifying its teammate. Additionally, its efficiency
at achieving a given goal varies with the amount of information
given to it. Its performance can range from near-optimal, when it
knows which goal to achieve but not how its teammate behaves,
and performing 57% slower than the optimal behaviour, when it
knows neither its teammate behaviour nor which goal he needs to
achieve. Finally, it showcases good scalability, being able to adapt to
increasingly larger problem sizes as well as increasingly uncertain
environments.
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1 INTRODUCTION
The problem of ad hoc teamwork was first proposed by Stone et al.
[20], and considers an autonomous agent (the “ad hoc agent”) de-
ployed into an existing group of “teammates”, with whom it must
engage in teamwork while having no pre-established communica-
tion or coordination protocols. Previous works on ad hoc teamwork
rely on strong assumptions regarding the interaction between the
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“ad hoc agent” and the “teammates”. For example, Barrett et al.
[4], Bu et al. [7], Hu et al. [13] consider that a reward signal is
available to the agents to learn from, casting the problem of ad
hoc teamwork as a specialization of multiagent RL. Other works
do not consider an RL setting, instead, assuming that the team is
performing one among a set of possible tasks, and use the observed
teammate behavior to infer the target task [10, 15]. Closest to our
work, Ribeiro et al. [18] recently proposed an approach to ad hoc
teamwork where the actions of the teammates are not assumed
observable; however, the underlying state of the environment is.

Full state observability is a strong assumption within the ad hoc
teamwork setting, as it significantly restricts the applicability of
such an approach to very narrow settings. Either all tasks share
the state space and dynamics (and thus differ only in their goal) or
—if the dynamics are different—such differences greatly facilitate
identifying the underlying task.

In this work, we address ad hoc teamwork with partial observ-
ability. In this setting, the “ad hoc agent” can only access a limited
view of the environment state and must (i) infer what the underly-
ing target task may be; (ii) infer how the teammate is playing it; (iii)
plan how to coordinate with the teammate. Moreover, the agent
cannot observe the actions of the teammates nor communicate with
them.

The setting of ad hoc teamwork with partial observability signif-
icantly broadens the applicability of ad hoc teamwork in real-world
scenarios. It allows for a much richer set of possible tasks, with
widely different dynamics and states that need only to share the per-
ceptual space of the ad hoc agent. It is, therefore, suited to address
tasks involving ad hoc robotic agents, accommodating the natural
perceptual limitations of robotic platforms.

To address partial observability, we build a model that encapsu-
lates the “perceptual dynamics” associated with each task and use
the history of observations of the agent to estimate which team-
mate and which task best matches such perceptual dynamics. Our
results illustrates that our approach, ATPO (Ad hoc Teamwork with
Partial Observability) can perform well in situations where it needs
to identify the teammates goal or behaviour, coordinating with the
teammate towards a given objective with a small delay.

In summary, our contributions are threefold:

• We contribute the formalisation of ad hoc teamwork under
partial observability;

• We propose ATPO, a novel approach for ad hoc teamwork
with partial observability that infers the underlying team-
mate or target task from the agent’s history of observations;

• We illustrate the applicability and result analysis of our ap-
proach in a partially observable variant of the pursuit do-
main.



1.1 Related Work
Since the seminal work of Stone et al. [20], there has been a sig-
nificant volume of work on ad hoc teamwork with a variety of
environments, objectives and assumptions. Following the discus-
sion of Melo and Sardinha [15], we can break down the ad hoc
teamwork problem into three key subproblems: task identification,
teammate identification, and planning. Early works focused mostly
on the planning part, assuming that the ad hoc agent knew the
target task and the teammate behavior [1, 9, 11, 21, 22].

More recently, Barrett et al. introduced the PLASTIC framework
[4, 5], in which the ad hoc agent handles all three subproblems of ad
hoc teamwork. PLASTIC assumes a reinforcement learning setup,
where the ad hoc agent has access to a reward signal that it uses to
learn the target task. At the same time, the agent can observe the
teammates’ actions and use these to build a model of how they act,
thus eventually learning how to coordinate with them. Finally, ad
hoc teamwork takes place by identifying, at run time, the current
team with one of those that the agent knows about and acting
accordingly.

In a closely related line of work, Melo and Sardinha [15], Ribeiro
et al. [18] assume that there is a pre-defined set of tasks and use
the observed trajectories of states to determine the target task and
the teammates’ strategy, thus enabling the agent to act accordingly.
More recently, Hu et al. [12] introduce the closely related problem
of zero-shot coordination. In zero-shot coordination, an agent must
assist independently trained teammates on first-attempt [8, 14, 23].

However, all previous works assume that the ad hoc agent can
always observe the state of the environment and, in most works,
the teammates’ actions. Such assumption, however, will seldom be
met in practice since ad hoc agents in the real world will often be
plagued by issues of partial observability.

Our work alleviates such strong assumptions and addresses ad
hoc teamwork in scenarios where the ad hoc agent cannot observe
the teammates’ actions and has only access to a partial and noisy
view of the state of the environment. We describe the set of possible
tasks as a partially observable Markov decision problem and use
a Bayesian approach to map the history of observations of the ad
hoc agent into a belief over the set of possible tasks. In this, our
work is perhaps closest to that of Fern et al. [10] on the problem
of assistance, where an (assistant) agent must help a teammate in
solving a given sequential task under uncertainty. In that work, the
authors model the problem using a partially observable Markov
decision problem, always considering that the teammate’s actions
are accessible to the assistant. However, our setting is more broadly
applicable because we do not make such an assumption on the
observability of the teammate’s actions.

2 BACKGROUND
In this work, we address ad hoc teamwork under partial observabil-
ity using a decision-theoretic framework. This section introduces
some key concepts and sets up the nomenclature regarding Markov
decision problems and related models.

2.1 Markov decision problems
A Markov decision problem [17], or MDP, is denoted as a tuple
(X,A, {P𝑎, 𝑎 ∈ A} , 𝑟 , 𝛾), whereX is the state space,A is the action

space, P𝑎 is a transition probability matrix, where P𝑎 (𝑥 ′ | 𝑥) is
probability of moving from state 𝑥 to 𝑥 ′ given action 𝑎 ∈ A, 𝑟 is
the expected reward function, and 𝛾 ∈ [0, 1] is a discount factor.

A policy 𝜋 maps states to distributions over actions. We write
𝜋 (𝑎 | 𝑥) to denote the probability of selecting action 𝑎 in state 𝑥
according to policy 𝜋 . Solving an MDP consists of determining a
policy 𝜋 to maximize the value

𝑣𝜋 (𝑥) ≜ E𝐴𝑡∼𝜋 (𝑋𝑡 )

[ ∞∑
𝑡=0

𝛾𝑡𝑅𝑡 | 𝑋0 = 𝑥
]
, (1)

for any initial state 𝑥 ∈ X. In the above expression, 𝑋𝑡 , 𝐴𝑡 and 𝑅𝑡
denote the (random) state, action and reward at time step 𝑡 . The
function 𝑣𝜋 : X → R is called a value function, and a policy 𝜋∗ is
optimal if, given any policy 𝜋 , 𝑣𝜋∗ (𝑥) ≥ 𝑣𝜋 (𝑥), for all 𝑥 ∈ X. The
value function associated with an optimal policy is denoted as 𝑣∗
and can be computed using, for example, dynamic programming.
An optimal policy, 𝜋∗, is such that 𝜋∗ (𝑎 | 𝑥) > 0 only if 𝑎 ∈
argmax𝑞∗ (𝑥, ·), where

𝑞∗ (𝑥, 𝑎) = 𝑟 (𝑥, 𝑎) + 𝛾
∑
𝑥 ′∈X

P𝑎 (𝑥 ′ | 𝑥)𝑣∗ (𝑥 ′).

2.2 Multiagent Markov decision problems
A multiagent MDP (MMDP) is an extension of MDPs to multiagent
settings and can be described as a tuple

M = (𝑁,X,
{
A𝑛, 𝑛 = 1, . . . , 𝑁

}
, {P𝒂, 𝒂 ∈ A} , 𝑟 , 𝛾),

where 𝑁 is the number of agents, X is the state space, A𝑛 is the
individual action space for agent 𝑛, P𝒂 is the transition probabil-
ity matrix associated with joint action 𝒂, 𝑟 is the expected reward
function, and 𝛾 is the discount. We write A to denote the set of
all joint actions, corresponding to the Cartesian product of all in-
dividual action spaces A𝑛 , i.e., A = A1 × A2 × . . . × A𝑁 . We
also denote an element of A𝑛 as 𝑎𝑛 and an element of A as a
tuple 𝒂 = (𝑎1, . . . , 𝑎𝑁 ), with 𝑎𝑛 ∈ A𝑛 . We write 𝒂−𝑛 to denote a
reduced joint action, i.e., a tuple 𝒂−𝑛 = (𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛+1, . . . , 𝑎𝑁 ),
and thus A−𝑛 is the set of all reduced joint actions. We adopt, for
policies, a similar notation. Specifically, we write 𝜋𝑛 to denote an
individual policy for agent 𝑛, 𝝅 = (𝜋1, . . . , 𝜋𝑁 ) to denote a joint
policy, and 𝝅−𝑛 to denote a reduced joint policy.

The common goal of the agents in an MMDP is to select a joint
policy, 𝝅∗, such that 𝑣𝝅∗ (𝑥) ≥ 𝑣𝝅 (𝑥), where, as before,

𝑣𝝅 (𝑥) = E𝑨𝑡∼𝝅 (𝑋𝑡 )

[ ∞∑
𝑡=0

𝛾𝑡𝑅𝑡 | 𝑋0 = 𝑥
]
. (2)

In other words, an MMDP is just an MDP in which the action
selection process is distributed across 𝑁 agents, and can be solved
by computing 𝝅∗ from 𝑣∗ as standard MDPs.

2.3 Partially observable MDPs
A partially observable MDP, or POMDP, is an extension of MDPs to
partially observable settings. A POMDP can be described as a tuple
(X,A,Z, {P𝑎, 𝑎 ∈ A} , {O𝑎, 𝑎 ∈ A} , 𝑟 , 𝛾), whereX,A, {P𝑎, 𝑎 ∈ A},
𝑟 , and 𝛾 , are the same as in MDPs,Z is the observation space, and
O𝑎 is the observation probability matrix, where

O𝑎 (𝑧 | 𝑥) = P [𝑍𝑡+1 = 𝑧 | 𝑋𝑡+1 = 𝑥,𝐴𝑡 = 𝑎] .



The belief at time step 𝑡 is a distribution 𝒃𝑡 such that

𝑏𝑡 (𝑥) ≜ P [𝑋𝑡 = 𝑥 | 𝑋0 ∼ 𝒃0, 𝐴0 = 𝑎0, 𝑍1 = 𝑧1, . . . , 𝑍𝑡 = 𝑧𝑡 ] ,

where 𝒃0 is the initial state distribution. Given the action 𝑎𝑡 and
the observation 𝑧𝑡+1, we can update the belief 𝑏𝑡 to incorporate the
new information yielding

𝑏𝑡+1 (𝑥 ′) = Bel(𝑏𝑡 , 𝑎𝑡 , 𝑧𝑡+1)

≜
1

𝜌𝑡+1

∑
𝑥 ∈X

𝑏𝑡 (𝑥)P(𝑥 ′ | 𝑥, 𝑎𝑡 )O(𝑧𝑡+1 | 𝑥 ′, 𝑎𝑡 ), (3)

where 𝜌𝑡+1 is a normalization factor. Every finite POMDP admits
an equivalent belief-MDP with 𝑏𝑡 being the state of this new MDP
at time step 𝑡 . A policy in a POMDP can thus be seen as mapping 𝜋
from beliefs to distributions over actions, and we define

𝑣𝜋 (𝑏) ≜ E𝐴𝑡∼𝜋 (𝑏𝑡 )

[ ∞∑
𝑡=0

𝛾𝑡𝑅𝑡 | 𝑏0 = 𝑏
]
. (4)

As in MDPs, the value function associated with an optimal policy
is denoted as 𝑣∗ and can be computed using, for example, point-
based approaches [16]. From 𝑣∗, the optimal 𝑄-function can now
be computed as

𝑞∗ (𝑏, 𝑎) =
∑
𝑥 ∈X

𝑏 (𝑥)
[
𝑟 (𝑥, 𝑎)

+ 𝛾
∑
𝑧∈Z

∑
𝑦∈X

P(𝑦 | 𝑥, 𝑎)O(𝑧 | 𝑦, 𝑎)𝑣∗ (Bel(𝑏, 𝑎, 𝑧))
]
,

yielding as optimal any policy 𝜋∗ such that 𝜋∗ (𝑎 | 𝑏) > 0 only if
𝑎 ∈ argmax𝑎∈A 𝑞∗ (𝑏, 𝑎).

3 AD HOC TEAMWORK UNDER PARTIAL
OBSERVABILITY

In this section, we introduce our key contributions to ad hoc team-
work under partial observability.

3.1 Problem formulation
We consider a team of 𝑁 agents engaged in a cooperative task
(henceforth referred as “target task”), described as an MMDP𝑚 =

(𝑁,X, {A𝑛} , {P𝑎} , 𝑟 , 𝛾). One of the agents (the focus of our work)
does not know the task beforehand but must, nevertheless, engage
in ad hoc teamwork with the remaining agents to complete the
unknown task. We refer to such agent as the “ad hoc agent” and
denote it as 𝛼 , and refer to the remaining𝑁 −1 agents collectively as
the “teammates”. Formally, we treat the teammates as a “meta-agent”
and denote it as −𝛼 .

We assume that the teammates all know the target task. The
ad hoc agent, however, does not. Instead, it knows only that the
target task is one among 𝐾 possible tasks, where each task can be
represented as an MMDP

𝑚𝑘 = (2,X𝑘 ,
{
A𝛼 ,A−𝛼

𝑘

}
,
{
P𝑘,𝒂, 𝒂 ∈ A

}
, 𝑟𝑘 , 𝛾𝑘 ) . (5)

Note that we require the action space and state space of the ad hoc
agent, A𝛼 , to be the same in all tasks. Other than that, we impose
no restrictions on dynamics or reward describing these tasks (in
particular, they may all be different).

Let 𝜋−𝛼
𝑘

denote a teammates optimal policy for task 𝑘, 𝑘 =

1, . . . , 𝐾 . Then, for task 𝑘 , we have

P𝑘 (𝑦 | 𝑥, 𝑎𝛼 ) ≜ P[𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥,𝐴𝛼 = 𝑎𝛼 ,

𝐴−𝛼 ∼ 𝜋−𝛼
𝑘

(𝑥), 𝑀 =𝑚𝑘 ], (6)

for 𝑥,𝑦 ∈ X𝑘 , where we write 𝑀 =𝑚𝑘 to denote the fact that the
transitions in (6) concerns task 𝑘 .

Let us now suppose that, at each moment, the ad hoc agent can-
not observe the underlying state of the environment. Instead, at
each time step 𝑡 , the agent can only access an observation 𝑍𝑡 . We
assume that the observations 𝑍𝑡 take values in a (task-independent)
set Z and depend both on the underlying state of the environ-
ment and the previous action of the agent (not the teammates).
Specifically, for each task 𝑘 = 1, . . . , 𝐾 , we assume that there
is a family of task-dependent observation probability matrices,
O𝑘,𝑎𝛼 , 𝑘 = 1, . . . , 𝐾, 𝑎𝛼 ∈ A𝛼 , with

O𝑘 (𝑧 | 𝑥, 𝑎𝛼 ) = P
[
𝑍𝑡 = 𝑧 | 𝑋𝑡 = 𝑥,𝐴𝛼𝑡−1 = 𝑎

𝛼 , 𝑀 =𝑚𝑘
]
. (7)

The elements [O𝑘,𝑎]𝑥𝑧 are only defined for 𝑥 ∈ X𝑘 . Thus, from
the ad hoc agent’s perspective, each task 𝑘 defines a POMDP �̂�𝑘
corresponding to the tuple

(X𝑘 ,A𝛼 ,Z,
{
P𝑘,𝑎𝛼 , 𝑎

𝛼 ∈ A𝛼
}
,
{
O𝑘,𝑎𝛼 , 𝑎

𝛼 ∈ A𝛼
}
, 𝑟𝑘 , 𝛾𝑘 ) .

We denote the solution to �̂�𝑘 as 𝜋𝑘 .

3.2 Algorithm
We adopt a Bayesian framework and treat the target task as a
random variable,𝑀 , taking values in the set of possible MMDP task
descriptions,M = {𝑚1, . . . ,𝑚𝐾 }. For𝑚𝑘 ∈ M, let 𝑝0 (𝑚𝑘 ) denote
the ad hoc agent’s prior over M. Additionally, let 𝐻𝑡 denote the
random variable corresponding to the history of the agent up to
time step 𝑡 , defined as

𝐻𝑡 =
{
𝑎𝛼0 , 𝑧1, 𝑎

𝛼
1 , 𝑧2, . . . , 𝑎

𝛼
𝑡−1, 𝑧𝑡

}
. (8)

Then, given a history ℎ𝑡 , we define

𝑝𝑡 (𝑚𝑘 ) ≜ P [𝑀 =𝑚𝑘 | 𝐻𝑡 = ℎ𝑡 ] , 𝑚𝑘 ∈ M . (9)

The distribution 𝑝𝑡 corresponds to the agent’s belief about the
target task at time step 𝑡 . The action for the ad hoc agent at time
step 𝑡 can be computed within our Bayesian setting as

𝜋𝑡 (𝑎𝛼 | ℎ𝑡 ) ≜ P
[
𝐴𝛼𝑡 = 𝑎𝛼 | 𝐻𝑡 = ℎ𝑡

]
=

𝐾∑
𝑘=1

𝜋𝑘 (𝑎𝛼 | 𝑏𝑘,𝑡 )𝑝𝑡 (𝑚𝑘 ),

where
𝑏𝑘,𝑡 (𝑥) ≜ P [𝑋𝑡 = 𝑥 | 𝐻𝑡 = ℎ𝑡 , 𝑀 =𝑚𝑘 ] , (10)

for 𝑥 ∈ X𝑘 . Upon selecting an action 𝑎𝛼𝑡 and making a new obser-
vation 𝑧𝑡+1, we can update 𝑝𝑡 by noting that

𝑝𝑡+1 (𝑚𝑘 )
= P

[
𝑀 =𝑚𝑘 | 𝐻𝑡+1 =

{
ℎ𝑡 , 𝑎

𝛼
𝑡 , 𝑧𝑡+1

}]
=

1
𝜌
P
[
𝐴𝛼𝑡 = 𝑎𝛼𝑡 , 𝑍𝑡+1 = 𝑧𝑡+1 | 𝑀 =𝑚𝑘 , 𝐻𝑡 = ℎ𝑡

]
· P [𝑀 =𝑚𝑘 | 𝐻𝑡 = ℎ𝑡 ]

=
1
𝜌
P
[
𝐴𝛼𝑡 = 𝑎𝛼𝑡 , 𝑍𝑡+1 = 𝑧𝑡+1 | 𝑀 =𝑚𝑘 , 𝐻𝑡 = ℎ𝑡

]
𝑝𝑡 (𝑚𝑘 ),



where 𝜌 is some normalization constant. Moreover,

P
[
𝐴𝛼𝑡 = 𝑎𝛼𝑡 , 𝑍𝑡+1 = 𝑧𝑡+1 | 𝑀 =𝑚𝑘 , 𝐻𝑡 = ℎ𝑡

]
= P

[
𝑍𝑡+1 = 𝑧𝑡+1 | 𝐴𝛼𝑡 = 𝑎𝛼𝑡 , 𝐻𝑡 = ℎ𝑡 , 𝑀 =𝑚𝑘

]
· P

[
𝐴𝛼𝑡 = 𝑎𝛼𝑡 | 𝐻𝑡 = ℎ𝑡 , 𝑀 =𝑚𝑘

]
=

∑
𝑦∈X𝑘

O𝑘 (𝑧𝑡+1 | 𝑦, 𝑎𝛼𝑡 )

· P
[
𝑋𝑡+1 = 𝑦 | 𝐴𝛼𝑡 = 𝑎𝛼𝑡 , 𝐻𝑡 = ℎ𝑡 , 𝑀 =𝑚𝑘

]
𝜋𝑡 (𝑎𝛼 | ℎ𝑡 ),

where the last equality follows from the fact that the agent’s ac-
tion selection given the history does not depend on the task 𝑀 .
Therefore,

P
[
𝐴𝛼𝑡 = 𝑎𝛼𝑡 , 𝑍𝑡+1 = 𝑧𝑡+1 | 𝑀 =𝑚𝑘 , 𝐻𝑡 = ℎ𝑡

]
=

∑
𝑥,𝑦∈X𝑘

O𝑘 (𝑧𝑡+1 | 𝑦, 𝑎𝛼𝑡 )P𝑘 (𝑦 | 𝑥, 𝑎𝛼𝑡 )𝑏𝑘,𝑡 (𝑥)𝜋𝑡 (𝑎𝛼 | ℎ𝑡 ) .

Putting everything together, we get

𝑝𝑡+1 (𝑚𝑘 ) =
1
𝜌

∑
𝑥,𝑦∈X𝑘

O𝑘 (𝑧𝑡+1 | 𝑦, 𝑎𝛼𝑡 )

· P𝑘 (𝑦 | 𝑥, 𝑎𝛼𝑡 )𝑏𝑘,𝑡 (𝑥)𝜋𝑡 (𝑎𝛼 | ℎ𝑡 )𝑝𝑡 (𝑚𝑘 ), (11)

with

𝜌 =

𝐾∑
𝑘=1

∑
𝑥,𝑦∈X𝑘

O𝑘 (𝑧𝑡+1 | 𝑦, 𝑎𝛼𝑡 )

· P𝑘 (𝑦 | 𝑥, 𝑎𝛼𝑡 )𝑏𝑘,𝑡 (𝑥)𝜋𝑡 (𝑎𝛼 | ℎ𝑡 )𝑝𝑡 (𝑚𝑘 ).

𝑏𝑘,𝑡+1 (𝑦) =
1
𝜌

∑
𝑥 ∈X𝑘

𝑏𝑡,𝑘 (𝑥)P𝑘 (𝑦 | 𝑥, 𝑎𝛼𝑡 )O𝑘 (𝑧𝑡+1 | 𝑦, 𝑎𝛼𝑡 ), (12)

where 𝜌 is the corresponding normalization constant. Since some
of the computations in the update (11) are common to the update
(12), some computational savings can be achieved by caching the
intermediate values.

4 EVALUATION
In order to evaluate ATPO, we ran several experiments to respond
to the following questions:

(1) How does ATPO compare with the optimal teammate in
terms of task performance?

(2) How does ATPO scale with: (i) the size of the underlying
problem? (ii) degree of uncertainty?

(3) How well is ATPO able to identify its task ?
To answer these questions, we assess the performance of ATPO

in an adapted pursuit environment that consists of two predators
and one prey, one predator being our ad hoc agent.

4.1 Environment
In order to explain our model of the environment we take the exam-
ple of Figure 1 which is a five by five matrix using a toroidal1 grid
with two predators and one prey. In this scenario we can exemplify

1A toroidal grid consists of a finite grid in which when an agent moves in the direction
outside its space, he gets moved to the opposite edge as shown in Fig.2

all the possible interactions and dynamics of our model. Our sce-
nario of the pursuit domain, as represented in Fig. 4.3 is composed
by three agents, our ad hoc agent (predator in green), the ad hoc
teammate (predator in blue) and the prey (in red). When explor-
ing its environment, i.e., after each action, our agent is presented
with information about other entities around him, indicating their
position, which can be wrong at any point.

Consider Fig.1a depicting a given environment state where the
bottom left corner is the position reference point (0, 0), we then
have

• Ad hoc agent - (1, 2)
• Prey position - (3, 1)
• Teammate position - (3, 4)

Fig. 1b represents the same state in the perspective of our ad hoc
agent, where the observation of the entities on the world might not
be correct. In this specific case we have a correct observation of the
prey in position (3, 1) and a wrong observation of its teammate in
position (2, 4) instead of (3, 4). This means that at each time step,
any entity can be:

• Correctly observed - Correctly identifies an agents posi-
tion. Exemplified in Fig.1b by the prey.

• Incorrectly observed - Unknowingly identifies an agent
in a incorrect position, represented in Fig.1b by two repre-
sentations of the teammate entity, one faded with a “not see”
symbol indicating its true position and another non faded
symbol, which indicates the observed position by the ad hoc
agent.

The calculation for the probability of a correct observation is
dependant on the distance of each entity to the ad hoc agent. We de-
fine the parameter 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, Y, to be the loss of observability for each
unit of distance, meaning that with each unit of distance, the likeli-
hood of observing a certain entity correctly is 1− (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗Y). Just
as we calculate the probability of observing each entity correctly,
we must also calculate the probability of an incorrect observation,
to achieve this we considered the remained likelihood to be evenly
distributed to every directly neighbouring cell. Taking the example
of Fig. 1b and assuming Y to be 0.1, we obtain that the probability
of observing the teammate agent correctly is 60%, the probability
of observing the prey correctly is 70%. Furthermore, the probability
of observing the teammate agent in cells (2, 4), (4, 4), (3, 3), (3, 0) is
10% each.

In order to capture the prey, both predators need to be in specific
positions, relative to the prey, simultaneously. At each episode, a
specific capture configuration is selected, which defines the posi-
tions relative to the prey that the predators must occupy in order
to achieve a capture. We consider any of the four positions around
the prey to be a possible position of a capture configuration as
visualised in Fig. 1c Each capture configuration is composed of two
different positions, relative to the prey, as defined previously.

At each time step all agents must simultaneously choose to move
in any direction (𝑁, 𝑆, 𝐸,𝑊 ), the available actions do not depend
on agents position. As standard in the pursuit domain literature,
the movement of the prey is randomise at each time step.



(a) Example of state with full visibility. (b) Example of state with partial observ-
ability.

(c) Possible capture positions for one prey
position.

Figure 1: Representation of the environment model. The prey is represented as a red circle, the predators as diamonds (ad hoc
agent) or triangles. Darker shades of grey represent a closer distance to the ad hoc agent

4.2 POMDP
To model the environment described in 4.1 as a POMDP, we need
to define the tuple (X,A,Z, {P𝑎, 𝑎 ∈ A} , {O𝑎, 𝑎 ∈ A} , 𝑟 , 𝛾) as es-
tablished in 2.3.

In this environment, the number of states, X, and number of
observations, Z are the same as they depend on the size of the
environment and the number of agents in it. Since we seek to
simulate a real environment, we assume that no two agents can be
in the same position at the same time. Furthermore, we do not define
any observation where two agents are in the same position since
this would unintentionally inform the model that this observation
does not correctly represent the environment state. The action
space, A𝛼 , contains all possible actions, North, South, West, East.

Each state 𝑥 ∈ X contain information regarding the relative dis-
tances to the teammate as well as prey and is therefore represented
by a tuple 𝑥 = (𝑑𝑎1𝑥 , 𝑑𝑎1𝑦, 𝑑𝑝𝑥 , 𝑑𝑝𝑦), where 𝑑𝑎1𝑥 , 𝑑𝑎1𝑦 represents
the relative distance (in units) to the teammate and 𝑑𝑝𝑥 , 𝑑𝑝𝑦 repre-
sents the relative distance (in units) to the prey. Each observation
𝑧 ∈ Z is also represented as a tuple 𝑧 = (𝑑𝑎1𝑥 , 𝑑𝑎1𝑦, 𝑑𝑝𝑥 , 𝑑𝑝𝑦),
where the distance to an entity 𝑒 (prey or teammate), (𝑑𝑒𝑥 , 𝑑𝑒 𝑦),
represents an observation of the respective true relative distance
(𝑑𝑒𝑥 , 𝑑𝑒 𝑦). According to the probability Y (𝑑) = 1 − 0.15𝑑 , when a
successful entity observation ismade (i.e., roll>= Y (𝑑)), (𝑑𝑒𝑥 , 𝑑𝑒 𝑦) =
(𝑑𝑒𝑥 , 𝑑𝑒 𝑦). Otherwise, when an unsuccessful observation is made,
(i.e., roll < Y (𝑑)), the tuple (𝑑𝑒𝑥 , 𝑑𝑒 𝑦) is instead filled with the dis-
tance to one of the four neighbouring cells to the entity (randomly
picked). For each teammate type 𝑘 , the transition probabilities{
P𝑘,𝑎𝛼 , 𝑎𝛼 ∈ A𝛼

}
map a state 𝑥 and action 𝑎 to every possible next

state 𝑥 ′, taking into account the probability of the teammate execut-
ing each possible action on 𝑥 given their policy for task 𝑘 . Similarly,
the observation probabilities

{
O𝛼𝑎 , 𝑎𝛼 ∈ A

}
map a state 𝑥 and pre-

vious action 𝑎𝛼 to every possible observation 𝑧, taking into account

Figure 2: Example of a Toroidal grid.

the probability 𝜖 (𝑑) of the agent failing to observe the position of
the other agents. The reward function 𝑟𝑘 assigns the reward of −1
for all time steps except those where a capture configuration was
achieved, in which case it assigns a reward of 100 and terminates
the simulation. Finally, we consider a discount factor 𝛾 = 0.95.

In order to build a model the following attributes need to be
defined:

• Teammate - For each state, what action its teammate takes
• Capture configuration - Defines capture states that conclude
an episode

• Epsilon, Y - Loss of observability for each unit of distance

In order to obtain the optimal policy for the defined POMDP
model, we use the algorithm Perseus [19] as provided by the C++
library, AI-Toolbox [2]. The performance of the obtained policy
depends on the following attributes which following values were
used to obtain all results:

• Horizon - 60
• Tolerance - 0.01
• Support beliefs - 2000

Thememory and computational requirements of solving a POMDP
model are deeply dependent on X,A and Z. Therefore, in order
to improve performance, we reduce X and Z by modelling the
environment relatively to our ad hoc agent. Since this only al-
ters the agent internal representation of the world, it continues to
accurately represent the environment described in 4.1 . While a
5 × 5 environment with an absolute representation is composed by
(25 ∗ 24 ∗ 23) = 13800 states, the relative equivalent requires only
(24 ∗ 23) = 552 states. This change greatly reduces the amount of
time needed to solve each model as well as the amount of memory
needed to store each model. However, due to the complexity of
calculating all transition probabilities in a relative setup, we first
calculate the transition probability matrix for the absolute environ-
ment and later translate it into the relative environment equivalent.
Since the absolute transition probabilities calculation is done prior
to the translation into relative equivalents, it does not affect the
memory or learning performance of the model, nevertheless, it
defines a minimum memory requirement for the system in order
to build each model (absolute model size).



4.3 Baselines
We compare ATPO with different baseline agents in each domain,
deploying each baseline agent to act as the ad hoc agent. We con-
sider the following baselines:

• Value Iteration: The Value Iteration agent knows the tar-
get task and can perfectly observe the current state of the
environment. It follows the optimal policy for the associated
MMDP, computed using value iteration. The performance
of this agent can be considered as an upper bound to ATPO.

• Perseus: The Perseus agent knows the target task, but suf-
fers from partial observability. It follows the optimal policy
for the target POMDP computed using Perseus [19]. The
performance of this agent can also be considered as an upper
bound to ATPO.

• Random Policy: This agent selects actions randomly. The
performance of this agent can be considered as a lower bound
to ATPO and the other agents.

4.4 Metrics
To answer the questions outlined at the beginning of this section, we
consider four different metrics. First, Efficiency, measuring whether
an agent can solve the task in near-optimal time. Second, Robustness,
assessing the performance of the agent as a function of the noise in
the environment, Y.2 Third, scalability, measuring the dependence
of the agent’s performance on the problem size and the number
of tasks in M. Finally, Effectiveness, measuring whether ATPO can
identify the correct task.

5 RESULTS
In this section we discuss the results of our experiments as we
perform a variety of tests for different values of M. The results
obtained were tested in a (5, 5) environment (|X| = 552) and Y = 0.2.

In order not to confuse a models internal belief over a state and
the ATPO belief of each model in M, from here on, we refer the
latter as “meta-belief”.

In all experiments, the reported values consist of averages and
95% confidence intervals over a set of independent trials per task,
where a single trial consists of running on a given task over a
finite horizon. We consider a task complete whenever a capture
configuration is reached or the interaction reaches a horizon of 60
time steps. Each trial simulates the task environment for every ad
hoc agent (baseline or ATPO), starting in a random non-capture
state. For each individual trial, all ad hoc agents simulations have
the same starting state in order to guarantee fair results. Each
trial has a defined objective that represents the real environment
which our baselines (Value Iteration, Perseus) have been trained in.
M represents the models in “memory” available to ATPO which
goal is to identify a given task (real environment) at each trial.
Note that “task” in this situation means the real environment that
is being simulated and not the objective that the ad hoc agent
and teammate need to complete. In each experience, each task is
run over a different amount of trials. Section 5.1 considers 10.000,
section 5.2 considers 5.000 and section 5.3 considers 1.000 trials per
task.

2A higher noise increases the uncertainty in observations.
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Figure 3: Average steps to catch the prey.M is composed of 4
models, each with a different possible teammate behaviour
and capture = 𝐸 −𝑊 .

In order to analyse the different sets of M as well as ATPO
behaviour, we defined two other ways of selecting actions. The first
adaptation consists of following the highest meta-belief model in
M by selecting actions based solely that model which is described
by a variation of equation .10:

𝜋𝑡 (𝑎𝛼 | ℎ𝑡 ) = 𝜋𝑘 (𝑎𝛼 | 𝑏𝑘,𝑡 ), 𝑘 = argmax(𝑝𝑡 (𝑚)),𝑚 ∈ M
The second adaptation consists of executing an action chosen by a
random model inM:

𝜋𝑡 (𝑎𝛼 | ℎ𝑡 ) = 𝜋𝑘 (𝑎𝛼 | 𝑏𝑘,𝑡 ), 𝑘 = random(𝑚),𝑚 ∈ M

5.1 Teammates
The results extracted in this section consider a single capture config-
uration, E-W, as all capture configurations display the same results.
This means that in order to capture the prey, the predator agents
must be positioned to the left and right of the prey, simultane-
ously. Finally, each considered task represents a different teammate
behaviour, therefore,M contains 4 models, each considering a dif-
ferent teammate behaviour for the same capture configuration and
Y value. We consider the following list of possible teammates:

(1) Greedy: Deterministic agent, always moves in the direction
of the prey, regardless of any obstacles along the way.

(2) Teammate-aware: Deterministic agent, computes the short-
est path to the prey using A* search, taking into account the
position of the ad hoc agent.

(3) Greedy probabilistic: Stochastic agent, moves towards the
nearest cell neighbouring the prey, but does not always take
a direct path there.

(4) Probabilistic destinations: Stochastic agent, tries to sur-
round the prey, taking into account the position of the ad
hoc agent.

The behaviour of these teammates follow the definitions in [3],
however, some changes were made to fit the variation of the pursuit
domain. Since there are only two predators in the environment, for
each state, there are only two positions that need to be occupied to
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Figure 4: Average steps to catch the prey for each environ-
ment size. M is different for each environment size, being
composed of 4 models, each with a different possible team-
mate behaviour and capture = 𝐸 −𝑊 .
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Figure 5: Average steps to catch the prey for each value of
Y. M is different for each Y value, being composed of 4 mod-
els, each with a different possible teammate behaviour and
capture = 𝐸 −𝑊 .

capture the prey. Therefore, when the greedy, greedy-probabilistic
or probabilistic-destinations predators find themselves near the
prey, they only move towards it if they are currently in a capture
cell, otherwise, they proceed to calculate they trajectory as if they
were not close to the prey. Similarly, the teammate-aware predator
calculates the distance from each predator to each capture cell
instead of each cell neigh-boring the prey.

By selecting each teammate to become the task that ATPO needs
to identify, we obtain the results in Fig. 3. As Random Policy is the
worst performing agent by a large margin, it will not be displayed
in further results in this section. As expected, when looking at
the performance of Value Iteration and Perseus, both stochastic
predators (Greedy Probabilistic, Probabilistic Destinations) have

a worse performance than the two other deterministic predators.
When it comes to the performance of ATPO there seems to be
a clear difference between deterministic teammates and stochas-
tic teammates which perform on average 1.6 and 0.7 time steps
slower than Perseus, respectively. These results show that on aver-
age, ATPO captures the prey with only 9.6% more time steps than
Perseus. Its performance is specially good when cooperating with
stochastic teammates, reaching a near-optimal performance as its
performance is very similar to Perseus, which has complete knowl-
edge of the task model. The difference between the two models lie
in the identification of the teammate and its difficulties, especially
for the deterministic teammates, which we address further ahead
in detail.

In order to analyse the scalability of our model we consider the
impact of an increased environment size in Fig.4 or the increased
noise in the observation probability matrix in Fig.5. Both of these
results are obtained by a total of 12.000 trials by considering each
teammate as a task per environment (defined by the x axis value)
and calculating the average result. The results in Fig.4 and Fig.5
show a consistent performance of ATPO that closely resemble the
Perseus model independently of the degree of the environment size
or noise in observations.

To analyse the effectiveness of task identification in the ATPO
model, we extract a few values such as the average meta-beliefs
entropy, the average meta belief value of the correct task, the per-
centage of trials that reach a certain threshold in the correct task
meta-belief as well as the percentage that continue with a equal or
higher value until the end of the trial, named “continued”. Naturally,
the meta-belief values stabilise at around 15 time steps where most
trials would have ended. We notice that the meta-belief entropy
Fig.6a does not reach a very low entropy meaning that it is hard
to distinguish between the different teammates as we analyse in
further results. Similarly, the average value of the meta belief of the
correct task Fig.6b is relatively low. As for the results in Fig.7, we
can conclude that a large majority of the values that reach thresh-
olds higher than 0.4 continue with equal or larger values until the
end of the trial.

The results of Fig.8 show the performance of ATPO while hav-
ing the task present inM or not. The difference between highest
and weights for each M sets are statistically insignificant which
signifies that the trials where the highest meta-belief is lower than
0.5, execute similar actions to trials that do. We can also conclude
that there is a significant difference between the actions taken by
the different models in M since following the Random results are
far worse than the rest of the results in the same memory set. Addi-
tionally, there are small difference between values with or without
the correct task in memory that show that for each task missing in
memory, there is a task in memory that acts similarly and therefore
can achieve a acceptable performance for this set ofM.

In conclusion, ATPO shows a near optimal performance for co-
operating with previously known teammates over a known capture
configuration and a reasonable performance when cooperating
with never seen teammates.
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Figure 6: Analysis of the meta-belief values at each time step.M is composed of 4 models, each with a different teammate
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5.2 Captures
For each experience, we consider a memory set, M, where all
models have a different capture configuration but the same defined
teammate behaviour. The results obtained are averages of the results
of different sets of M. The list of possible capture configuration is
the following:

(1) South - North
(2) East - West
(3) South - West
(4) South - East
(5) North - West
(6) North - East
The results obtained in Fig. 9 show a slight disparity of perfor-

mance between Perseus and ATPO meaning that it performs worse
than what we observed in Section 5.1. However, its important to
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Figure 8: Average performance of ATPO and 2 different vari-
ations of it with and without the target task present in M.
M is composed of 4 models, each with a different teammate

underline the difference of the difficulty of the tests in this chapter
compared to Section 5.1. In Section 5.1, the objective was to identify
a given teammate from a list of teammates that knew the capture
configuration that needed to be achieved, this means that while
different teammates require different behaviour from our Ad Hoc
agent in order to capture optimally, all models choose actions which
would further the completion of the same capture configuration
and therefore contributed on a degree towards the objective at
hand. This differs from our current attempt at identifying a capture
configuration from a list of models of the same teammate working
towards different capture configurations. In this case, following
actions of models other than the target model can lead towards the
progression of a different objective in our environment and there-
fore lead to bigger punishments on our Ad Hoc agent performance.
With this, the results of Fig. 11 which show on average, a difference
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Figure 9: Average steps to catch the prey over all sets of M.
Each M is defined by 6 models with different capture con-
figurations and one static teammate behaviour. For each of
the 4 sets of M the target task varies between all models in
that set.
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Figure 10: Average meta-belief of the correct task over all
sets ofM. EachM is defined by 6 models with different cap-
ture configurations and one static teammate behaviour. For
each of the 4 sets of M the target task varies between all
models in that set

between Perseus and ATPO of 4.9 time steps (39% slower), which
is to be expected as there is little progression towards the target
capture configuration until meta-beliefs are updated and models
are attributed more fitting values. With the values of Fig. 10 we can
safely conclude that ATPO is capable of identifying a given envi-
ronment objective based on its teammate behaviour if it is given
access to the different teammate behaviour for each environment
objective, however, it does take a few time steps to reach a good
confidence of identification which slows down its performance.

Trying to solve a task that is not in M is as expected, extremely
difficult. The results of Fig.11 show that ATPO cannot consider a

task which has not been defined inM as its performance resembles
Random Policy.
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Figure 11: Average performance of ATPO and two different
variations of it with and without the target task present in
M.

5.3 Teammates and Captures
With all combinations of teammates and capture configurations we
can analyse the behaviour of our algorithm with a larger memory
set, M. From Fig. 13 we can conclude that, on average, the perfor-
mance of ATPO when identifying both a capture and a teammate
behaviour is 57% slower than the performance of Perseus with
7.3 time steps difference. We consider this a small difference for
the amount of liberty provided by our algorithm which does not
to know either the teammate behaviour or the capture configu-
ration. Additionally, the performance of ATPO in Fig.13 show a
good performance for tasks not inM, therefore, ATPO is capable of
performing well in a cooperating environment which it has never
experienced.

6 CONCLUSION
Ad Hoc teamwork is a research field which goal is to create agents
that can cooperate with other agents without any previously de-
fined coordination or communication system. Unlike previous ap-
proaches that assume relevant information is always readily acces-
sible to the agent (e.g., environment’s reward signals, teammate’s
actions, and state observations), we present an evaluate the Ad Hoc
Teamwork under Partial Observability (ATPO) algorithm which
does not rely on the assumptions that its environment is fully ob-
servable, instead it relies on partial observations.

By comparison with the Perseus, a partial observability agent
which knows both its teammate goal and behaviour, our results
show that it is: (i) capable of solving a given task, given a small loss
of performance; (ii) scalable, by being able to adapt to faulty sensors
and larger problem sizes; (iii) robust, by being able to adapt to an
increasingly larger number of possible tasks. The effectiveness of
task identification varies depending on what is being identified,
being very efficient at identifying its teammate goal, reasonably
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Figure 12: Average steps to catch the prey overM.M is the set that contains all possible combinations of teammate behaviour
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Figure 13: Average performance of ATPO and two different
variations of it with and without the target task present in
M. M is the set that contains all possible combinations of
teammate behaviour and capture configuration.

efficient at identifying its teammate behaviour and inefficient at
identifying both of these at the same time. Finally, given a small loss
of performance, ATPO shows the capability of solving a certain task
under situations never experienced, given that the objective and
teammate behaviour have been seen individually in other situations.
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