
Scalable Network Emulation
Sebastião Amaro

Instituto Superior Técnico, Universidade de Lisboa

Abstract—One of the main problems of measuring the perfor-
mance of large scale distributed systems is the ever-changing state
of the network. This ever-changing uncontrollable component of
the environment causes results from experimentation to differ
from the expectation many times. There is a need then for
a way to precisely emulate the network state. With a stable
network state, we can now obtain reproducible results. There
are many problems with the current state of the art approaches
when it comes to network emulation, most of them come from
trying to completely emulate the state of the network. Kollaps is
a decentralized emulator that does not involve managing the
application and transport protocol layers, and therefore can
emulate systems spread across several distinct physical machines.
However, Kollaps still suffers from several limitations such as
high resource usage, difficulty to scale to a large number of
physical nodes, and lack of support for bare metal deployments.
This thesis proposes Kollaps 2.0, a new iteration of Kollaps, which
improves upon the limitations of its first version. We present an
overview of the new mechanisms. And finally, an evaluation with
micro and macro benchmarks showing how Kollaps 2.0 improved
upon Kollaps. In this evaluation, we were able to show that
the CPU usage is substantially reduced in both large and small
scale topologies while maintaining an accurate emulation. We also
demonstrate that bare metal deployments can now use Kollaps
2.0 to emulate network states while maintaining an accurate
emulation.

I. INTRODUCTION

Today’s large-scale distributed systems have lots of different
components, libraries frameworks, system dependencies, etc.
When combining this complexity and heterogeneity with un-
controllable environment aspects, such as hardware resources
and network variability, developing, debugging, and evaluating
distributed systems becomes an increasingly difficult task. Let
us take as an example a system developer wanting to change
a specific component of the system. He cannot simply deploy
the change and hope for the best. First, an experiment has to be
built and tested, and then maybe it will be deployed. However,
testing with uncontrollable variables such as network latency
or packet loss causes assessing the impact of such changes
to be extremely difficult. There is an obvious need for tools
that provide reproducible experimentation of these large-scale
distributed systems.

With the introduction of container technology such as
Docker [1] and its orchestration system Docker Swarm [2],
there is a way to manage the heterogeneity of the controllable
components. But the problem related to the uncontrollable
ones such as the network remains. Imagine that a system
administrator wants to move his deployment from one geo-
graphical place to another, basically introducing the system to
a new network without experimentation, he cannot know how
the system will react to the new network conditions. Container

technology mitigates the problem by providing a simple way to
deploy these complex heterogeneous systems. Even so, how
can an experimental result be attributed to a system change
and not a specific network state? Was a good result just a
lucky run because the network is less congested? Or was it
a bad result due to packet loss caused by a high load of the
network? This constant variability removes the reproducibility
that system developers want when experimenting. Therefore
to accurately interpret experimental results, we must control
the network properties.

To evaluate large-scale distributed systems we can use
network emulation. In network emulation, the emulated system
runs in a model of the network. This model tries to accurately
replicate the real-world behavior by modeling the state of
the network topology together with its network elements,
including switches, routers, and their internal behavior.

The current state-of-the-art suffers from different limita-
tions. Mininet [3] is limited to the use of a single host, and
therefore cannot accurately emulate large-scale geo-replicated
distributed systems. Maxinet [4] which expands upon Mininet,
uses multiple Mininet instances to provide emulations with
several hosts. However, it scales poorly due to its approach to
workload management. Modelnet [5] introduces a separation
between application nodes and nodes responsible for maintain-
ing the emulation accuracy. But it still suffers from the same
scalability limitations due to the centralization of the nodes
responsible for managing the emulation. SplayNet [6] differs
from these previous systems, introducing a decentralized net-
work emulator. However, it is limited to the Splay [7] frame-
work and the use of the Lua programming language. Another
angle for networking evaluation is the control plane, which
is responsible for routing packets. CrystalNet [8] accurately
emulates it but cannot emulate the data-plane, and therefore it
cannot emulate network properties such as bandwidth, latency.
NEeaS [9] is an innovative cloud-based network emulation
platform that aims at providing users with Network Emulation
as a Service (NEaaS). However, it does not present results that
confirm their platform works at large scale scenarios, and as a
cloud-based platform, there are costs involved. Given all these
limitations, we can conclude to the best of our knowledge that
they are not suitable to systematically reproduce the evaluation
of large scale distributed systems.

Kollaps [10] is a fully decentralized emulator. It emulates
a network topology on containers, is agnostic to application
language and transport protocol, and can scale to thousands
of application nodes while maintaining an accuracy similar
to the previously mentioned centralized solutions. And to our
knowledge is the most suitable solution for network emulation.

1

However, it suffers from multiple limitations, for instance.
(i) high CPU usage due to the communication mechanism
between components. (ii) high CPU usage in large scale de-
ployments due to the retrieval of information from the kernel.
(iii) the model of sharing metadata causes an excessive amount
of metadata to be shared between Kollaps components (iv)
bare metal deployments are not supported, which could allow
for use cases of applications that do not run in containers.

In this thesis, we propose Kollaps 2.0 as an improvement to
Kollaps by addressing its main limitations. The ideas behind
our solutions to solve the main ones were as follows. (i) to
lower CPU usage, we will replace the existing mechanism
of communication (Aeron [11]) with a new one. (ii) use
eBPF [12] to provide a new way to retrieve information
from the kernel. (iii) solve the problem of excessive amounts
of metadata circulating in long-lived flows by moving to
a new data dissemination model. (iv) introduce bare metal
deployments by allowing the introduction of Kollaps to an
already running system, and to integrate it with the already
running network to do accurate emulation.

II. RELATED WORK

In Section II-A we introduce some of the state-of-the-art
network emulators and Kollaps in detail. Next, in Section II-B
we summarize the state-of-the-art and explain Kollaps main
limitations.

A. State of the Art

Mininet [3] is a prototyping tool for large networks, that
run on a single machine with limited resources. Mininet
accomplishes this by using lightweight OS-level virtualization
techniques. These techniques consist of leveraging processes
and virtual Ethernet pairs in separated network namespaces,
allowing the user to launch networks with gigabit bandwidth
and hundreds of nodes.

Maxinet [4] is a distributed emulator of software defined
networks, based on Mininet, that makes emulation over several
physical machines possible. Using this method, Maxinet can
emulate networks with thousands of nodes on just a few
physical machines.

ModelNet [5] is an Internet emulation environment that
provides users a way to deploy unmodified software prototypes
in configurable Internet-like environments. And to control the
network conditions and subject them to faults.

Splaynet [6] is a user-space network emulation system, built
on Splay [7] it allows users to deploy several topologies on
shared physical nodes, with minimal setup complexity in a
fully decentralized way.

NEeaS [9] is a cloud-based network emulation platform
aiming at providing users with Network Emulation as a Ser-
vice (NEaaS). NEeaS can deploy experiments on both public
and private clouds. To emulate networks of larger scale and
to reduce the hardware cost of the proposed platform, NEaaS
uses light-weighted virtualization technology. Namely, it uses
Docker containers to supplement virtual machines (VM) to
emulate networking nodes in a hybrid manner.

1) Kollaps: Kollaps [10] is a fully distributed decentral-
ized network emulator, capable of scaling to thousands of
processes, while staying accurate when compared to the state-
of-the-art centralized solutions, and bare-metal deployments.

Kollaps builds on two major premises. The first one is that
from an application viewpoint, the only thing that matters is
the end-to-end network properties, (e.g., latency, bandwidth,
packet loss, and jitter), instead of the internal state of routers
and switches. Secondly, this simplified approach allows Kol-
laps to be fully decentralized, allowing the emulations to scale
with the needs of the application. Kollaps leverages Docker
containers for the lightweight deployment of applications, and
the usage of Linux traffic control (tc) to perform the point to
point emulation of the network properties.

Kollaps has six main components as seen in Figure 1:

Fig. 1: Kollaps Architecture

The Deployment Generator consists of a Python program
that receives as input an XML file containing the system
topology. It then builds a graph of the given topology and
outputs either a Docker Swarm file or a Kubernetes [13]
manifest file, depending on the user’s needs. This XML
structure is specific to Kollaps and based on the one used by
ModelNet [5]. Kollaps supports static topologies specifications
and provides a rich set of dynamic events, such as changing
the properties of links, removing and adding links, bridges,
and services.

The task of the Bootstrapper is to deploy on that physical
machine a unique container, the Administrator (Admin), out-
side of Docker. This container shares the pid namespace with
the host and has the elevated privileges needed for the usage
of tc. The Admin has access to the Docker daemon and is
responsible for the local creation of new containers. When a
new Kollaps container appears, the Admin will request Docker
to inject the appropriate Kollaps process (emulation core, dash-
board) within the same pid namespace of the initial container.
The Admin although it may have added complexity to the
architecture, brings two advantages. Firstly, the application
container images do not need to be changed to accommodate
Kollaps. Secondly, it allows the use of shared memory between
Kollaps processes, due to them sharing the same file system.
Therefore we do not need to use the network to share metadata
which would add overhead to the emulation.

The Emulation Core (EC) is the main component of Kollaps.
It runs on the Admin pid namespace and in the network

2

Fig. 2: Example of a topology collapsed into an equivalent
one

namespace of the container. Kollaps does not directly emulate
internal network devices or their state, instead, it collapses
the topology as can be seen in Figure 2, on the left we can
see the initial topology, and on the right, the collapsed one
without internal network devices and with the links adapted
to the network values. The process necessary to achieve this
consists of first parsing the topology into a graph structure,
then the EC calculates all the shortest paths between every two
reachable containers. Each path contains multiple links, whose
properties the EC uses to determine the end-to-end network
properties. In the case of dynamic events, the EC precomputes
the graphs offline. During the emulation, the EC changes the
graph each time an event occurs.

Latency, packet loss, and jitter (assuming a uniform dis-
tribution) are straightforward to calculate. The latency of a
path is the sum of all the latencies in a link. Jitter is the
variance of those latencies. Packet loss on a given link is a
probability, therefore to calculate the packet loss rate of the
path, we must multiply all the packet loss rates of the links in
the path. The bandwidth, however, can not be calculated offline
as it depends on the state of the flows that are sharing each
link. In scenarios where the bandwidth required surpasses the
bandwidth available on a given link, congestion will happen.

TCP manages the competition for bandwidth in a link
with its congestion control mechanism. There are many TCP
congestion control mechanisms such as TCP Reno [14], TCP
Vegas, [15] etc. These mechanisms are responsible for adjust-
ing the throughput. To allow all of the competing flows to get
a fair share of the bandwidth.

The RTT-Aware Min-Max model [16] receives a flow and
returns the share of the link, which is inversely proportional to
its round-trip time. The formula for calculating the fair share
of a flow f is:

Share(f) =
RTT (f)−1∑n

i=1(fi)
−1

where
f ∈ {f1, f2,, f}

are the active flows on a link.
The ECs are responsible for calculating the network proper-

ties of their paths. They do this by maintaining a data structure
with the bandwidth of each flow in the topology. The ECs
leverage the RTT model to calculate the share for each flow.
The EC obtains the bandwidth of the container and sends
this metadata to the other ECs via the Aeron Media Driver.
The Aeron Media Driver [11] is an open-source UDP and
IPC message transport protocol. There is a single instance
of Aeron in every physical machine. Shared memory assures

Fig. 3: Comparison of Network Emulators. P= Process, V =
Virtual Machine, C = container, B = bare metal.

communication between ECs on the same machine and UDP
messages communication between ECs on different physical
machines.

To maintain an accurate emulation, the ECs run an em-
ulation loop. This procedure is to be periodically run and
has five steps: (i) Clear the state of all local active flows.
(ii) Obtain the bandwidth usage of each flow by querying
the tc abstraction layer (described below). (iii) The Aeron
Media Driver disseminates this information. (iv) Compute the
bandwidth usage on each path and the links that reside on that
path. (v) Enforce bandwidth restrictions on each path.

The TC abstraction layer (TCAL) is a library written in C
and serves as a high-level API. It provides a way for the ECs
to set up the initial network conditions, retrieve the bandwidth
usage necessary to serve as emulation data, and modify the
maximum available bandwidth on paths.

The Dashboard is a web application available to users
through HTTP, which provides a GUI to start and finish
the experiment. While also providing a way to monitor it
through its execution. It shows a graphical representation of
the topology while also providing the status of each service
and showing the real-time active flows in the experiment.

Kollaps simplified topology model provides emulations with
accuracy comparable with other systems such as MiniNet, and
due to being fully distributed, and decentralized it provides
linear scalability with the number of flows and physical hosts
in the cluster.

B. Discussion

Table 3 summarizes the comparison of the state of the art
systems with Kollaps 2.0 and shows how it enhances it. Or-
chestration alludes to how the emulators structure themselves.
Centralized emulators are more likely to have problems in
terms of scalability. Application Agnostic refers to the type
of application running in the system. An emulator is agnostic
when any application can run in the emulator. An agnostic
emulator provides significantly more use cases. Application
Deployment mentions what type of use cases the emulators
serve. The more different types of deployments, the more use
cases they can cover. Efficiency is a qualitative measure that
represents the resource usage of the network emulators. The
centralized emulators, due to their nature, have low efficiency
on the central components. SplayNet does not mention re-
source usage. NEeaS mentions that it still faces challenges

3

against limited hardware resources. While Kollaps uses all of
the available CPU.

The network emulators described in the previous Section,
although having varying advantages, suffer from different
problems. Mininet has scalability problems when it comes
to running resource-intensive applications. MaxiNet, which
extends upon Mininet, although providing Mininet with a way
to run on multiple machines, it has problems when it comes
to managing heterogeneous load, causing the overloaded ma-
chines to become a bottleneck. ModelNet also suffers from
scalability issues due to the problem of having all packets
go through the core nodes, which limits scalability to the
hardware resources of these machines. SplayNet, due to its
decentralized architecture, does not suffer from the same
scalability issues as the previous systems but implies users
are familiar with the Lua programming language and the Splay
framework. NEeaS has the cost of being a cloud based network
emulator, and provides no results that show it can scale to
thousands of nodes while maintaining an accurate emulation.

Kollaps, to the best of our knowledge, is the only sys-
tem with a decentralized architecture while using container
technology, allowing Kollaps to be application-agnostic while
maintaining emulation accuracy and scalability when com-
pared to the state of the art. However, Kollaps has several
limitations, such as high CPU usage, due to the constant
polling of information done by Aeron, causing the CPU usage
to always be close to 100%.

Large scale deployments have a high CPU usage due to
the TCAL updateUsage function, which runs every emulation
loop in each EC. Update Usage makes a request to the kernel
for every other container in the experiment, therefore causing
quadratic scaling with the number of containers.

Another limitation is the periodic dissemination of informa-
tion during the emulation, which causes the ECs to disseminate
metadata, even if nothing changes. Therefore, causing a lot
of metadata traffic. Periodic dissemination also causes flows,
shorter than a single iteration of the emulation loop, to go
undetected. Other limitations exist, such as marshaling the
metadata from C to Python to C and vice-versa in every emu-
lation loop, Kollaps does not support bare-metal deployments
leaving a lot of use cases unexplored.

III. APPROACH

In this Section, we will explain in detail the main lim-
itations of Kollaps [10] and discuss how we solved them
in Kollaps 2.0. Kollaps provides a way of doing emulation
in a fully decentralized way, it uses Docker containers to
provide lightweight deployment of applications and tc to
emulate network properties. Figure 4 depicts the Kollaps 2.0
architecture.

Fig. 4: Kollaps 2.0 architecture

A. Metadata Dissemination Mechanisms

In Kollaps, CPU usage is always close to 100%, because
of the polling of metadata from the Aeron Media Driver [11].
Kollaps polls with a thread in an infinite loop in busy waiting
until new messages appear. If no other processes are running,
the scheduler will always pick up the Aeron thread causing
high CPU usage. Therefore Aeron is unfit with Kollaps and
will be removed. With the removal of Aeron, there was a need
for new communication mechanisms, these mechanisms need
to provide communication between Emulation Cores (ECs) in
the same machine(inter node communication), and in different
physical machines (intra node communication). To implement
these mechanisms, we must understand the flow of metadata
in Kollaps.

The current flow of metadata in Kollaps is complex. The
flow starts in the TCAL reading from the Linux tc (see II-A1),
to the EC then, to Aeron, then to all the other ECs.

Figure 5 shows a depiction of the flow of metadata in
Kollaps.

Fig. 5: The flow of metadata in Kollaps.

In the first step, conversion from C to Python is done, then to
C again, specifically through shared memory for ECs on the
same machine, and UDP for ECs in other machines. When
the EC receives the metadata from Aeron, it goes from C to
Python.

1) Communication Manager: Aeron is an independent C++
component, therefore we could either use Python to implement

4

Fig. 6: The flow of metadata in Kollaps 2.0 .

the component that would replace Aeron, since most of
Kollaps is written in Python, however, this is not optimal,
since Python is considered a language not fitted for systems
where performance is a major metric [17], or we could use
another language more fit to Kollaps needs. Rust is a multi-
paradigm programming language designed for performance
and reliability [18]. Aeron worked as a component that re-
ceives metadata and shares this metadata with the system, so,
we decided to implement the Communication Manager that
would work similarly to Aeron but implemented in Rust.

The Admin will start the CM, and a single CM exists per
physical machine. The CM will have two tasks. The first is
for inter node communication, which means that it must share
the metadata among ECs in its machine. The second one is
for intra node communication, to achieve this, it must share
the information of its ECs with other CMs, as well as the
information it receives from other CMs to its ECs.

For intra node communication, each EC creates two pipes,
one in read mode to receive metadata from the CM and one
in write mode to send metadata to the CM.

For inter node communication, the CMs use TCP sockets
[19]. For each other CM in the deployment, there is a socket
connecting them. Figure 6 shows a depiction of the flow of
metadata in Kollaps 2.0.

During startup, the CM waits for all the containers to start.
When all the containers have started, it opens the pipes, one
in write mode and one in read mode for each container, and
saves them in internal data structures.

Then it creates a thread that will accept connections from
other CMs. This thread will run until it has accepted connec-
tions from all the other CMs. For each connection received, the
CM starts a thread, which is always reading from the socket
and writing to the pipes.

Meanwhile, in the main thread, the CM starts the loop with
two steps. First, the CM does select call with all of the pipes
open in read mode. Then the main will block until a single
pipe contains a message to be read. After unblocking, we go
to the second step, where we iterate over the pipes that contain

metadata. We read the metadata from the pipes and write to
all of the pipes, previously opened in write mode. The CM
uses the select call instead of an iterator, due to the blocking
nature of the read call of the pipes we created [20]. If we
used an iterator, the system would block if a single container
stopped writing metadata.

2) Emulation Core: The EC needs to receive the metadata
from the other ECs, therefore it needed to change to accommo-
date the new metadata dissemination mechanisms introduced
in the previous section. The EC will now have the task of
receiving metadata from the CM, and sending his metadata to
the CM. As we now use Rust, the fact that the EC runs Python
code stood as a problem, therefore the first step was to create
a way for Python to interact with Rust.

To do this, we used PyO3 [21] which enables the user to
generate a native Python module from a Rust library. So we
created the Communication Core(CC) module. The EC will
use this module as a Linux shared library.

The CC module provides a way for the EC to write metadata
to the CM and to read from it. To achieve this, when the CC
starts it creates pipes and opens one in write mode and one in
read mode. Then it starts a thread with the task of reading from
the pipe the CM writes to. When the thread reads metadata
from the pipe, it hands it over to the EC. The module also
provides ways for the EC to write its metadata to the pipe,
allowing it to share metadata with the CM. Figure 7 shows a
depiction of this part of the flow of metadata in Kollaps 2.0.

Fig. 7: The flow of metadata in a container.

B. Kernel Information Retrieval
With the removal of Aeron, we significantly reduced the

CPU usage, as we later show in Section IV-A. However,
when it came to large-scale topologies, CPU usage was still at
100%. Using pyspy, [22] we were able to see that the TCAL
update usage function was causing the high CPU usage.

From the perspective of an EC, the function does the
following for every other EC in the deployment. First, it
does rtnl dump request [23] to know how many bytes it
sent to the other EC. Second, it uses rtnl dump filter [23]
passing a callback as an argument. The kernel will then call the
callback with the number of bytes associated. After receiving
the information, the TCAL calls the EC with the number of
bytes sent.

Therefore the system scales quadratically since each EC
does two requests to the kernel for every other EC in the
topology, which causes the high CPU usage.

There was a need to change update usage, instead of
performing multiple requests, to perform one single request
to get all of the information necessary.

Extended Berkeley Packet Filter(eBPF) [12] is a highly
flexible and efficient construct in the Linux kernel. That allows

5

the execution of bytecode at various hook points in a safe
manner.
eBPF appears as a possible solution to the problem of

having too many requests to the kernel. To that effort, we came
up with the idea of maintaining a hashmap. The hashmap will
have as its key the addresses of containers, and as its value,
the number of bytes sent. With this map, we now would have
the EC perform only one request, where we retrieve the entire
map instead of one request per other EC in the system.

Linux 2.2 for cBPF and 3.19 for eBPF, added functions to
provide socket filtering [24]. They provide a way to attach
BPF or eBPF programs respectively to filter data on a chosen
socket. As in tc, we handle a sk_buff structure and can
access its content to make traffic decisions and monitor traffic.

We will attach a filter to sockets. However, we do not
want to attach a filter to every socket the container creates.
RedBPF [25] allows attaching to a raw socket [26] allowing
us to filter all the traffic of the container.

We decided to use perf events, which allows us to notify
userspace of events in kernel space. Specifically, we use a
RedBPF PerfMap [27], this provides us a way to get the
hashmap values from kernelspace, in userspace.

The solution, Figure 8 shows a depiction of the solution
we designed. And works as follows, the eBPF program still
maintains the same map, however, it sends its updates via the
PerfMap to userspace. We do not want to generate an event
each time the container sends a packet since this causes CPU
usage to be high, and the EC only needs new values every
pool period (see Section II-A1. So we define that we only
send events every perf event period. Perf event has a default
value of 0.025 seconds, half of the pool period value.

In userspace, we have to read these events, therefore at
startup, the Communication Core will start a new thread. This
thread is responsible for reading the events the eBPF program
will generate. To save the values in userspace, we create a map
similar to the one in the kernel. The map updates each time
the eBPF program sends an event.

Fig. 8: Mechanism to retrieve information from the Kernel .

C. Metadata Dissemination Model

The model of metadata dissemination in Kollaps is a peri-
odic one. The model is always exchanging metadata between
cores, even if nothing changes, which brings two problems.

The first problem is the excessive amounts of metadata
circulating in long-lived flows. The second is that each time we
receive metadata, we need to react to the possible changes that
might have happened. This design decision, causes the ECs to
calculate new values each time they receive new metadata.
Therefore, causing a higher CPU usage than necessary.

To solve this problem we looked into changing this model
into a reactive one. This change involves deciding if the
information we got from the kernel is relevant to share or not.
Now, the EC will only share the metadata, if the variation
from the previously seen throughput for a path, is superior to
a certain percentage, 5% will be the default value, 5% lowers
the metadata shared and maintains an accurate emulation as
well. However, due to the way Kollaps is designed, we had to
make several changes to accommodate this.

To explain these problems, first, we must revisit the emu-
lation loop explained in Section II-A1. Firstly in step (iv),
after computation, the EC would delete the metadata related
to flows of other ECs. Since we are reactive, the ECs must
maintain the metadata, and assume that if the stored flows did
not change, then nothing changed.

Secondly, in step (iv), the ECs only compute bandwidth
usage on active paths. However, being active in Kollaps means
that the EC will share the metadata related to this path with
other ECs. In the new model, it is not certain the EC will
share the metadata with other ECs. However, we still want to
do calculations because even though one EC does not have
relevant changes to report, other ECs might have sent relevant
metadata. In the new model, the ECs do calculations if either
the throughput of the path changed by 5% or if other ECs sent
new metadata, therefore solving this problem.

Thirdly, as explained before, we maintain metadata sent by
other ECs. The metadata in Kollaps specifies a bandwidth
value and the links in the graph it transversed. Integer values
represent links. The integer values of the links are specific to
a specific state of the graph. However, as explained in Section
II-A1 the graph changes every time a dynamic event happens.
Therefore, when a graph change happens, its configuration
changes and an integer value that the EC assigned to a specific
link between two nodes might not represent the same link
anymore. Therefore, every time a dynamic event happens,
the metadata stored becomes obsolete. Which means we must
delete it.

Fourthly, containers can crash at any time in the experiment.
In the previous model, as we mentioned in step (iv), we delete
metadata related to flows of other ECs after computation. This
means that should a container leave, no problem occurs since
it will discard the metadata eventually. But in our new model,
we must force the EC to discard the metadata. To achieve this,
we have the EC that is going to leave, send a special message
which informs the others to discard its metadata.

D. Baremetal Deployments

Kollaps did not support bare metal deployments. Hence a
user that would want to emulate a network state in an already
running system would not be able to. To enable this use

6

case in Kollaps 2.0, we introduced support for bare metal
deployments.

We do not need to make changes to emulation mechanisms
and metadata dissemination. However, all of the others need
changes since they are for containerized deployments. We
changed the Deployment Generator to accept bare metal
topologies. Baremetal topologies are different because the user
must specify the IP of the service, the hostname that is the
name for ssh access to the machine, and if the user wants,
a path to a logfile that Kollaps 2.0 can retrieve later. To the
others, some design details had to be changed.

To run bare metal deployments we assume that each ma-
chine has the Kollaps code in a specific directory. To interact
with the machines, we use ssh, specifically a Python ssh
library [28]. We also introduced two new commands and
changed the start and stop commands. The install command
that has the task of installing the Kollaps components on the
machine, the initialize command initializes the emulation and
data dissemination mechanisms. The start command will now
start a script given by the user. The stop command stops the
emulation and data dissemination mechanisms, after, it runs a
script to stop the experiment if the user provides one.

IV. EVALUATION

In this section, we present the evaluation of Kollaps 2.0
through a series of experiments. The results show that:

• Kollaps 2.0 lowered the CPU usage of both small scale,
and large scale topologies, while at the same time main-
taining accuracy.

• Kollaps 2.0 lowered the amounts of metadata shared in
long-lived flows while maintaining the fast reaction time
of the Kollaps.

• Kollaps 2.0 introduced bare metal deployments while
managing to maintain the emulation accuracy of Kollaps,
hence enabling novel use cases.

The first benchmark presented is the comparisons in CPU
usage in differents scales of deployments, presented in Section
IV-A. Then we present a comparison between metadata shared
in Kollaps and Kollaps 2.0 in Section IV-B. In the next three
sections, we compare Kollaps and Kollaps 2.0 in metrics
related to the accuracy of the emulation. In Section IV-C
we present bandwidth emulation accuracy, in Section IV-D
emulation reaction time, and finally in Section IV-E scalability
of latency emulation accuracy.

To test for these different benchmarks, we used 4 Dell
PowerEdge R630 server machines, with 64-cores Intel Xeon
E5-2683v4 clocked at 2.10 GHz CPU, 128 GB of RAM. These
machines are connected by a Dell S6010-ON 40 GbE switch,
unless specified otherwise these were the used machines. The
Docker Engine version used was 19.03.4, and the docker
network driver used was overlay.

A. CPU Usage

One of the primary limitations of Kollaps was CPU usage.
To tackle this, we removed Aeron, because as explained in
Section III-A it was the primary source of high CPU usage.

TABLE I: Comparison of CPU usage per physical machine in
smallscale deployments running iperf3.

Nodes Kollaps 2.0 Kollaps w/o Aeron Kollaps
usr sys usr sys usr sys

10 1% 1% 1% 1% 7% 1%
50 2% 1% 2% 1% 23% 1%
100 2% 1% 2% 1% 40% 1%
200 4% 2% 4% 2% 82% 2%

TABLE II: Comparison of CPU usage per physical machine
in largescale deployments running ping.

Nodes Kollaps 2.0 Kollaps w/o Aeron Kollaps
usr sys usr sys usr sys

500 1% 0% 1% 95% 97% 3%
1000 1% 0% 1% 95% 97% 3%
2000 3% 0% 1% 95% 97% 3%
4000 5% 1% 1% 95% 97% 3%

To test for the improvements, we set up various deployments
with n-clients/n-servers dumbbell topology. The clients exe-
cute an iperf3 client, and the servers execute an iperf3 server.
The CPU usage was retrieved using dstat [29], we separate
results into user (usr)the percentage of time spent running
user processes, and system (sys) percentage of time spent
running system processes. Table I presents the results.

The values from Kollaps at first glimpse seem acceptable.
However, we must not forget we have four machines with 64
cores each. We compared the original Kollaps with a version
of Kollaps 2.0 that only has Aeron substituted with the new
mechanisms and fully implemented Kollaps 2.0. As we can see
by the results, we were able to reduce CPU usage significantly
with the removal of Aeron, and the introduction of both the
Communication Manager and the Communication Cores. The
results for both Kollaps 2.0 and Kollaps without Aeron are the
same since the rest of the new mechanisms do not affect this
scale of topologies.

However, as explained in Section III-B the mechanism to re-
trieve the information from the kernel, did not fit Kollaps since
it scaled quadratically. To measure the CPU usage of large
scale topologies, we did different experiments using scale-
free network topologies generated with [30]. This method
constructs scale-free networks, which are representative of the
characteristics of Internet topologies. The experiment consists
of end-nodes running ping [31] to another end-node for 10
minutes. We did this tests with 500 nodes(332 services, 168
bridges),1000 nodes(666 services, 334 bridges), 2000 nodes
(1344 services,656 bridges) and 4000 nodes(2668 services,
1332 bridges). During this test, we again run dstat.

Table II presents the results for Kollaps 2.0, Kollaps without
Aeron, and Kollaps. Kollaps originally had the Aeron problem
which, caused a lot of usr CPU usage. However, after being
removed, revealed the problem with the mechanism to retrieve
information from the kernel, which caused the high sys CPU
usage. After being substituted by the mechanism combining
both eBPF and the socket subsystem. We can see that
the usage is negligible. Although we can expect significant
CPU usage from these experiments, we must not forget pings

7

 0

 1000

 2000

 3000

 4000

 5000

10 50 100 200

K
B

it
s/

se
co

n
d

Number of Containers

periodic
reactive

Metadata Models

Fig. 9: Comparison between metadata generated in a periodic
and reactive model.

do not cause significant bandwidth values. Therefore, Python
calculations are not done, and this is the reason why we don’t
have significant values in Kollaps 2.0.

B. Metadata Generation

Kollaps RTT bandwidth model, as explained in Section
II-A1 relies on having all the bandwidth values of competing
flows. To meet this requirement, Kollaps relies on metadata
sharing. However, the model used to share the metadata did
not fit Kollaps, since metadata was always shared across every
other EC in the system, even if nothing changed.

To test improvements to the reduction of metadata shared,
we created simple n-clients/n-servers dumbbell topologies to
measure the amounts of metadata shared. We use iperf3 to
generate steady TCP traffic for 60 seconds.

As explained in Section III-C in Kollaps, we have a periodic
metadata sharing model. Thus every time the EC has new
information, it will share it with others. With the new model,
the EC only shares metadata if it changes by at least 5%.
Figure 9 presents the results of these changes. To calculate the
amount of metadata sent, we multiply the number of messages
each EC sent by the size of the default Kollaps message which,
is 256 bytes.

Observing the results, we can see that we managed to drop
metadata shared at deployments of a lower scale. However, we
can also see that when the number of containers increases, the
difference between the models shrinks. Because, as explained
in Section III-C”, every time an EC reports a change, the
others must do new calculations and share their new values.
Obviously, with an increase in containers, we will also have
an increase in changes. And therefore, a larger amount of
metadata is shared, eventually reaching the point where we
are again sharing at every emulation loop.

C. Bandwidth Emulation Accuracy

Due to changes in the mechanism used to retrieve infor-
mation from the kernel (see Section III-B), we must revisit
this test to assure that Kollaps 2.0 can still accurately emulate
different values of bandwidths.

Fig. 10: Study of the accuracy bandwidth shapping accuracy
for different link values on a client-server topology.

Fig. 11: Dumbbell topology with 3 clients, 3 servers.

To benchmark this accuracy, we run a test composed of
two services connected by a single link. One service will
execute an iperf3 [32] server in one machine, and another
service, an iperf3 client in a different physical machine. We
access bandwidth at different values, from low to high. The
test consists of having the client execute iperf3 over a period
of 60 seconds.

Observing the results presented in Table 10, we can see
the bandwidth values of Kollaps 2.0, in both containerized
and bare metal deployments, are always in a 5% error across
all ranges. Showing that Kollaps 2.0 maintains the precise
accuracy reported in Kollaps, we expect this because the
information we retrieve using eBPF and with the rtnetlink
library is the same.

D. Emulation Reaction Time

Given the changes previously mentioned in Section III,
mainly, the change in the Communication Mechanisms and
the change in the information retrieval from the kernel, we
must test the reaction time of Kollaps 2.0. To assure that the
new mechanisms are as fast at reporting correct values as the
ones in the original Kollaps. To this goal, we set up a simple
3-clients/3-servers dumbbell topology, depicted in Figure 11.
The link connecting both switches has a maximum bandwidth
of 60Mbps. All the clients have the same bandwidth, and
latency so they should get a similar share of the link.

The experiment, as seen in Figure 12 proceeds as follows.
At the start, client1 be the only one with an active flow. So
it will use all of the available bandwidth. After 10 seconds,
client2 starts, and both the nodes will compete for a share
of the link. Since they have the same latency and therefore
RTT, the model as explained in Section II-A1, will award
them with the same bandwidth. At second 20, client3 enters
the experiment, and following the same logic, the three clients
will have similar bandwidths. In both cases, we can see that

8

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

M
B

it
s/

s

Time (seconds)

client1
client2
client3

Reaction Time

Fig. 12: Reaction time in a container deployment.

Fig. 13: Dumbbell topology with 2 clients, 2 servers.

Kollaps 2.0 took around a second to adjust the bandwidth
of the clients. At second 30, the link between client1 and
the s1 switch will change in latency from 5 to 10 since its
RTT went up. It will have a smaller share of bandwidth.
Causing his bandwidth to drop, since there is now available
bandwidth to be used, both client2 and client3 will start using
that bandwidth. At 40 seconds, the link between client2 and
the s1 switch will have the same increase in latency. Therefore
the bandwidth for client2 will be lower, causing the clients to
pick up the available bandwidth. Finally, at 50 seconds, the
same happens to client3, and the three clients will now have
the same bandwidth since the links are identical. At second
60, the link connecting the switches s1 and s2 increases in
bandwidth from 60 to 90 Mbs causing the available bandwidth
to increase. And therefore, the bandwidth of the three clients
will increase similarly. In second 70, client1 crashes leaving
his share of the bandwidth available which, will be picked up
by both client1 and client2 in a similar manner.

Given these results, we can conclude that we retained the
ability of Kollaps to react under a second to changes in the
topology in Kollaps 2.0. While also validating that the kernel
information we are retrieving is correct and updated at a fast
pace.

In Kollaps 2.0, we introduced bare metal deployments. In
the previous section, we showed how we retain the link-level
emulation capabilities of Kollaps. Now we must take a look
at the validation of the RTT model, but also check if we
maintained the reaction time accuracy. For this, we created
a simple 2-clients/2-servers dumbbell topology, depicted in
Figure 13. The clients have the same bandwidth values, and
the link connecting both switches has a 60 Mbps bandwidth.

This experiment, as depicted in Figure 14 and starts with
client1, using all of the available bandwidth. At second 10,
client 2 joins, and since they have similar links, they will

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

M
B

it
s/

s

Time (seconds)

client1
client2

Reaction Time

Fig. 14: Reaction time in a baremetal deployment.

TABLE III: Mean squared error exhibited on latency tests with
large scale-free topologies in Kollaps 2.0 and Kollaps.

Nodes Kollaps 2.0 Kollaps
500 0.0300 0.0257
1000 0.0369 0.0361
2000 0.0462 0.0400
4000 0.0647 0.045

obtain similar shares of bandwidth. At second 30, the link
between client1 and s1 changes from 100Mbps to 10Mbps.
This constraint in the bandwidth causes client1 bandwidth
usage to drop to 10Mbps. A second 40 a similar thing happens
to client2. At second 50, the link between the switches changes
from 60 Mbps to 5 Mbps causing the available bandwidth of
the clients to only be 2.5Mbps for each. Finally, at second 60,
the link between client2 and s1 disappears, causing the 5Mbps
of available bandwidth to be allocated only to client1.

Given these results, we can confirm that we retained the
reaction time of Kollaps 2.0 in bare metal deployments.

E. Scalability of Latency Emulation Accuracy

With the changes to the mechanism used to retrieve infor-
mation from the kernel, there was a massive drop in CPU
usage in large scale deployments as mentioned in Section
IV-A. We now assess whether if Kollaps 2.0 can still scale
while maintaining accurate latency values. To this avail, we
did different experiments using scale-free network topologies
generated using [30]. The experiment consists of end-nodes
running ping [31] to another end-node for 10 minutes. We did
these tests with the same large scale topologies as mentioned
in Section IV-A.

In Table III we observe the results, and can see that Kollaps
2.0 retains the same latency scalability as Kollaps. Because
the mechanism by which Kollaps performed the emulation
of latency did not change. However, as we can see by the
results, the MSE still increases with the size of the topology,
even though we stay at low CPU usage as reported in Section
IV-A. Because with the increase in the number of services, and
bridges the probability of two services that ping each other
being on the same machine diminishes. Therefore, the effect

9

of the actual network comes into play, adding a small error
increase with the increase of nodes.

V. CONCLUSION

To develop large scale distributed systems, one of the most
important tools that developers have is testing. However, if
testing does not provide reproducible results it is not useful,
because developers can not assess the impact of the changes
made. One reason for unreproducible results is the network.
The network stands as an uncontrollable variable that de-
velopers have to take into account every day, therefore, a
reliable way to control the network is necessary to achieve
reproducibility. This method is called network emulation.

In this document, we analyze the current state-of-the-art
and leverage it against our network emulator Kollaps [10].
Kollaps is a fully decentralized distributed emulator agnostic to
application and transport protocols, that can scale to thousands
of nodes while maintaining an accuracy similar to the current
centralized solutions and bare-metal deployments. Neverthe-
less, like all systems, Kollaps has its limitations. Due to its
decentralized nature, Kollaps needs to share information, the
current communication framework and communication model
have many problems. On the engineering level, Aeron [11]
causes the CPU usage to be at 100%. On an algorithmic level,
the current model causes Kollaps to have a high amount of
metadata in the system in long-lived flows. Finally, Kollaps
does not support bare metal deployments, therefore, leaving a
lot of use cases unexplored.

In this dissertation, we improved Kollaps and introduced
Kollaps 2.0. Kollaps 2.0 brings new communication mecha-
nisms and a new communication model, lowering CPU usage
and the amount of metadata shared. It introduces a new
mechanism to retrieve data from the Kernel built on eBPF
and the socket subsystem, lowering CPU usage on large scale
deployments. Kollaps 2.0 also brings bare metal support and
allows for a vast new number of use cases.

REFERENCES

[1] “Docker.” accessed: 2021-10-13. [Online]. Available:
https://www.docker.com/products/container-runtime

[2] “Docker swarm.” accessed: 2021-10-13. [Online]. Available:
https://docs.docker.com/engine/swarm/

[3] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” ser. Hotnets-IX. New
York, NY, USA: Association for Computing Machinery, 2010. [Online].
Available: https://doi.org/10.1145/1868447.1868466

[4] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in 2014 IFIP Networking Conference, 2014, pp. 1–9.

[5] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,
and D. Becker, “Scalability and accuracy in a large-scale network
emulator,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, p. 271–284, Dec.
2003. [Online]. Available: https://doi.org/10.1145/844128.844154

[6] V. Schiavoni, E. Rivière, and P. Felber, “Splaynet: Distributed user-space
topology emulation,” in Middleware 2013, D. Eyers and K. Schwan, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 62–81.

[7] “Splay.” accessed: 2021-10-13. [Online]. Available:
http://wwwa.unine.ch/iiun/cs/splay/documentation.html

[8] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating
large production networks,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 599–613. [Online].
Available: https://doi.org/10.1145/3132747.3132759

[9] J. Lai, J. Tian, K. Zhang, Z. Yang, and D. Jiang, “Network emulation as
a service (neaas): Towards a cloud-based network emulation platform,”
Mobile Networks and Applications, vol. 26, no. 2, pp. 766–780, Apr
2021. [Online]. Available: https://doi.org/10.1007/s11036-019-01426-0

[10] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni,
and M. Matos, “Kollaps: Decentralized and dynamic topology
emulation,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387540

[11] “Aeron media driver.” accessed: 2021-10-13. [Online]. Available:
https://github.com/real-logic/aeron

[12] “extended berkeley packet filter.” accessed: 2021-10-8. [Online].
Available: https://ebpf.io/what-is-ebpf

[13] “Kubernetes.” accessed: 2021-10-13. [Online]. Available:
https://kubernetes.io/

[14] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling tcp reno
performance: a simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, 2000.

[15] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New
techniques for congestion detection and avoidance,” in Proceedings
of the Conference on Communications Architectures, Protocols and
Applications, ser. SIGCOMM ’94. New York, NY, USA: Association
for Computing Machinery, 1994, p. 24–35. [Online]. Available:
https://doi.org/10.1145/190314.190317

[16] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[17] “Python perfomance.” accessed: 2021-10-13. [Online]. Available:
https://wiki.python.org/moin/PythonSpeed

[18] “The rust programming language introduction.” accessed: 2021-
10-13. [Online]. Available: https://doc.rust-lang.org/book/ch00-00-
introduction.html

[19] “Async standard library.” accessed: 2021-10-13. [Online]. Available:
https://docs.rs/async-std/1.8.0/async std

[20] “Linux pipes.” accessed: 2021-10-10. [Online]. Available:
https://linux.die.net/man/3/mkfifo

[21] “The pyo3 user guide,” accessed: 2021-10-8. [Online]. Available:
https://pyo3.rs/v0.14.5/

[22] “py-spy: Sampling profiler for python programs.” accessed: 2021-10-10.
[Online]. Available: https://github.com/benfred/py-spy

[23] “rtnetlink(7) — linux manual pag.” accessed: 2021-10-12. [Online].
Available: https://man7.org/linux/man-pages/man7/rtnetlink.7.html

[24] “Linux socket interface,” accessed: 2021-10-8. [Online]. Available:
https://linux.die.net/man/7/socket

[25] “A rust ebpf toolchain.” accessed: 2021-10-10. [Online]. Available:
https://github.com/foniod/redbpf

[26] “raw(7) - linux man page.” accessed: 2021-10-10. [Online]. Available:
https://linux.die.net/man/7/raw

[27] “Perfmap implementation in github.” accessed: 2021-10-10. [Online].
Available: https://github.com/foniod/redbpf/blob/main/redbpf/src/perf.rs

[28] “openssh-wrapper 0.4.” accessed: 2021-10-10. [Online]. Available:
https://pypi.org/project/openssh-wrapper/

[29] “dstat.” accessed: 2021-10-13. [Online]. Available:
https://linux.die.net/man/1/dstat

[30] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999. [Online].
Available: https://science.sciencemag.org/content/286/5439/509

[31] “Ping command.” accessed: 2021-10-12. [Online]. Available:
https://linux.die.net/man/8/ping

[32] “iperf.” accessed: 2021-10-10. [Online]. Available: https://iperf.fr/

10

