
Adaptive Single Player Challenge Generation for
World War Online

Torstein Lundervold Nesheim
INESC-ID

Instituto Superior Técnico
University of Lisbon, Portugal

torstein.nesheim@tecnico.ulisboa.pt

Abstract—In this work we seek to improve the game experience
for new players in free-to-play games by using evolutionary
computing and procedural content generation. The hypothesis
is based on the positive psychology principle of Flow, in that
it focuses on generating challenges that are adequate for the
player at their experience level within the game in order to
improve their player experience. This was implemented and
tested in collaboration with Chilltime, through the “Battle Arena”
gamemode within their free-to-play browser-based game “World
War Online” (WWO). The testing was done outside the actual
web-based game, directly in the unity application of Battle Arena,
with offline generation of challenges due to long generation times.
We use the repeated measures design and the Intrinsic Motivation
Inventory (IMI) to evaluate our model, but could unfortunately
only do testing with 13 participants due to changes in Chilltime
and their servers midway in the testing. The preliminary results
we could reach with this sample size indicate that the current
model does not increase player enjoyment or improve the
experience for new players of WWO, but these results might be
a matter of adjusting the difficulty parameter of the evolutionary
component of our model. The difference in results between the
two versions tested also was not very large, and besides showing
that this initial model was close to fulfilling its purpose, it also
proves its capabilities of creating interesting challenges, as the
main issue found was that the challenges generated were too
difficult. We believe this work can be expanded upon and that
interesting results can be obtained through parameter tweaking
and more rounds of testing

Index Terms—Procedural Content Generation, Genetic Algo-
rithms, Video Games, Flow

I. INTRODUCTION

According to Marc Robinson’s 2013 Game Developer Con-
ference talk, “On average, less than 40% of players return
to a free-to-play game after just one session.” [1] From an
economic perspective, this statistic could be simplified to
say that Game Publishers of free-to-play games are “losing
more than 60% of their potential income” from the very first
interaction between a player and their game.

So how do we provide challenges that are adequate for the
player at any time in their player lifetime, including at the very
beginning - in order to mitigate this huge drop in retention
rate at the start of a gaming experience? How do we keep
the player progression going long enough for the player to
understand the game?

In WWO, a large part of this problem is directly related
to the transition from tutorial/campaign to multiplayer battles.

The current campaign consists of static, sequential challenges,
which presents all players with the same progression curve,
even though each player will have a different skill curve. This
will, for most players, lead to inconsistent matching between
skill and difficulty, which may cause the player to quit playing
due to lack of enjoyment. It is this problem of continuously
matching player skill with game difficulty in Battle Arena that
we seek to solve in this work

We hypothesize, in line with the concept of Flow, that con-
stantly providing the players with challenges that are adapted
to their skill level will improve their game experience and thus
lead to an improved game experience for new players in the
case of WWO. We tested this by attempting to use search-
based procedural content generation and a genetic algorithm
to help us create meaningful challenges for the players by
using choices they make in the tutorial to inform a genetic
algorithm of what skill level they are at.

Components of this hypothesis are supported by previous
works : when exploring the effects of experience-driven chal-
lenge generation in Holiday Knight, Pardal & Martinho [2]
concluded that it led to an improved player enjoyment, and
similar results where reported by Mestre & Martinho when
exploring experience-driven PCG combined with a single
player Elo system in “Go Go Hexahedron” [3]. Our search-
based PCG is similar to the experience-driven PCG used in
these works in that they all aim to adapt challenge difficulty
to the player skill, and as a consequence we believe that we
will achieve similar results related to the player enjoyment.

We evaluate our hypothesis by having players report on
various aspects of their experience after having played through
challenges generated for them. For comparison we also ask
participants to report on the same aspects after playing through
a control set of challenges, static for all participants. We
compare the two versions by how appropriate the player rates
the challenges in each and how their experience was while
playing them. We expected to see that players report meeting
a more appropriate difficulty, and having a better experience
when playing through the challenges generated for them.

II. RELATED WORK

A. Flow

In Positive Psychology, Flow is the state of being completely
and fully immersed in an activity. It is termed as an “optimal



experience” by Csikszentmihalyi [4], and one of the key points
of flow is that it is a state of inner equilibrium between “anxi-
ety” and “boredom”, where your skill is matched by a suitable
challenge. This is visualized in Fig. 1, which illustrates the
flow state in relation to skill, difficulty (challenge), anxiety and
boredom. This figure serves to illustrate that there must be a
continuous match between skill and difficulty for someone to
remain in the state of flow. This becomes especially apparent
in the case of video games.

Fig. 1. The mental state of Flow visualized - Adapted from Csikszentmihalyi,
1990.

B. Procedural Content Generation
Procedural Content Generation (PCG) refers to the algo-

rithmic, automatic generation of game content as opposed
to the traditional method of manual creation [5]. In this
paper, game content will refer to all aspects within a game
that impact gameplay, with the exceptions of Non-Player
Character behavior and the game engine itself. Within the
context of the Battle Arena in WWO, this content generation
translates to generating challenges for the players. By using
procedural content generation, we can generate large amounts
of challenges without having to spend time designing and
testing them individually. This also allows for each challenge
to be tailored for a much more specific skill level than if we
had to design all the challenges manually, which will make
it easier to create an optimal state of play for the players
according to the principle of Flow.

In our approach we employ the use of a specific case of PCG
called Search-based PCG in order to generate challenges for
Battle Arena. We will therefore briefly go over what search-
based PCG entails, in this subsection. Search-based PCG is
a special case of the generate-and-test approach to PCG for
which Togelius et al. [6] defined the following qualifications:

• The test function does not simply accept or reject the
candidate content, but grades it using one or a vector of

real numbers. Such a test function is often referred to as
a fitness function or utility function. In this work we will
refer to this as the fitness function, and we will refer to
its result as the fitness of the content.

• The generation of new content depends on the fitness of
the previously generated content. In this way, we will
gradually produce new content that has a higher value
than the previous ones.

C. Evolutionary Algorithms

In many of the cases of search-based PCG, the search algo-
rithm is of an evolutionary nature in line with the criteria listed
above. This is because evolution through natural selection of
“randomly” chosen individuals can be thought of as a search
through the space of possible chromosome values [7] and
this will also be the case for our work. Another aspect of
having an evolutionary search algorithm is that because of its
inherent randomness combined with its converging properties,
a very large portion of the search-space is covered naturally,
and interesting, unforeseen solutions will often be found.

Evolutionary algorithms is a branch of algorithms within
the field of studies called “Artificial Life” in which scien-
tists explore natural systems to draw inspiration for artificial
“copies” of natural phenomena to further our technological
advancement. These algorithms are based on the theory of
evolution by Charles Darwin, in which species adapt to their
surrounding slowly through mutations and the famously coined
term “survival of the fittest”. This coincides well with many
of the goals of training AI, in that this process, although
“random” in its nature, converges globally towards a solution
to a problem over time.

Evolutionary algorithms use a population of individuals,
where an individual is referred to as a chromosome. A chro-
mosome defines the parameters/characteristics of individuals
in the population. Each characteristic is referred to as a
gene. The value of each gene is called an allele. In each
generation, each individual competes against each other to
reproduce themselves. The individuals with the best survival
capabilities have the best chance to reproduce and pass on
their genes to the next generation. The next generation is
generated by combining parts of the parents; this process is
referred to as a crossover. Each individual in the population
can also undergo mutation which slightly changes some of
the allele in the chromosome. The survival strength of an
individual is measured using a fitness function which reflects
the objectives and constraints of the problem to be solved.
After each generation, the strongest part of the population will
reproduce and survive to the next generation [7].

Within evolutionary algorithms, Genetic Algorithms (GA’s)
are some of the most commonly used in relation to PCG
and the training of Artificial Intelligence (AI) in games [8].
The process of a genetic algorithm is similar to a generic
evolutionary algorithm’s, and can be listed as the following
steps:

1 Initialize the population



2 Measure the fitness of each individual by the fitness
function

3 Selection
4 Crossover
5 Mutation

Steps 2-5 are then repeated until a satisfactory condition is
met, typically that the highest fitness of the population is
above a certain threshold, a maximum iteration count has been
reached or until the population is uniform [9].

By representing the unit setups of WWO as a chromosome
where each gene is a unit on the battlefield with an associated
unit type, position, strategy and amount, we could evolve the
unit setup and test its performance against other unit setups to
measure its fitness. This is an important step in generating unit
setups/challenges with a difficulty adapted to a given players
skill level.

D. Evaluation Methods

The Intrinsic Motivation Inventory (IMI) is a set of ques-
tions related to a scale of 1-7, designed to assess the subjective
experiences of participants in experiments. The participants
are asked to state how much they agree with each of a
series of statements that can be divided in different “di-
mensions” of experience, four of which are notable in this
work; “Interest/Enjoyment”, “Perceived Competence”, “Ef-
fort/Importance” and “Pressure/Tension”. The results in each
of the dimensions of the IMI are assembled by adding the
scores from each statement in a dimension, inverting it in the
case of reversed statements, and then averaging the final sum.

A/B testing is a user experience research methodology
where the users of a certain service are subjected to two
different versions of the same service. This provides an easy
way to compare design and implementation decisions related
to user experience simply by comparing the results from the
two groups A and B, according to pre-defined metrics [10].

Repeated measures design is an experimental design where
each participant takes part in both groups A and B, as opposed
to A/B testing, where each participant is only part of one
group. Repeated measures design is advantageous over A/B
testing in that it naturally requires fewer participants, but in
return it comes with some disadvantages. There is a larger risk
of fatiguing the participants in repeated measures, and there
is also a bias introduced when a participant takes part in both
groups. This bias is often mitigating by alternating the order
in which the participants take part in the groups.

III. WORLD WAR ONLINE

World War Online is a browser-based, free-to-play, real-time
strategy game with players from over 50 countries, in which
players build armies and bases to conquer and defend areas
for their in-game country. The players army can consist of
a variety of different unit types, which are unlocked as the
player increases their military rank. They can then use this
army by assigning units to defend their bases, by attacking
other players bases in the multiplayer mode of WWO, or by

going through the pre-determined challenges in a classic level-
based progression system in the campaign, which doubles as
the tutorial. Our work introduces a new game mode to WWO,
Battle Arena.

In this work we have assisted the creation of a new game
mode in WWO: the Battle Arena. WWO is largely built
in webGL, and it is a 2D game. Battle Arena therefore
distinguishes itself graphically from the rest of WWO by being
3D and built in Unity. Battle Arena is a single player game
mode, and in the current version, the players play against
challenges that are randomly generated based on their current
rating in Battle Arena. As players defeat challenges, their
rating increases or decreases based on the result of the match.
Within the context of “Battle Arena”, both Challenge and
Level refers to the Enemy Unit Setup.

When a player encounters a challenge in Battle Arena,
they have to create an attacking unit setup, consisting of a
maximum of 5 different units, to try to defeat the enemy. In
this process they have to choose the units, position them on
the battlefield, and determine the amount of each unit type
they wish to send into battle. The amount of units determines
strength and health of that unit type, but for each challenge
there is a total budget that the player has to distribute between
the units, and each unit lost in battle is also permanent lost
to the player. The amount of units to invest must therefore be
carefully chosen.

Fig. 2. Battle Arena - The new game mode in WWO. Here the human player
“GodVenn” is in the process of choosing his attacking unit setup against
the defending computer opponent, whose setup will always be determined
beforehand.

IV. CHALLENGE GENERATION ALGORITHM

The goal of the challenge generator is to be able to provide
any given player with a challenge that matches their skill
level. In order to achieve this, we chose the player’s recent
match history as the representation of their skill. This was also
done to encourage players to explore different play styles, as
the challenge generator would naturally create some sort of
counter to their match history, hopefully leading the player
to adapt a new play style to defeat the new challenge. An
architectural overview of our final implementation can be seen
in Fig. 3.



Fig. 3.

For this generation we used offline, search-based PCG,
where the search-algorithm is a genetic algorithm, and as a
consequence the PCG can be classified as stochastic, generat-
ing different outputs each time if run several times for a single
input. To create the genetic algorithm, we used C# with the
Genetic Sharp [11] library for genetic algorithms, because it
is open source, has been used successfully in several other
academic works already, and is also available for commercial
use, an important point in our case.

The GeneticSharp library provides us with a skeleton for our
algorithm, alleviating us from setting up the cycling and the
transfer between steps in the cycle, and allowing us instead to
focus on creating the operators themselves and defining WWO
in terms of variables and components in the genetic algorithm.
It also provided us with some basic operators to use, although
we ended up only making use of the elitist reinsertion operator
provided by the library.

The genetic algorithm is responsible for producing a defend-
ing unit setup that is of an appropriate difficulty based on the
player’s skill and experience in WWO. In order to achieve this,
two important factors are the initial population and the fitness
function. We create an initial population which includes all
the different unit types available, guaranteeing that each unit
is represented at least once in the collection of chromosomes.
This is done in order to guarantee covering the solution-space
as efficiently as possible in the dimension of unit variety.

The chromosome in our genetic algorithm is meant to rep-
resent a unit setup, and as such it needs to contain information
on a set of 3-5 different units and their positions. We used a
chromosome which is simply an array with size equal to the
maximum unique units, set to five in this work. Each slot in
the array can either be empty, or filled with a unit. By allowing

for empty cells in the chromosome, we simplify the crossover
operator, since we know that all chromosomes will have the
same length, despite varying in their unit count.

A unit is described by 4 parameters:
• Unit ID: The ID which represents the unit type itself.
• Amount: The amount of the given unit type. This deter-

mines its strength, and is limited by the total budget.
• Strategy: A unit can be set to follow one of three

different strategies; Default, Ambush or Guard.
• Position: The position of the unit on the battlefield, given

as an x and y coordinate in the battlefield grid.

A. Main Fitness Function - Simulation

In order to evaluate the adequacy of each proposed solution
(unit setup) in the GA, we searched to estimate how each setup
would perform against the player for whom the challenge is
being generated. To achieve this, we use the processing part of
Battle Arena, “Battle Engine”, to simulate the battles between
the proposed solution and the fitness group. To determine the
fitness value of a unit setup, we compare the average result
of the simulations to the desired win ratio, which was set to
50% in this work.

Because our fitness function involves an external simulation,
it is relatively time consuming: the average duration of a full
simulation is 3.5 seconds, implying that the duration of a
fitness evaluation is equal to this duration times the amount
of setups in the fitness group. We can estimate this to be
17.5 seconds, but it does vary based on the complexity of
the battles. Naturally, this implies that evaluating the fitness of
each setup sequentially would be excessively time consuming.
To avoid this, we use C#’s parallelisation library, which is
already integrated with the Genetic Sharp library, to evaluate
all individuals in a generation simultaneously on different
threads of the CPU.

B. Selection

The selection operator in our genetic algorithm is a standard
Tournament Selection Operator. We compared tournament
selection to roulette wheel selection and found that tournament
selection yielded an improved conversion rate for our search,
as seen in Fig. 4.

C. Crossover

In the case of WWO, we envisioned that our crossover
operator would switch units between two parents in order
to create two children. Originally, we attempted to use a
standard 1-point crossover in the array of units that represent
the chromosome. This, however, caused a lot of inconsistency
in how many individuals in a generation that were actually
valid according to the constraints determined by the game.

Our crossover operator “GeneSwitching” aims to randomly
choose a random number of units from each parent and switch
them, but verifies in the process that each unit switch is
“valid” according to the game’s constraints, before making the
eventual switch. The budget is not verified in the switching
process, as it is not a game breaking constraint, and it is



Fig. 4. A comparison between the fitness evolution per generation of Roulette
Wheel Selection (Top) and Tournament Selection (Bottom). This data is
the average result from 20 runs of the genetic algorithm, each ran for 80
generations, with a population size of 50.

instead corrected for each unit setup at the end of the crossover
process. The probability of a crossover taking place for two
selected chromosomes is set to 80%.

D. Mutation

We started off with a mutation operator which could change
all the 4 dimensions of a gene (Unit ID, position, amount
& strategy) simultaneously. This operator had a different
probability for mutating each of the 4 dimensions, and could
potentially modify all 4 in a single operation. This caused the
search for solutions to become too wide and random, leading
us to search for an operator which could do single dimensional
mutation, but without impeding its reachability.

One way to achieve such an operator, is to never mutate
the Unit ID of a gene, as this is a key cause for imposing
constraints on the other dimensions. Instead we would guar-
antee an initial population which contains at least one gene
of each unit ID, spread across the chromosomes, in order to
assure that they were all given a chance at being selected for
the solution. By doing this, we achieved a single dimensional
mutation operator without having to worry about dependen-
cies, while also ensuring full reachability. The difference in
performance between the original multi-dimensional operator
and the single-dimensional operator with “static” unit ID’s
can be seen in Fig. 5, where we can clearly see the much
improved conversion rate and more stable search of the single-
dimensional mutation. The probability of mutation occurring
in a chromosome is set to 15% in our project.

V. EVALUATION

In order to evaluate our hypothesis, we asked players for
feedback regarding their experience while playing through
the challenges generated by our genetic algorithm. For this
purpose we used a repeated measures design, where players

Fig. 5. A comparison between the fitness evolution per generation of Multi-
Dimensional Mutation (Top) and Single Dimensional Mutation (Bottom).
This data is the average result from 20 runs of the genetic algorithm, each
ran for 80 generations, with a population size of 50.

played through two sets of challenges, one generated by
us, Version B, and another “random” set, Version A. We
used repeated measures design over A/B testing to reduce
the amount of participants needed for the experiment. The
challenges in version A are the same for each participant, and
were generated through the current solution in Battle Arena
for an entry-level rating. The feedback was given through a
questionnaire which contains an IMI section to give us data
on different aspects of their experience.

A. Procedure

The experimental procedure can be divided in two: the
playtesting of the game, and the questionnaire to provide
feedback about their experience. In the playtesting part, the
participants went through a tutorial of 10 levels, before being
presented with the two different sets of 5 challenges each.
Because our challenge generation is dependent on already
having the player’s recent match history available, we used
the last 5 tutorial levels as this input - the fitness group
in our genetic algorithm. A consequence of not having this
information before the user testing process, was that we had
to split the process into two sessions, scheduled at different
times due to the long generation time of our algorithm in
between.

In the first session, the participants fill out the first part
of the questionnaire, which contains an introduction to the
game for those that do not already know it, and a demographic
section. They then proceed to the first playtesting session, in
which they play through 10 tutorial levels of an increasing
level of difficulty. The 5 first tutorial levels are copied from
the campaign in WWO while the last 5 are actually generated
for low-rated players by the current solution in battle arena.
These last 5 had to be more complex than the first because



we needed to gather as much information as possible for the
generation of challenges described in the previous section.

Between the two sessions, our genetic algorithm runs five
times to create five different challenges for each participant. In
each of the five executions, the participant’s last 5 unit setups
from the tutorial are used as the fitness group. Our algorithm
is able to generate a different challenge each time due to the
stochastic nature of genetic algorithms, and the result is a set
of challenges in which each one is as individually different as
they are in the set of challenges that are randomly generated
(version A).

In the second session, the participants play through the two
sets of challenges and provide feedback on each of them. The
participants are not informed about how the challenges for
each version were created, only that challenges have been
generated for them since the last session. To mitigate the
bias introduced by a participant playing one version before
the other, each participant has a 50% chance of starting with
either version. After the participant has played through one
version, they are presented with the IMI questions to report
their experience during that playthrough. They then repeat the
same process for the second version, and finally they answer
a couple of comparative summary questions in the end.

To investigate the aspects of enjoyment, we used 4 dimen-
sions of the IMI: Interest/Enjoyment, Perceived Compe-
tence, Effort/Importance and Pressure/Tension. From each
dimension, we used all the items, for a total of 23 statements
that the participant had to evaluate in regards to their experi-
ence, rating them on a scale from “1 - not at all true” to “7 -
very true”.

B. Results

Due to company changes in Chilltime along with a server
change for WWO, our user testing process was unfortunately
interrupted unexpectedly and prematurely, as the webflow and
API’s used in the playtesting stopped working in this period
of time. As we had based our user testing process around
the existing architecture of WWO, it would have been too
time consuming to work around this, and we ended up with
only 13 participants completing the user testing. With such
a low number of data sources, the results we can extract
from this experiment are limited and not presentable as strong
conclusions. Nevertheless, we discuss our preliminary findings
and indications that can be extracted from this small sample
size.

The demographics section of the questionnaire shows that
our participants were largely young adults with 92% being
between 22 and 27 years old, with an even division between
casual or dedicated gamers, and with all, except for one, never
having any experience with WWO. This last information is
especially important, as it implies that the results we collected
mainly concerns new players of WWO. The average times
spent playing during user testing was 27 minutes for the
tutorial and 37 min 12 seconds for the combined set of
challenges (Version A + Version B), for a total play time of
64 minutes and 12 seconds on average. This means that these

results mostly represent the participants’ first impressions,
which should be taken into account when interpreting them.

When performing the Wilcoxon signed-rank test to compare
version A and version B in each of the IMI dimensions, there
was only a meaningful statistical difference in one of them,
the Perceived Competence, with Z = −2.202 and p = 0.028.
The mean values of this dimension showed players felt more
competent in version A (meanA = 4.705 vs meanB = 3.589)
which could indicate that the challenges generated by our
challenge generator were more difficult than those in version
A, or it could mean that players felt a stronger sense of
accomplishment when completing challenges in version A
because they proved more challenging.

The fact that there was no significant statistical difference
in the Interest/Enjoyment could indicate that the challenges
generated did not provide the players with an improved
experience compared to those of version A, which would
counter our hypothesis, but this would need further exploration
with a larger sample size.

The Wilcoxon signed-rank test also showed significant
differences in results for two of the custom questions that
focus on a more direct rating of the versions, these being “How
would you rate the difficulty of these challenges, compared to
your skill level?”, hereafter referred to as the Adaptiveness
To Skill, and “How would you rate the overall experience
you had playing through these challenges?”, referred to as the
Overall Experience.

The adaptiveness to skill showed a difference with Z =
2.295 and p = 0.028, with mean values of meanA = 3.770
and meanB = 5.230. The scale of this question goes from 1
- Too Easy to 7 - Too Hard, with 4 being the ideal score
of a perfect match between skill and difficulty. These results
therefore indicate that the challenges in version A were slightly
easier than adequate and that the challenges in version B were
noticeably harder than what would be an adequate difficulty,
with the challenges in version B being further from the best
score on this scale.

The overall experience differed between version A and B
with Z = −2.511 and p = 0.012 and mean values (meanA =
6.000 vs meanB = 5.000) showing that players rated version
A as a slightly better experience overall, which counters our
hypothesis in which we expected version B to yield a better
experience overall.

C. Discussion

When combining the results of the perceived competence
showing that participants felt more competent in version A,
with the results from the adaptiveness to skill showing that
version A seems to better match the skill of each participant,
they seem to indicate that version B was slightly too difficult
for the average participant in this test process. This could be
due to the parameter that controls the desired difficulty of the
challenges generated, the “DesiredWinRatio” of our Genetic
Algorithm’s fitness function. For the challenge generation in
our experiments, we had this parameter set to 0.50, which
means that the challenges generated would ideally break even



with the player’s match history. Based on these results, we can
say that this parameter might be too high, leading to harder
challenges, and it could be interesting to experiment further
with different values for this parameter.

This difference in difficulty seems to have lead to partic-
ipants rating their experience in version A as superior. It is
worth noting that people tend to rate games as better than
others when they perform better at them, so their self-reported
experience is not an absolute measurement.

In terms of our challenge generator, these results are not all
bad. They confirm that our challenge generator is capable of
creating interesting challenges, which is, generally speaking,
harder than creating challenges that are too easy. The fact that
nearly all of our participants were new to WWO might mean
that the challenge generator would have had better results with
more experienced WWO players, as these will generally be
better players and might appreciate complex challenges in a
different way than new players might so that the increased
difficulty of version B would be a positive contributor to their
experience. The results might also indicate that the player’s 5
recent matches do not provide enough information on a player
for the algorithm to be able to produce an adequate challenge
for them.

VI. CONCLUSIONS

In this work, we explored how a genetic algorithm could
be used as the search-algorithm in a search-driven procedural
content generation of challenges in order to improve player
experience in the commercial game “World War Online”, in
the single-player game mode “Battle Arena”. This work was
done in collaboration with Chilltime.

We hypothesized that we could improve a player’s expe-
rience in Battle Arena by using their recent match history
to create a challenge of a difficulty which matched their
skill. We implemented this by creating a genetic algorithm
to act as challenge generator which measures the fitness of
each challenge candidate by simulating battles between the
candidate and the player’s match history using the processing
unit of the actual game, called “Battle Engine”, aiming for a
50% win ratio.

To test the hypothesis, we had 13 participants play through
two sets of challenges, one static set that was equal for
all players - Version A, and one set that was generated
specifically for that player based on their match history in
the tutorial - Version B. We asked each participant to respond
to a questionnaire, in which they compared the two versions
indirectly by responding to an Intrinsic Motivation Inventory
about each playthrough, and directly by responding to a couple
of comparative questions. The low amount of participants was
due to changes in Chilltime and to their game servers, which
lead to a premature ending of the user testing process.

The final results showed no statistically significant dif-
ference in the IMI dimensions of Interest/Enjoyment, Ef-
fort/Importance or Pressure/Tension, but showed a difference
in Perceived Competence, which showed that participants felt
more competent while playing through version A. There was

also a significant difference in the Overall Experience and the
Skill/Difficulty ratio reported by the participants, where they
rated version A as a slightly better overall experience as well
as being slightly better adjusted to their skill levels.

Due to the low sample size, we can not reach any strong
conclusions from these results, but we have some ideas as
to what they could indicate. Taking into account that these
results are from players who are new to the game, we can
say that it seems the challenges generated by our genetic
algorithm were too difficult for these players, which led to a
worsened experience when compared to the static challenges.
This implies that our current model did not succeed in creating
challenges that were adequate for newer players, and did not
provide them with an improved experience compared to the
static challenges.

We believe that repeating this experiment with players who
are experienced in WWO might yield different results, as
the challenge generator shows potential to create interesting
challenges which newer players might not appreciate the
same way. We also believe that different parameterization of
the genetic algorithm could yield different results, especially
concerning the aforementioned “DesiredWinRatio” which ba-
sically sets the desired difficulty for the generated challenge.

ACKNOWLEDGEMENT

This work was a collaboration with Chilltime.

REFERENCES

[1] M. Robinson, “Why players are leaving your game,”
Game Developers Conference (GDC). Available at:
https://www.gdcvault.com/play/1020698/Why-Players-are-Leaving-
Your (Accessed: 05 January 2021).

[2] J. F. L. Pardal, “Holiday knight: a videogame with skill-based challenge
generation,” Master’s thesis, Instituto Superior Técnico, May 2019.

[3] F. S. Mestre, “Multi-dimensional elo-based challenge progression for
single-player games,” Master’sthesis, Instituto Superior Técnico, Octo-
ber 2020.

[4] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
Harper & Row, 1990.

[5] M. Hendrikx, S. Meijer, J. Van Der Velden and A. Iosup, “Procedural
content generation for games: Asurvey”, ACM Transactions on Mul-
timedia Computing, Communications, and Applications(TOMM) 9(1)
(2013) p. 1.

[6] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
procedural content generation: A taxonomy and survey,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 3, pp. 172 –
186, October 2011.

[7] A. P. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed.
John Wiley & Sons, Ltd., 2007.

[8] S. Mascarenhas and C. Martinho, “Darwin’s adventure,” in Proceedings
of the 7th InternationalConference of Videogame Sciences and Art
(VJ’15), 2015.

[9] O. Kramer, “Genetic algorithm essentials,” ser. Studies in Computational
Intelligence. Springer, 2017, vol. 679.

[10] S. W. H. Young, “Improving library user experience with a/b testing:
Principles and process,” Weave- Journal of Library User Experience,
vol. 1, 2014.

[11] D. Giacomelli, “Geneticsharp,” https://github.com/giacomelli/GeneticSharp,
2019.


