
Player Preference Extraction From In-Game
Behavior

André Pais Borges de Macedo Leite
Instituto Superior Tecnico

University of Lisbon
Lisbon, Portugal

andreleite98@hotmail.com

Abstract—Procedural Content Generation is able to generate
content tailored to players, but we need to discover the player’s
preferences to achieve that. This work aims to tackle how to
extract and create a machine learning model of the player’s
preferences from gameplay collected data. To achieve this, a
single-player offline game was created, where we placed carefully
crafted challenges, based on six of the seven BrainHex classes
studied, from which we removed Socializer as it does not fit our
type of game, ensuring we matched the players preferences we
were trying to measure.

The player’s gameplay data was extracted from the their
interaction with challenges and the environment, and parsed to
fit our machine learning needs. The parsed data was then used
with a variety of machine-learning algorithms, such as Naive
Bayes, Decision Trees, and K-Means to predict future players’
gaming preferences.

The dataset was replicated six times, one for each BrainHex
class, and separately used to train different machine learning
models. Even with a very limited sample size of 30, (n=24 for the
training set and n=6 for the validation set), our models reported
a high accuracy in identifying the BrainHex classes of the players
for five of the six datsets. The highest accuracy for each dataset in
validation was: 100% for Conqueror, 100% for Achiever, 100%
for Mastermind, 83.33% for Survivor, and 66.66% for Daredevil.

Index Terms—Player Models; Personality; Machine learning;
Data Mining.

I. INTRODUCTION

A. Motivation

With the games industry’s constant growth 1, developers
are always searching for new ways to make their games stand
out in such a crowded environment and appeal to the highest
number of potential players.

Choosing what type of game to make can become a problem
if the genre ends up being unpopular, giving less prospects
of turning a profit. This reduces the likelihood of certain
types of game being made, since a player may see the
game’s genre and automatically assume they won’t like it.
To solve this problem, we can try and capture the widest
range of preferences possible, by making a game that adapts
to each player, considerably increasing the pool of player
types the game targets. There have been various solutions
presented by developers throughout history, with most of them

1https://www.statista.com/statistics/292056/video-game-market-value-
worldwide/

relying on psychological theories to adapt to the player. Using
personality models to adapt a game to the player has been
shown as a working solution to the problem [1], but multiple
people and organizations have tried to find a better way of
expressing player’s preferences, this being how player type
models were born. The development of player type models
sparked some research on how to adapt a game to a given
player’s preferences; however, on the other hand, not much
research has been made on how to figure out the player’s
preferences inside the game environment. This is a crucial
step because asking an individual to answer a questionnaire
before letting them start playing a game can be not only very
intrusive and considered a hassle, but it could also make them
give up on playing the game. Another point to consider is that
the research which tackles this specific problem is focused on
simpler player satisfaction models, which can be too general
to use in adapting to a given player’s preferences.

Our work will then focus on tackling this idea to extrapolate
players’ playstyle preferences from data gathered in-game.

B. Problem

The problem we are trying to tackle is how to extract
the players’ preferences to generate tailored content. In the
past, some games have resorted to straight out questioning
the player about their likings 2 3, which is a very invasive
approach, while others tried to understand how the players
behave by their actions or inactions in-game by analyzing
game telemetry data.

The problem is then how to extract the players’ preferences
from their in-game behavior.

C. Hypothesis

In this work, we propose a methodology for collecting and
processing game data to extrapolate the player’s preferences
for later use in adaptive content. It will explore the hypothesis
that we can derive the player’s preferences by gathering data
from meaningful game data-points, like the player’s options
and decisions and how they execute them.

2Silent Hill: Shattered Memories https://www.konami.com/games/eu/en/products/shsm/
3Until Dawn https://www.supermassivegames.com/games/until-dawn

II. RELATED WORK

A. Personality Models

Personality theories/models are taxonomies that try to clas-
sify people by the way they interact with and act upon
the world. With every person being unique in some way or
another, these models categorize people’s behavior using one
or more categories. We researched two theories, the Myers &
Briggs’ Type Indicator (MBTI) [2] and the Five Factor Model
(FFM) [3], which have been the subject of numerous studies
involving games, and many player models have been created
based on them.

MBTI [2] is an introspective, self-report questionnaire
which classifies individuals according to four psychological
preferences relating to how they perceive the world around
them: extraversion-introversion, sensing-intuition, thinking-
feeling, and judging-perceiving.

FFM [3] also known as the Big Five personality traits, was
formed by applying factor analysis to several independent sets
of surveys on personality data. This analysis revealed similari-
ties between several different verbal descriptions of personality
traits, combining them into five main factors, openness to ex-
perience, conscientiousness, extraversion, agreeableness, and
neuroticism.

B. Player Models

Player’s preferences are reflected by their actions in-game
and by the choices of games and content they engage with.
These traits are what player type models try to categorize
and explain. Some of these player models are based upon the
personality models discussed above (BrainHex [4] and Quantic
Foundry’s Gamer Motivation Profile (GMP) [5]), while others
are based on direct observation of player behavior (Bartle
taxonomy of player types [6]), and lastly the Marczewski’s
Player and User Types Hexad [7] which is based on research
about human motivation as well as another player model
(Bartle taxonomy of player types [6]).

Richard Bartle developed Bartle Player Types [6], one of
the first models to classify players according to their preferred
gameplay actions. A study conducted to analyze the players’
behavior in a MUD (Multi-user Dungeon) created four cat-
egories: Achievers, Killers, Explorers, and Socializers. Two
main axes of interest, Players-World, and Acting- Interacting,
derive the four different categories

GMP [5], initially developed in 2015 by Nick Yee and Nico-
las Ducheneaut, categorizes players using twelve motivations
inspired by other works like the FFM, grouped in pairs by
factor analysis [5]. The twelve motivations identified were:
Fantasy, Story, Design, Discovery, Destruction, Excitement,
Competition, Community, Challenge, Strategy, Completion
and Power.

Marczewski’s Player and User Types Hexad [7] is a player
and user type model directed to gamification systems. The
model talks about six different types of users, Achiever,
Socializer, Philanthropist, Free Spirit, Player, and Disruptor,
with two of them, Player and Disruptor, labeled as not having

very concrete motivations. For the other four the motivations
identified were: Mastery for Achiever, Relatedness for Social-
izer, Purpose and Meaning for Philanthropist, Autonomy and
self-expression for Free Spirit, Rewards for player and Change
for Disruptor.

BrainHex [4] is a satisfactory player model created by
International Hobo Ltd, based on studying neurobiological
research papers and directly influenced by the Demographic
Game Design (DGD)1 survey results (which resulted in the
DGD1 model) and the DGD2 survey [8]. The BrainHex model
uses seven archetypes, where each one links to a key element
in the human nervous system, to define players’ motivation and
behavior in-game. The model also defines exceptions as the
opposites of each class, referring to what the player dislikes
the most. The seven classes identified in the BrainHex model
are: Achiever, Conqueror, Daredevil, Mastermind, Seeker, So-
cializer and Survivor. Upon taking the survey, each person will
be assigned a score, from a scale of -10 to 20 to each class
following their expressed preferences. This means that a given
player is not only defined by their main class (highest score
on the survey), subclass (second-highest score on the survey),
and/or exception (negative score in a given category) but by
the score they obtained in each category.

C. Machine Learning Algorithms

Our machine learning process started with the use of
the software Waikato Environment for Knowledge Analysis
(WEKA) 4 [9], which is a machine learning tool developed
at the University of Waikato in New Zealand, including a
library of machine learning algorithms and a way to visualize
the input data and the results obtained applying the learning
algorithms. We separated our data-sets into 70% for training
and 30% for testing, and made use of cross-validation to
measure the performance of our models in the training phase.

Decision tree is a machine learning algorithm that creates a
tree-like structure with nodes and leaves. Each node represents
a conditional control statement where a given attribute is
tested, usually comparing its value against constant. Each leaf
represents the classification of one instance, a set of them,
or a probabilistic distribution. Finally, branches signify the
connection between different nodes or nodes and leaves of
the tree [9].

Instance-based learning is characterized by the memoriza-
tion of the data rather than learned concepts. To classify
a query, we look at the database and compare the input
to previously labeled data [9].K-Nearest Neighbors (KNN)
classifies the object weighting each K neighbors according to
the distance from the object. In a more simplistic form, we can
take the most common value among the K nearest examples.

A cluster is a set of data objects where each object is
similar to others in the same cluster and dissimilar to objects in
different clusters. Clustering is an unsupervised classification
algorithm by which we arrange the objects in clusters. In the
K-Means algorithm, we start with a training set composed of

4https://www.cs.waikato.ac.nz/ml/weka/

N samples, and our goal is, given a value of K, partition the
data into a K number of clusters. We end up with K centroids
(cluster centers) where each point in a given cluster is always
closer to its cluster centroid than to another cluster’s centroid.
Each centroid is represented by the mean value of all points
contained in the given cluster [9].

Naive Bayes classifier is based on Bayes’ theorem and
requiring substantial attribute independence, is one of the most
practical learning methods available. It works by taking as an
input a feature vector X to predict the corresponding class Y .
This means that given a data point X = (x1, x2, ..., xn), we
want to figure out the odds of the class Y being y [9].

III. METHODOLOGY

A. The Game Structure

We developed our game, “Fig. 1”, on top of the Unity Store
asset “TopDown Engine” 5, which helped with more low-level
systems such as level and character management, and visual
assets. The game structure can be divided into two main parts,
the “Inside” section and the “Outside” section.

Fig. 1. Look and feel of the testbed game, as seen by the player.

a) “Inside”: The “Inside” section corresponds to six
different isolated areas, each made in the image of one of the
six BrainHex classes approached in this work. The entrances
to these locations are present in the “Outside” section, where
an Non Playable Character (NPC) will introduce the player to
the type of challenge they will face if they choose to enter
the correspondent “Inside” section, via a small dialogue. Of
the six types represented, two have challenges that require
the player to either go to the “Outside” sections to complete
(Achiever), or need the player to perform certain actions in the
“Outside” section to unlock (Seeker). This happens since both
classes are better represented in open type challenges, which
measure the players’ actions over a big period of time, rather
than closed-off type challenges, which are focused solely on
the moment to moment interactions.

b) “Outside”: The “Outside” section is made of several
different “Levels”, divided into multiple parts, the “Intersec-
tions”, the “Paths”, the “Level Start” and the “Level End”.
There might also be some hidden areas that branch of different

5https://topdown-engine.moremountains.com/

parts of the “Outside” parts, and some quests for the player
to engage with, although these are only present in some
“Outside” “Levels”. As we can see in “Fig. 2”, each “Outside”
“Level” starts with a “Level Start” part, which guides the
player to the “Intersections”. Each “Intersection” has 3 differ-
ent paths that the player can choose from, each made in the
image of one of four BrainHex classes, Daredevil, Conqueror,
Survivor and Mastermind, since these four types are easily
represented in close-off paths, like discussed previously for
the “Inside” challenges. In order to properly inform the player,
an NPC is present at each “Intersection”, which gives the
player a brief description of the 3 different paths they can
choose from, based on their corresponding BrainHex class’s
description. The other two types, Achiever and Seeker, are
represented as hidden areas, special quests and other player
metrics such as coins and pots collected and secrets found.

Fig. 2. The structure of the “outside” section of the game.

It is also important to note that in the first “Intersections”
of the game, the player is expected to still be exploring and
experiencing the content and mechanics of the game for the
first time, which means they are less likely to be choosing
content strongly aligned with their preferences. This should
to be taken into account both while designing the game and
when building the predictive models.

B. Player Freedom

The main objective of this work is to see if it is possible to
measure the player’s preferences through the behaviour they
express while playing the game. In order to achieve this it is of
the utmost importance to give the player the freedom to engage
with whichever elements of the game they want to. This means
only forcing the player to complete one path per intersection,
with all other elements being completely optional. his means
the player, apart from completing one path per intersection can
choose to:

• Give up mid-way through any path, go back to the
intersection, and start a different path.

• Complete more than one path from each intersection
(even all of them).

• Engage with zero Challenges (“Inside” sections) if they
want to.

• Enter a Challenge and give up mid-way through it.
• Complete a given Challenge more than once.
• Explore the entire map, or stick solely to intersections’

paths.

• Collect every item they find, or not collect anything at
all.

This game design allows the player to explore and engage
with the game however they feel more comfortable doing so,
hopefully expressing their gaming preferences in line with the
BrainHex player model.

C. BrainHex Classes In The Game

In order to properly design paths and challenges represent-
ing each BrainHex class, we looked to the official BrainHex
website6, and took into account all the information provided
for each BrainHex class, such as what someone who identifies
as the given class likes, how they usually behave, their favorite
types of games, and their class’s relation to other player and
personality models. As such, we came up with the following
overall descriptions of what should be included in the different
types of challenges, paths, and metrics according to their
respective BrainHex class:

• Daredevil 7 - The player will need to overcome a chal-
lenge filled with moving platforms, trapdoors, and be very
precise with their timing.

• Conqueror 8 - The player will need to overcome a series
of difficult enemies with increasing difficulty.

• Mastermind 9 - The player will need to use limited
resources to solve a puzzle with moving objects and
pressure plates, among other things.

• Seeker 10 - The player will need to search for a key to
a hidden door that can only be obtained by thoroughly
searching the level. The player will find strange and
wonderful scenarios.

• Survivor 11 - The player will need to survive trapdoors,
spikes, monsters, and other elements that may be deemed
as “scary”.

• Achiever 12 - The player will try to do everything
available to them in the game.

As example of what type of content was designed for each
of the BrainHex classes can be seen in “Fig. 3”.

D. Data Collection

a) “The Data”: In order to perform data analysis and
apply machine learning techniques we first need to collect
relevant data from the players’ in-game behaviour. Since we
cannot be sure of what might actually end up being relevant
data to the experiment, we decided to log every relevant action
the player performs inside the game. This allows us to, if
needed, reconstruct the entire play session from the logged
game data. We decided to draw a line on what is considered
relevant in order to not overload our logged data with irrelevant
information. This meant that key presses, mouse movements,

6https://blog.brainhex.com/
7https://youtu.be/Erdug9eO-K4
8https://youtu.be/IVHTWJKYtIU
9https://youtu.be/lGxheUwJWjs
10https://youtu.be/XCHGVLS8q0I
11https://youtu.be/mYy47ONc4Eg
12https://youtu.be/GYxu0mKxyjo

(a) Conqueror (b) Achiever

(c) Survivor (d) Seeker

(e) Mastermind (f) Daredevil

Fig. 3. Six different examples of what type of content was designed for each
of the BrainHex classes.

or game-pad actions were not recorded, however, every action
the player character performs in-game is registered. With this
in mind, we recorded the following actions taken by the player
character:

• Picked up items, such as coins, health packs, and guns,
among others.

• Defeated enemies, such as simple ninjas, bosses, and
ghosts.

• Areas entered and exited from, such as intersections,
paths, hidden places, and zones, among others.

• Deaths, with where and how they happened.
• Checkpoints reached, and respawn locations triggered.
• Quests started and completed.
• Objects interacted with, such as levers and chests.

On top of all the information described above, we also
needed to acquire information on how much the player pro-

gressed into a certain path of challenge if they didn’t finish
it. This information is needed so that, if the player gives up
mid-way through a path or challenge, we can score how much
they engaged with it. In order to do this, we designed a system
where we could use the information from the areas entered
and exited, as described above, to initiate a separate logging
system. In order to know how much the player engaged with
a given path or challenge, we made use of the information in
the list above to create an event system, which would progress
as the player reached predefined parts of the challenge/path,
defeated a certain number of enemies, or collected specific
items, adding to their score. Although this system required us
to specify every possible action that could contribute to the
player gaining score in the challenge/path, it also provided
fine-grained control over how the player is scored.

All actions were timestamped, which allows us to know,
if we need it, how long the player took to complete any
action, quest, or challenge. This metric was discarded later
on, since we were made aware by several testers that since
the experiment could take more than one hour, some of them
decided to take breaks in between, which might change the
result. This meant we didn’t have concrete mechanisms to do
this in an absolutely rigorous way, which could be tackled
in future works. This leaves us with a log file composed
of separate lines, where each one corresponds to one action
taken by the player character, timestamped with the number
of seconds elapsed since the game was started.

b) “Data Retrieval”: In order to gather the logged
gameplay data remotely from the user, a system to send it
back to us was needed. We chose to create a system to
automatically send an email with the log file as an attachment
to an email generated for this specific purpose. This means that
upon triggering the end screen, in the background, an email is
sent with the attached log file and the corresponding Unique
Identifier (UID) given by the tester. The tester is informed
about this, happening, before, its occurrence, and can opt-out
of the experiment if they choose to do so. Upon receiving the
log file with the data, it was matched with BrainHex results,
and the final questionnaire answers using the UID.

IV. EVALUTATION

A. Manipulation Check

To acquire the data needed to verify our design for the
challenges we used a questionnaire format, where the user
needs to rate each of the six videos in relation to six provided
sentences. Each video resembles one of the six different game
design philosophies we employed while making the game,
described by each inside challenge we created for the different
BrainHex classes. The questions were presented in a table,
with the rating as columns and the sentences to describe
each of the six BrainHex classes as rows. The table was
displayed after each video for the user to fill out. The rating for
each challenge ranged from “Strongly Disagree” to “Strongly
Agree”, with the following options in between: “Disagree”,
“Slightly Disagree”, “Neutral”, “Slightly Agree”, and “Agree”.
The BrainHex sentences were taken from the official website

and represent what each player identified as belonging to a
specific class likes to do.

• Daredevil - “You like negotiating dizzying platforms or
rushing around at high speed while you are still in
control.”

• Conqueror - “You like defeating impossibly difficult foes,
struggling until you eventually achieve victory.”

• Mastermind - “You like solving puzzles and devising
strategies.”

• Seeker - “You like finding strange and wonderful things,
or finding familiar things.”

• Survivor - “You like escaping from hideous and scary
threats, pulse-pounding risks.”

• Achiever - “You like collecting anything you can collect,
and doing everything you possibly can.”

Since we allow the users to rate each sentence individually
in accordance to how much they thought it related to the video
shown, the need aroused to come up with a way of validating
the challenge with the design intent in mind. With the fact
that the challenges presented were all created on top of the
same, 2D run and gun base game, we expected some overlap
in identifying the correct BrainHex class. With this in mind,
we settled for accepting a positive answer if the user’s score
for the correct class’ sentence is greater than the score for
all other sentences. As an example if for the video of the
Mastermind challenge, the user rates the Mastermind sentence
with the highest score of all presented options, then we accept
that answer as positive. On top of this, we also observed if the
score for the correct sentence was at least “Slightly Agree”,
to make sure the user didn’t just rate the challenge as low for
all categories, which is also not a desirable outcome.

The results also showed, as we expected, that most chal-
lenges also had some connection to more BrainHex classes
other than the main one we were trying to represent. This is
attributed to the fact that challenges in a somewhat complex
game can’t really be created based on a single unblended, iso-
lated class, as there will always be some residual components
that can be associated with other BrainHex classes. We argue
that as long as the main BrainHex class is identified as the
single most important component of the challenge, then it can
be used as a challenge for the given class in our game. These
may, later on, also help in identifying oddities with our models
or data.

With a game scope as large as ours it was not feasible to
make pass through the manipulation check procedure all the
challenges we designed. With this in mind, and with the main
challenges of the game already validated, we decided to create
the rest of the mini-quests, hidden areas, and paths, based on
these validated challenges and the overall ideas on which we
based them.

Although the results show us that, on average, participants
correctly identified the BrainHex class, the individual results
also showed us that everyone attributed the highest score for
each video to the correct class. There was, however, one
exception with one participant incorrectly scoring all chal-
lenges. We considered this result an outlier, since there were

clear indications that the questionnaire had been answered
randomly.

B. Final Experiment

a) Demographic: The demographic of the experiment’s
testers was mostly from people with a gaming background.
The link to the google forms questionnaire which started the
experiment was distributed among students of Instituto Supe-
rior Técnico (IST) via convenience sampling, and other people
contacted personally. In total, we got 30 users participating in
the experiment, with a 100% completion rate.

Our experiment collected data from 30 individuals, from
which 29.0% were female and 71.0% were male, with ages
ranging from 18 to 29 years old, with a mean of 23.03 and a
standard deviation of 2.30.

As we can see, our coverage of the BrainHex space is
pretty diverse, with only Survivor having a slightly more
unsymmetrical representation. This helps in the differentiation
of the data points, since if we only had one or two data
points representing a given class, our results would have been
severely skewed.

b) Data Treatment: The data gathered comes in a scat-
tered format and needs to be properly organized to be used
in WEKA. This process is performed by an automated script,
which outputs the dataset in the form of a Comma-Separated
Values (CSV) file format by looking at all entries in the log
file and categorizing them, extracting information on what the
player did and what they didn’t do, and, if needed, attributing
a score to their engagement with a given section of the game.
The categorization takes the individual events and organizes
them into two different types:

• Area events, which record if a given area was reached by
the player, and how long they stayed there.

• Instantaneous events, like the player’s deaths, kills, picked
up items, among others. These are associated with area
events.

Afterwards, the script parses through the collected information
to attribute a score to the events above and categorizes them
in the following variable types:

• Quest completion rates. If the player accepted a quest,
and if they completed it. In case the quest was accepted
but not completed, a score is attributed based on how
far along the player reached into the quest. This is done
based on predefined metrics, which we will discuss later
in this section.

• Challenges completion rates. Like quest completion, they
mark if the challenge was completed or not, and in case
it was started but not completed a score is also given to
the players engagement.

• Path completion rates. Like the other two completion
rates, this tell us if the player started a path or not, and if
they gave up mid-way a score is given for how far along
they were able to reach.

• Number of coins collected.
• Number of suits of armor purchased.
• Number of pots collected.

• Number of hidden areas found.
• Enemies defeated.

Some examples of metrics used to attribute a score to each
of the BrainHex classes’ challenges, paths or quests are:

• Seeker Challenge: This challenge requires the player to
search for hidden coins throughout one Level, delivering
them to a NPC and experiencing a small scenario with a
fantastical creature. The progression is first measured by
how many coins the player managed to find, with each
coin having a separate value depending on how hard they
are to discover, capping at 0.45 out of 1. The remaining
0.55 of the score is distributed by the delivering of the
coins to the NPC, and the experiencing of the wonderful
scenario.

• Conqueror Challenge: This challenge requires the player
to fight 3 waves of enemies inside a closed off arena,
with a final Boss at the end. The score is distributed by
how many enemies the player manages to defeat, with a
bonus for finishing each wave.

• Achiever Challenge: This challenge requires the player
to find and collect 200 pots throughout the entire game.
The score is distributed to the player in relation to how
many pots they collected up to a maximum of 0.9. The
final 0.1 of the score is only given after they deliver the
pots to the NPC.

• Survivor Challenge: This challenge requires the player to
find their way through a small cavern filled with traps,
ghost enemies they cannot fight against, with a limited
range of vision and while listening to a creepy song
playing in the background. The score is attributed to the
player based on how far along the cavern they managed
to get. As with many other challenges, if the player fails
and tries again, without ever succeeding, they will receive
a small bonus points if their total score does not surpass
0.9.

• Daredevil Challenge: This challenge requires the player
to jump across moving platforms, time their movement
with the spikes that come up from the floor, while trying
to avoid falling out. This requires precise movement and
for the player to keep some speed to not fall behind. The
score is attributed based on how far along the path they
managed to get.

• Mastermind Challenge: The mastermind challenges all
consist of different puzzles with different mechanics,
which means they all have different scoring systems. If
the path has multiple puzzles, each puzzle will be graded
separately and the combined score is always equal to 1.
Some puzzles do not have a way to measure the player’s
progress so they either award the full score, or zero.

With the data parsed to a format usable by WEKA, we
switched our focus to how we should handle the data for
training our models. Taking into account that our dataset has
a small number of samples (n=30), if we were to randomly
split the dataset into training and testing sets, we might run
into a problem of having all “positive” results fall into one of

the sets, while the other ends up with none, or vice-versa.
This means that we need to make sure both the training
and testing sets have the same proportion of positive-negative
instances, however another problems arises, which is how to
define a positive or a negative instance. Regarding the dataset
we decided to make six copies of it, one for each BrainHex
class, and split the data into 70% for the training set and 30%
for the testing set With this method we can treat each BrainHex
class separately, and independently, which lets us have finer
control over how we classify the dataset. We can classify each
instance as belonging to the corresponding BrainHex class or
not, instead of overlapping the classification of all classes. This
would also make it easier for evenly splitting the data for the
training and testing sets. With this in mind, each copy was
treated as a different dataset, and we settled for a cutout of
10 for the positive and negative values. This means that, for
example, for the Mastermind copy of the dataset, we looked at
the BrainHex scores of each instance and attributed a positive
class (belongs to the BrainHex class), denominated by the
value “1”, if the instance had a BrainHex score higher or equal
to 10, and a negative class (does not belong to the BrainHex
class), denominated by the value “0”, otherwise. The cut-off
value of 10 was chosen since it marks the middle point in
the BrainHex scale for someone who likes the given BrainHex
class. The BrainHex scores vary between [-10,20], with values
in the range [-10,0[corresponding to the player having the
given class as an exception. We are then left with the value
range [0,20] for how much the player likes the challenge
and we chose the value 10 as it marks the middle point of
how much someone enjoys that specific type of content. The
distribution of these results can be seen in “Table. I”.

TABLE I
BRAINHEX SCORE COUNTS FOR ALL PARTICIPANT. POSITIVE VALUES

INDICATE A SCORE GREATER THAN OR EQUAL TO 10, WHILE NEGATIVE
VALUES INDICATE A SCORE LOWER THAN 10.

Seeker Survivor Conqueror Daredevil Mastermind Achiever

Positive 16 22 16 17 16 18

Negative 14 8 14 13 14 12

c) Results: With the six training datasets, we moved onto
the training of our models, using 10-fold cross validation.
We used five different machine learning algorithms available
in our software of choice WEKA, RepTree, RandomTree,
RandomForest, NaiveBayes and KMeans. The evaluation for
the KMeans algorithm was done via the classes to cluster
feature, where WEKA first ignores the class and builds the
clusters. It then allocates classes to the clusters during the test
phase, depending on the majority value of the class attribute
inside each cluster. Finally, depending on this assignment, it
computes the classification error which we subtract from 100%
to obtain the accuracy, this being the value displayed in the
tables below.

The results obtained from the first training of our models can
be seen in “Table. II”. We then performed feature selection,
based on both the results obtained from WEKAs tools for

feature selection and our initial understanding, from designing
the game, of which features should correlate to which classes.
We also discretized the data for Naive Bayes [10], and ran the
algorithms again with the modified datasets. The results from
the modified datasets can be seen in “Table. III”.

TABLE II
MODEL TRAINING RESULTS FOR THE FIVE MACHINE LEARNING

ALGORITHMS WITH 10-FOLD CROSS VALIDATION ON THE RAW DATASETS.

Datasets RepTree RandomTree RandomForest NaiveBayes KMeans

Conqueror 62.50% 83.33% 83.33% 75.00% 50.00%

Achiever 66.66% 75.00% 79.16% 75.00% 58.34%

Mastermind 75.00% 75.00% 79.16% 70.83% 66.66%

Survivor 87.50% 79.16% 79.16% 87.50% 62.50%

Seeker 100% 95.83% 100% 91.66% 66.66%

Daredevil 58.33% 58.33% 66.66% 62.5% 62.5%

TABLE III
MODEL TRAINING RESULTS FOR THE FIVE MACHINE LEARNING

ALGORITHMS WITH 10-FOLD CROSS VALIDATION ON THE MODIFIED
DATASETS.

Datasets RepTree RandomTree RandomForest NaiveBayes KMeans

Conqueror 75.00% 87.50% 79.16% 79.16% 79.16%

Achiever 70.83% 79.16% 83.33 79.16% 70.83%

Mastermind 83.33% 79.16% 75.00% 79.16% 66.66%

Survivor 87.50% 79.16% 87.50% 91.66% 70.83%

Seeker 100% 100% 100% 95.83% 91.67%

Daredevil 75.00% 75.00% 70.83% 75.00% 66.66%

As we can observe form the results obtained in “Table. II”
and “Table. III”, some classes were overall better identified
than others, with Daredevil sticking out as the worst result.
We can also see that the Random Forest algorithm, for some
classes, performed better in the original raw datasets, in
comparison to the modified datasets. With this in mind, we can
conclude that either the removed elements were in some way
relevant to the identification of the given class by the Random
Forest algorithm, or that with our small sample size, some
features were being incorrectly used and our model overfitted
the data by picking up some noise.

The best models were recorded for each algorithm of each
dataset, and used in the final validation performed with the
remaining 30% of the data (testing/validation dataset). These
results can be seen in “Table. IV”.

As we can observe in the table, five out of the six classes
had very high levels of accuracy, greater than or equal to
83.33%, which means at least five out of the six instances in
the validation dataset were correctly identified. On the other
hand, the Daredevil class had very low levels of accuracy
which might mean our choice of metrics and challenges for
the class were not appropriate. Since WEKA doesn’t support
test set evaluations for KMeans clustering we are unable to
provide validation results for this algorithm.

Regarding the classes with high success rates, Seeker per-
formed especially well both under training and validation.

TABLE IV
MODEL VALIDATION RESULTS FOR THE SIX DIFFERENT DATASETS USING

THE BEST PERFORMING MODELS FOR EACH ALGORITHM OF EACH
DATASET.

Datasets RepTree RandomTree RandomForest NaiveBayes KMeans

Conqueror 100% 100% 83.33% 83.33% –%

Achiever 83.33% 83.33% 83.33% 100% –%

Mastermind 83.33% 83.33% 83.33% 100% –%

Survivor 83.33% 83.33% 83.33% 83.33% –%

Seeker 100% 100% 100% 83.33% –%

Daredevil 50% 50% 66.66% 66.66% –%

Upon closer inspection we could observe that the attributes
“seeker challenge” and “seeker quest” proved to be excellent
indicators of Seeker behavior, as both had clear cut-off values,
which perfectly split the dataset, identifying the correct class.
Although our dataset had a small number of samples (n=30,
with n=24 for the testing set and n=6 for validation), and
these cut-offs might not have worked perfectly with a higher
number of samples, we can conclude these attributes are very
good indicators for identifying the class in question. As for
the other three classes with high scores, we can see that they
all obtained around the same accuracy in both the training
and validation phases, taking into account the low number of
samples in our dataset, which restricts the number of possible
steps of accuracy that can be obtained.

After finalizing the dataset validation we decided to create a
list of the top indicators, and a possible explanation for some
of them, for each BrainHex class based on the final Decision
Tree models and the feature selection.

Conqueror:
• The four paths that came from the main intersections,

which excludes the first path as it was in the exploration
section of the game. ´

• The number of enemies defeated.
• The lack of engagement with the Seeker quest.
Survivor:
• The engagement with the Survivor challenge.
• The engagement with the last Survivor path. The first

three Survivor paths after the exploration zone where
neither good nor bad indicators.

• The non engagement with one of the mastermind paths.
Seeker:
• The engagement with the Seeker challenge.
• The engagement with the Seeker quest.
• The number of hidden zones visited.
Achiever:
• The engagement with the Achiever challenge.
• The number of pots and coins collected.
• The engagement with the Achiever armor collection chal-

lenge.
• The number of hidden zones reached. This metric is

related to the hidden zones which where visible from
the normal paths and the player had to find the entrance

to. They had rewards that the player could see (such as
chests, coins, or pots, among others), which incentivized
the players to go collect them.

Daredevil:
• The Daredevil’s paths were mediocre indicators.
• The engagement with the Daredevil challenge was a

mediocre indicator.
Mastermind:
• The engagement with the Mastermind challenge.
• The second and third Mastermind paths after the explo-

ration zone. The other paths were not so good indicators.

V. CONCLUSIONS

From the results obtained in the Manipulation Check, we
can conclude the participants correctly understood the design
intentions of the challenges. All participants were able to
correctly match the challenges presented in the videos to the
six BrainHex classes, by scoring the corresponding class as
the highest.

From the final experiment, we concluded that, for all
BrainHex classes besides Daredevil, we were able to correctly
identify the participants’ BrainHex type.

Upon observing the models created, like Decision Trees,
and looking at their accuracy, we can conclude that the metrics
selected to measure the classes: Conqueror, Survivor, Seeker,
Mastermind and Achiever, were appropriate. On the other
hand, the Daredevil class could have had more or better
metrics used, such as the discarded “time to complete”.

These results corroborate our hypothesis that it is possible
to extract the players’ self-reported preferences from their
in-game behavior. This allowed for the creation of several
machine learning models, using different algorithms, which
could identify the players’ BrainHex class, from data collected
of their in-game behavior, with a high degree of accuracy. This
game could be used as a proxy to identify the dominant di-
mensions of a player by observing their playstyle, as opposed
to having them answer a questionnaire, which would allow for
its in-game integration.

A. Future Work

For future research, we suggest the replication of this study,
first and foremost, with a focus on obtaining more participants.
We also had other ideas on how to improve or expand our work
such as:

• Experiment with the methods described here using dif-
ferent player type models, such as GMP, Marczewski’s
Player and User Types Hexad or Bartle Taxonomy of
Player Types, or even with personality models, such as
the FFM or MBTI.

• Exploring the potential relation between different Brain-
Hex classes. We saw this happen in one instance, where
the non-interaction with a challenge from the Seeker
BrainHex class proved to be an indicator for the player
belonging to the Conqueror class.

• Better representation of different classes throughout the
dataset. Some classes representation was not perfect, and

with a small dataset like ours, one outlier can more easily
skew the results.

• The creation of the Procedural Content Generation (PCG)
system for the generation of tailored content using the
models created. This is the logical next step in the process
of providing a truly tailored experience to the player
without the need to fill any questionnaires before playing.

Furthermore, we advise extra care with the design of
challenges and the metrics recorded from them, since they
will have the greatest impact on the results obtained from
the models. In this line of thought, we also advise careful
consideration to the freedom given to the player, and to be
mindful of player curiosity and exploration during the initial
section of the game.

ACKNOWLEDGMENT

I would like to thank my dissertation supervisor, Prof. Car-
los Martinho, for his insight, support, guidance, and sharing
of knowledge that has made this work possible. Thank you to
my entire family and my friends for their support during these
difficult times. I would also like to give a special mention to
Victor Ribeiro for his patience during our long discussions and
finally a special thanks to my friends at Los Cotons for being
there with me every day.

REFERENCES

[1] R. Dias and C. Martinho, “inflow: Adapting gameplay to player person-
ality,” 2010.

[2] I. B. Myers and P. B. Myers, Gifts differing: understanding personality
type. Consulting Psychologists Press, 1995.

[3] R. R. McCrae and O. P. John, “An introduction to the
five-factor model and its applications,” Journal of Personality,
vol. 60, no. 2, p. 175–215, Jun 1992. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-6494.1992.tb00970.x

[4] Intenational Hobo. (2008) BrainHex. [Online]. Available:
https://blog.brainhex.com/

[5] N. Yee, “The gamer motivation profile: What we learned from 250,000
gamers,” 2016.

[6] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit muds,”
1996.

[7] A. Marczewski, User Types HEXAD, 2015.
[8] L. E. Nacke, C. Bateman, and R. L. Mandryk,

“Brainhex: A neurobiological gamer typology survey,” En-
tertainment Computing, vol. 5, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1875952113000086

[9] Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017)., Data
mining: Practical machine learning tools and techniques. Amsterdam:
Morgan Kaufmann.

[10] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Eleventh Conference on Uncertainty in Artificial
Intelligence. San Mateo: Morgan Kaufmann, 1995, pp. 338–345.

