
Performance Analysis of Routing Protocols on VANETs

Ricardo de Bettencourt Fontes Preto dos Santos

Thesis to obtain the Master of Science Degree in

Telecommunications & Computer Science Engineering

Supervisors: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Dr. Afonso Mota da Conceição Oliveira

Examination Committee

Chairperson: Prof. Ricardo Jorge Fernandes Chaves
Supervisor: Prof. Teresa Maria Sá Ferreira Vazão Vasques

Member of the Committee: Prof. Fernando Manuel Valente Ramos

December 2021

Acknowledgments

I would like to acknowledge my gratitude to my dissertation supervisor Prof. Teresa Vazão for her

insight, experience, support and sharing of knowledge that has made this thesis possible.

I would also like to thank my family for their support, encouragement and caring over all these years,

for always being there for me through my academic journey and without them this project would not be

possible.

Last but not least, thanks to all my friends and colleagues that helped me and were always there for

me.

Thank you.

i

Abstract

This thesis proposal aims to create a test environment for several routing protocols in Ad Hoc vehicu-

lar networks where the type of communications is predominantly of V2X. In order to observe different

performance indicators for analysis and comparison of various protocols, these will be tested over three

topology-based routing protocols: AODV, OLSR, and DSDV in four different mobility environments in-

cluding urban, highway, country and a realistic scenario of Lisbon. However, precedently, this thesis will

focus on the theoretical concepts in an effort to gain context of the Ad Hoc vehicular networks that are

going to be analyzed. Therefore, concepts of how 5G will revolutionize the future of V2X communications

and the current prism of Ad Hoc vehicular networks and its future will be addressed in this thesis. In

addition, as this thesis aims to create a test environment for multiple protocols, all tools such as SUMO,

NS3 and the created tool SUMO&NS3-Coupling will be subjects of a study so that this process can be

carried out by someone in the academic world who desired to do a study in their own mobility scenarios.

Keywords

V2X; VANET; WAVE; 5G; AODV; OLSR; DSDV; VANET routing protocols.

iii

Resumo

Esta proposta de tese tem como objetivo criar um ambiente de teste de vários protocolos de roteamento

em redes veiculares Ad Hoc, onde o tipo de comunicação predominante é V2X. De forma a poder

observar diferentes indicadores de performance para análise e comparação dos vários protocolos, nesta

tese serão testados quatro protocolos topology-based diferentes: AODV, OLSR, e DSDV. Mas antes

de a tese chegar a esse momento, este tese irá começar com conceitos teóricos de forma a ganhar

um contexto à volta do que são as redes veiculares Ad Hoc que se vão analisar. Portanto, esta tese

inicialmente vai introduzir os conceitos de como o 5G irá revolucionar o futuro das comunicações V2X e

o atual prisma de das redes veiculares Ad Hoc e o seu futuro. Como esta tese tem o objetivo de criar um

ambiente de teste de vários protocolos, todas as ferramentas como SUMO, NS3 e a ferramenta criada

SUMO&NS3-Coupling vão ser alvos de um estudo para que este processo possa ser efetuado por

alguém no mundo académico que queria fazer um estudo nos seus próprios cenários de mobilidade.

Palavras Chave

V2X; VANET; WAVE; 5G; AODV; OLSR; DSDV; protocolos de roteamento em VANETs.

v

Contents

1 Introduction 1

1.1 Introduction . 3

1.2 Goals and Contribution . 3

1.3 Organization of the Document . 4

2 Related work 5

2.1 VANET . 7

2.1.1 Type of communication . 7

2.1.2 VANET protocol stack . 8

2.1.3 Physical layer . 9

2.1.4 MAC layer . 10

2.1.5 Network layer . 11

2.1.6 Transport and Application layers . 12

2.2 Routing Protocols . 13

2.2.1 Topology-based Ad-hoc Routing Protocols . 13

2.2.1.A AODV . 14

2.2.1.B OLSR . 14

2.2.1.C DSDV . 15

2.2.1.D DSR . 15

2.2.1.E ZRP . 15

2.2.2 Broadcast Routing Protocols . 16

2.2.2.A SRB . 16

2.2.2.B DVCAST . 16

2.2.2.C PBSM . 16

2.2.3 Cluster-based Routing Protocols . 17

2.2.3.A CBLR . 17

2.2.3.B CBDRP . 17

2.2.4 Position-based Routing Protocols . 17

vii

2.2.4.A GPSR . 18

2.2.4.B DREAM . 18

2.2.4.C LABAR . 19

2.2.5 Infrastructure-based Routing Protocols . 19

2.2.5.A RAR . 19

2.2.6 Final comparison . 19

2.3 NS-3 Simulator . 20

2.3.1 NS-3 Introduction . 20

2.3.2 NS-3 Architecture . 20

2.3.3 NS-3 Installation & Set-up . 21

2.3.4 NS-3 Writing and Running Scripts . 22

2.3.5 NS-3 Documentation . 22

2.4 SUMO Simulator . 22

2.4.1 SUMO Introduction . 22

2.4.2 SUMO application areas . 23

2.4.3 SUMO Installation & Set-up . 23

2.4.4 SUMO Creating and Running Mobility Scenarios 24

2.4.5 SUMO Documentation . 30

3 SUMO&NS3 Coupling 31

3.1 SUMO&NS3-Coupling Architecture . 33

3.2 Vehicular Mobility Scenario Creation . 34

3.2.1 Urban Grid Scenario . 36

3.2.2 Highway Scenario . 37

3.2.3 Country Grid Scenario . 38

3.2.4 Realistic Scenario . 38

3.3 SUMO&NS3-Coupling Translation . 39

3.4 NS3 Simulation . 42

3.5 SUMO&NS3-Coupling Results . 42

3.5.1 Urban Grid Scenario . 45

3.5.2 Highway Scenario . 48

3.5.3 Country Scenario . 50

3.5.4 Lisbon Scenario . 53

4 Conclusion & Future Work 57

4.1 Conclusions . 59

4.2 Future Work . 59

viii

Bibliography 61

A Code of Project 63

B Installation Guides for SUMO/NS-3 73

B.1 SUMO Installation & Set-up . 73

B.2 NS-3 Installation & Set-up . 75

ix

x

List of Figures

2.1 Direct and Network Based communication in V2X . 8

2.2 Wireless Access in Vehic-ular Environments (WAVE) protocol stack 9

2.3 Channels in vehicular networks according to the IEEE 802.11p standards 10

2.4 NS-3 architecture. 21

2.5 New network . 24

2.6 Network mode menu . 25

2.7 Edge creation . 26

2.8 Network example . 27

2.9 Demand mode menu . 27

2.10 Vehicular settings and Routes . 28

2.11 File and Edit menus . 29

2.12 Mobility scenario in sumo-gui . 30

3.1 SUMO&NS3-Coupling Architecture . 34

3.2 Grid map . 37

3.3 Highway map . 37

3.4 Country map . 38

3.5 Lisbon map . 39

3.6 Network Animator . 43

3.7 Example of AODV packet . 44

3.8 Average Speed Grid Scenario . 46

3.9 Running Vehicles Grid Scenario . 46

3.10 Receive Rate Grid Scenario . 47

3.11 Overhead Grid Scenario . 47

3.12 Average Speed Highway Scenario . 48

3.13 Running Vehicles Highway Scenario . 49

3.14 Receive Rate Highway Scenario . 49

xi

3.15 Overhead Highway Scenario . 50

3.16 Average Speed Country Scenario . 51

3.17 Running Vehicles Country Scenario . 51

3.18 Receive Rate Country Scenario . 52

3.19 Overhead Country Scenario . 52

3.20 Average Speed Lisbon Scenario . 53

3.21 Running Vehicles Lisbon Scenario . 54

3.22 Receive Rate Lisbon Scenario . 54

3.23 Overhead Lisbon Scenario . 55

B.1 Example of successfully installation . 75

B.2 Home folder . 76

xii

List of Tables

2.1 Routing protocol characteristics . 19

3.1 Grid Map characteristics . 37

3.2 Highway Map characteristics . 38

3.3 Country Map characteristics . 38

3.4 Lisbon Map characteristics . 39

3.5 Metric Averages of Grid Scenario . 48

3.6 Metric Averages of Highway Scenario . 50

3.7 Metric Averages of Country Scenario . 53

3.8 Metric Averages of Lisbon Scenario . 55

xiii

xiv

Listings

3.1 Portion of mobilityScenario.sumocfg . 34

3.2 Portions of mobilityScenario.net.xml . 35

3.3 Portions of mobilityScenario.rou.xml . 35

3.4 Portion of mobilityScenario.xml . 40

3.5 Portion of mobilityScenario.tcl . 41

3.6 mobilityScenario mobility stats.csv . 43

A.1 Portions of Simulation.sh . 63

A.2 StatsParser.py . 68

A.3 TclParser.py . 69

B.1 SUMO prerequisites . 73

B.2 NS-3 prerequisites . 75

xv

xvi

Acronyms

AODV ad hoc on-demand distance vector

API Application Programming Interface

AP Access Point

BSS Basic Service Set

CBDRP cluster based directional routing protocol

CBLR cluster Based location protocol routing

CCH control channel

DREAM distance routing effect algorithm for mobility

DSDV destination sequence distance vector

DSRC Dedicated Short-Range Communication

DSR Dynamic source routing

DVCAST distributed vehicular broadCAST

ETSI European Telecommunications Standards Institute

GNU GNUs not Unix

GPSR greedy perimeter stateless routing

GPS Global Positioning System

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ITS Intelligent Transportation Systems

KPI Key Performance Indicators

LABAR location area based ad-hoc routing

LREQ location request

LTE Long Term Evolution

MAC Media Access Control

xvii

MANET Mobile Ad Hoc Network

MCTP Mobile Control Transport Protocol

MPR multipoint relays

NS-2 Network Simulator 2

NS-3 Network Simulator 3

NS2 Network Simulator 2

NS3 Network Simulator 3

NetAnim Network Animation

OFDM Orthogonal Frequency Division Multiplexing

OLSR Optimized Link State Routing

OS Operating system

PBSM parameterless broadcast in static to highly mobile

POI Point-of-interest

QoS Quality Of Service

R-DSDV randomized-destination sequence distance vector

RAR roadside-aided routing

RERRs Route Errors

RREPs Route Replies

RREQs Route Requests

RSUs Road Side Units

RSU Road Side Unit

SCH service channels

SRB secure ring broadcasting

SUMO Simulation of Urban Mobility

TCP Transmission Control Protocol

UDP User Datagram Protocol

V2I Vehicle-to-Pedestrian

V2N Vehicle-to-Network

V2P Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VANET Vehicular Ad Hoc Networks

VITP Vehicular Information Transfer Protocol

VTP Vehicular Transport Protocol

xviii

WANET Wireless Ad-hoc NETwork

WAVE Wireless Access in Vehic-ular Environments

Wi-Fi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

ZRP zone routing protocol

xix

xx

1
Introduction

Contents

1.1 Introduction . 3

1.2 Goals and Contribution . 3

1.3 Organization of the Document . 4

1

2

1.1 Introduction

Over the past few decades, due to the rapid growth and evolution of our population in addition to needs

that are constantly more demanding without any signs of deceleration, our society has been experiencing

the benefits of new and more advanced mobile communications generations. Furthermore, this evolution

of communications systems towards the current 5G telecommunication generation is expected to meet

various communication requirements of future industrial or commercial fields. Currently, information and

communication technology is not only the key driving factor for some of the most important innovations in

the automotive industry, but also the future of Intelligent Transportation Systems (ITS). This is motivated

by the consumer demand for a vast variety of ITS applications, for instance autonomous driving and, as

a result, researchers are exploring new and more efficient network architectures, such as Vehicular Ad

Hoc Networks (VANET). VANETs have emerged as a fascinating research and application field. As an

increasingly number of vehicles are being equipped with more and more technology such as sensors,

processing and wireless capabilities are enabling a new paradigm of possibilities to revolutionise the

ITS, more particularly in road safety, efficiency, and comfort. VANETs are a subclass of Mobile Ad

Hoc Network (MANET) which belongs to a family of Wireless Ad-hoc NETwork (WANET). Regarding

MANETs, they are fundamentally a self-organizing communication system that is not dependent on

any infrastructure and is mostly used in military, however, nowadays it is gaining ground on civilian

applications. Moreover, MANETs communications are equal to the basic communication methodology

on Bluetooth ad hoc networks used for data sharing between mobile phones. At last, the basic principle

of VANETs is the same as MANETs but, applied in vehicular scenarios where nodes are the cars with

embedded sensors and communication systems or fixed infrastructure consisting of Road Side Units

(RSUs).

1.2 Goals and Contribution

The objective of this thesis is to create a simulation environment for various routing protocols in VANETs

networks and in this way to take advantage of Vehicle-to-Everything (V2X) communications. This envi-

ronment has to be intuitive and easy to use, so that any student or researcher can use this environment

to be able to make comparisons between the routing protocols. And for that, the SUMO&NS3-Coupling

tool software was developed, this software will enable any student or researcher to seamlessly use

the software to compare the routing protocols. Also, this thesis aims to provide a background on the

theoretical concepts involved with VANET scenarios as well as the tools used.

3

1.3 Organization of the Document

This thesis is organized as follows:

• Chapter 2 - Related Work: This chapter is dedicated to all the surround work behind the goals of

this thesis. Diving into the theoretical aspect of VANETs as well as overview of the most known

routing protocols for vehicular networks. In addition, this chapter also gives a background of two

key softwares to achieve the goals of this thesis, the Network Simulator 3 (NS-3) and Simulation

of Urban Mobility (SUMO).

• Chapter 3 - SUMO&NS3-Coupling: This chapter is strictly dedicated to the SUMO&NS3-Coupling

program that I have developed to achieve the goal of this thesis. Starting with the architecture of

the have a brief introduction to how the program work. Then, subsequently diving into each phase

of the program, to full understand how it works. Starting with the creation of vehicular mobility

scenarios until the end, then going through how SUMO&NS3-Coupling combines both SUMO and

NS-3 until the last phase, with the analysis over the performance of each routing protocol.

• Chapter 4 - Conclusion & Future work: The last chapter is dedicated to the conclusion thoughts

and future work ideas.

4

2
Related work

Contents

2.1 VANET . 7

2.2 Routing Protocols . 13

2.3 NS-3 Simulator . 20

2.4 SUMO Simulator . 22

5

6

2.1 VANET

VANETs or Vehicular Ad Hoc Networks are not the common type of network we are used to see in our

daily basis where we have a fixed topology network where only the terminals are dynamically changing

position, for instance the example of our phones. Therefore, in contrast, VANETs are a special case of a

Mobile Ad Hoc Network (MANET) , highly dynamic and intermittent connected typologies networks due

to the nature of constant and fast mobility of vehicles which bring new challenges to data communication

and its Quality Of Service (QoS) requirements [1]. VANETs will be essential to the new paradigm of

autonomous driving and for intelligent transportation systems, and this new paradigm is not far away.

Since, nowadays various automotive manufactures are already equipping their vehicles with onboard

computing, sensors as well as wireless communications devices and navigation systems such as GPS

in preparation to this new paradigm. However, this section will not only, but focus more on the technical

aspect of the VANETs, diving into the routing protocols which is the main subject of this thesis.

2.1.1 Type of communication

Currently, the advances in mobile communications allow us different deployments of architectures for

vehicular networks in urban areas, highways, and rural environments via ad hoc networks to support

different applications and its QoS requirements. Therefore, a VANET regardless of the environment

where it is operating, is going to utilize new types of communication between vehicles and fixed road-

side equipment and infrastructure. These communications are grouped in what is called Vehicle-to-

Everything (V2X) that is based on two types off communication, direct or ad hoc based and network

based which have the following communications list of possibilities and represented in the Fig. 2.1 [2,3]:

• Vehicle-to-Vehicle (V2V): Direct based communication that allows direct communication between

vehicles without relying on the road side or fixed infrastructure.

• Vehicle-to-Infrastructure (V2I): Network based communication that allows communication be-

tween the vehicles to the infrastructure.

• Vehicle-to-Pedestrians (V2P): Direct based communication that allows direct communication be-

tween vehicle and pedestrians.

• Vehicle-to-Network (V2N): Network based communication that allows communication between

the vehicles to the network.

Also, when dealing with a VANET there are some characteristics to consider beyond the type of

communication such as:

7

Figure 2.1: Direct and Network Based communication in V2X
[2]

• Highly dynamic topology: VANET networks due to the speed of the nodes and range of the radio

signal that is mainly dependent on radio wave frequency used.

• Frequently disconnected: Since the nodes are highly dynamic, those can be in and out of range

in a matter of seconds due to variation of speeds, causing frequently changes on the state of the

connection between nodes and updates on the routing tables of each node.

• Geographical position and patterns: In case of some routing protocols, in particular the geo-

graphic based that which will be explained forwarder, can benefit from geographical information in

order to predict mobility pattern for future routing purposes.

• Propagation model: For most of cases, VANETs operate in three environments such as urban

scenarios, highways and rural. Therefore, a network has to be able to adapt the propagation

models between each environment, since it is known that rural areas are not as dense a urban

areas. Where the signal can suffer from interference and reflections, or even total loss of signal

due to blocking by the buildings.

Therefore, there are spatial and temporal constraints with this kind of network whereas fixed network

don’t and that need to be taken into account to the design of communication protocols in VANETs.

2.1.2 VANET protocol stack

The protocol stack for vehicular networks has to manage communication with nearby vehicles and be-

tween them, pedestrians and roadside equipment as previous mentioned. Therefore there is a protocol

8

stack designed to handle all the challenges mostly based on the IEEE 802.11 Wireless Access in Vehic-

ular Environments (WAVE) standards [4] as illustrated in the Fig. 2.2 [5].

Figure 2.2: WAVE protocol stack
[5]

2.1.3 Physical layer

The physical layer in vehicular networks is a challenging one compared with our typical fixed topology

networks. For instance, the protocols in this layer must take into account the multipath fading as well

Doppler effect in radio wave frequencies shifts caused by the fast movements of the nodes specially

in highway scenarios. Vehicle-to-vehicle communication have use radio wave usually on very high fre-

quencies [6], for instance micro and even millimeter waves which are also used in 5G, are used. Note

that millimeter waves are only used in line-of-sight communication, whereas the microwaves are used in

the broadcast type communications. The frequencies used, were defined in the Dedicated Short-Range

Communication (DSRC) system which is dedicated to VANETs. This system is as the name suggest is

a short to medium range communication technology that operates around the 5.9GHz band. In which,

according to the European Telecommunications Standards Institute (ETSI), 70 MHz where allocated so

it operates in the 5.885-5.925 Ghz band. The DSRC system is able to manage speeds up to 200km/h,

and a transmission range up to 1000m. In addition, the DSRC is known as the IEEE 802.11p WAVE

standards where it also defines the function and services that operate in vehicular networks without the

need of a Basic Service Set (BSS), which means that no common Access Point (AP) is needed in the

network to provide communication between nodes. The IEEE 802.11p also defines interfaces functions

9

between the physical layer and the Media Access Control (MAC) layer, sharing the same logical channel

as we can see in the Fig. 2.2 as well as the other DSRC channels, each with represent with the IEEE

1609 standards which are divided by the following list from the article [6,7]:

• 1609.1: Specifies the services and interfaces of the WAVE Resource Manager application.

• 1609.2: Defines secure message formats and processing.

• 1609.3: Defines network and transport layer services including addressing and routing, in support

of secure WAVE data exchange.

• 1609.4: Enables operation of upper layers across multiple channels, without requiring knowledge

of PHY parameters.

• 802.11p: Define the WAVE signaling technique and interface functions that are controlled by the

IEEE 802.11 MAC.

Also according to the ETSI and In the Fig. 2.3, the frequency band is divided into six service channels

(SCH) and one control channel (CCH), each one with a band of 10 MHz and all of them filling the 70

Mhz band allocated previously mentioned to the DSRC. Each channel is allocated to three types of

applications. The ITS non-safety 5.855-5.875 MHz, safety, and traffic efficiency 5.875-5.905 Mhz, Future

ITS 5.905-5.925 Mhz [8,9] .

Figure 2.3: Channels in vehicular networks according to the IEEE 802.11p standards
[10]

2.1.4 MAC layer

MAC layer protocols are responsible for managing the use of a share medium, therefore these protocols

decide which nodes will access the medium at any given time. The MAC layer in case of vehicular

networks has to provide a reliable, stable and efficient channel. Also, MAC protocols should consider

the different applications for which the communication will occur. For example, messages related with

10

safety applications have to be sent rapidly, with low failure rate. Therefore, this calls for a resilient medium

of communication, which is even more challenging when dealing with VANETs due to the highly node

mobility and topology changes. And this is especially important since with the 5G capabilities the trend

is to use even more multimedia applications by passengers, demanding more throughput in the VANET

network. In addition, in VANETs, the bandwidth has to be shared between vehicles, that being said, the

use of Orthogonal Frequency Division Multiplexing (OFDM) technology to control the medium access

communication to avoid collisions. Fortunately, the IEEE 802.11p WAVE protocol is designed to fulfill the

requirements present in V2X communications, where high reliability and low latency are are mandatory.

This is done by enabling a very efficient communication setup with little overhead and removing the BSS

operations from the IEEE 802.11 in a truly ad hoc environment for vehicles [7].

2.1.5 Network layer

The network layer, the layer that allows for the connection and transfer of data packets between the

nodes by using routing protocols that implement viable ways of communication without disruption. With

that said, in vehicular networks it supports different communications:

• Unicast communication: Type of communication from the source node to target node end-to-

end in the network via multi-hoping. Where the target node may be at a known location or within

a certain range. Despite this communication usefulness in VANETs, multicast is better suited for

applications that require dissemination of messages to different nodes in the network.

• Multicast/Geocast communication: Type of communication, where the data transmission is ad-

dressed to a group of targets simultaneously. Geocast is based on the Multicast but takes into

account the geographical location into the mix. In which a message is sent to a group of targets

node based on their geographic position, commonly based by the relative distance to the source

of the message.

• Broadcast communication: Type of communication, where the source node sends data to every-

one on the network at once. However, in vehicle networks the broadcast works a little bit differently

from the typical fixed networks. In these networks, the nodes are scattered in the space, which

means that. Probably in most of the cases, the nodes may not be within the range transmission

of the source node. To prevent this, the target nodes from the first source, relay the data also in

broadcast mode repeating the process until no nodes are within range of the source. Forming a

chain of broadcast messages that breaks when no vehicles are in range. In addition, it is with

broadcast that the nodes discover their neighbours in the discovery phase of the routing protocols

in order to find the most efficient route for the unicast communications.

11

With mention of routing protocols, it is to note that routing protocols are very different from the typical

fixed networks and since there are some substantial differences. With that said, the routing protocols will

have their own section 2.2 dedicated to them ahead, despite their operation in this section of network

layer.

2.1.6 Transport and Application layers

As previous mentioned, vehicular networks are characterized by the highly node mobility, rapid topology

changes and intermittent connectivity. And in contrast with other ad hoc networks, VANETs present a

more predictable mobility patterns. Since in this environment, vehicles have a somewhat predictable

path due to the road network. The patterns can improve the short time window that the nodes have

in high mobility to exchange data the by increasing good throughput, or goodput. In VANETs, many

unicast applications it is safe to assume that the Transmission Control Protocol (TCP) protocol charac-

teristics regarding the reliability and in-order data. Unfortunately, this protocol in terms of performance

is not the greatest in vehicular networks with high mobility and frequent topology changes [11]. In addi-

tion, Vehicular Transport Protocol (VTP) is a transport protocol for unicast applications in VANETs that

make use of path characteristics to improve performance. Other protocol is the Mobile Control Trans-

port Protocol (MCTP) which is based on similar principles of the Ad Hoc TCP protocol with the aim

of trying to provide end-to-end QoS between vehicles and the roadside infrastructure. In the applica-

tion, protocols should minimize the end-to-end communication delay, which is important when providing

emergency messages. In addition, these protocols when dealing with emergency messages have to

take into account some factors and comply to them in an appropriate time window to guarantee the vehi-

cle’s driver receive all the information. Those factors can be the location where they are generated due

an emergency event, velocity of the receiver vehicle. Also, some applications need to be designed with

a commercial mindset for business such as restaurants, hotels, gas station among others can broadcast

their marketing information in VANETs. Application protocols may also be used for transactions with

Vehicular Information Transfer Protocol (VITP) [12]. Which is an application layer communication proto-

col designed to handle the establishment of a distributed ah hoc service infrastructure in VANETs. The

field of application in this space is evolving rapidly due to the evolution of communication such as 5G

influencing existing use cases or futures ones such as:

• Safety Applications: Aiming to improve the road safety.

• Efficiency Applications: Aiming to improve the road efficiency.

• Comfort Applications & Interactive Entertainment: Aiming to improve the passengers comfort.

• Autonomous Driving: The most ambitious, that aims to revolutionize our ITS, by aiming to switch

the all vehicular mobility to autonomous driving.

12

2.2 Routing Protocols

Due to the high mobility of nodes in a VANET environment, designing routing protocols able to compute

and handle efficiently many routing paths among vehicles, represents nowadays a challenging research

issue. Until now, several routing protocols have been developed, some of them have been adaptations

improving already established algorithms from MANETs. However, this protocols despite having been

demonstrated on how they can perform well for MANETs, that does not mean that they are able to

guarantee the same level of efficiency into VANETs scenarios. And, that is why new approaches and

more sophisticated strategies have been developed where a lot of this approaches manages the routes

starting from the information about the node location where other protocols group the nodes into smaller

clusters [13].

Being said that , the rest of this section is dedicated to a summary of the most know VANETs routing

protocols that can be divided in five different categories [14]: Topology-based, Broadcast, Cluster-based,

Position-based and Infrastructure-based.

2.2.1 Topology-based Ad-hoc Routing Protocols

In this category of routing protocols there are some algorithms that have been designed for MANETs and

have been adjusted to fit a VANET environment. Topology-based protocols can be divided in categories,

proactive, reactive and hybrid.

• Proactive: In this type of routing protocol, each node on the network keeps on maintaining regu-

larly the routing table to store the routes information for every other node. Therefore, each table

entry contains the information of the next-hop, despite the route being needed or not by using the

Bellman Ford Algorithm. Since we are in a VANET environment, this tables must be updates regu-

larly to reflect the topology changes of the network, and to perform that each node has to broadcast

regularly to discover its neighbours. However, this has a downside, it produces overhead cost due

to maintaining up-to-date information and as a result it may affect the throughput of the network.

Upside is that whenever is necessary, it has the availability information of the next-hops. Also, the

proactive routing protocols relies on the shortest path algorithm to find out the optimum route, for

that there are two kind of strategies, link state strategy and distance vector strategy.

• Reactive: In this type of routing protocol, each node on the network keeps on maintaining only the

routes in need. Therefore, each node starts a route discovery process when it wants to send data

if the path is not already known. This network paths searching, relies on handshake by flooding

route request messages and it reaches the destination node, the destination node replies in unicast

communication forming a connection. That means that reactive protocols are more suited for

13

dense networks, high mobility that frequently change typologies die to the reduce overhead of

maintaining the routing tables of the proactive protocols.

• Hybrid: In this type of routing protocols, as the name suggests it is the middle ground between

the above two protocols, the proactive and reactive. This protocol aims to take advantage of the

strengths of the other two while reducing the limitation, such as routing network overhead form

proactive protocol and delay in the routing discovery process from the reactive protocol. In this

hybrid protocol, the whole network is divided into zones. Making it easier to maintain routing

tables, and even increasing efficiency in discovery process. Also, in this protocol each node has

been labeled as region inside node, or region outside node.

2.2.1.A AODV

AODV protocol stands for ad hoc on-demand distance vector routing protocol. Which is a reactive

protocol that enables dynamic, self-starting, multihop routing between nodes wishing to establish and

maintain an ad hoc network. Since it is a reactive protocol and allows nodes to obtain routes quickly for

new destinations and does not require nodes to maintain routes to destinations that are not in active in

communications. Doing all this while dealing with link breakages and changes in network topology in

an acceptable time window since when a link breaks, this protocol notifies the affected set of nodes by

sending a route error message, so that they can invalidate the routes using the lost link quickly. Also,

the operation of AODV protocol is loop-free, and by avoiding the Bellman-Ford ”counting to infinity”.

And does that by using a simple solution and a distinguishing feature of this protocol which is the use

of a destination sequence number for each route entry. In addition, the AODV protocol uses the User

Datagram Protocol (UDP) transport protocol to send its own messages that are mostly Route Requests

(RREQs), Route Replies (RREPs), and Route Errors (RERRs).

2.2.1.B OLSR

OLSR protocol stands for Optimized Link State Routing protocol. Which is a proactive protocol, meaning

that is a routing table driven protocol that exchanges and manage topology information regularly between

nodes of the network. To do that, each node selects a set of neighbours nodes as multipoint relays

(MPR), these nodes are responsible for forwarding the control traffic, intended for diffusion into the whole

network. MPRs provides an efficient mechanism for flooding control traffic by reducing the number of

transmissions required. Another responsibility of the nodes selected as MPRs, is to declare all the link

state information in the network periodically over the control messages in order to OLSR maintain the

shortest paths routes updated and for redundancy. In addition, in route calculations, the MPRs are used

to form the route from a source target to any destination in the network.

14

2.2.1.C DSDV

DSDV protocol stands for destination sequence distance vector routing protocol. Which is a proactive

protocol, meaning that is a routing table driven protocol based on the distance vector strategy and

applies the shortest patch algorithm of Bellman-Ford. In this protocol only one optimal route is stored in

the routing table for each destination while having the information to all approachable network’s nodes

with the destination nodes and its costs. Similarly, to the AODV , this protocol also stores as a label the

sequence number of its routes in order to avoid the Bellman-Ford ”counting to infinity” problem. DSDV

maintains the routes by periodically broadcasting the control messages to its neighbours. Since DSDV is

a proactive protocol, it is more prone to overhead with the increase number of nodes due to the addition

overhead to maintain the routing tables. However, the main limitation of DSDV routing protocol is that

lacks congestion control for the network, multiple paths for destinations decreases the DSDV routing

efficiency. These limitations were mitigated with a new protocol based on the DSDV, the randomized-

destination sequence distance vector (R-DSDV). Which provides support for network congestion control,

but with that also having an increase of overhead compared to DSDV.

2.2.1.D DSR

DSR protocol stands for Dynamic source routing protocol. Which is a reactive protocol, with the main

objective to provide a very low network overhead yet was able to react very quickly to changes in the

network. The DSR protocol provides successful data packet delivery despite of network changes by

taking advantage of its tow step mechanism, route discovery and route maintenance that allows respec-

tively to discover and maintain the routing tables. The DSR is a multi-hop routing protocol, that in route

discovery or route maintenance operate strictly on demand thence being a reactive protocol. And, unlike

other protocols, the DSR protocol does not requires periodic sending of packets of any kind within the

network. For instance, the DSR does not use the routing advertisement, link status or even neighbour

detection and relies on the package’s headers. When some source node, originates a new packet to

some destination, then source node places in the header of the packet altered, giving the sequence of

hops to the destination. Normally, the sender will obtain a route by searching its cache of routes previ-

ously learned. If no route is found, it will initiate the route discovery protocol to find a route. However,

this approach can have a significant overhead in early stages, due to the caches being empty.

2.2.1.E ZRP

ZRP protocol stands for zone routing protocol. Which is a hybrid protocol, that according to its name, di-

vides the whole network into multiple zones based on some criteria such as transmission power required,

transmission signal strength, mobility of the nodes among others. Since ZRP is a hybrid protocol, ZRP

15

uses the proactive routing approach for inside nodes of zone and reactive routing approach for outside

nodes of zone.

2.2.2 Broadcast Routing Protocols

In general, the role of a protocol is to find a route to connect two nodes. However, routing algorithms

based on broadcast protocols have a different aim. This kind of protocols are used whenever the desti-

nation node is out of the range of the source node. Mostly these protocols are used with application that

are concerned with the safety such as road and weather condition warning, emergency warning mes-

sages, road conditions among others, where the information is use full to every node. The positive side

of these kind of protocols is the reliability, therefore being used for safety. The downside is that these

types of protocols consume more bandwidth, and many duplicate packets reaches the node which is not

an efficient use of resources.

2.2.2.A SRB

SRB stands for secure ring broadcasting routing protocol, which is a broadcast routing protocol that

divides the nodes into three different classes, inner nodes (IN), outer nodes (ON) and secure ring nodes

(SRN). The inner nodes, as the name suggest are the ones closer to the source node, then we have the

outer nodes which are far away from the source node and finally the secure ring nodes which are within

the maximum distance defined from the source node. So, in the SRB only the nodes within the secure

ring can broadcast the packets more than one time to destination.

2.2.2.B DVCAST

DVCAST stands for distributed vehicular broadCAST routing protocol, which is a broadcast routing pro-

tocol that operates based on the local information about its neighbours to maintain communication.

DVCAST protocol gets information about the network by sending periodic beacon messages. When a

source node does not find enough nodes it does not broadcast, the packet will be cached until nodes

get into broadcast range, if no node is found the packets will eventually be discarded. Also, this protocol

deals with message duplication by using flag parameters.

2.2.2.C PBSM

PBSM stands for parameterless broadcast in static to highly mobile routing protocol, which is a sim-

ple broadcast routing protocol. That to eliminate redundant broadcasting operates dividing neighbours

nodes into two classes, the nodes that received (R) and the node that did not receive (NR) any packets.

Which helps to detect neighbors that already received and that which did not receive the packet.

16

2.2.3 Cluster-based Routing Protocols

As said previously, in VANETs the topology changes are very frequent over, usually large areas. There-

fore, dealing with scalability is usually a big issue. One way of dealing with that issue is by diving the

network in different regions or clusters, which coordinate and communicate with each other to achieve

communications between nodes. Moreover, if a vehicle node needs to communicate with another node

within the cluster then the communication is a direct path as it is considered to be a local communica-

tion. If the vehicle node needs to communicate with another node outside the cluster then it requires

the help of its cluster head for reaching the destination. The positive side of cluster-based protocols are

the scalability factors as it makes a good choice for complex networks over large areas. However, the

drawbacks are traffic delays.

2.2.3.A CBLR

CBLR stands for cluster Based location protocol routing protocol, which is not only a broadcasting pro-

tocol but also acts like a reactive protocol or on demand routing protocol. Since a routing table is used

by each cluster header, which contains all the addresses and locations of the cluster member nodes.

In addition, cluster headers also track information about the neighbour clusters in the cluster neighbour

table. Therefore, when a source wants to send a packet to a destination node, it sends it to the closest

neighbour if it is in the same cluster. If the destination node is in another cluster, then it caches the

packets and broadcasts location request (LREQ) packets to find the destination node.

2.2.3.B CBDRP

CBDRP stands for cluster based directional routing protocol, which is a broadcasting protocol where the

nodes are being clustered according to the direction of the vehicles, so the nodes that are moving in

the same direction are grouped together in a cluster, and one of the nodes is elected the cluster-head.

Then, if a packet has to leave the cluster, the packet needs to be forwarded to the header of the cluster

which sends it to the header of the node’s cluster header.

2.2.4 Position-based Routing Protocols

In these kinds of protocols, a source node will communicate to the destination node using by using

geographical positions as well as with its network address. The geographical position of the nodes, can

be obtained naturally trough Global Positioning System (GPS) or V2I communication since it is know

the location of the Road Side Unit (RSU) infrastructure [15] that can act as redundancy whenever the

satellite signals is weak when the vehicle goes in the area like tunnel. In the position-based routing

protocols there is a specific category, Geocast routing, in which the nodes are being the nodes are

17

being divided into predefined geographical positions regions. And, to forward the packets there are

three strategies:

• Greedy forwarding: In this strategy, protocols do not create a path from source to destination,

they forward the packets to the next-hop tanking in consideration the position of other nodes, for

instance the closest neighbour to destinations in terms of distance instead of the typical cost in

other protocols.

• Restricted directional flooding: In this strategy, protocols forward the packets to several nodes

like broadcasting, however is a directional one instead of every node.

• Hierarchical: In this strategy, protocols create a hierarchy according to position of the vehicle to

escalate large number of nodes.

Since position-based protocols use geographical location information of the nodes within the network.

In a vehicular scenario such as VANETs, movements are usually restricted in a few directions based on

the road network, therefore having an advantage of predictability and performance over other routing

protocols designed for VANETs. Hence, position-based protocols being nowadays the most promising

protocols for VANETs scenarios.

2.2.4.A GPSR

GPSR stands for greedy perimeter stateless routing protocol, which is a protocol that uses the greedy

forward approach to find he shortest paths to its destination nodes and takes advantage of its corre-

spondent graphical position and connectivity in the network. By using the positions of the nodes to

make packet forward decisions. Therefore, GPSR uses the greedy forwarding approach to forward

packets to nodes that are always progressively closer to the destination node. However, in regions of

the network where the greedy path is not found, GPSR recovers by forwarding the packet in perimeter

routing strategy mode, in which the connectivity graph switches into a planar subgraph, until reaching

closer to destination, where the greedy forwarding resumes.

2.2.4.B DREAM

DREAM stands for distance routing effect algorithm for mobility routing protocol, which is a protocol that

uses the restricted directional flooding approach. Therefore, the packets are being forwarded to several

next-hop nodes to reach the destination. The protocol limits the number of broadcasts by broadcasting

the packets to only certain regions. Those regions are calculated using the positions of each node on the

network, with that the expected region is calculated is predicted and the protocol forwards and broadcast

the packets to those regions.

18

2.2.4.C LABAR

LABAR stands for location area based ad-hoc routing protocol, which is a protocol that uses the hierar-

chical position-based approach. LABAR creates location areas using G-nodes and V2I communication.

Forming, a virtual back-bone network, where the G-nodes are able to communicate with the local ser-

vice infrastructure to learn about the S-nodes. To forward a packet LABAR creates areas using the

back-bone network and directional routing. So, once the zones are defined with the G-nodes forming

the top hierarchical network with the correspondent multiple S-nodes. With this said, if communication

takes place within a zone it uses the S-nodes, if it goes outside the zone, G-node back-bone network

must be used.

2.2.5 Infrastructure-based Routing Protocols

As said previously in the position-based routing protocols 2.2.1, the use of road side infrastructure

can be used as redundancy whenever the satellite signals is weak. However, in infrastructure-based

routing protocols instead of being used as redundancy is the main source of information relying on fixed

infrastructure bases to assist routing issues.

2.2.5.A RAR

RAR protocol stands for roadside-aided routing protocol. Which is a protocol that takes advantage of

road side infrastructures to assist routing. In this protocol, geographical areas are divided into sectors

with RSUs, enabling V2I communication between RSUs. This protocol is preferable in urban scenarios

since is where most infrastructure is already in place.

2.2.6 Final comparison

This section presents a small summary of the topology-based protocols which are the ones that will be

used ahead on the experimental side of this thesis.

Table 2.1: Routing protocol characteristics

Routing Protocol OLSR DSDV AODV
Protocol Category Topology-based Topology-based Topology-based

Protocol Type Proactive Proactive Reactive
Topology Structure Flat/Hierarchical Flat/Hierarchical Mostly Flat

Approach Link State Distance vector Distance vector
Storage Requirements High High Low

Scalability Overhead increased Overhead increased Overhead increased
Advantages Reduce control overhead Loop free Low overhead
Drawback Throughput Throughput Large Delay

Simulation Tools NS2, NS3, OPNET NS2, NS3 NS2, NS3, OPNET

19

2.3 NS-3 Simulator

This section is related to the NS-3 Simulator. It is going to include an overview of what is the NS-3, how

is the development process, its architecture, applications as well as how to install it and run the custom

scripts for the testing of the various routing protocols for the purpose of this thesis.

2.3.1 NS-3 Introduction

NS-3 or network simulation 3 is a discrete event network simulator successor of NS-2, intend to focus

primarily on research and educational use as it is a free software, licensed under the GNU General

Public License version 2 [16]. Therefore, license was created in order to guarantee the freedom to share

or modify the software which is relevant for any researcher that intends to use and modify the NS-3 for

his research.

The NS-3 project is one of few reference projects of open-source simulator for extensible network

simulations platform, for networking research and education, as it should be aligned with the simula-

tions needs of current networking research that is developed with the motivation and contribution by

the community, mainly establish of students and researchers. These contributors aim to build the NS-3

project to a solid simulation core that is well documented and caters to the need of the entire simula-

tion workflow, from simulations configurations to performance analysis of real-time network emulators

that could be interconnected with the real world as it allows many existing real-world protocol imple-

mentations to be used in within NS-3 simulations and can be found in the following Gitlab repository

https://gitlab.com/nsnam.

In brief, NS-3 provides models of how packet data networks work and perform, by providing a sim-

ulation engine core supports research of both IP and non-IP based networks. Capable of performing

studies that are difficult or even impossible to perform in real networks, by studying the network behavior

in a controlled and reproducible environment. However, most of its users focus on wireless/IP simula-

tions which involve models for Wi-Fi, WiMAX or LTE for the first and second layer and a variety of static

or dynamic routing protocols such as OLSR and AODV as mentioned in previous sections.

2.3.2 NS-3 Architecture

The NS-3 simulator is library designed in C++ and provides a set of network simulations models imple-

mented in C++ objects and wrapped through python. Therefore, to use this library the application must

be coded in C++ or python to instantiate a set of simulations models to set up and run the simulation

scenario of interest.

As the NS-3 library is wrapped through python using the pybindgen library, this means that the

delegation of parsing of the NS-3 c++ headers to gccxml and pygccxml to generate the corresponding

20

https://gitlab.com/nsnam

c++ files which are compiled into the NS-3 python module to allow the users to interact with the NS-3

modules and core through python scripts. As shown in the following Fig. 2.4

Figure 2.4: NS-3 architecture.
[17]

Unlike most of other discrete-event simulators, NS-3 is distinguished by the high-level design. Sim-

ulation events in NS-3 are made by simple function calls that are scheduled to execute at a prescribed

simulation time as we are going to see in a more detailed manner in the following sections. With that

said, any function can be defined as an event and scheduled by the use of a callback function which

means that any event can call invoke other events.

2.3.3 NS-3 Installation & Set-up

The NS-3 simulator is available on Linux, Mac OS and even Microsoft Windows using Cygwin, however

it is suggested to use the Linux environment as it is the most stable, since NS-3 is primarily developed

on GNU/Linux platforms. Therefore, this section will provide a brief guide to the installation of NS-3 on

the Ubuntu distribution of Linux. However, before proceeding with the installation of NS-3, there are

some prerequisites that are needed. Those requisites are due to libraries of NS-3 which have several

dependencies on third-party libraries such a C++ or python among others. The guide for installation and

set-up can be found attached to the appendix B.

21

2.3.4 NS-3 Writing and Running Scripts

While experienced users of NS-3 often write their own scripts, the less experienced ones start with the

examples provided in the NS-3 build. In this section we will run the famous example of hello world

scripts, and just outputs to the terminal Hello World. For that, we need a terminal window opened in the

NS-3 directory /ns-allinone-3.34/ns-3.34 by typing the following command:

1 ./waf --run hello-simulator

Note that, for running the script the ./waf & –run are present. This are indispensable to run any script.

2.3.5 NS-3 Documentation

As the NS-3 is not the primary focus of this thesis, but rather an important tool for the experimental

aspect, this section is focused on the available resources for further information about the NS-3.

• Documentation: https://www.nsnam.org/documentation/

• User FAQ: https://www.nsnam.org/wiki/User_FAQ

• HOWTOs: https://www.nsnam.org/wiki/HOWTOs

2.4 SUMO Simulator

This section is related to the SUMO simulator. It is going to include an overview of what is SUMO, how is

the development process, its architecture, applications as well as how to install, and finally how to create

custom mobility scenarios for the testing of the various routing protocols for the purpose of this thesis.

2.4.1 SUMO Introduction

SUMO or Simulation of Urban Mobility is a free and open-source vehicular traffic simulation intend to

focus primarily on research, and both educational and commercial purposes. SUMO is mainly devel-

oped by the employees of the Institute of Transportation Systems at the German Aerospace Center and

licensed under the Eclipse public license V2. Which means this license guarantee the freedom to share

or modify the software as long as the contributor or distributor provides it as an open source.

It is available since 2001 and it allows modelling of intermodal traffic systems, this means that it allows

modelling of road vehicles, public transport, and pedestrians. Also, included with SUMO is an extent of

numerous supporting tools which intend to automate core tasks for the creation, the execution and

22

https://www.nsnam.org/documentation/
https://www.nsnam.org/wiki/User_FAQ
https://www.nsnam.org/wiki/HOWTOs

evaluation of traffic simulations, such as network import, route calculations, visualization, and emission

calculation. In addition, SUMO can be enhanced with custom models and provides various Application

Programming Interfaces (APIs) and features to enhance the realism and utility of the simulation.

2.4.2 SUMO application areas

SUMO is a software that stands out in its field, due to the sophistication and high realism simulations

that have been contributing to numerous areas. SUMO has been used within several projects, research

and even in real world scenarios. As we can see with the following list of some applications SUMO has

had:

• Evaluate the performance of traffic lights, including the evaluation of modern algorithms up to the

evaluation of weekly timing plans.

• Vehicle route choice has been investigated, including the development of new methods, the evalu-

ation of eco-aware routing based on pollutant emission, and investigations on network-wide influ-

ences of autonomous route choice.

• SUMO is widely used by the V2X community for both, providing realistic vehicle traces, and for

evaluating applications in an on-line loop with a network simulator.

• AI training of traffic light plans.

• Simulation of the traffic effects of autonomous vehicles and platoons.

• Simulation and validation of autonomous driving function in cooperation with other simulators.

• Simulation of parking traffic.

• Traffic safety and risk analysis.

• Calculation of emissions (noise and pollutants).

2.4.3 SUMO Installation & Set-up

The SUMO simulator is available on the three main Operating system (OS) environments, Linux, Win-

dows and even Mac OS. From my experience both Windows and Linux version work well and stable.

However, it is suggested to use it on Linux since is where the NS-3 simulator is most stable and where

the experimental side of this thesis is done. Therefore, this section will provide a brief guide to the SUMO

simulator and its main tools for Linux using the git repositories containing all the binary Linux versions

of SUMO.

23

Similarly, to NS-3, the SUMO simulator also requires some prerequisites that are needed for some

of SUMO tools such as cmake, python and g++ among others. The guide for installation and set-up can

be found attached to the appendix B.

2.4.4 SUMO Creating and Running Mobility Scenarios

As this title suggest, this section is dedicated to the creation of a mobility scenario which is mandatory

to the experimental perspective of this thesis. So, to create the mobility scenario we have to use the

netedit tool included in SUMO. Which is a powerful tool that enables us to create a road network for our

mobility scenario as well as vehicular traffic.

First step is to use this tool I’ve implemented and just run the following command from the utility

make file on the terminal while in the /tese directory.

1 make run_netedit

As soon as netedit click in create a new network in the file menu as the figure bellow Fig. 2.5.

Figure 2.5: New network

Now with the that we have a new blank network assess the Network mode, this mode is where we

have the tools to create the network as we can see in the Fig. 2.6 as well as their definition on the list

below.

24

Figure 2.6: Network mode menu

• Inspect mode: This tool gives information about the elements of network by clicking them.

• Delete mode: This tool is to delete network elements.

• Select mode: This tool is to select one network element or multiple.

• Move mode: This tool is move or drag already created edges.

• Edge mode: This is the main tool, and its purpose is to create roads. Note that edges in SUMO

are the roads.

• Connection mode: When two edges merge creating a junction this tool helps to define how each

lane of a road connects with the other road lanes.

• Prohibition mode: This tool applies road signs policies on the edges or junction, such as stop or

priority signs among others.

• Traffic light mode: When we have junction, this tool serves to apply traffic lights.

• Additional mode: This tool helps to add different elements such as bus stops and parking lots

among others to the network.

• Crossing mode: This tool applies serves to apply cross walks.

• Traffic assigned mode: This tool serves to apply policies to a selected zone, for instance speed

or type of vehicles permitted on the zone.

• Point-of-interest mode: This tool is to create building and points-of-interest.

25

Now we have all the tools required to create the network for the mobility scenario. To start we should

use the edge mode to create the roads, change the settings speed and number of lanes to the desired

Fig. 2.7(a), and also while we are in this mode select the edit menu and check the box named create

and edge in the opposite direction to create a two way road Fig. 2.7(b).

(a) Edge settings (b) Edit menu

Figure 2.7: Edge creation

Once the edges are created they should look similar to the Fig. 2.8(a).Then, select the Connection

mode to check if the connections of the junctions were successfully created and if not correct them to

the how it is desired, and looking similar to the Fig. 2.8(b), were the red zones have the white lines

representing the connections.

This are the bare minimum tasks to create a network a proceed to the demand mode which is where

the traffic is created. However, it is possible to expand the complexity of the network with more elements

using the tools describe above in the list. For instance the traffic lights, for that select the Traffic light

mode and select the junctions where the lights are desired and click create to have something similar to

the Fig. 2.8(c).

26

(a) Edges (b) Connections (c) Traffic lights

Figure 2.8: Network example

Now that the road network is done, save the network. Then it is time to fill the road network with the

vehicular traffic. For that select the demand mode 2.9, which is similar to the network mode tools, this

mode has a list of tools to create the traffic demand as we can see in the as well as a list of each new

tool definition that the network mode did not have.

Figure 2.9: Demand mode menu

• Route / Vehicle mode: These tools are the main ones, the purpose of this tools are to create

routes with traffic.

• Vehicle type mode: This tool serves to create different types of vehicles, for instance we can

create different cars with different attributes such as acceleration, deceleration, max speed and

even length.

27

• Stop mode: This tool serves to create stops along the routes, for instance the case of public

transportation, where a bus needs to stop multiple times from the point of departure to the arrival.

• Person / Person plan mode: These tools serve to create pedestrian traffic and routes.

• Container / Container plan mode: These tools serve to create cargo traffic and routes.

Now we have all the tools required to create the vehicular traffic for the mobility scenario. To start

we should use the vehicle mode, while in this mode we can see that it is possible to choose the type of

route according to the Fig. 2.10(a) which is a trip route type. This one type and the flow (from-to), cover

most of the use cases. The trip is as simple as simple as a single vehicle with a departure edge and

arrival edge where we can define the departure time. The flow is the same as the trip, but for more than

a single vehicle, so it has not only the departure edge and arrival edge but also the number of vehicles,

begin and end time. This means that if we choose 10 vehicles with begin a 0s and end at 100s, we will

have a car departing each 10 seconds until the simulation clock is at 100s. After creating new routes

desired, and after clicking in the show all trips in the edit menu we should get something similar to the

Fig. 2.10(b). Where the car icons are at the departure point of the route, with an orange line showing

the path they will take to the arrival point. Note that, for this mobility scenario example, I’ve chosen the

blue to represent the trip route, and yellow the flow route.

(a) Vehicular settings
menu

(b) Routes

Figure 2.10: Vehicular settings and Routes

28

Now that the vehicular traffic demand is done, save it by clicking on the Demand Elements in the file

menu, Fig. 2.11(a). Once that is done, we want to open both the vehicular traffic demand as well as

the network in the sumo-gui which is the graphic user interface for the SUMO. to do that click on pen in

sumo-gui, Fig. 2.11(b).

(a) File Menu (b) Edit Menu

Figure 2.11: File and Edit menus

Now in the sumo-gui, we can play the scenario we have created, including the road network and the

vehicular traffic. For that, increase the delay to about 100ms and press play to see the mobility scenario

in real time similarly to Fig. 2.12

29

Figure 2.12: Mobility scenario in sumo-gui

Finally, the last step is to save the simulation and with that we will obtain important file the mobilityScenario

.sumocfg which in itself will invoke the files created for the road network with the mobilityScenario.net.xml

and the vehicular traffic with the mobilityScenario.rou.xml.

2.4.5 SUMO Documentation

As the SUMO simulator is not the primary focus of this thesis, but rather an important tool for the

experimental aspect, this section is focused on the available resources for further information about the

SUMO simulator.

• Documentation: https://sumo.dlr.de/docs/index.html

• User FAQ: https://sumo.dlr.de/docs/FAQ.html

• Mailing list: https://www.eclipse.org/sumo/contact/

30

https://sumo.dlr.de/docs/index.html
https://sumo.dlr.de/docs/FAQ.html
https://www.eclipse.org/sumo/contact/

3
SUMO&NS3 Coupling

Contents

3.1 SUMO&NS3-Coupling Architecture . 33

3.2 Vehicular Mobility Scenario Creation . 34

3.3 SUMO&NS3-Coupling Translation . 39

3.4 NS3 Simulation . 42

3.5 SUMO&NS3-Coupling Results . 42

31

32

This chapter is related to the contribution of this thesis, the SUMO&NS3-Coupling tool software that

is the main tool that couples this SUMO and NS3 software in order to produce useful data for study

routing protocols such as the ones talked in chapter 2. So, in diving into the process of how to use the

tool starting with the creation of a vehicular mobility scenario with the SUMO simulator until the moment

the simulation output data is generated. All the material develop and generated with the SUMO&NS3-

Coupling are provided through a GitLab repository for thesis in the following link: https://gitlab.

com/ist-ricardo-santos/performance-analysis-of-routing-protocols-on-vanets since, most of

the material used for this thesis are very extensible and cannot be attached directly to this document.

However, portions of the materials used are going to be referenced in this section and some even

attached to the appendix A.

3.1 SUMO&NS3-Coupling Architecture

The SUMO&NS3-Coupling tool allows anyone to combine two programs SUMO and NS3 in order to

achieve realistic mobility scenarios for VANET routing protocols study. And does it by making a process

of various steps done sequentially and seamlessly to the user. The process can be divided in four

phases, listed below and as we can see in Fig. 3.1.

• Vehicular Mobility Scenario Creation: This is the initial phase, where we create the mobil-

ity scenarios. The SUMO simulator so that we have the mobility files needed to start with the

SUMO&NS3-Coupling.

• SUMO&NS3-Coupling Translation: This is the Second phase, where the user input the mobility

files to the SUMO&NS3-Coupling tool so that the program can do its job until outputting all the

result. In this phase, the program takes the mobility files input, parses them, and automatically

creates new files that the NS3 can ingest, it is like a translation process from SUMO to NS3.

• NS3 Simulation: This is the third phase, where the NS3 simulator takes the translated mobility

files and starts the network traffic simulation with the different routing protocols such as AODV,

OLSR and DSDV running in a WAVE environment. After all the runs with the different simulators

output data is generated, and that data goes back to the SUMO&NS3-Coupling.

• SUMO&NS3-Coupling Results: This is the final phase, and this phase is where the SUMO&NS3-

Coupling takes the output of the NS3 simulator which are mostly .csv data and automatically,

does a statistical work on the data, also generates graphs to visualize better the Key Performance

Indicatorss (KPIs) of the simulated scenarios.

33

https://gitlab.com/ist-ricardo-santos/performance-analysis-of-routing-protocols-on-vanets
https://gitlab.com/ist-ricardo-santos/performance-analysis-of-routing-protocols-on-vanets

Figure 3.1: SUMO&NS3-Coupling Architecture

3.2 Vehicular Mobility Scenario Creation

As previous mention in the previous chapter, SUMO is an urban mobility simulation program which

provides tools for creating vehicular mobility scenarios. Therefore, for the experimental environment we

will use it to create the mobility scenarios using the Netedit tool included in SUMO.

From this point onwards, just follow the instructions from the section:2.4.4 - SUMO Creating and

Running Mobility Scenarios on how to create a mobility scenario.

Once the mobility scenarios are completed, we can analyze the output files which are mainly .xml

files and the most important one the .sumocfg, this is the file that will be served as input for the

SUMO&NS3-Coupling tool. These files contain the information about the scenario, containing all the

information about edges which are roads in SUMO, lanes, junctions, connections, traffic intensity, traffic

type and more.

That being said, in order to continue the rest of the experimental process we need to have at least

the following files listed below:

• mobilityScenario.sumocfg: This is the main file that will be used for the rest of the process. Is

the configuration file which invokes the .xml files detaining all the detail about the scenario as we

can see below.

Listing 3.1: Portion of mobilityScenario.sumocfg

1

2 <input>

3 <net-file value=”osm.net.xml”/>

4 <route-files value=”{mobilityScenario.rou.xml”/>

34

5 <additional-files value=”osm.poly.xml”/>

6 </input>

7

• mobilityScenario.net.xml This file has the information about vehicular road network, it contains all

the details such as Identifiers (IDs), coordinates, speeds and lengths of the edges, lanes, junctions,

and connections. As we can see bellow on the .xml code, the edge: gneE1 has a speed of

13.89m/s which is about 50km/h and the lane length which is 89.60m. We can also see an example

of a junction and connection where the edge is involved:

Listing 3.2: Portions of mobilityScenario.net.xml

1

2 <edge id=”gneE1” from=”gneJ1” to=”gneJ2” priority=”-1”>

3 <lane id=”gneE1 0” index=”0” speed=”13.89” length=”89.60” shape=”107.20,98.40

196.80,98.40”/>

4 </edge>

5

6 <junction id=”gneJ2” type=”priority” x=”200.00” y=”100.00” incLanes=”-gneE2 0 gneE1 0”

intLanes=”:gneJ2 0 0 :gneJ2 1 0” shape=”203.20,96.80 196.80,96.80 196.80,103.20

200.36,102.49 201.60,101.60 202.49,100.36 203.02,98.76”>

7 </junction>

8

9 <connection from=”gneE1” to=”gneE2” fromLane=”0” toLane=”0” via=”:gneJ2 1 0” dir=”r”

state=”M”/>

10

• mobilityScenario.rou.xml or mobilityScenario.trips.xml: This file has the information about the

vehicular traffic on the road network, it contains the routes of each means of transport, such as

cars, buses, trains, taxis, trucks, bicycles, motorcycles among others. In this file, we can have

two types of routes, trips, and flows. The trips represent only one vehicle, and the flows represent

multiple ones depending on the number attribute. For instance, on the listing bellow, we can see

those two types, the trip, and the flow. Note that on the flow we have the number at 180, begin

at 0, and end at 1800. This means that for 1800 seconds we will have 180 vehicles, which is the

departure rate of 1 vehicle per 10 seconds.

35

Listing 3.3: Portions of mobilityScenario.rou.xml

1

2 <routes>

3 <trip id=”vehicle 0” depart=”0.00” from=”gneE0” to=”gneE7” via=”gneE8 -gneE11”/>

4 <flow id=”flow 1” begin=”0.00” from=”gneE11” to=”gneE10” via=”gneE1 gneE5” end=”1800.00”

number=”180”/>

5 </routes>

6

Again, note that the scenario can have more files than the ones motioned depending on the com-

plexity of the mobility scenario, for instance if it includes Point-of-interest (POI), buildings, public trans-

portation among others and still proceed with experimental process. But again, only the listed above

are mandatory since these are the ones that the SUMO&NS3-Coupling tool needs to generate the file

that is needed to proceed to the NS3 phase with the purpose to utilize the vehicular mobility to study the

various routing protocols.

For this thesis study, four different scenarios listed below were created with different characteristics

examine the vehicular network routing protocols and V2X communications.

• Urban Grid Scenario: Aims to represent a scenario which is commonly has more node density

with lower vehicular speeds.

• Highway Scenario: Aims to represent a scenario with higher vehicular speeds.

• Country Grid Scenario: Aims to represent a scenario usually has less node density with lower

vehicular speeds.

• Realistic Scenario: Aims to represent a more realistic scenario, with a snapshot of Lisbon map

similarly to a GPS application commonly used in smartphones.

3.2.1 Urban Grid Scenario

Aims to represent a scenario which is commonly has more node density with lower vehicular speeds.

36

Figure 3.2: Grid map

Table 3.1: Grid Map characteristics

Characteristics Unit
Node number 50
Road Length 4.17 km

Average Speed 33.2 Km/h
Simulation time 219s

3.2.2 Highway Scenario

Aims to represent a scenario with higher vehicular speeds.

Figure 3.3: Highway map

37

Table 3.2: Highway Map characteristics

Characteristics Unit
Node number 40
Road Length 6 km

Average Speed 90 Km/h
Simulation time 100s

3.2.3 Country Grid Scenario

Aims to represent a scenario usually has less node density with lower vehicular speeds.

Figure 3.4: Country map

Table 3.3: Country Map characteristics

Characteristics Unit
Node number 21
Road Length 7 km

Average Speed 49 Km/h
Simulation time 174s

3.2.4 Realistic Scenario

Aims to represent a more realistic scenario, with a snapshot of Lisbon map similarly to a GPS application

commonly used in smartphones.

38

Figure 3.5: Lisbon map

Table 3.4: Lisbon Map characteristics

Characteristics Unit
Node number 62
Road Length 67km

Average Speed 19 Km/h
Simulation time 656s

3.3 SUMO&NS3-Coupling Translation

This is the Second phase, where the user input the mobility files to the SUMO&NS3-Coupling tool so that

the program can do its job until outputting all the result. In this phase, the program takes the mobility files

input, parses them, and automatically creates new files that the NS3 can ingest, it is like a translation

process from SUMO to NS3.

It is in this phase where we run SUMO&NS3-Coupling program. However, as previously said to

continue with the simulation process is necessary to have the right files, more in particular the mobility

Scenario.sumocfg which is the input file.

Being said that, to start the SUMO&NS3-Coupling program, type the following command on /tese

directory of the material provided:

39

1 source Simulation.sh SUMO/mobilityScenario/ mobilityScenario.sumocfg

After typing the command, the simulation can take a while depending on the complexity of the mobility

scenario, for instance the Realistic Scenario took four hours on a modern high-end laptop. Again, it could

not be simpler, it just requires typing a single command and then the user can leave the computer for

hours to come back with all the results.

Then the SUMO&NS3-Coupling program will initiate the first action, converting the mobilityScenario

.sumocfg into a trace file mobilityScenario.xml. This file is a file sorted by time in seconds with the of

the vehicles’ information or flows in the given second as we can see below:

Listing 3.4: Portion of mobilityScenario.xml

1

2 <timestep time=”0.00”>

3 <vehicle id=”flow 0.0” x=”-1.60” y=”91.70” angle=”180.00” type=”DEFAULT VEHTYPE” speed=”0.00”

pos=”5.10” lane=”-gneE7 0” slope=”0.00”/>

4 <vehicle id=”flow 1.0” x=”12.30” y=”-1.60” angle=”90.00” type=”DEFAULT VEHTYPE” speed=”0.00”

pos=”5.10” lane=”gneE11 0” slope=”0.00”/>

5 <vehicle id=”vehicle 0” x=”8.30” y=”98.40” angle=”90.00” type=”DEFAULT VEHTYPE” speed=”0.00”

pos=”5.10” lane=”gneE0 0” slope=”0.00”/>

6 </timestep>

7 <timestep time=”1.00”>

8 <vehicle id=”flow 0.0” x=”-1.60” y=”89.72” angle=”180.00” type=”DEFAULT VEHTYPE” speed=”1.98”

pos=”7.08” lane=”-gneE7 0” slope=”0.00”/>

9 <vehicle id=”flow 1.0” x=”14.90” y=”-1.60” angle=”90.00” type=”DEFAULT VEHTYPE” speed=”2.60”

pos=”7.70” lane=”gneE11 0” slope=”0.00”/>

10 <vehicle id=”vehicle 0” x=”10.05” y=”98.40” angle=”90.00” type=”DEFAULT VEHTYPE” speed=”1.75”

pos=”6.85” lane=”gneE0 0” slope=”0.00”/>

11 </timestep>

12 ...

However, this mobilityScenario.xml file is not yet compatible with the NS3. So, the second action

of the SUMO&NS3-Coupling program is to convert the mobilityScenario.xml into a mobilityScenario

.tcl. This file narrows down the mobilityScenario.xml to the essential information about the mobility

of the vehicles for the NS3 simulator, by running the traceExporter.py python code resulting in a file

sorted again by time in seconds with x,y,z axis information of each vehicle in the given second as we

can see below. That way the NS3 can parse the file in order while changing the node positions in the

40

VANET simulation.

Listing 3.5: Portion of mobilityScenario.tcl

1 $node (0) set X -1.6

2 $node (0) set Y 91.7

3 $node (0) set Z 0

4 $ns at 0.0 ”$node (0) setdest -1.6 91.7 0.00”

5 $node (1) set X 12.3

6 $node (1) set Y -1.6

7 $node (1) set Z 0

8 $ns at 0.0 ”$node (1) setdest 12.3 -1.6 0.00”

9 $node (2) set X 8.3

10 $node (2) set Y 98.4

11 $node (2) set Z 0

12 $ns at 0.0 ”$node (2) setdest 8.3 98.4 0.00”

13 $ns at 1.0 ”$node (0) setdest -1.6 89.72 1.98”

14 $ns at 1.0 ”$node (1) setdest 14.9 -1.6 2.60”

15 $ns at 1.0 ”$node (2) setdest 10.05 98.4 1.75”

16 $ns at 2.0 ”$node (0) setdest -1.6 86.05 3.67”

17 $ns at 2.0 ”$node (1) setdest 19.69 -1.6 4.79”

18 $ns at 2.0 ”$node (2) setdest 14.02 98.4 3.97”

19 $ns at 3.0 ”$node (0) setdest -1.6 81.06 5.00”

20 $ns at 3.0 ”$node (1) setdest 26.16 -1.6 6.47”

21 $ns at 3.0 ”$node (2) setdest 19.67 98.4 5.65”

22 $ns at 4.0 ”$node (0) setdest -1.6 73.55 7.51”

23 $ns at 4.0 ”$node (1) setdest 34.38 -1.6 8.22”

24 $ns at 4.0 ”$node (2) setdest 27.38 98.4 7.71”

25 ...

Now that the mobilityScenario.tcl file is ready to enter the NS3 simulation, but to run a NS3

simulation there are other input parameters that are needed such as time of simulation, number of

nodes, protocols, among others. So, to avoid making the user do all that manually, which can be complex

and time consuming depending on the complexity of the mobilityScenario.tcl, the TclParser.py will

handle the time of simulation and number of nodes. Then the SUMO&NS3-Coupling program will start

to invoke multiple runs of the mobility scenario in NS3, which will be explained better in the next section.

41

3.4 NS3 Simulation

This is the third phase, where the SUMO&NS3-Coupling tool sets up NS3 simulation runs for the mobil-

ity scenario chosen. The way the SUMO&NS3-Coupling is programmed makes it run three simulations

for each protocol of the vanet-routing-compare.cc which is a code inspired in the manet-routing-

compare.cc with that takes advantage of multiple modules, and one of them is the Ns2Mobility helper,

imported from the predecessor of the NS3, the NS2. This module is responsible for taking the mobility

trace mobilityScenario.tcl, returning the position of each node every second of the simulation. An-

other module used which and the main one is the WAVE helper, which is responsible for performing the

WAVE protocol. Also, many other modules were used, for instance the routing protocols helpers for the

OLSR, AODV and DSDV. Since this code has a considerable number of lines, all these modules can be

seen in the git repository provided in the introduction of this chapter.

With that said, in the three different simulations runs, each will have a different VANET routing proto-

cols in the following order and sequentially, OLSR, AODV and DSDV. After each run the SUMO&NS3-

Coupling will create a new directory on the mobility scenario directory called Stats, the Again, the user

do not need to worry about setting up any of this, the tool will handle everything, and this process can

take a while depending on the complexity, particularly with the increase of the number of nodes is the one

that impacts that aspect the heaviest so we need to be careful setting it up according to our machine’s

computational power.

3.5 SUMO&NS3-Coupling Results

As said previously on the NS3 Simulation section, after each simulation the SUMO&NS3-Coupling

creates a new directory called Stats. This is the directory where every possible outcome of the

SUMO&NS3-Coupling tool is stored after each simulation run of every routing protocol, starting with

the OLSR simulations first, then AODV and finally DSDV. Therefore, after each simulation is completed

a new directory with the name of the protocol of whose simulation run has just finished where all the

data files associated to that run are stored. Those files can be the following:

• mobilityScenario mobility NetAnim.xml: This file, contains the information about each node ID,

IP in the network, geographical position as well as the messages sent and received. And this file

that can be used by a NS3 tool which is the NetAnim tool, which is a tool that provides a graphical

view of the behavior of the VANET mobility scenario. It is possible to see the movement of each

node, and the messages being sent or received in that moment of the simulation as we can see

below in the Fig. 3.6, as a reminder this is only a snapshot of the simulation in a particular second

of the entire simulation, since is the only way to show it this thesis work.

42

Figure 3.6: Network Animator

To run the NetAnim just type the run the following command and change it to your user and

check if the NS3 versions and directories are correct, then when it opens choose the desired

mobilityScenario mobility NetAnim.xml to visualize.

1 /home/<your user>/ns-allinone-3.34/netanim-3.108/NetAnim

• mobilityScenario mobility stats.csv: It is in this file where statistical information about each

simulation run, for instance receive rate, packets received, WAVE packets sent or received, MAC

overhead among others as we can see below:

Listing 3.6: mobilityScenario mobility stats.csv

1 SimulationSecond,ReceiveRate,PacketsReceived,NumberOfSinks,RoutingProtocol,Transmis

2 +0s,0,0,10,protocol,7.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

3 +1s,0,0,10,protocol,7.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

4 +2s,7.68,15,10,protocol,7.5,20,380,19,0,0,0,0,0,0,0,0,0,0,0,0,0.669734

5 +3s,18.432,36,10,protocol,7.5,20,380,19,0,0,0,0,0,0,0,0,0,0,0,0,0.645576

6 ...

7 +13s,14.848,29,10,protocol,7.5,60,537,8.95,0,0,0,0.95,0.791667,0.38,0.38,0.327586,0.316667 ...

8 +14s,11.776,23,10,protocol,7.5,80,805,10.0625,0,0,0,1,0.9,0.5,0.45,0.45,0.375,0.375,0.375 ...

43

9 +15s,8.192,16,10,protocol,7.5,80,665,8.3125,6,5,0.833333,0.925,0.882353,0.5,0.45,0.45,0.375 ...

10 ...

11 +90s,17.92,35,10,protocol,7.5,400,6031,15.0775,3060,2910,0.95098,0.886259,0.879155, ...

12 +91s,18.432,36,10,protocol,7.5,400,6071,15.1775,3060,2938,0.960131,0.887688,0.881388, ...

13 +92s,18.432,36,10,protocol,7.5,400,6210,15.525,3102,2974,0.958736,0.904505,0.884867, ...

14 ...

• mobilityScenario mobility routing table: As the name suggests this file contains the routing

tables of each node.

• mobilityScenario mobility FlowMonior.xml: This file contains information on the flows of the

messages between nodes, such as delays, packets sent and received, bytes sent and received

and jitter among others.

• mobilityScenario.log & mobilityScenario.mob: These files contains information about the geo-

graphical position of the nodes as well as their IDs and velocity. At the moment theses files are not

used, but eventually they can be in the case of future work on the SUMO&NS3-Coupling tool.

• mobilityScenario pcaps: These files contains information about every packet sent or received

about each node in the VANET network simulations. The .pcaps can be opened with the Wireshark

software which is already included with the installation of the NS-3. In the Fig. 3.7 below there is

a example of the packet 64178 from a node, preforming a route request using the AODV routing

protocol.

Figure 3.7: Example of AODV packet

44

After the SUMO&NS3-Coupling tool has run the three runs of each routing protocol, it will parse each

one of the mobilityScenario mobility stats.csv files and plot graphs in order to visualize better the

performance comparison between protocols. And does it by using the gnuplot which is a command-line

driven graphing utility for Linux. In addition, there is a python code flowmon-parse-results.py used to

extract statistical information from the mobilityScenario mobility FlowMonior.xml.

The SUMO&NS3-Coupling tool plots 20 graphs with different metrics per routing protocol used in

each mobility scenario. However only a portion of those metrics are useful for performance com-

parison [18–20], those are the receive rate resembling the goodput in packets per second and the

overhead caused by each protocol represented by the portion of every packet from the routing proto-

col sent by the total of packets sent in the network. As we can see in from the line of code in the

vanet-routing-compare.cc code below. The overhead metric is the main metric of comparison since

this metric unveils the extra bandwidth consumed by overhead to deliver data traffic.

1 mac-phy-oh = (total-phy-bytes - total-app-bytes) / total-phy-bytes

Also, to provide more context to the analysis, the average speed in meters per second and the

number of running vehicles in a particular second of the simulation. With that said, the following sections

are dedicated to each mobility scenario where we can see the output with the comparisons of the

SUMO&NS3-Coupling tool to each routing protocol.

3.5.1 Urban Grid Scenario

The urban scenario, as said previously aims to represent a scenario which commonly has more node

density in this case reaching a peak of 34 nodes for a couple of seconds as we can see in the Fig. 3.8,

also every node is within a square kilometer since every edge of this grid is 100m, therefore making it

300x300m Fig. 3.2. In this grid mobility scenario, the nodes are circulating at speeds ranging between

6-12 meters per second which is about 20-40 kilometers per hour Fig. 3.9. In these circumstances,

we can see that in from the graph in the figures 3.10,3.11 and table 3.5 that the receive rate is similar

between protocols, however the OLSR protocol has a slightly advantage of 2.6% over the AODV and

4.4% over the DSDV. On top of that advantage, the overhead caused by the OLSR protocol is lower

compared to AODV and DSDV with a difference of -33.7% and -10.2% respectively. This means that,

for the OLSR protocol uses less packets, 39.6%, to maintain all the communication necessary between

nodes. Having said that, is clear that the OLSR routing protocol performs better than the other protocols

in the urban mobility scenario.

45

Figure 3.8: Average Speed Grid Scenario

Figure 3.9: Running Vehicles Grid Scenario

46

Figure 3.10: Receive Rate Grid Scenario

Figure 3.11: Overhead Grid Scenario

47

Table 3.5: Metric Averages of Grid Scenario

Protocol Receive Rate Overhead
AODV 12.109 0.530
OLSR 12.433 0.396
DSDV 11.906 0.437

3.5.2 Highway Scenario

The highway scenario, as said previously aims to represent a scenario which commonly has high node

mobility speeds, in this case the are circulating with an average speed of 25 m/s which is about 90

kilometers per hour as we can see in the Fig. 3.12 and table 3.2. Also, the number of vehicles running

at a certain second in the simulation reaches a peak of 34 nodes at the second 57 as we can see in

the Fig. 3.13, also every node is within a area of 1000x200m Fig. 3.3. In these circumstances, we can

see that in from the graph in the figures 3.14,3.15 and table 3.6 that the receive rate is similar between

protocols. Also, we can see a interesting phenomenon, in the receiving rate graph, that during the time

period between the 20 seconds and 50 seconds the rate is very low when comparing the same time

period in the running vehicles graph which is high. This can be counter intuitive, however, the reason is

that many vehicles are far away from each other and not making as many communications. In addition,

we can verify that the DSDV protocol has a advantage of 2.3% over the AODV and 9.3% over the OLSR.

On top of that, the overhead caused by the DSDV protocol is slightly lower compared to AODV and

higher compared to OLSR with a difference of -1.0% and 1.9% respectively. Having said that, is clear

that the DSDV routing protocol performs better than the other protocols in the highway mobility scenario.

Figure 3.12: Average Speed Highway Scenario

48

Figure 3.13: Running Vehicles Highway Scenario

Figure 3.14: Receive Rate Highway Scenario

49

Figure 3.15: Overhead Highway Scenario

Table 3.6: Metric Averages of Highway Scenario

Protocol Receive Rate Overhead
AODV 9.923 0.530
OLSR 9.308 0.516
DSDV 10.173 0.525

3.5.3 Country Scenario

The country scenario, as said previously aims to represent a scenario which commonly has low node

density in this case reaching a peak of 34 nodes at the second 54 in the simulation as we can see

in the Fig. 3.17. However, unlike the grid scenario the country scenario has an area much bigger of

900x300m Fig. 3.4, therefore less dense. In this country mobility scenario, the nodes are circulating at

speeds ranging around the 15 meters per second which is about 54 kilometers per hour Fig. 3.16. In

these circumstances, we can see that in from the graph in the figures 3.18,3.19 and table 3.7 that the

receive rate of the DSDV protocol has a slightly advantage of 5.2% over the AODV and 19.2% over the

DSDV. However, the overhead caused by the DSDV protocol is the highest of the three. If we consider

the AODV protocol in this metric, the protocol compared to OLSR and DSDV has a difference of -6.6%

and -23.3% respectively. A difference of 23.3% is a very considerable one, and since the advantage of

DSDV over the AODV in the metric rate is only 5.2%, it is safe to assume that the AODV protocol is the

most suited protocol in the country scenario for most use cases. However, if the goodput is extremely

50

needed over other metrics, the DSDV is the best option.

Figure 3.16: Average Speed Country Scenario

Figure 3.17: Running Vehicles Country Scenario

51

Figure 3.18: Receive Rate Country Scenario

Figure 3.19: Overhead Country Scenario

52

Table 3.7: Metric Averages of Country Scenario

Protocol Receive Rate Overhead
AODV 7.039 0.300
OLSR 6.309 0.320
DSDV 7.403 0.370

3.5.4 Lisbon Scenario

The Lisbon scenario, as said previously aims to represent a a more realistic scenario, with a snapshot

of Lisbon map. This portion of the Lisbon city is called the ”Baixa de Lisboa”, meaning the lowest zone

of Lisbon. And, in this scenario the number of vehicles running at a certain second in the simulation

reaches a peak of 58 nodes for a couple of seconds as we can see in the Fig. 3.22, also every node is

within an area of 1500x700m Fig. 3.5. In this grid mobility scenario, the nodes are circulating at speeds

ranging between 0-16 meters per second with an average of 5 m/s which is about 19 kilometers per hour

as we can see in the graph of the Fig. 3.9 and in the table 3.4. In these circumstances, we can see that

in from the graph in the figures 3.22,3.23 and table 3.8 that the receive rate is similar between protocols,

however the AODV protocol has a slightly advantage of 6.5% over the OLSR and 4.9% over the DSDV.

In terms of overhead, the OLSR protocol has the lowest when compared to AODV and DSDV with a

difference of -14.9% and -31.1% respectively. Having said that, despite the OLSR performing slightly

worse in terms of goodput, overall is clear that the OLSR routing protocol performs better than the other

protocols when considering the overhead caused by the other protocols in the Lisbon mobility scenario.

Making the OLSR the best option for this scenario.

Figure 3.20: Average Speed Lisbon Scenario

53

Figure 3.21: Running Vehicles Lisbon Scenario

Figure 3.22: Receive Rate Lisbon Scenario

54

Figure 3.23: Overhead Lisbon Scenario

Table 3.8: Metric Averages of Lisbon Scenario

Protocol Receive Rate Overhead
AODV 2.034 0.340
OLSR 1.910 0.296
DSDV 1.939 0.388

55

56

4
Conclusion & Future Work

Contents

4.1 Conclusions . 59

4.2 Future Work . 59

57

58

4.1 Conclusions

This thesis addressed an emerging field in the future of Intelligent Transportation Systems (ITS), that

is VANETs. More precisely, the routing protocol side of VANETs by testing the performance of three

topology-based routing protocols in VANETs which are AODV, OLSR and DSDV. The testing was ex-

ecuted with the aid of the SUMO&NS3-Coupling tool developed in this thesis, enabling us to test four

different mobility scenarios settings such as urban, highway, countryside and finally a realistic scenario

resembling a famous area of Lisbon. Utilizing the SUMO&NS3-Coupling tool for the testing and judging

it mostly with the overhead and goodput metrics of each protocol, in these circumstances, the urban

and Lisbon scenarios were those where the OLSR was the clear winner over the others making it more

suited for high node density scenarios. Furthermore, in settings with high speeds of mobility such as

highway scenarios the DSDV routing protocol outperforms AODV and DSDV having the best ratio be-

tween the goodput and the overhead caused between the three protocols. Finally, in the countryside

scenario, aimed to test the protocols in a low node density ambient, the AODV outperformed the DSDV,

however, the same cannot be said for the OLSR that clearly struggled in this type of scenario. All things

considered, this thesis concludes that the OLSR routing protocol is the most adequate for the majority of

the scenarios, specially the ones with high node density, performing better in tow out of four scenarios,

not trailing too much behind in the highway scenario, and lacking in the rural scenario where the low

node density has affected negatively the OLSR when comparing the goodput with the overhead caused

against the other protocols.

4.2 Future Work

The SUMO&NS3-Coupling very flexible, therefore making it very easily modifiable, so anything that

improves or adds new functionalities to the SUMO&NS3-Coupling could be done. For instance the

addition of new routing protocols such as position-based routing protocols with are probably the most

adequate protocols in a near future for this kind of networks. Also, the addition of new and improved

metrics for the current simulations. And for more ambitious ideas, the inclusion of autonomous vehicles

data or video streaming data into the packets of the simulations. That being said, the SUMO&NS3-

Coupling tool is the perfect foundation for future ideas and work related with VANETs and enables

anyone who desires to work with VANETs to build on it.

59

60

Bibliography

[1] Y. Toor, P. Muhlethaler, A. Laouiti, and A. de La Fortelle, “Vehicle ad hoc networks: Applications and

related technical issues. ieee communications surveys & tutorials, 10(3), 74-88,” Communications

Surveys & Tutorials, IEEE, vol. 10, 10 2008.

[2] T. Linget, “A visionary roadmap for advanced driving use cases connectivity tech-nologies and radio

spectrum needs,” 5GAA, 2020.

[3] K. Wevers and M. Lu, “V2x communication for its-from ieee 802.11 p towards 5g,” IEEE 5G Tech

Focus, vol. 1, no. 2, 2017.

[4] D. Jiang and L. Delgrossi, “Ieee 802.11p: Towards an international standard for wireless access in

vehicular environments,” 06 2008.

[5] S. Gilani and M. Jinnah, “Vehicular ad hoc network (vanet): Enabling secure and efficient trans-

portation system,” 10 2021.

[6] P. Papadimitratos, A. de La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular commu-

nication systems: Enabling technologies, applications, and future outlook on intelligent transporta-

tion,” Communications Magazine, IEEE, vol. 47, 12 2009.

[7] “Ieee standard for information technology–telecommunications and information exchange between

systems - local and metropolitan area networks–specific requirements - part 11: Wireless lan

medium access control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-2020 (Re-

vision of IEEE Std 802.11-2016), pp. 1–4379, 2021.

[8] “Radiocommunications equipment operating in the 5 855 mhz to 5 925 mhz frequency band,” Eu-

ropean Telecommunications Standards Institute, 2013.

[9] A. Jafari, S. Al-Khayatt, and A. Dogman, “Performance evaluation of ieee 802.11p for vehicular

communication networks,” 07 2012.

[10] A. Festag, “Cooperative intelligent transport systems standards in europe,” IEEE Communications

Magazine, vol. 52, no. 12, pp. 166–172, 2014.

61

[11] Z. Fu, X. Meng, and S. Lu, “How bad tcp can perform in mobile ad hoc networks,” in Proceedings

of the Seventh International Symposium on Computers and Communications (ISCC’02), ser. ISCC

’02. USA: IEEE Computer Society, 2002, p. 298.

[12] M. D. Dikaiakos, S. Iqbal, T. Nadeem, and L. Iftode, “Vitp: an information transfer protocol for

vehicular computing,” in VANET ’05, 2005.

[13] J. Kakarla, S. Sathya, B. Laxmi, and B. Babu, “A survey on routing protocols and its issues in vanet,”

International Journal of Computer Applications, vol. 28, 08 2011.

[14] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE Vehicular Technology

Magazine, vol. 2, no. 2, pp. 12–22, 2007.

[15] M. L. Mat Kiah, L. Qabajeh, and M. Qabajeh, “A qualitative comparison of position-based routing

protocols for ad-hoc networks,” International Journal of Computer Science and Network, vol. 9, 01

2009.

[16] GNU. (1991, May) GNU General Public License, version 2. Accessed 22-Aug-2021. [Online].

Available: https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

[17] S. Gupta, M. Ghonge, P. Thakare, and P. Jawandhiya, “Open-source network simulation tools an

overview,” International Journal of Advanced Research in Computer Engineering & Technology,

vol. 2, 04 2013.

[18] A. Al Maashri and M. Ould-Khaoua, “Performance analysis of manet routing protocols in the pres-

ence of self-similar traffic,” 11 2006.

[19] A. Ulvan, V. Andrlik, and R. Bestak, “The analysis of ieee802.16e mac layer overhead and efficiency

in pmp topology,” in 2008 5th IFIP International Conference on Wireless and Optical Communica-

tions Networks (WOCN ’08), 2008.

[20] N. Rani, “Performance comparison of various routing protocols in different mobility models,” Inter-

national Journal of Ad hoc, Sensor & Ubiquitous Computing, vol. 3, 08 2012.

62

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

A
Code of Project

This section has some of the material provided in with GitLab repository containing all the material used

in this thesis.

Listing A.1: Portions of Simulation.sh

1 #echo ”Usage:”

2 #echo ”Script para converter simulacao sumo (file.sumocfg) para um ficheiro (file mobility.tcl) de forma a ser

usado no NS3”

3 #echo

4

5 SUMOCFG FOLDER=$1

6 SUMOCFG FILE=$2

7

8 #echo ”$SUMOCFG FOLDER”

9 #echo ”$SUMOCFG FILE”

10 echo

63

11

12 WORKDIR=$(pwd)

13 NS3 PATH=/home/ricardo/ns-allinone-3.34/ns-3.34

14

15 if [[”$SUMOCFG FOLDER” == ””]]; then

16 echo ”You need to define the folder which contains the .sumocfg file.”

17 echo ”Also, this script needs to be run as root user in .../datasets folder.”

18 echo

19 return

20 fi

21

22 if [[”$SUMOCFG FILE” == ””]]; then

23 echo ”You need to define the .sumocfg file.”

24 echo ”Also, this script needs to be run as root user in .../datasets folder.”

25 echo

26 return

27 fi

28

29 #--------------------

30

31 #First command (file.sumocfg -> file mobility.xml)

32 sumo -c $WORKDIR/$SUMOCFG FOLDER$SUMOCFG FILE --fcd-output

$WORKDIR/$SUMOCFG FOLDER${SUMOCFG FILE::-8} trace.xml

33 echo

34

35 #--------------------

36

37 #Second command (file trace.xml -> grid mobility.tcl)

38 python3 $SUMO HOME/tools/traceExporter.py -i

$WORKDIR/$SUMOCFG FOLDER${SUMOCFG FILE::-8} trace.xml

--ns2mobility-out=$WORKDIR/$SUMOCFG FOLDER${SUMOCFG FILE::-8} mobility.tcl

39 #echo ”$WORKDIR/$SUMOCFG FOLDER${SUMOCFG FILE::-8} mobility.tcl”

40 echo

41

42 #--------------------

43

44 #Script to check node number and simulation's duration

45 #x=($(py TclParser.py)) #Windows

64

46 x=($(python3 TclParser.py $SUMOCFG_FOLDER ${SUMOCFG_FILE::-8}_mobility.tcl)) #Linux

47

48 #echo ${x[*]}

49 #echo

50

51 #--------------------

52

53 #Third command (grid_mobility.tcl -> ns3 simulation) (Not Needed)

54 #cd $NS3_PATH

55 #./waf --run "scratch/ns2-mobility-trace

--traceFile=$WORKDIR/$SUMOCFG_FOLDER${SUMOCFG_FILE::-8}_mobility.tcl --nodeNum=${x[3]}

--duration=${x[4]} --logFile=$WORKDIR/$SUMOCFG_FOLDER${SUMOCFG_FILE::-8}_ns2-mob.log"

56 #cd $WORKDIR

57 #echo

58

59 #--------------------

60

61 ...

62

63 #--------------------

64

65 cd $NS3_PATH

66

67 #1=OLSR - Optimized Link State Routing Protocol

68 ./waf --run "scratch/vanet-routing-compare.cc

--traceFile=$WORKDIR/$SUMOCFG_FOLDER/${SUMOCFG_FILE::-8}_mobility.tcl --nodes=${x[3]}

--totaltime=${x[4]} --protocol=1 --scenario=2 --routingTables=1 --pcap=1"

69 mkdir $WORKDIR/$SUMOCFG_FOLDER/Stats

70 cp $WORKDIR/AllStats.plt $WORKDIR/$SUMOCFG_FOLDER/Stats

71 cp $WORKDIR/ComparisonStats.plt $WORKDIR/$SUMOCFG_FOLDER/Stats

72

73 mkdir $WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR

74 mv routing_table $WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR/${SUMOCFG_FILE::-8}_routing_table

75 cd $WORKDIR/$SUMOCFG_FOLDER

76 mv *_mobility* $WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR

77 mv $WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR/${SUMOCFG_FILE::-8}_mobility.tcl

$WORKDIR/$SUMOCFG_FOLDER

78 cd $NS3_PATH

65

79

80 #2=AODV - Ad-hoc On Demand Distance Vector

81 ./waf --run "scratch/vanet-routing-compare.cc

--traceFile=$WORKDIR/$SUMOCFG_FOLDER/${SUMOCFG_FILE::-8}_mobility.tcl --nodes=${x[3]}

--totaltime=${x[4]} --protocol=2 --scenario=2 --routingTables=1 --pcap=1"

82 mkdir $WORKDIR/$SUMOCFG_FOLDER/Stats/AODV

83 mv routing_table $WORKDIR/$SUMOCFG_FOLDER/Stats/AODV/${SUMOCFG_FILE::-8}_routing_table

84 cd $WORKDIR/$SUMOCFG_FOLDER

85 mv *_mobility* $WORKDIR/$SUMOCFG_FOLDER/Stats/AODV

86 mv $WORKDIR/$SUMOCFG_FOLDER/Stats/AODV/${SUMOCFG_FILE::-8}_mobility.tcl

$WORKDIR/$SUMOCFG_FOLDER

87 cd $NS3_PATH

88

89 #3=DSDV - Destination-Sequenced Distance Vector routing

90 ./waf --run "scratch/vanet-routing-compare.cc

--traceFile=$WORKDIR/$SUMOCFG_FOLDER/${SUMOCFG_FILE::-8}_mobility.tcl --nodes=${x[3]}

--totaltime=${x[4]} --protocol=3 --scenario=2 --routingTables=1 --pcap=1"

91 mkdir $WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV

92 mv routing_table $WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV/${SUMOCFG_FILE::-8}_routing_table

93 cd $WORKDIR/$SUMOCFG_FOLDER

94 mv *_mobility* $WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV

95 mv $WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV/${SUMOCFG_FILE::-8}_mobility.tcl

$WORKDIR/$SUMOCFG_FOLDER

96 cd $NS3_PATH

97

98 #4=DSR - Dynamic Source Routing

99 #./waf --run "scratch/vanet-routing-compare.cc

--traceFile=$WORKDIR/$SUMOCFG_FOLDER/${SUMOCFG_FILE::-8}_mobility.tcl --nodes=${x[3]}

--totaltime=${x[4]} --protocol=4 --scenario=2 --routingTables=1 --pcap=1"

100 #mkdir $WORKDIR/$SUMOCFG_FOLDER/Stats/DSR

101 #mv routing_table $WORKDIR/$SUMOCFG_FOLDER/Stats/DSR/${SUMOCFG_FILE::-8}_routing_table

102 #cd $WORKDIR/$SUMOCFG_FOLDER

103 #mv *_mobility* $WORKDIR/$SUMOCFG_FOLDER/Stats/DSR

104 #mv $WORKDIR/$SUMOCFG_FOLDER/Stats/DSR/${SUMOCFG_FILE::-8}_mobility.tcl

$WORKDIR/$SUMOCFG_FOLDER

105

106 #--------------------

107

66

108 cd $WORKDIR

109

110 #python3 flowmon-parse-results.py

$WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR/${SUMOCFG_FILE::-8}_mobility_FlowMonitor.xml

111 python3 flowmon-parse-results.py

$WORKDIR/$SUMOCFG_FOLDER/Stats/AODV/${SUMOCFG_FILE::-8}_mobility_FlowMonitor.xml

112 python3 flowmon-parse-results.py

$WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV/${SUMOCFG_FILE::-8}_mobility_FlowMonitor.xml

113 #python3 flowmon-parse-results.py

$WORKDIR/$SUMOCFG_FOLDER/Stats/DSR/${SUMOCFG_FILE::-8}_mobility_FlowMonitor.xml

114

115

116 #python3 StatsParser.py $WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR/

${SUMOCFG_FILE::-8}_mobility_stats.csv

117 python3 StatsParser.py $WORKDIR/$SUMOCFG_FOLDER/Stats/AODV/

${SUMOCFG_FILE::-8}_mobility_stats.csv

118 python3 StatsParser.py $WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV/

${SUMOCFG_FILE::-8}_mobility_stats.csv

119 #python3 StatsParser.py $WORKDIR/$SUMOCFG_FOLDER/Stats/DSR/

${SUMOCFG_FILE::-8}_mobility_stats.csv

120

121 #--------------------

122

123 mv $WORKDIR/$SUMOCFG_FOLDER/Stats/OLSR/*OLSR* $WORKDIR/$SUMOCFG_FOLDER/Stats

124 mv $WORKDIR/$SUMOCFG_FOLDER/Stats/AODV/*AODV* $WORKDIR/$SUMOCFG_FOLDER/Stats

125 mv $WORKDIR/$SUMOCFG_FOLDER/Stats/DSDV/*DSDV* $WORKDIR/$SUMOCFG_FOLDER/Stats

126 #mv $WORKDIR/$SUMOCFG_FOLDER/Stats/DSR/*DSR* $WORKDIR/$SUMOCFG_FOLDER/Stats

127

128 cd $WORKDIR/$SUMOCFG_FOLDER/Stats

129

130 #gnuplot AllStats.plt

131

132 gnuplot ComparisonStats.plt

133

134 #--------------------

135

136 cd $WORKDIR

137 echo

67

138 echo "Done"

Listing A.2: StatsParser.py

1

2 import os

3 import sys

4

5 #print(sys.argv[0]) # prints python_script.py

6 #print(sys.argv[1]) # prints .tcl file path

7 #print(sys.argv[2]) # prints .tcl file name

8

9 # specifying the stats.csv file path

10 #path = 'SUMO/Grid'

11 path = sys.argv[1]

12

13 # specifying the stats.csv file names

14 file_name = sys.argv[2]

15 file_name2 = sys.argv[2][:-4] + "_2.csv"

16 protocol = path.replace("/","").split("Stats")[-1]

17

18 #print(protocol)

19

20 # changing dir to the .tcl file

21 try:

22 os.chdir(path)

23 #print("Current working directory: {0}".format(os.getcwd()))

24 except FileNotFoundError:

25 print("Directory: {0} does not exist. Aborting".format(path))

26 sys.exit(1)

27

28 # opening the files in READ mode

29 try:

30 file = open(file_name, "r")

31 except FileNotFoundError:

32 print("File: {0} not found. Aborting".format(file_name))

33 sys.exit(1)

34

68

35 try:

36 file2 = open(file_name2, "r")

37 except FileNotFoundError:

38 print("File: {0} not found. Aborting".format(file_name2))

39 sys.exit(1)

40

41

42 with file:

43 with open(protocol + ".csv", "w") as temp:

44 for line in file:

45 temp.write(line.replace(",", " "))

46

47 with file2:

48 with open(protocol + "_2.csv", "w") as temp2:

49 for line in file2:

50 temp2.write(line.replace(",", " "))

51

52

53 file.close()

Listing A.3: TclParser.py

1

2 import os

3 import sys

4

5 print(sys.argv[0]) # prints python_script.py

6 print(sys.argv[1]) # prints .tcl file path

7 print(sys.argv[2]) # prints .tcl file name

8

9 # specifying the .tcl file path

10 #path = 'SUMO/Grid'

11 path = sys.argv[1]

12

13 # specifying the .tcl file name

14 #file_name = 'grid_mobility.tcl'

15 file_name = sys.argv[2]

16

69

17 # changing dir to the .tcl file

18 try:

19 os.chdir(path)

20 #print("Current working directory: {0}".format(os.getcwd()))

21 except FileNotFoundError:

22 print("Directory: {0} does not exist. Aborting".format(path))

23 sys.exit(1)

24

25 # opening the file in READ mode

26 try:

27 file = open(file_name, "r")

28 except FileNotFoundError:

29 print("File: {0} not found. Aborting".format(file_name))

30 sys.exit(1)

31

32 last_node, duration = 0, 0

33

34 for line in file:

35

36 if line.startswith("$node"):

37 strnum = ""

38 for char in line[7:]:

39 if char == ")": break

40 strnum += char

41

42 last_node = int(strnum)

43

44 if line.startswith("$ns"):

45 strnum = ""

46 for char in line[8:]:

47 if char == " ": break

48 strnum += char

49

50 duration = float(strnum)

51

52

53 file.close()

54

70

55 print(last_node + 1, duration + 0.01)

71

72

B
Installation Guides for SUMO/NS-3

This section has the guides for the installation and for both SUMO and NS-3 software necessary to run

the SUMO&NS3-Coupling tool.

B.1 SUMO Installation & Set-up

The following commands are needed, starting with a update of the environment packages by opening

the terminal in home directory and typing:

1 sudo apt update

Then, the following command that will install all the dependencies needed for SUMO and some other

useful libraries to complement SUMO:

Listing B.1: SUMO prerequisites

73

1 sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev

libgdal-dev libproj-dev libgl2ps-dev swig

As this installation gets the Linux binaries directly from the SUMO repository, the git is needed to

download them. So, to install git the following command is needed:

1 sudo apt install git

Now with git installed, it is possible to clone the SUMO from the repository by typing the following

command:

1 git clone --recursive https://github.com/eclipse/sumo

With the SUMO downloaded, is necessary to set-up the environment variable by typing the following

command:

1 export SUMO_HOME="$PWD/sumo"

Then, type the following command to create a new directory:

1 mkdir sumo/build/cmake-build && cd sumo/build/cmake-build

Then, type the following command:

1 cmake ../..

Once that is done, the final command for the instalation and set-up is the following:

1 make -j8

This command builds the SUMO and some other tools such as netedit and libtraci among others,

which will be helpful for the following sections, where we are going to set up the experimental environ-

ment of this thesis.

74

With that said, it is time to check for any failures, crashes, or other errors with the SUMO build. So, if

everything went well and we type the following command on /sumo/bin directory, we should obtain the

same as Fig. B.1

1 ./sumo

Figure B.1: Example of successfully installation

B.2 NS-3 Installation & Set-up

Consequently, the following commands are needed, starting with an update of the environment packages

by opening the terminal and typing:

1 sudo apt update

Then, the following command that will install all the dependencies needed for NS-3 and some other

useful tools for studying simulation scenarios:

Listing B.2: NS-3 prerequisites

1 sudo apt install g++ python3 python3-dev python-dev pkg-config sqlite3

python3-setuptools git qt5-default gir1.2-goocanvas-2.0 python3-gi

python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 openmpi-bin

openmpi-common openmpi-doc libopenmpi-dev autoconf cvs bzr unrar

openmpi-bin openmpi-common openmpi-doc libopenmpi-dev tcpdump wireshark

libxml2 libxml2-dev

After the installation of the prerequisites, the environment is ready to install the NS-3 and the first step

is to download one of the releases of NS-3 from the following link https://www.nsnam.org/releases/.

The next step is to extract the archive downloaded to the home folder to look like the following Fig. B.2

Once that is done, open the terminal in the ns-allinone-3.34 type the following command:

75

https://www.nsnam.org/releases/

Figure B.2: Home folder

1 ./build.py --enable-examples --enable-tests

This command will run the python script called build.py. This script will get the NS-3 installed and

configured for the most commonly useful way. However, for more advanced configurations, the build

process typically involves using the native NS-3 build system, Waf. But, for simplicity purposes of this

dissertation only the python script was covered.

Now that all the steps are for the instillation are done, we can run following command in the following

directory /ns-allinone-3.34/ns-3.34:

1 ./test.py

This command runs another python script called test.py. This script will check for any failures, crashes

or other errors with the NS-3 build. If everything went well all the tests should be marked as passed.

76

77

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Introduction
	1.2 Goals and Contribution
	1.3 Organization of the Document

	2 Related work
	2.1 VANET
	2.1.1 Type of communication
	2.1.2 VANET protocol stack
	2.1.3 Physical layer
	2.1.4 MAC layer
	2.1.5 Network layer
	2.1.6 Transport and Application layers

	2.2 Routing Protocols
	2.2.1 Topology-based Ad-hoc Routing Protocols
	2.2.1.A AODV
	2.2.1.B OLSR
	2.2.1.C DSDV
	2.2.1.D DSR
	2.2.1.E ZRP

	2.2.2 Broadcast Routing Protocols
	2.2.2.A SRB
	2.2.2.B DVCAST
	2.2.2.C PBSM

	2.2.3 Cluster-based Routing Protocols
	2.2.3.A CBLR
	2.2.3.B CBDRP

	2.2.4 Position-based Routing Protocols
	2.2.4.A GPSR
	2.2.4.B DREAM
	2.2.4.C LABAR

	2.2.5 Infrastructure-based Routing Protocols
	2.2.5.A RAR

	2.2.6 Final comparison

	2.3 NS-3 Simulator
	2.3.1 NS-3 Introduction
	2.3.2 NS-3 Architecture
	2.3.3 NS-3 Installation & Set-up
	2.3.4 NS-3 Writing and Running Scripts
	2.3.5 NS-3 Documentation

	2.4 SUMO Simulator
	2.4.1 SUMO Introduction
	2.4.2 SUMO application areas
	2.4.3 SUMO Installation & Set-up
	2.4.4 SUMO Creating and Running Mobility Scenarios
	2.4.5 SUMO Documentation

	3 SUMO&NS3 Coupling
	3.1 SUMO&NS3-Coupling Architecture
	3.2 Vehicular Mobility Scenario Creation
	3.2.1 Urban Grid Scenario
	3.2.2 Highway Scenario
	3.2.3 Country Grid Scenario
	3.2.4 Realistic Scenario

	3.3 SUMO&NS3-Coupling Translation
	3.4 NS3 Simulation
	3.5 SUMO&NS3-Coupling Results
	3.5.1 Urban Grid Scenario
	3.5.2 Highway Scenario
	3.5.3 Country Scenario
	3.5.4 Lisbon Scenario

	4 Conclusion & Future Work
	4.1 Conclusions
	4.2 Future Work
	Bibliography

	Bibliography
	Appendix A

	A Code of Project
	Appendix B

	B Installation Guides for SUMO/NS-3
	B.1 SUMO Installation & Set-up
	B.2 NS-3 Installation & Set-up

