
Miguel Rocha
Instituto Superior Técnico

Lisbon, Portugal
miguel.antonio@tecnico.ulisboa.pt

ABSTRACT
Nowadays, millions of data are produced and transmitted be-
tween different points on the planet. These massive amounts
of data are explored in big data, one of the most important
and researched areas of computer science of today. Research
into big data visualizations has increased in the last few years,
as technology has also progressed, especially when we start
discussing big data streaming visualizations. With streaming,
the data arrives to the visualization continuously, without
interruption and in real time. This specification, combined
with the sheer volume and information that exists in big data,
means that traditional visualization techniques are not suit-
able to represent this type of visualization. In this document,
we present TimeWarp, a big data streaming visualization
which research focus is achieving a visualization able to dis-
play data across several visual idioms with minimal loss of
context and with minimal loss of information across differ-
ent time spans while maintaining a consistent and linear
performance for different data flow rates.

KEYWORDS
Visual Analytics; Information Visualization; Performance
Visualization; Performance; Big Data; Streaming; Animated
Transitions; Visual Idioms; Context; Knowledge Retrieval

1 INTRODUCTION
Big Data, a "large growing data sets that include heteroge-
neous formats: structured, unstructured and semi-structured
data” [18], has become one of the most important and re-
searched areas of computer science of today. Big data has
very specific characteristics, mostly evidenced by the 5V: va-
riety, volume, velocity, value, and veracity [2]. The process-
ing and analysis of big data require significant computational
resources to guarantee flexibility, scalability, and consistent
performance - all characteristics of a good visualization.

Research into big data visualizations has increased in the
last few years, with the concept of Streaming getting cou-
pled to big data visualizations to create big data streaming
visualizations. With streaming, data arrives to the visualiza-
tion in continuous fashion, without interruption and in real
time, requiring processing, storing and profiling as it arrives.
When one combines big data with streaming into a visu-

alization, traditional vis. techniques are deemed unsuitable.
Therefore, we must investigate the best way to map data in
big data streaming visualizations while searching on how

to obtain the best performance out of a visualization. Per-
formance impact connects directly to the concept of perfor-
mance visualization, a type of software visualization that
includes aspects such as hardware performance [22].

In the analysis of a big data streaming visualization from
the point of view of a performance visualization, one needs to
make sure context loss and information loss are as minimal
as possible. A solution for that is to employ animation tech-
niques between each visual idiom. Animation techniques
employed between different visual idioms are called Transi-
tions - a particular moment when we switch from one visual
idiom to a different one, to suit the new representation, help-
ing with maintaining context in a visualization and proving
a more understandable visualization to the end user.

2 STATE OF THE ART
In the last couple of years, the amount of work developed
in big data has increased. When we discuss data sets with
large amounts of data, we are discussing big data. To obtain
information and knowledge from any type of data, big or
not, it must be represented in a comprehensible way to the
human mind, usually with the aid of a visualization. Creat-
ing a comprehensive visualization has its challenge, mainly
connected to the 5V and how each domain is different and
inserted into its own specific context. In order to handle big
data, some pre-processing is required to be applied to the
data before it can be visualized by the end user. An example
of this is the analysis of the passenger flow of the Shanghai
Metro Network [25]. Two operations can be found on [25]
- one for the same transfer station and the different station
codes for different lines and another for the data of several
trips, as its joined to find the volume of passenger flow that
traveled a certain distance in a certain period of the day.

The work on [25] is an example of how we can have mul-
tiple data types for analysis within limited dimensions. For
this scenario, in order to obtain knowledge, correlations need
to be performed. A good example of the application of corre-
lations in big data visualizations can be found in the work
Rolling the Dice [11]. Rolling the Dice [11] is a visualization
for exploration of multidimensional data through combina-
tion of correlation matrices and scatterplots. The combina-
tion of scatterplot and correlation matrices in Rolling the
Dice [11] results in a scatterplot matrix, where each scatter-
plot (columns) corresponds to a dimension of the data set
(lines).



Conference’17, July 2017, Washington, DC, USA Rocha et al.

(a) Dynamic migration map vi-
sualization

(b) Bar chart representing the
time-distance characteristics.

Figure 1: Visualization Analysis of the passenger flow of the
Shanghai Metro Network [25].

Figure 2: Scatterplot matrix component used for over-view
and interaction in Rolling the Dice [11].

Nowadays, most of the visualizations like the ones men-
tioned above - [12], [25], [11], [16] - are inserted in an ever-
changing context. These are systems able to receive and
process data in various shapes and forms (and from differ-
ent sources) in real time. This is the concept behind data
streaming and the dynamic data sets it creates.

In data streaming visualizations, aggregation continues to
be quite commonly used and essential to the success of this
type of visualizations. An example of this can be found on
Unveil [14], an interactive and extendable platform with a
real-time data set collected from passive and active attacks
performed on smartphones. To display that data set in an
efficient and comprehensive way, aggregation techniques
are employed.

Figure 3: Visualization of results obtained with probe
requests analysis on Unveil [14]. Each dot represents an
aggregation of detected devices into a single location.

Creating a data stream visualization also presents some
challenges. The first of those challenges is connected to re-
ducing latency of the data influx while having a system still
capable of achieving a high throughput for end-to-end pro-
cessing from data consumption to visualization. The second
challenge is connected to how the system adapts to changing
workloads (or failures) and the third one is connected in how
to provide flexibility in the infrastructure to adapt to the
changing nature of the data and proper user demands.

Regarding the first challenge, a possible solution is to only
process and transfer currently depicted data points, as shown
in I2 [24], an interactive development environment. The third
challenge presented above leads us to a situation where, for a
data streaming visualization to work properly, the amount of
data arriving cannot interfere (in a noticeable way) with per-
formance. A possible solution to avoid performance hiccups
is the use of graceful degradation, a concept vastly explored
in VisMillion [20]. Graceful degradation is a concept where,
as data gets older, it progressively gets aggregated into a
visualization that is not as detailed as the visualization for
fresh data.

Figure 4: VisMillion interface [20].

In order to help the end user perceive that aggregation
techniques like graceful degradation (and other types of tech-
niques, like simplification, filtering and dimensionality re-
duction) are occurring in the visualization, transitions can be
used to ease the perception of those visual changes. Smooth
transitions are important in a good visualization, as they
can “shift a user’s task from cognitive to perceptual activity,
freeing cognitive processing capacity for application tasks”
[23].

In order to achieve smooth transitions, staged animations
can offer additional benefits to a visualization [13]. In spite
of that, the application of animation techniques come with
shortcomings, as shown in [4], [5], [8],[9]. These include
how animated transitions attract, first, the attention of the
end user, possibly leading to their distraction, how animated
transitions require more cognitive workload than purely
static visualizations, how their duration can induce lag into
the visualization, and how their execution requires a larger
pool of computational resources.

Intertwined in all these shortcomings is also the duration
of the animation. Depending on how long the animation runs



Conference’17, July 2017, Washington, DC, USA

for, the impact of latency, depending on available computing
resources, will vary. An animation lasting too little or too
long will also impact the attention span of the user but also
the consistency of the visualization. Animated transitions
should be as fast as possible without making the end user
overlook the actual transition [8]. This is something very
important in the development of animated transitions and it
is usually represented using slow-in, slow-out timings.
The presentation of slow-in, slow-out timings lead us to

investigate how, in an animated transition, not only the start
and end states matter. The intermediate states are also impor-
tant, as they allow for tracking the evolution of an animation.
The tracking of the evolution of the animation is a technique
commonly employed in situations where objects inside a
visualization eventually switch location due to the underly-
ing update of the data [3] and switching between different
layout methods [6].

If a lot of changes are happening at the same time, repre-
sented by objects switching locations inside the visualization,
other difficulties may arise, as the end user might get con-
fused on what exactly they should be focusing on. A possible
solution is the employing of bundled movement trajectories
for a group of objects that have spatial proximity and share
similar moving directions, explored on [10].

(a) Illustration of the movement
of five different objects. Dashed
and solid lines represent straight
and bundled trajectories, respec-
tively.

(b) Complexity metrics for the
evaluation of the bundled trajec-
tories.

Figure 5: Trajectory bundling [10].

Picking up from this discussion on grouping, it has been
mentioned how aggregation is a vastly used technique in
big data and data streaming visualizations. Therefore, it is
important the performance of animated transitions is profiled
for a a context where aggregation techniques are used, as
highlighted in [15], showing how, in animated transitions,
the animation chosen for a specific transition is very much
connected to the context it is wrapped in.
Taking into consideration the advantages and disadvan-

tages of each contribution, we can conclude that none of
them is prepared to meet our defined objective - create a
big data streaming visualization able to display data across
several visual idioms with minimal loss of context and with
minimal loss of information across different time spans while

maintaining a consistent and linear performance for different
data flow rates.
The closest contribution we found to our defined objec-

tive is VisMillion [20], as it is prepared to serve big data and
real time streaming data. In spite of that, VisMillion [20] is
lacking in mechanisms to avoid loss of context and informa-
tion within the visualization - such as animated transitions -
and in performance mechanisms that allow for efficiency in
displaying the data in a comprehensive way to the end user.
VisMillion and Change [19] is a visualization developed with
the aim of fixing some of the gaps existing in VisMillion [20].
VisMillion and Change [19] explores horizontal transitions
between the modules of VisMillion [20] to reduce loss of
context across the visualization while mainting a consistent
performance.

Our visualization, TimeWarp, aims to fix the missing gap
of performance in VisMillion and Change [19] by develop-
ing efficient ways of displaying data to the end user, while
making sure context is not lost across the visualization and
information loss is still minimal.

3 TIMEWARP: THE PROTOTYPE
In this section, the concept behind our prototype - TimeWarp
- will be explored. The exploration of our prototype will be
split into two different steps. Firstly, it will be presented
a brief history of the VisMillion [21] concept, followed by
presenting the process of migrating VisMillion and Change
[19] to Three.js to improve overall performance of our pro-
totype. Secondly, the concepts and elements resulting from
the migration will be presented, with a focus on horizon-
tal transitions and visualization of quantitative data on our
prototype.

VisMillion, the concept
The concept of VisMillion [21] has the objective of allowing
visualization of large quantities of data in real time repre-
sented across different modules able to complement each
other for creating a cohesive and consistent visualization.
Each module represents data across a different time span
and using a different visual idiom. The visualization uses
the techniques of graceful degradation to present data.If the
data is newer, a representation with a greater level of detail
is used. If the data is older, a representation with less level
of detail is used.

The concept of VisMillion was enhanced firstly in [20] and
then further enhanced in VisMillion and Change [19]. Our
prototype is based on the VisMillion [21] concept and visual-
ization [20] while carrying on the work done on VisMillion
and Change [19] and FastViz [7].



Conference’17, July 2017, Washington, DC, USA Rocha et al.

Migration of VisMillion and Change
Migration is an operation that can be done at different levels.
The process of amigration can be arbitrarily understood as
the movement of code into a new platform and/or program-
ming language [17].
In the case of our prototype, migration consists migrat-

ing VisMillion and Change [19], implemented in D3.js1, to
Three.js 2. While D3.js is a JS library for manipulating docu-
ments based on data using HTML, , and CSS, Three.js is a JS
3D library that renders with WebGL, allowing it to make use
of a computer’s GPU while hiding its details of rendering
and modelling [1].

For VisMillion and Change [19], the migration from D3.js
to Three.js is happening to find out if Three.js offers any
significant consistent performance improvements when met
with a continuous stream of big data while keeping aminimal
loss of context and information across different time spans.
During the migration process of VisMillion and Change [19]
to Three.js, its architecture, concepts and elements were kept
as close as possible to its original logic. To better understand
the constitution of our prototype, its concepts and elements
will be analyzed.

TimeWarp Architecture
The architecture employed in TimeWarp follows the same
structure as the architecture of VisMillion and Change [19].
Real time data streaming is simulated through data packages
generated and sent by a data flow generator - Streamer, a
Python3 script. Streamer sends packets of data to be pro-
cessed by our visualization. The arrival of new packages
might cause changes to the visualization. Task calls and gen-
erated data flow are received by the modules that make up
our visualization.

Figure 6: Architecture diagram of TimeWarp. Research
focus is highlighted.

1https://d3js.org/. D3.js is a JS library for producing dynamic, interactive
data visualisations in web browsers.

2https://threejs.org/. Three.js is a cross-browser JS library and appli-
cation programming interface used to create and display animated 3D
computer graphics in a web browser using WebGL.

3Python is an interpreted high-level general-purpose programming
language.

Each module consists of several methods that, when called
upon, transfer information to their respective visual idiom.
Visual idioms receive the necessary instructions to produce
the visualization. This separation allows modules to work
independently. The concept of graceful degradation allows
them to be linked across the time span of our visualization,
contributing to the cohesiveness and consistency of it.

The connection between the three modules is performed
via another module: HTM (Horizontal Transition Module).
The HTM is attached to a visualization - the HTV (Horizon-
tal Transition Visualization). Since a horizontal transition
happens between two different modules, the HTM is always
connected to two modules and contains the horizontal tran-
sition techniques implemented in our visualization. HTM
also guarantees operations such as data aggregation, dimen-
sionality reduction and statistical measures are performed
during the actual horizontal transition.

TimeWarp Interface
The TimeWarp interface follows the same basic principle
of the VisMillion and Change [19] interface. The interface
is simple, yet functional, composed by several modules. In
our prototype, a module can holster either a visual idiom
or an animated transition - a horizontal transition, in this
case - depending on its position in the time span. Modules
are displayed in a horizontal fashion, with the start of the
visualization on the right side of the interface and the end of
the visualization on the left side of the interface.

Figure 7: TimeWarp interface.

From the right to the left of our visualization, it can be
observed how the level of detail in each module progres-
sively decreases as we move further from the start of the
visualization, as each visual idiom shows more and more
aggregated data. This is the graceful degradation technique
in TimeWarp. Operations of aggregation and filtering are
used to apply the graceful degradation concept in our pro-
totype, aiding also in creating a consistent and easy to read
visualization across different time spans.

Idioms
All the visual idioms of VisMillion and Change [19] - scat-
terplot, heatmap, linechart and barchart - also exist in our



Heatmap Linechart Barchart
Scatter Fade In-Fade Out Data Column Plot Lines

Table 1: Horizontal transitions implemented on TimeWarp,
based on the work VisMillion and Change [19].

prototype, having been migrated from D3.js to Three.js. The
logic of implementation of all visual idioms on TimeWarp
was kept as similar as possible to the visual idioms of Vis-
Million and Change [19] in order to compare performances
between the two visualizations. Horizontal transitions occur
between these visual idioms when they are assigned to a
specific module. T

(a) Scat-
terplot

(b)
Heatmap

(c)
Linechart

(d) Bar-
chart

Figure 8: Visual idioms of TimeWarp.

Horizontal Transitions
In order for the concept of graceful degradation to work prop-
erly in TimeWarp, visual elements need to be displayed to the
user as visual clues to the interactions happening in our pro-
totype between modules. In TimeWarp, the visual elements
performing this job are horizontal transitions. Horizontal
transitions occur between two different visual idioms, each
one existing within its own module. Horizontal transitions
not only allow for the application of the graceful degradation
concept in our prototype but also allow for minimal loss of
context and information across different time spans - two of
the objectives attached to the creation of TimeWarp.

The implementation of horizontal transitions in TimeWarp
is part of the migration process from D3.js to Three.js. There-
fore, they follow the same structure as the one presented
on VisMillion and Change [19], with the scatterplot as the
first visual idiom of the visualization - positioned on the
first module - and the remainining visual idioms - heatmap,
linechart and barchart - are considered the second visual
idiom, as they display data with lower detail due to the ag-
gregation technique of graceful degradation applied in our
visualization.

The horizontal transitions implemented in our prototype
- specified in table 1 were the transitions with the best re-
sults for user testing in the user evaluation performed in
[19]. All the implemented transitions obey to the principles
determined on [13], as they are simple, essentially done in

one single stage in order for them to be easy to perceive and
understand on behalf of the end user.

Figure 9: Scatterplot to heatmap horizontal transition.

Figure 10: Scatterplot to linechart horizontal transition.
.

Figure 11: Scatterplot to barchart horizontal transition.

Performance considerations for TimeWarp
In order to try to improve further the performance of our
prototype, some performance considerations were implented
for additional testing during the migration of the visualiza-
tion from D3.js to Three.js. The performance consideration
implemented in TimeWarp a Three.js object called Instanced
Mesh4, a special version of Mesh5 with instanced rendering
support. The usage of of Instanced Mesh also helps to reduce
the number of draw calls for the pipeline.
The use of Instanced Mesh is applied to two visual id-

ioms in TimeWarp: scatterplot and heatmap. while Instanced
Mesh can possibly offer performance gains, it also brings
some drawbacks, mostly related to not allowing individual
manipulation of elements of a visualization and their proper-
ties. The existence of these drawbacks is why heatmap and

4https://threejs.org/docs/api/en/objects/InstancedMesh
5https://threejs.org/docs/api/en/objects/Mesh

5



scatterplot were implemented with and without Instanced
Mesh, in order to test if the performance gains of Instanced
Mesh were enough to justify its drawbacks.

4 PROTOTYPE EVALUATION
In this chapter, we approach, in detail, the methodology be-
hind the performance tests performed for the evaluation of
TimeWarp. The evaluation of our prototype is compromised
of several performance tests meant out to measure the perfor-
mance of the prototype regarding its stability, scalability, the
improvements offered by the migration of D3.js to Three.js
and the improvements offered by the performance considera-
tions specified in ??. Conclusions on the performance of our
prototype will be based on the analysis of results obtained
during the performance testing.

There are three set of tests to be done with our prototype.
Firstly, the performance considerations specified in ?? will
be tested, with a comparison between the performance of the
implementations of heatmap and scatterplot with and with-
out the use of Instanced Mesh to verify (Dots vs Instanced
Mesh). Secondly, a second set of tests will be done to check
performance of our prototype with the horizontal transitions
between visual idioms occurring. Thirdly, the final set of tests
have the goal of comparing performance of VisMillion and
Change [19] - written in D3.js - with the performance of our
prototype - written in Three.js - to verify the performance
gains obtained with the use of WebGL’s simplified pipeline
model and its ability to make use of a computer’s GPU to
render out a visualization (D3.js vs Three.js).

The performance testing of TimeWarp was conducted us-
ing the Google Chrome browser (version 94.0.4606.81 64 bits)
installed in laptop with Windows 10 Pro as its operative
system, a Intel(R) Core(TM) i5-4210U CPU @ (1.70 GHz 2.40
GHz) CPU, 6GB of RAM memory and a NVIDIA GeForce
820M with 2GB of dedicated memory in a screen with reso-
lution of 1366x768.

Performance Tests Metrics
For each performance test, several metrics were recorded in
order to evaluate our prototype. The main metrics recorded
were the number of FPS (Frames Per Second) of the visualiza-
tion during each test and data flow value being sent to our
prototype. From the number of FPS, some other metrics can
be calculated, to be used in the evaluation of our prototype.
These metrics include the average number of FPS during ex-
ecution, the minimum and maximum value of FPS achieved
during the test and the variance value of FPS for each test.

Performance Tests Methodology
For the three set of tests performed with our prototype, the
number of FPS were recorded in intervals of ten seconds.
The number of FPS were calculated with the inverse of the

difference between the current time and time of the last
computed. Every ten seconds, when FPS were calculated,
the value was saved to a .csv file, which was then processed
to calculate the average, minimum, maximum and variance
values for FPS.

In all three set of tests, data was sent to TimeWarp through
data packets generated by a Python script. For the first two
set of tests, four different data flow values were tested: 10,
100, 1000 and 10000 points per second. The variation of data
flow value was performed directly on the Python script. For
the final set of tests, the single data flow tested was of 10000
points per second in order to see how our prototype and
VisMillion and Change [19] performed in a worst case sce-
nario. All the tests were performed across a time interval of
5 minutes (300 seconds).

Visual Idioms
Dots vs Instanced Mesh
In order to test how the performance considerations men-
tioned in ?? impact the performance of TimeWarp, heatmap
and scatterplot were tested with (Instanced Mesh) and with-
out (Dots) the performance considerations implemented. For
each test, they were tested for four different data flow values
and the FPS were registered during the execution of each
test, with then metrics being calculated from the registered
values.

(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 12: FPS of TimeWarp with heatmap (Dots) as its only
visual idiom.

Independently of the data flow, the test comparison be-
tween heatmap with - Figure 13 - and without - Figure 12
- Instanced Mesh implemented achieved relatively similar
results in terms of consistent FPS values. Despite similari-
ties, the FPS values of heatmap without Instanced Mesh are

6



(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 13: FPS of TimeWarp with heatmap (Instanced Mesh)
as its only visual idiom.

slightly lower compared to heatmap with Instanced Mesh
implemented.

(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 14: FPS of TimeWarp with scatterplot (Dots) as its
only visual idiom.

Contrary to the minimal difference found between the two
versions of heatmap, the differences in performance between
scatterplot implemented with performance considerations -
fig. 15 - and scatterplot implemented without performance
considerations - fig. 14 - is more noticeable. The peak FPS
and the average FPS for each test with Instanced Mesh imple-
mented is higher than the corresponding test with a simple
Dots implementation. For both situations, however, as the
data flow value increases, the FPS drop becomes more no-
ticeable as the execution approaches the five minutes mark,

(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 15: FPS of TimeWarp with scatterplot (Instanced
Mesh) as its only visual idiom.

although that drop is more pronounced in the tests with a
simple Dots implementation.

D3.js vs Three.js
In order to verify the success of migrating the visual id-
ioms of VisMillion and Change [19] from D3.js to Three.js, a
comparison of the performances of VisMillion and Change
and our prototype occurred. To compare performances, tests
were run for a data flow of 10000 points per second during
an execution time span of five minutes, where FPS values
were registered and metrics were calculated for each test.

(a) VisMillion and Change (b) TimeWarp

Figure 16: FPS of VisMillion and Change and TimeWarp for
heatmap with data flow of 10000 points per second.

When comparing the performance of heatmap in VisMil-
lion and Change [19] with the performance of heatmap in
our prototype, with Instanced Mesh implemented, it is no-
ticeable how the FPS of TimeWarp stay relatively consistent
across the execution length, while also achieving a higher
value of average FPS during execution of the test compared
to VisMillion and Change [19].

The performance comparison between the tests with scat-
terplot in VisMillion and Change [19] and scatterplot in Time-
Warp, implemented with Instanced Mesh, is less favorable

7



(a) VisMillion and Change (b) TimeWarp

Figure 17: FPS of VisMillion and Change [Pereira (2019)] and
TimeWarp for scatterplot with data flow of 10000 points per

second.

when compared to the results of heatmap. The performance
of scatterplot in VisMillion and Change [19] has a higher
average FPS across execution of the tests, as shown in ??.
The FPS values also start to decrease in TimeWarp as the
execution evolves, while in VisMillion and Change they stay
relatively consistent.

Horizontal Transitions
Horizontal Transitions in TimeWarp
In order to test the performance of horizontal transitions
implemented in TimeWarp, the number of FPS was measured
during an execution of five minutes for each of the four
data flow value: 10, 100, 1000 and 10000 points per second.
During that five minute time span, the respective horizontal
transition between two visual idioms occurred in continuous
fashion.

(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 18: FPS of TimeWarp with horizontal transition
between scatterplot and barchart

For the horizontal transition between scatterplot and bar-
chart, it is observed the average number of FPS during the
five minute execution Of the test decreases. In spite of the

decrease in the average FPS, the variance level decreasing
for bigger data flow values shows there is a consistency to
the performance of the transition. In the final two tests, it
can also be observed that, as the execution time span evolves,
the number of FPS starts to decrease.

(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 19: FPS of TimeWarp with horizontal transition
between scatterplot and heatmap.

For the horizontal transition between scatterplot and heatmap,
the average number of FPS for all four tests is very similar,
with the data flow of ten points per second being slightly
above the other tests. This shows when the horizontal tran-
sition is between scatterplot and heatmap, there is a con-
sistency in its performance even as the data flow value in-
creases.

(a) Data flow of 10 points per sec-
ond.

(b) Data flow of 100 points per
second.

(c) Data flow of 1000 points per
second.

(d) Data flow of 10000 pints per
second.

Figure 20: FPS of TimeWarp with horizontal transition
between scatterplot and linechart.

8



For the horizontal transition between scatterplot and linechart
-, as the data flow value increases, the average number of FPS
decreases.

D3.js vs Three.js
n order to verify the success of migrating the visual idioms of
VisMillion and Change [19] from D3.js to Three.js, a compar-
ison of the performances of VisMillion and Change and our
prototype occurred. To compare performances, tests were
run for a data flow of 10000 points per second during an
execution time span of five minutes, where FPS values were
registered and metrics were calculated for each test. This test
was run for all the horizontal transitions tested in VisMillion
and Change and implemented in TimeWarp.

(a) VisMillion and Change (b) TimeWarp

Figure 21: FPS of VisMillion and Change and TimeWarp for
horizontal transition between scatterplot and barchart with

data flow of 10000 points per second.

The comparison between the performances of VisMillion
and Change [19] our prototype for the performance of the
horizontal transition between scatterplot and barchart re-
veals that, even if VisMillion and Change [19] starts with
a higher value of FPS when compared to our prototype, it
soon starts to decrease as the execution evolves in time.

(a) VisMillion and Change (b) TimeWarp

Figure 22: FPS of VisMillion and Change and TimeWarp for
horizontal transition between scatterplot and heatmap with

data flow of 10000 points per second.

The comparison between performance of VisMillion and
Change [19] and TimeWarp with horizontal transition be-
tween scatterplot and heatmap reveals performance gains in
our prototype. The peak value of FPS in our prototype stays
relatively consistent during the execution time span.
The performance of horizontal transition between scat-

terplot and linechart in VisMillion and Change [19] and our

(a) VisMillion and Change
[Pereira (2019)]

(b) TimeWarp

Figure 23: FPS of VisMillion and Change and TimeWarp for
horizontal transition between scatterplot and linechart with

data flow of 10000 points per second.

prototype is relatively similar shows how VisMillion and
Change [19] looses performance during execution, while
TimeWarp is capable of peaks of performance far above what
the tests with VisMillion and Change [19] reveal.

5 CONCLUSION
Our goal of creating a big data streaming visualization able
to display data across several visual idioms with minimal
loss of context and information across different time spans
while maintaining a consistent and linear performance for
different data flow rates was not fully met. This comes as a
conclusion when discussing the results of the performance
tests performed with our prototype.
Regarding the migration from D3.js to Three.js, Three.js

offers a boost in performance as long as the visualization
does not require for many object movements to be performed
at the same time. In particular, when horizontal transitions
are happening, our prototype struggles to hit a consistent
performance with low-end hardware, struggling to match
the FPS values of VisMillion and Change. The fact our tests
were run with low-end hardware was not the only cause to
the lack of performance of our prototype. While that was a
big cause to the problems encountered during evaluation of
the prototype, another cause for lack of performance came
from the use of Instanced Mesh. While Instanced Mesh does
provide a performance boost for the visualization, as wewere
able to concluded with our tests with heatmap and scatter-
plot in our prototype, when there is a horizontal transition
occurring, Instanced Mesh increases the complexity of the
transition,

While our prototype was able to act as a big data streaming
visualization and display data across several visual idioms
with minimal loss of context and performance, we can not
fully conclude about hitting our goal of consistent and lin-
ear performance for different data flow rates due to latency
problems when run with low-end hardware and an increased
complexity due to the use of Instanced Mesh in the imple-
mentation of the visualization.

9



6 FUTUREWORK
The development of our prototype will be carried on into
the future in order to be improved and perfected. This will
involve a reassessment of some parts of the visualization to
understand how to extract better performance for systems
with low-end hardware and how to improve consistency in
the performance of the visualization across long execution
time spans.

As added future work, the implementation of the vertical
transitions investigated in [7] in Three.js will occur. Vertical
transitions will occur between two different visual idioms
but within the same module. To be also implemented in
the future is a module capable of receiving and analyzing
data packages containing metadata which, once analyzed,
will provide information to the visualization on the current
context of the visualization. The context obtained from the
metadata will be used to determine the most suitable visual
idiom to display in each module and trigger the specified
animated transitions - both vertical and horizontal - to occur
in the visualization.

REFERENCES
[1] Ed Angel and Eric Haines. 2017. An interactive introduction toWEBGL

and three.JS. ACM SIGGRAPH 2017 Courses. https://doi.org/10.1145/
3084873.3084875

[2] Yojna Arora and Dinesh Goyal. 2016. Big data: A review of analytics
methods amp; techniques. 2016 2nd International Conference on Con-
temporary Computing and Informatics (IC3I). https://doi.org/10.1109/
IC3I.2016.7917965

[3] Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. 2014.
GraphDiaries: Animated Transitions andTemporal Navigation for Dy-
namic Networks. IEEE Transactions on Visualization and Computer
Graphics 20 (5 2014). Issue 5. https://doi.org/10.1109/TVCG.2013.254

[4] Patrick Baudisch, Desney Tan, Maxime Collomb, Dan Robbins, Ken
Hinckley, Maneesh Agrawala, Shengdong Zhao, and Gonzalo Ramos.
2006. Phosphor. Proceedings of the 19th annual ACM symposium on
User interface software and technology - UIST ’06. https://doi.org/10.
1145/1166253.1166280

[5] B.B. Bederson and A. Boltman. [n.d.]. Does animation help users
build mental maps of spatial information? Proceedings 1999 IEEE
Symposium on Information Visualization (InfoVis’99). https://doi.org/
10.1109/INFVIS.1999.801854

[6] Nan Cao, D. Gotz, J. Sun, and Huamin Qu. 2011. DICON: Interactive
Visual Analysis of Multidimensional Clusters. IEEE Transactions on
Visualization and Computer Graphics 17 (12 2011). Issue 12. https:
//doi.org/10.1109/TVCG.2011.188

[7] Filipa Margarida Barros Castanheira. 2021. FastViz - Visualizing Dy-
namically Evolving Big Data.

[8] Fanny Chevalier, Pierre Dragicevic, Anastasia Bezerianos, and Jean-
Daniel Fekete. 2010. Using text animated transitions to support
navigation in document histories. Proceedings of the 28th interna-
tional conference on Human factors in computing systems - CHI ’10.
https://doi.org/10.1145/1753326.1753427

[9] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse:
Animating from Markup Code to Rendered Documents and Vice-Versa
Gliimpse: Animating from Markup Code to Rendered Documents and
Vice Versa. https://hal.inria.fr/inria-00626259

[10] Fan Du, Nan Cao, Jian Zhao, and Yu-Ru Lin. 2015. Trajectory Bundling
for Animated Transitions. Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems. https://doi.org/10.
1145/2702123.2702476

[11] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. 2008. Rolling the Dice:
Multidimensional Visual Exploration using Scatterplot Matrix Naviga-
tion. IEEE Transactions on Visualization and Computer Graphics 14 (11
2008). Issue 6. https://doi.org/10.1109/TVCG.2008.153

[12] Antonino Galletta, Salma Allam, Lorenzo Carnevale, Moulay Ali Bekri,
Rachid El Ouahbi, and Massimo Villari. 2018. An innovative method-
ology for big data visualization in oceanographic domain. Proceedings
of the International Conference on Geoinformatics and Data Analysis.
https://doi.org/10.1145/3220228.3220238

[13] Jeffrey Heer and George Robertson. 2007. Animated Transitions in
Statistical Data Graphics. IEEE Transactions on Visualization and Com-
puter Graphics 13 (11 2007). Issue 6. https://doi.org/10.1109/TVCG.
2007.70539

[14] Shubham Jain, Eden Bensaid, and Yves-Alexandre de Montjoye. 2019.
UNVEIL: Capture and Visualise WiFi Data Leakages. The World Wide
Web Conference. https://doi.org/10.1145/3308558.3314143

[15] Younghoon Kim, Michael Correll, and Jeffrey Heer. 2019. Designing
Animated Transitions to Convey Aggregate Operations. Computer
Graphics Forum 38 (6 2019). Issue 3. https://doi.org/10.1111/cgf.13709

[16] Hiroaki Kobayashi, Kazuo Misue, and Jiro Tanaka. 2013. Colored
mosaic matrix: Visualization technique for high-dimensional data.
Proceedings of the International Conference on Information Visualisation,
378–383. https://doi.org/10.1109/IV.2013.50

[17] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Müller, and J.
Mylopoulos. 2010. Code migration through transformations. CASCON
First Decade High Impact Papers on - CASCON ’10. https://doi.org/10.
1145/1925805.1925817

[18] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and
Samir Belfkih. 2018. Big Data technologies: A survey. Journal of King
Saud University - Computer and Information Sciences 30 (10 2018). Issue
4. https://doi.org/10.1016/j.jksuci.2017.06.001

[19] Tiago Miguel Borralho Pereira. 2019. VisMillion and Change.
[20] Goncalo Pires, Daniel Mendes, and Daniel Goncalves. 2019. VisMillion:

A novel interactive visualization technique for real-time big data. 2019
International Conference on Graphics and Interaction (ICGI). https:
//doi.org/10.1109/ICGI47575.2019.8955070

[21] Gonçalo Fialho Pires, Daniel Jorge Viegas Gonçalves Júri Presidente,
Miguel Nuno Dias Alves Pupo Correia Orientador, Daniel Jorge Vie-
gas Gonçalves Vogal, and Sandra Pereira Gama. 2018. VisBig Visualizar
BigData em tempo real.

[22] Reusability T Diane Rover. [n.d.]. Performance Visualization. www.
egr.msu.edu/~rover

[23] John T Stasko. 1993. Animation in user interfaces: principles and
techniques.

[24] Jonas Traub, Nikolaas Steenbergen, Philipp M. Grulich, Tilmann Rabl,
and Volker Markl. 2017. I2: Interactive real-Time visualization for
streaming data. Advances in Database Technology - EDBT 2017-March,
526–529. https://doi.org/10.5441/002/edbt.2017.61

[25] Huang Zhiyuan, Zhang Liang, Xu Ruihua, and Zhou Feng. 2017. Appli-
cation of big data visualization in passenger flow analysis of Shanghai
Metro network. 2017 2nd IEEE International Conference on Intelligent
Transportation Engineering (ICITE). https://doi.org/10.1109/ICITE.
2017.8056905

10

https://doi.org/10.1145/3084873.3084875
https://doi.org/10.1145/3084873.3084875
https://doi.org/10.1109/IC3I.2016.7917965
https://doi.org/10.1109/IC3I.2016.7917965
https://doi.org/10.1109/TVCG.2013.254
https://doi.org/10.1145/1166253.1166280
https://doi.org/10.1145/1166253.1166280
https://doi.org/10.1109/INFVIS.1999.801854
https://doi.org/10.1109/INFVIS.1999.801854
https://doi.org/10.1109/TVCG.2011.188
https://doi.org/10.1109/TVCG.2011.188
https://doi.org/10.1145/1753326.1753427
https://hal.inria.fr/inria-00626259
https://doi.org/10.1145/2702123.2702476
https://doi.org/10.1145/2702123.2702476
https://doi.org/10.1109/TVCG.2008.153
https://doi.org/10.1145/3220228.3220238
https://doi.org/10.1109/TVCG.2007.70539
https://doi.org/10.1109/TVCG.2007.70539
https://doi.org/10.1145/3308558.3314143
https://doi.org/10.1111/cgf.13709
https://doi.org/10.1109/IV.2013.50
https://doi.org/10.1145/1925805.1925817
https://doi.org/10.1145/1925805.1925817
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1109/ICGI47575.2019.8955070
https://doi.org/10.1109/ICGI47575.2019.8955070
www.egr.msu.edu/~rover
www.egr.msu.edu/~rover
https://doi.org/10.5441/002/edbt.2017.61
https://doi.org/10.1109/ICITE.2017.8056905
https://doi.org/10.1109/ICITE.2017.8056905

	Abstract
	1 Introduction
	2 State of the Art
	3 TimeWarp: The Prototype
	VisMillion, the concept
	Migration of VisMillion and Change
	TimeWarp Architecture
	TimeWarp Interface
	Idioms
	Horizontal Transitions
	Performance considerations for TimeWarp

	4 Prototype Evaluation
	Performance Tests Metrics
	Performance Tests Methodology
	Visual Idioms
	Dots vs Instanced Mesh
	D3.js vs Three.js
	Horizontal Transitions
	Horizontal Transitions in TimeWarp
	D3.js vs Three.js

	5 Conclusion
	6 Future Work
	References

