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Abstract

The field of bioacoustics plays an important role on preventing and reducing human impact on environ-

ment, by enabling the development of tools capable of performing automated analysis of environmental

data. Deep learning methods were successful on automating the process of species identification in en-

vironmental recordings, requiring nonetheless a large number of training samples per species. Hence,

efforts were made to develop high-accuracy methods capable of automating species detection in noisy

environments with limited training data. In this document, we address the problem of automating species

detection in noisy environments with limited training data, proposing an end-to-end spectral based ap-

proach for training a convolutional neural network (CNN) on Mel spectrograms to predict a set of species

present in the Rainforest Connection’s acoustic recordings. Additionally, we propose a cepstral based

framework for training a Long Short-Term Memory (LSTM) network on the Mel-frequency cepstral coef-

ficients (MFCCs), complementing this approach with the motifs extracted by the matrix profile algorithm.

Finally, we evaluate the performance of the approaches so that the bioacoustic classification framework

can be established.
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Resumo

O campo da bioacústica desempenha um papel crucial na prevenção e redução do impacto humano no

ambiente, ao permitir o desenvolvimento de ferramentas capazes de automatizar a análise de dados

ambientais. Os métodos de Deep Learning foram bem sucedidos na automatização do processo de

identificação de espécies em áudios ambientais, necessitando, no entanto, de um número elevado de

instâncias de treino por espécie. Por conseguinte, o foco virou-se para o desenvolvimento de métodos

capazes de automatizar a detecção de espécies em ambientes ruidosos, dispondo de um conjunto lim-

itado de dados para treino. Neste documento, abordamos o problema de automatizar o processo de

detecção de espécies em áudios ambientais, com um conjunto de treino limitado, propondo uma abor-

dagem para o treino de uma Convolutional Neural Network (CNN) a partir das propriedades espectrais

do som, nomeadamente dos Mel espectrogramas, para identificar as diferentes espécies presentes

nos áudios da Rainforest Connection. Apresentamos ainda, uma abordagem alternativa, baseada nas

caracterı́sticas cepstrais do som, em particular dos Mel-frequency cepstral coefficients (MFCCs), para

o treino de uma Long Short-Term Memory (LSTM) network, sendo esta complementada pela inclusão

de motifs extraı́dos pelo algoritmo matrix profile. Finalmente, avaliamos os resultados de ambas as

abordagens de forma a definir uma metodologia de classificação de sinais bioacústicos.

Palavras Chave

Classificação Bioacústica; Aprendizagem Profunda; Redes Convolucionais; Data augmentation; Trans-

fer learning; Long short-term memory (LSTM); Matrix Profile;
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Bioacoustics focuses on the analysis of the sounds produced by or affecting living organisms, especially

the ones related to communication. Prior bioacoustic research was heavily dependent on manual labor

to segment, detect and label animal activity, present in hours of field recordings. Consequently, recent

research overlaps the work developed by Rainforest Connection (NGO) 1 which focuses on developing

bioacoustic monitoring systems to ensure the rainforest’s conservation, being also a prominent source

of environmental audio data.

Deep learning methods have been successful on automatic acoustic identification, through image

analysis dedicated architectures, such as convolutional networks. However, they require a large number

of training samples per species. This limits applicability to rarer species, which are central to conserva-

tion efforts. Thus, the Kaggle competition ”Rainforest Connection Species Audio Detection” 2 encour-

aged contenders to develop solutions capable of automate high-accuracy species detection in noisy

soundscapes with limited training data.

In this document, we address the problem of automating species detection in noisy environments

with limited training data, thus, we explore two main approaches to build a bioacoustic classification

framework. The first, the spectral based one, proposes a framework for training a convolutional neural

network (CNN) on Mel spectrograms to predict a set of species present in the Rainforest Connection’s

acoustic recordings. We leverage transfer learning by using a pretrained model as a way to reduce

training requirements, both the amounts of data and time. Finally, we explore several window sizes,

data augmentation techniques and predictive thresholds to improve the model’s performance. The sec-

ond, the cepstral based one, proposed an end-to-end pipeline for training a Long Short-Term Memory

(LSTM) network on the Mel-frequency cepstral coefficients (MFCCs). Furthermore, we complement this

approach with the motifs extracted by the matrix profile algorithm, as a way of improving the performance

of the concerned network. Lastly, we explore the standard and the multidimensional implementation of

the matrix profile algorithm, experimenting also different window sizes and predictive thresholds.

The best performing approach is the spectral based classification model, both on the chainsaw and

on the Kaggle dataset. It includes 5-second-long Mel spectrograms and relies on the SpecAugment

method to increase the training set size. Regarding the chainsaw dataset, it achieves an accuracy of

0.97, a mean precision of 0.99 and a mean recall of 0.97. In relation to the Kaggle dataset, it registers

an accuracy of 0.97, a mean precision of 0.91 and a mean recall of 0.93.

This paper is organized into six sections. Section 2 encompasses the concepts and procedures

associated with audio processing and analysis. Section 3 provides an overview of the current work in

motif discovery, namely the Eammon Keogh’s matrix profile. It also regards the work related with sound

event detection and classification, focusing on methods based on deep learning architectures, such as

Convolutional Neural Networks. Section 4 outlines the proposed methodology and section 5 details the

1https://rfcx.org/
2https://www.kaggle.com/c/rfcx-species-audio-detection/data
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used datasets and validates the proposed methodology on them. Finally, section 6 summarizes the main

ideas and addresses the future work.
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The growth of computational power led to a demand for solutions capable of handling the continu-

ous ever-growing flux of data, highlighting the capability of extracting valuable insights from these data

streams, such as detecting repeated patterns or anomalous events. In this sense, the main concerns

of this knowledge discovery process are the constrained time and space, as well as the high rate and

volume in which data arrives.

Hence, we propose a bioacoustic classification framework that aims to contribute to the process

of handling, extracting and classifying meaningful events in audio data streams. This work also focus

on exploring the recent progress in time series motif discovery, namely the matrix profile algorithm,

firstly introduced in Yeh et al. (2016) by Eamonn Keogh, as a way of complementing the introduced

methodology. It is also important to recognize audio data streams as time series, as they are unbounded

and ordered sequences of instances (sounds) which arrive over time. Hao et al. (2013), Branco (2020).

2.1 Basic Concepts and Notation

The definitions adopted in this document are similar to the ones presented by Eamonn Keogh in Yeh

et al. (2016), Yeh et al. (2017b), as this work explores the techniques introduced in his work. Similarly, it

is important to begin by defining the data type of interest, time series:

Definition 1. Time series: A time series T ∈ Rn is a sequence of real-valued numbers ti ∈ R : T =

[t1, t2..., tn] where n is the length of T.

For motif discovery, one is not interested in the global properties of a time series, but in the local

subsequences:

Definition 2. Subsequence: A subsequence Ti,m ∈ Rm of a time series T is a continuous subset of

the values from T of length m starting from position i. Formally, Ti,m = [ti, ti+1..., ti+m−1].

The particular local properties that this work focus on is the time series motifs:

Definition 3. Time series motif: A time series motif is the most similar subsequence pair of a time

series. Formally, Ta,m and Tb,m is the motif pair if dist(Ta,m, Tb,m) ≤ dis(Ti,m, Tj,m) ∀ i, j ∈ [1,2,. . . ,n-

m+1] where a 6= b and i 6= j and dist is a function that computes the z-normalized Euclidean distance

between the input subsequences.

The distance between a subsequence of a time series, with all the other subsequences from the

same time series, is stored in an ordered array called distance profile.

Definition 4. Distance Profile: A distance profile D ∈ Rn−m+1 of a time series T and a subsequence

Ti,m is a vector that stores dist(Ti,m, Tj,m) ∀ j ∈ [1,2,. . . ,n-m+1].

9



We are interested in the similarity join of all subsequences of a given time series. We define an

all-subsequences set of a given time series as a set that contains all possible subsequences from the

time series.

Definition 5. All-subsequences set: An all-subsequences set A of a time series T is an ordered

set of all possible subsequences of T obtained by sliding a window of length m across T : A =

{T1,m, T2,m, . . . , Tn−m+1,m}, where m is a user-defined subsequence length. We use A[i] to denote

Ti,m.

Similarly, we are interested in the nearest neighbour relation between subsequences.

Definition 6. 1NN-join: Given two all-subsequences sets A and B and two subsequences A[i] and B[j],

a 1NN-join function θ1nn (A[i], B[j]) is a Boolean function which returns “true” only if B[j] is the nearest

neighbor of A[i] in the set B.

A similarity join set is then the result of the application of the similarity join operator on two input

all-subsequences sets.

Definition 7. Similarity join set: Similarity join set: given all-subsequences sets A and B, a similarity

join set JAB of A and B is a set containing pairs of each subsequence in A with its nearest neighbor in

B : JAB = {〈 A[i], B[j] 〉 | θ1nn (A[i], B[j])}. We denote this formally as JAB = A ./ θ1nnB.

As in Yeh et al. (2016), the previous four definitions are represented in Fig. 2.1:

Figure 2.1: A subsequence Q extracted from a time series T is used as a query to every subsequence in T. The
vector of all distances is a distance profile.

Finally, the Euclidean distance metric chosen by the author in Yeh et al. (2016), among others, is

measured between each pair within a similarity join set and the resultants are stored into an ordered

vector, resulting in the matrix profile.

Definition 8. Matrix Profile: A matrix profile P ∈ Rn−m+1 of a time series T is a meta time series that

stores the z-normalized Euclidean distance between each subsequence and its nearest neighbor where

n is the length of T and m is the given subsequence length. The time series motif can be found by simply

locating the two lowest values in P (they will have tying values).
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Additionally, one can extend the matrix profile Yeh et al. (2016) to find motifs in multidimensional time

series, as in Yeh et al. (2017b).

Definition 9. Multidimensional time series: A multidimensional time series T ∈ Rd×n is a set of co-

evolving time series

T (i) ∈ Rn : T = [T (1), T (2), . . . , T (d)]T where d is the dimensionality of T and n is the length of T.

Similarly, the definition of a subsequence in a multidimensional setting becomes the following:

Definition 10. Multidimensional subsequence: A multidimensional subsequence Ti,m ∈ Rd×m of a

multidimensional time series T is a set of univariant subsequences from T of length m starting from

position i. Formally, Ti,m = [T
(1)
i,m, T

(2)
i,m, ..., T

(d)
i,m]T .

Motif discovery considering all dimensions is generally guaranteed to fail as demonstrated in Yeh

et al. (2017b). Generally, only a subset of all dimensions should be considered for multidimensional

motif discovery, often referred as subdimensional subsequences:

Definition 11. Subdimensional subsequence: A subdimensional subsequence Ti,m(X) ∈ Rk×m is a

multidimensional subsequence for which only a subset of dimensions is selected, where X is an indi-

cator vector that shows which dimension is included, and k is the number of dimension included (i.e.,

‖X‖0 = k).

We are only interested in computing the distance between two multidimensional subsequences, us-

ing only their corresponding subdimensional subsequences. To measure this relation, one can use the

distance function:

Definition 12. K-dimensional distance function: The k-dimensional distance function dist(k) com-

putes the distance between two multidimensional subsequences by using only the “best” k out of d

dimensions.

Formally, dist(k)(Ti,m, Tj,m) := min
X

dist
(
Ti,m(X), Tj,m(X)

)
, where ‖X‖0 = k.

The definition of a distance profile is therefore updated to the multidimensional setting and renamed

to:

Definition 13. k-dimensional distance profile: A k-dimensional distance profile D ∈ Rn−m+1 of a time

series T and a subsequence Ti,m is a vector that stores dist(k)(Ti,m, Tj,m) ∀ j ∈ [1, 2, . . . , n−m+ 1].

Similarly, the motif definition must be readjusted:

Definition 14. K-dimensional motif: A k-dimensional motif is the most similar subdimensional subse-

quence pair of a multidimensional time series when the distance is computed by using the k-dimensional

distance function.
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Formally, Ta,m and Tb,m is the k-dimensional motif pair if dist(k)(Ta,m, Tb,m) ≤ dist(k)(Ti,m, Tj,m)

∀ i, j ∈ [1, 2, . . . , n−m+ 1] where a 6= b and i 6= j.

As well as the definition of the matrix profile:

Definition 15. K-dimensional matrix profile: A k-dimensional matrix profile P ∈ Rn−m+1 of a multidi-

mensional time series T is a meta time series that stores the z-normalized Euclidean distance between

each subsequence and its nearest neighbor (the distance is computed using k-dimensional distance

function), where n is the length of T, d is the dimensionality of T, k is the given number of dimension,

and m is the given subsequence length. Formally, the i th position in P stores dist(k)(Ti,m, Tj,m) ∀ j ∈

[1, 2, . . . , n−m+ 1] where and i 6= j.

A k-dimensional matrix profile only reveals the location of motifs in time, but it fails to reveal which

k out of the d dimension contains the motif pair. To store this information, we define another meta time

series called the k-dimensional matrix profile subspace:

Definition 16. K-dimensional matrix profile subspace: A k-dimensional matrix profile subspace

S ∈ Rk×n−m+1 is a multidimensional meta time series that stores the selected k dimension for each

subsequence when computing the distance with others.

2.2 Rainforest Connection

Rainforest Connection 1 is a non-profit tech startup that builds acoustic monitoring systems to pro-

tect rainforests from illegal deforestation, to halt animal poaching and to enable bioacoustic monitor-

ing. It transforms upcycled cell-phones into autonomous, solar-powered listening devices which record

all sounds in the forest, enabling the development of solutions that can remotely monitor and detect

anomalous activity in a given area.

Once the audio is in the cloud, Google’s machine learning framework, TensorFlow, is used to analyse

all the auditory data in real-time and listen for chainsaws, logging trucks and other sounds of illegal

activity that can help to pinpoint problems in the forest.

More recently, Hitachi Vantara and Rainforest Connection have been working together to develop

advanced acoustic algorithms that will help mitigating this environmental problem. So, through this

connection, Hitachi made the RFCx audio files available for this work, data that represents the main

focus of the carried out exploration and analysis.

1https://www.rfcx.org/
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Figure 2.2: Amplitude envelope of a waveform - corresponds to the RFCx’s digital sound of the day 18/01/2020 at
02:29:30 with a sampling rate of 22050 Hz.

2.3 Sound Signal Representations

As introduced in Serizel et al. (2018), a sound signal is the result of a vibration that propagates as waves

through a medium such as air or water. Sounds can be recorded under the form of an electric signal

x(t) by means of an electroacoustic transducer such as a microphone. This analog signal x(t) can then

be converted to a digital signal x[n] and stored in a computer before further analysis. Therefore, and

according to the definition 1, sound signals are time series.

The typical process used to convert an analog signal to a digital one is also detailed in Serizel et al.

(2018), a procedure that consists of three major steps, described here, having as reference the previous

cited work.

Firstly, there is a filtering stage where the analog signal x(t) is low-pass filtered, a process which aims

to limit the frequency bandwidth to be contained in the interval [0, B], where B is the cutoff frequency of

the low-pass filter.

Secondly, in the sampling stage, the signal is digitally sampled at a sampling rate fs = 2B to avoid

the frequency aliasing phenomenon.

Finally, the obtained digital signal is quantized, a process in which, for instances, the amplitude of

the signal can only take a limited number of predefined values, so that the storage capacity can be

preserved. Typically, one uses a sampling frequency of 44100 Hz and a quantization on 16 bits per

sample.

Digital sound can then be stored under different formats, such as the uncompressed ones (.wav)

which are based on PCM (Pulse Code Modulation), stored using lossless compression (.flac) or using

lossy compression (.mp3). Lossy compression may compromise knowledge discovery, and so it should

be avoided for such tasks Nordby (2019).

In time domain representations, the identification of events in sound signals usually is a burdensome

task, unless there are indistinct events that make the interpretation clearer. Nonetheless, such conditions

are rare and as described in Serizel et al. (2018), sound signals are usually converted to the frequency-
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domain, to facilitate the knowledge discovery process.

In detail, the frequency-domain representation of a signal x[n] on a linear frequency scale can be

obtained with the discrete-time Fourier transform (DFT) Serizel et al. (2018), Rocchesso (1995).

X(f) =

N−1∑
n=0

x[n] e
−i 2π f n

N (2.1)

The spectrum X(f) is fs -periodic in f , with fs as the sampling frequency. The frequency f = fs
2

represents the Nyquist-frequency Nyquist (1928), Weik (2001).

Moreover, one can fasten the DFT’s computation with the Fast Fourier Transform (FFT), reducing

the computation complexity from O(N2) to O(NlogN), being, consequently, a common method of most

of the libraries used to process sound signals. It is also important to remark that the FFT provides the

frequency distribution of the signal x[n] but disregards the time component.

Figure 2.3: Frequency-domain representation (FFT) - corresponds to the RFCx’s digital sound of the day
18/01/2020 at 02:29:30 with a sampling rate of 22050 Hz.

Conversely, one can apply to the signal x[n], the DFT on a windowed frame of length N, procedure

that is referred to as the short-time Fourier transform (STFT) Serizel et al. (2018), Rocchesso (1995).

The f th component of the DFT, of the tth frame of x[n] is computed as follows:

X(t, f) =

N−1∑
k=0

w[k]x[tN + k] e
−i 2π k f

N (2.2)

As explained in Serizel et al. (2018), this technique introduces a window function w[k] (e.g., rect-

angular, Hamming, Blackman,...) which is used to enforce continuity and periodicity at the edge of the

frames. The equation 2.2 presents a hop, between frames, equal to the length of the frames (N), which

means that there is no overlap between consecutive frames. Nevertheless, one can choose a smaller

hop size, in comparison to the frame length, resulting in overlapping frames, that allow a smoother STFT
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representation and introduce statistical dependencies between frames.

A sound spectrogram Hao et al. (2013) is an image of the time-varying spectral representation, pro-

duced by applying the STFT to successive overlapping frames of an audio sequence. The horizontal

dimension corresponds to time and the vertical dimension corresponds to frequency. The relative spec-

tral intensity of a sound at any specific time and frequency is indicated by the color/grayscale intensity of

the image, as illustrated in Fig. 2.4. One can reduce the dimensionality of a raw STFT representation,

as it can contain more than 1024 bins, often strong correlated, by processing the spectrogram with a

filter-bank of 40-128 frequency bands.

Figure 2.4: Mel spectrogram representation (STFT) - corresponds to the RFCx’s digital sound of the day 18/01/2020
at 02:29:30 with a sampling rate of 22050 Hz.

2.4 Feature Extraction

The typical pipeline in sound processing is to transform the raw data into features that characterize

audio signals, via feature extraction. However, for sound event analysis purposes, feature extraction

often depends on feature engineering to carefully craft features from low level representations, by using

domain expert knowledge. Generally, audio features can be separated into two categories: time-domain

and frequency domain. The most common features are presented in Serizel et al. (2018), being some

of them explained in this section, narrowing however the level of detail.

Firstly, to better process and analyze audio data, one often represents sound signals as frames, that

consist of smaller groups of samples across time. The frame length must be set long enough to contain

enough relevant data, but not so long that temporal variations disappear. In speech recognition, for

example, the typical frame length choice is 25 ms.

The temporal features are computed on the temporal waveform, being its computation rather straight-

forward. The time domain envelope can be seen as the boundary within which signal is contained. An

example is the root mean square (RMS) feature that computes the energy from the sound signal, being

a reliable indicator for silence detection.

Also, in the temporal domain, the zero crossing rate (ZCR) is given by the number of times the signal
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amplitude crosses the zero value, and it is useful for discriminating periodic signals, which have small

ZCR values, from signals that may be corrupted by noises, which present high ZCR values. Furthermore,

to represent the different characteristics of the time domain waveform’s shape, one can use the temporal

waveform moments, further detailed in Serizel et al. (2018).

The spectral shape features are the result of deriving features from the frequency representation of

the signal, for example, from the spectrogram, being commonly used, as the perception of sound often

relies on its frequency content. In Serizel et al. (2018), the author points the most common spectral

features, such as the spectral envelope, similar to the time domain envelope, mapped however to the

frequency domain, as it can be seen as the boundary within which spectrum of a signal is contained.

Nevertheless, the two aforementioned type of features are rarely used separately, as they are mostly

designed to model specific aspects of the signal. Consequently, the temporal and spectral shape fea-

tures are often considered and evaluated together, as one set of features, commonly referred to as

low-level features.

The cepstral features, as explained in Serizel et al. (2018), allow the decomposition of the signal

according to the source-filter model, being widely used to model speech production. The signal is

decomposed into a carrier and a modulation, in which the first represents the source, and in speech

includes the glottal excitation. The latter represents the filter, and in speech includes the vocal tract

and the position of the tongue. The Mel-frequency cepstral coefficients (MFCCs) are the most common

cepstral coefficients and audio signals have been traditionally characterized by this particular feature.

As detailed in Serizel et al. (2018), the filter banks used for the MFCCs’ computation, typically 12 to 30,

approximate some important properties of the human auditory system, being the main reason to these

features success with structured sounds, such as speech and music. Nonetheless their performance

degrades in the presence of noise and when analyzing noise-like signals that have a flat spectrum.

Figure 2.5: MFCCs representation - corresponds to the RFCx’s digital sound of the day 18/01/2020 at 02:29:30
with a sampling rate of 22050 Hz.

The perceptually motivated features are an additional set of features which can also be used for
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audio classification. Loudness, sharpness and perceptual spread are three examples of these audio

features, as referred in Serizel et al. (2018).

Finally, it is also important to introduce the Mel spectrogram, shown in Fig 2.4. In this particular

spectrogram, that has 128 coefficients, the frequencies are converted to the Mel scale. This scale

provides a linear scale for the human auditory system, enabling a more approximate depiction of what

humans perceive. It is noteworthy because it allows the use of well-researched image classification

techniques, as this feature is an image representation of the sound signal.
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A vast number of tasks concerning time series usually fall under motif or anomalous event (discord)

detection. Most of the algorithms that concern the latter term are explained in Branco (2020) and,

analogously, some of the concepts introduced there are here described, as they can be adapted to motif

discovery.

Similarly, the methods that conduct motif discovery, in terms of their outcome, can be divided in two

main categories:

1. The outcome is a continuous score which describes the level of trust in the classification of the

motif.

2. The outcome is a binary label, that states if a motif was found or not. Usually, is issued when the

value of the analysed variable surpasses a previously set threshold, which is a tuning parameter.

It is also important to remark that the previous scoring mechanisms can also be adapted to work to-

gether. In addition, Branco (2020) gives an overview of the class of algorithms commonly used in this

particular domain, being, consequently, a strong reference for our definitions.

Machine learning algorithms can be characterized as offline or online learning algorithms. The first

set of algorithms has access to data beforehand, whereas the models created by the second set of

algorithms are continuously updated with the produced data. Thus, online learning algorithms are of

extreme importance, mainly due to the need of handling streaming data.

Furthermore, these algorithms can also be grouped based on their need to have prior knowledge,

that is, have labelled data, or not. Unsupervised, Semi-Supervised, and Supervised tasks have no

labels, a few labeled objects or full labeling of data, respectively.

The annotation process, in the last two referred tasks, can be costly and require a thorough manual

work, being the two main reasons for labelled data not being available in some cases. Hence, Unsu-

pervised learning approaches can overcome this problem, and may represent a more fitting option to

perform motif detection, mostly, owing to the lack of labelled data associated with environmental audio

files. In Branco (2020), more detailed information it is provided on each of these methods, such as their

pros and cons.

Supervised techniques require labeled data to predict a given outcome and, generally, two main

concerns come up with this particular approach. The first arises when the model is skewed towards the

majority class, problem that does not occur when the dataset in question is balanced. The second is

related to the difficulty of obtaining labelled data, as mentioned previously.

Moreover, in Semi-Supervised techniques, only a part of the observations is labelled. As described

in Branco (2020), in the context of anomaly detection it is frequent to have just one of the possible

outcomes labelled, either the normal or the abnormal one, being the first labels easier to acquire.

Similarly, this can also be the case with the RFCx’s data, as the raw audio files often do not go
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through any annotation process, in order to obtain the mentioned labels. Additionally, the diversity of

sounds present in the recorded files, sometimes hardly indistinguishable from each other, make this

task even more difficult, having also a strong probability of having incomplete profiles, given the amount

of available data.

Conversely, apart from not requiring labelled data, Unsupervised techniques also make no distinc-

tion between train and test data. As explained in Branco (2020), algorithms in this category make the

assumption that normal observations are more frequent than abnormal ones, making, therefore, a clear

separation between what is normal and what is not. The main reason to this is that if the previous

assumptions did not stand, techniques in this category would have high false alarm rates. As a conse-

quence, numerous works use the raw audio waveforms as input features, process often referred as ”end

to end” learning. In Dai et al. (2017), a Convolutional Neural Network was trained on raw audio data

to match Log-Mel spectrogram features in an audio classification task. Also, Hitachi Vantara has suc-

cessfully developed an approach in which the FFT is used to describe the overall shape of the spectral

envelope, computing then the Kernel Density Estimation for each of the FFT results. Subsequently, the

frequency is divided into buckets and the probability density function is derived, for each one of them,

being the PCA performed afterwards to present only the most representative dimensions. Finally, the

components are clustered, being each one of them represented by a Gaussian Distribution (Gaussian

Mixture Model), and the probability of the data belonging to each one of these distributions computed.

The high probability clusters are chosen and a manual annotation process takes place to map the distri-

butions to actual labels, which results in the identification of four major disturbance events, such as the

presence of human sounds or chainsaw sounds.

3.1 Sound Event Detection and Classification

To better understand the two main research areas that fall within computational auditory scene analysis

it is important to get acquainted with the terms introduced in Imoto (2018), Stowell et al. (2015). A frame

(or sound clip), as mentioned previously, indicates the unit of analysis and may contain several events

that may overlap in time. Moreover, in an acoustic scene the label describes the place where the sound

was recorded (park, office, kitchen) whereas in an acoustic event it refers to the sound type (rainwater,

music, noise, scream, etc.).

The first research direction is the acoustic scene classification, that aims to provide a textual label

that characterizes the acoustic environment. Naturally, it will not be the focus of this work, as the setting

in which the sounds are recorded is well known (rainforests).

Oppositely, the other research direction is sound event detection and classification. The goal of

sound (acoustic) event classification is to determine which acoustic event appears in an audio sample,

22



not taking into account its corresponding time and its number of occurrences. Nevertheless, as acoustic

events can overlap temporally, acoustic event classification sometimes is not a practical problem. On

the other hand, sound event detection labels temporal regions within an audio recording, with their start

and end time, as well as with the event’s type.

The previous task can be divided into monophonic event detection where only the most prominent

event is identified and polyphonic event detection where multiple events are allowed at the same time,

that is, can be overlapped. A single classifier can be used for the first case whereas one can consider

separate classifiers per event type, or a multi-label classifier as a joint model for the second one.

Figure 3.1: Left: Sound event classification - Right: Sound event detection (monophonic and polyphonic)

The referred classifiers, in sound event detection, ideally, have each one of the acoustic events

instances in the training data, labeled with their start and end time. This type of labels is referred to

as strong labels, nevertheless, acquiring them is a costly process that also requires careful attention to

detail by the annotator.

On the other hand, the labels that do not contain any data about the temporal location of each event

or the number of occurrences in the recording are called weak labels. In comparison, collecting weakly

labelled data takes much less time, since the annotator only has to mark the active sound event classes

and not their exact boundaries. Moreover, when performing sound event detection with small frames as

inputs, one may end up with frames that do not have a direct label. This is known as a Multiple Instance

Learning (MIL) problem where instances are grouped into a ’bag’ and labels are associated to bags

instead of being linked to each individual instance, a setting further detailed in section 3.8.

All in all, the previous tasks assume the availability of labels, which might not be the case when

considering the particularities of environmental data, as the recordings may lack annotation.

3.2 Matrix Profile

Following the definitions introduced in section 2.1, the matrix profile algorithm proposed by Eamonn

Keogh will be further explained in this section, having as reference Yeh et al. (2016), Yeh et al. (2017b),

Dau and Keogh (2017), Yeh et al. (2017a), Yeh et al. (2016), Zhu et al. (2016). This method represents a
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significant progress in motif discovery and its properties, also listed in Yeh et al. (2016), are the following:

• It is exact, providing no false positives or negatives

• It is simple and parameter-free

• Its computational space is O(n), with a small constant factor.

• It is still extremely scalable considering that it is exact, enabling thus the computation of its results

in an anytime fashion, allowing ultra-fast approximate solutions

• Once the similarity join is computed for a dataset, one can incrementally update it in an efficient

manner.

• The proposed method provides full joins, therefore not requiring the definition of a similarity thresh-

old.

• It is parallelizable, both on multicore processors and in distributed systems

The general intuition behind this approach is that all distance profiles, with the trivial match region not

included, are upper bound approximations to the matrix profile. Thus, to obtain the matrix profile, one

can compute all the distances profiles and extract only the minimum value at each location. Furthermore,

some algorithms are available to enable the fast computation of the distance profiles, hence of the matrix

profile.

The Scalable Time series Anytime Matrix Profile (STAMP), further detailed in Yeh et al. (2016), is

used to compute the matrix profile, having an overall time complexity of O(n2 logn). It takes advantage

of the Mueen’s ultra-fast Algorithm for Similarity Search (MASS) which is an Euclidean distance similarity

search algorithm that computes the distance profile in O(n logn) time. It provides exact solutions, it is

a scalable algorithm, is incrementally maintainable and allows for fast approximate solutions, making

it an anytime algorithm. In addition, the Scalable Time series Ordered-search Matrix Profile (STOMP)

Zhu et al. (2016) is a significant faster version of the STAMP algorithm, requiring only O(n2) time. It is

particularly useful when one is willing to forego the anytime property, which in some cases is not useful.

Recently introduced, SCRIMP++ (Zhu et al. (2018)) is an O(n2) time algorithm that is also an anytime

algorithm, combining the best features of STOMP and STAMP.

Finally, some remarks on the algorithms evaluated by the author. The algorithm’s performance it is

not compromised by the subsequence length m, that is, all of them are time independent of the data.

Moreover, oppositely to motifs, a time series discord is the subsequence that has the biggest distance

to its nearest neighbor. Lastly, the mentioned methods, used to compute the matrix profile, can be found

online. 1.
1 https://matrixprofile.org/
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3.3 Motif Discovery with Matrix Profile

Once the matrix profile is computed, motif discovery becomes trivial as the locations of the two (tying)

minimum values correspond precisely to the locations of the first motif pair, as depicted in Fig. 3.2 and

in Dau and Keogh (2017).

Figure 3.2: A time series T and its self-join matrix profile P. The two minimum values of the matrix profile correspond
to the first motif pair.

Additionally, this technique can be applied to audio data, as showcased in Yeh et al. (2016), namely

with the MFCCs. More concretely, the authors evaluate the algorithm with the 2nd MFCC at 100Hz,

extracted from the raw audios of two popular songs. In this experiment, they are able to find a highly

conserved subsequence which corresponds to the baseline of the first song, and that was plagiarized by

the second. Thus, the ability of finding conserved structures in apparently disparate time series, namely

with audio features, defines the importance of this approach Yeh et al. (2016) to our work.

In Branco (2020), the author performs online anomaly detection in data streams, by combining the

matrix profile with all pair similarity search (APSS). Analogously, a similar approach can be followed,

adapting, nonetheless, the proposed method to search for motifs instead. Moreover, the main short-

coming of the matrix profile is that it is essentially visual, and as stated in Branco (2020), one must find

the parameters that best suit the problem, such as the window size, the number of top motifs, among

others. The overview of the algorithm proposed in Branco (2020) is the following:

Adapted Matrix Profile overview:

Similarly, before receiving any data, an initialization of a set of parameters is required, being followed by

the process here described, which runs indefinitely:

1. Receive Data Point: timestamp and value.

2. Maintain Dataset: upon a new data point’s arrival, a dataset of a predefined size is maintained.

3. Evaluate Anomaly: the matrix profile and the top K discords are extracted from the dataset, with

a preestablished window size (W).
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4. Anomaly Score: A frame with the top k discords is kept and is where the anomalies are stored.

The anomaly score issued is 1, when the value returned by the similarity function proposed, sur-

passes a predefined threshold, resulting in the insertion of the new anomalous pattern in the

anomaly database or its replacement whenever the same it is full.

Hence, given that with the matrix profile’s computation one can extract motifs as easily as it can ex-

tract discords, the Adapted Matrix Profile algorithm proposed in Branco (2020) can be a rather straight-

forward solution to conduct motif discovery over data streams.

Lastly, the annotation vector (AV) may be a resourceful manner to manipulate the motif search in a

way that it can be used to discover more meaningful motifs. As shown in Dau and Keogh (2017), this is

achieved by combining the matrix profile with the annotation vector to produce a new matrix profile, often

referred as the “Corrected” Matrix Profile, that correctly incorporates the contextual bias for the problem

at hand. In particular, the AV is a time series, with the same length as the matrix profile, consisting of

real-valued numbers between [0 - 1]. A low value indicates that the subsequence starting at that index

is not a desirable motif, and therefore should be biased against. Conversely, higher values mean that

the subsequence at that location should be favored for the potential motif search.

3.4 Multidimensional Matrix Profile

This section introduces Multidimensional Motif Discovery, having as reference the algorithm proposed

by Eamonn Keogh in Yeh et al. (2017b).

The classic unidimensional matrix profile motif discovery is able to correctly find, on the first two

dimensions, the motifs at locations 150 and 350, as depicted in Fig 3.3 and in Yeh et al. (2017b).

Figure 3.3: A example of a multidimensional time series. Both of the first two dimensions have a motif of length 30
embedded at locations 150 and 350.

Nonetheless, and considering the definitions used in section 2.1, motifs can be readjusted to Multi-

dimensional Time Series data (MTS). The author demonstrates that when in the presence of irrelevant

dimensions, namely with just eight, the algorithm does not perform well in the motif discovery task.

26



Furthermore, the rareness of motifs increases with the growth of dimensions, as higher dimensionality

masks the motifs that exist in a subspace of the data. In Yeh et al. (2017b), the prevalent problem of

several industries is also introduced, which consists of suspecting the presence of motifs in some subset

of a time series, but not knowing which dimensions or how many dimensions are involved.

The author begins to compare the proposed framework to similar work in this particular domain. In

Minnen et al. (2007), the proposed method was robust to a small number of irrelevant dimensions, but

in comparison, the proposed solution is capable of handling higher dimensionality and more irrelevant

dimensions.

Moreover, another possible solution could be to perform multidimensional motif discovery by “transform-

ing multidimensional time series data into one-dimensional time series data”, as in Tanaka et al. (2005).

Despite being a rather straightforward approach it requires all or most of the dimensions to be relevant,

also having the algorithm’s speed and accuracy dependent on the tuning of numerous parameters.

To sum up, all the approaches prior to the introduced framework had at least one of the listed short-

comings, slow, approximate and brittle to irrelevant dimensions, whereas the proposed solution is fast,

exact and robust to hundred of irrelevant dimensions.

The developed framework is able to handle the following type of queries given a large k-dimensional

time series:

• Guided Search: Find the best motif on k dimensions, where the integer k is given by the user, but

which k dimensions to use is unspecified.

• Constrained Search: Find the best motif on k dimensions, but explicitly include (or exclude) a

given subset of dimensions.

• Unconstrained Search: Find the best motif on k dimensions, where k is not given by the user but

is the “natural” subset of the data that has motifs.

The mSTAMP algorithm, detailed in the aforementioned article, can compute the k-dimensional ma-

trix profile, where k represents the k combinations of dimensions from all the d dimensions. This com-

binatorial search space can be searched efficiently in a greedy way, resulting in the computation of the

k-dimensional matrix profile, for every possible setting of k, simultaneously, in O(d log dn2) time and

O(dn) space.

In particular, the algorithm consists on the computation of the k -dimensional distance profile for a

given subsequence under every possible setting of k (from 1 to d). Hence, as showcased in Yeh et al.

(2017b), it is sufficient to justify the algorithm’s overall correctness by demonstrating the correctness of

the computed k-dimensional distance profile.

Regarding the algorithm’s scalability, as the authors claim, is something which is inherited from the

use of the matrix profile, which can be efficiently computed with the previously mentioned computational
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methods, such as the STAMP (Yeh et al. (2016)) and STOMP (Zhu et al. (2016)) algorithms, or with their

GPU versions (Zhu et al. (2016)).

Finally, this particular approach illustrates its potential to successfully perform motif discovery on au-

dio data, since it is capable of dealing with audio features, such as the MFCCs and the Mel spectrogram

features. Particularly, the author evaluates the algorithm with sound signals, having rather promising

results, which might indicate the possibility of exploring the mSTAMP in our particular problem. In fact,

motif discovery was conducted with the multidimensional variant of the matrix profile and applied to the

Mel spectrogram of the song ”Never gonna give you up” by Rick Astley. The results are quite positive

as the algorithm was able to discover the chorus of the song when applying the matrix profile to all

dimensions, with a five-second subsequence length. In addition, the mSTAMP was also applied in sub-

spaces ranging from 1 dimension to 32 and while most of the high dimensional motifs matched part of

the chorus, the one-dimensional and two-dimensional motif pairs represented only drum patterns.

In the light of the example, one can now understand one of the advantages of this technique, in which,

once the multidimensional matrix profile is computed, one can explore it for different dimensionalities

without additional cost, that is, one can easily decide the correct number of dimensions for the specific

problem at hand. Also, the source code of the mSTAMP algorithm is available online 2.

3.5 Motif Discovery in Audio Data

In section 3.3 and 3.4, we have reported the capability of the matrix profile and its multidimensional

version, performing successful motif discovery in audio features. This section addresses the research

done by Eammon Keogh, in relation to the existing audio motif discovery techniques, also describing

the proposed algorithm, that poses significant advantages in comparison to the existent ones, having as

reference Hao et al. (2013).

The most commonly used approach to find repeated patterns in audio is to “use string-matching tech-

niques on a symbolic representation learned from the data” (Aucouturier and Sandler (2002)). However,

symbol extraction algorithms fail to generalize for different sounds.

Additionally, commercial music applications were developed taking advantage of the work done in

fast audio searches, often referred to as audio thumbnailing or audio fingerprinting. As the author

states, such technique assumes the existence of a ”platonic ideal” sound snippet, a master recording

of a song. Nevertheless, sound instances may differ due to different encodings, or as for the case of

Shazam/SoundHound 3, due to background noise present in the recording process. In particular, the

two snippets are assumed not to have time warping.

2https://sites.google.com/view/mstamp/
3Shazam/SoundHound are commercial mobile phone based music identification services. A cell phone’s built-in microphone

is used to gather a brief sample of music being played. An acoustic fingerprint is created based on the sample, and is compared
against a central database for a match.
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The main difference between the proposed work and the prior audio motif discovery approaches is

that the first does not make any assumptions about the intrinsic properties of the objects, when finding

repeated patterns in audio sequences. In detail, it does not need the common set of possible features

considered by researchers Hsu et al. (2001), that include the tempo, loudness, pitch, among others.

This is because the mentioned process requires a considerable amount of feature engineering, existing

also evidences that they do not generalize well across diverse sound types.

Moreover, researchers Glaze and Troyer (2007) attempt to find repeated patterns in bird songs, by

extracting features from bird syllables, process that demands significant human intervention, which the

proposed work avoids.

The Eammon Keogh’ work Hao et al. (2013) redefines the already presented concept of motif to

audio motif, introducing also a new similarity measure, the CK distance Campana and Keogh (2010).

The algorithm is built on the assumption that similar sounds produce similar images when transformed

into spectrograms, and through the use of the CK distance measure, patterns can be revealed. The

obtained results show that this function measures similarity in an identical way to the human notions of

sound similarity.

Figure 3.4: Illustration of the definitions introduced in Hao et al. (2013).

As shown in Fig. 3.4, this algorithm takes into consideration cases that are quite often in environmen-

tal data, such as sections of pure silence, representend as Sps and sections with constant background

sounds, representated as Sbg. One can find the formal definitions of the explored algorithms, such as

the Brute-force Algorithm and the Probabilistic Early Abandoning Audio Motif Discovery (PEAMD), in

Hao et al. (2013).

Finally, the algorithm’s scalability is also there demonstrated, as well as the capability of discovering

motifs in bird songs, achieving promising results in this last field. The proposed methods can be found

online 4.

4https://sites.google.com/site/audiomotif/
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3.6 Neural Network-based Approaches

This section addresses the Supervised and Semi-Supervised learning algorithms, based on neural net-

work approaches, having as baseline Nordby (2019), Maccagno et al. (2017).

In recent years, Neural networks assumed a dominant role in machine learning applications, be-

ing the perceptron Rosenblatt (1958), introduced by Frank Rosenblatt (1958), the basis of this type of

networks. The simplest representation of a neural network is the Multi-Layer Perceptron (MLP), being

composed of an input layer, one or more hidden layers and an output layer. In detail, each layer consists

of a number of neurons, that have as output the weighted sum of the inputs, offset by a bias and followed

by an activation function f , as Fig. 3.5 depicts. The numerous adopted activation functions are further

explained in Nordby (2019), as well as the typical training process of neural networks.

Figure 3.5: Left: Multi-Layer Perceptron with one hidden layer - Right: Computational principle of an artificial neuron
on the right

3.6.1 Convolutional Neural Networks

Recently, Convolutional Neural Networks (CNNs) have outperformed the former models in visual recog-

nition tasks, namely in large-scale image and video recognition, mostly due to the late availability of

large public datasets of images, such as the ImageNet.

Moreover, time series motif detection and image segmentation are closely related, as observing and

selecting repeated patterns in a time series is in everything similar to looking at an image and marking

the desired image segments where, if present, the related patterns are located. Hence, this intuition

is explored in Long et al. (2015), being a fully convolutional network (FCN) proposed to perform image

segmentation. U-Net Ronneberger et al. (2015) improved upon the FCN architecture and proved to

be successful in the segmentation of neuronal structures in electron microscopic images, being later

applied to other tasks such as to biomedical image segmentation, automated driving, etc. In Wen and

Keyes (2019), transfer learning techniques and time series augmentation strategies were followed to

build a CNN model capable of carrying out anomaly detection in streaming data, using time series

segmentation.

As previously mentioned, several CNN architectures were applied to the ImageNet Krizhevsky et al.
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(2012) dataset to perform image classification, in particular fully connected Deep Neural Networks

(DNNs) such as AlexNet Krizhevsky et al. (2017), VGG Liu and Deng (2015), resNetHe et al. (2016),

among others. As aforementioned, the MFCCs and spectrograms can be thought as image represen-

tations of sound and recent works Briggs et al. (2012), Grill and Schlüter (2017), Hershey et al. (2017),

Liaqat et al. (2018), have achieved promising results by exploring audio classification settings with these

features. CNNs are able to exploit the adjacency properties of audio signals and recognize patterns in

the spectrum image, achieving state-of-the-art performance in sound event detection and classification.

However, the obtained results may not be directly employed to environmental data, due to its intrinsic

characteristics.

Nonetheless, a preliminary work Liu et al. (2019) on the RFCx’s data proposes two models designed

to conduct sound event detection (SED): Aug-VGGish and FCN-VGGish. The mentioned models are

applied to the ESC-50 public dataset and to the RFCx data, classifying chainsaw sounds in the latter,

attaining promising results in both. Furthermore, a competition 5, which is a result of a partnership

between Kaggle and RFCx, is taking place this year where contenders are encouraged to develop

models that automate the detection of several species in the RFCx recordings. There are also multiple

competitions on Kaggle whose objective is to perform audio classification on datasets such as ESC-

50 and UrbanSound8k, and, in all, one can find multiple audio processing methodologies and models

architectures, namely CNNs, that achieved significant results on the aforementioned task.

CNNs specialize in processing structured data, having a sequential (1D) or grid-like (2D or 3D)

structure and being composed by two main layers:

• Convolutional layer: The convolutional layer is where the convolution operation is applied on the

input. A kh × kw filter (or kernel) matrix Kij is passed over the input matrix x ∈ RH×W , and the

convolution of x by K is a matrix o = (x ∗ K) where the coordinates are defined as:

oij = (x ∗ K)ij =

kh∑
h=1

kw∑
w=1

x(i+h−1)(j+w−1) Khw (3.1)

The output is frequently referred to as the feature map, and Fig. 3.6 is an example of this compu-

tation. One can think of each step as a dot product between the kernel and the image’s window,

being the result high if the window is similar to the kernel. This tells us that convolving an image

with a kernel corresponds to searching for occurrences of the feature, represented by that kernel,

in the image. Finally, the filter is shifted by a predefined stride along its dimensions. This layer

is frequently used together with a non-linear activation function, providing some non-linearity to

the network. Most often, the ReLU function is used, which converts all negative values to zero,

keeping the positive ones.

5https://www.kaggle.com/c/rfcx-species-audio-detection/overview
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• Pooling layer: The pooling layer is meant to reduce the dimensionality of the input, by combining

the output of neuron clusters at one layer into one single neuron in the subsequent layer. This is

achieved by downsampling the input’s spatial dimensions (width and height), while maintaining the

depth dimension. There are several pooling functions such as average pooling, weighted average

pooling, and max pooling, being the last the most common one, and which output is the maximum

value within the pooling window, as Fig. 3.6 illustrates.

Figure 3.6: Left: Convolution operation of two output positions - Right: Pooling operation of two output positions.

The last layer of the network is a fully connected one, that returns the final classification, being a

loss function subsequently applied to the classification output, in order to train the network with the

back-propagation algorithm.

CNNs, in comparison to traditional fully connected neural networks that feature very dense interac-

tions, allow sparse interactions. This results on a kernel smaller than the input, enabling the convolutional

layer to learn local patterns using only meaningful features. In addition, they allow parameter sharing, as

each member of the kernel is usually used at every position of the input. As a consequence, these mod-

els have the capability of learning not only translation invariant patterns, that is, are able to recognize

a pattern in different positions of the input, but also spatial hierarchies of patterns, that is, subsequent

layers learn more complex patterns that those acknowledged in the previous layers.

Figure 3.7: One of the early examples of a CNN: the LeNet-5 Lecun et al. (1998) architecture.
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As shown in ”DCASE2018 Challenge Results” 6 and in ”DCASE2019 Challenge Results”, 7 if a

large amount of labeled data is available, CNNs Liaqat et al. (2018) can be the best performing models

in many audio classification problems, mainly when using Log-Mel spectrogram features. Nevertheless,

other implementations such as Recurrrent Neural Networks (RNN) Bai et al. (2018), Non-negative-Matrix

Factorization (NMF) Jamali et al. (2018), among others, achieved good results in the mentioned com-

petition. This competition is one of the many examples Briggs et al. (2012), Grill and Schlüter (2017)

that demonstrate the growth on research concerning bird detection. It is also important to remark that

RFCx offers a solution for acoustic biodiversity monitoring 8, with the availability of a CNN model as an

upcoming feature.

As mentioned previously, supervised learning algorithms need a considerable amount of labelled

data, which might not be the case in the context of environmental data, limiting, therefore, this setting.

Data augmentation emerges as a strategy to diminish this problem, as it synthetically generates new

labeled samples from the existing ones, expanding the effectiveness of the training set. A more detailed

overview of the techniques is given in Abeßer (2020), including techniques that apply various audio

signal transformations, such as time stretching, pitch shifting, dynamic range compression, adding ran-

dom noise, etc. Additionally, SpecAugment Park et al. (2019) is a simple data augmentation method for

speech recognition, that contrasts with the most common ones, as it is directly applied on Log-Mel spec-

trograms instead of raw audios. In particular, Google’s augmentation policy achieves state-of-the-art

performance, outperforming all prior work attained in some speech recognition tasks.

Model performance and capability to capture the natural variability of data can be increased with the

use of data augmentation techniques. Such signal transformations may include time shifting, volume

control or adding additive noise to the acoustic data. The first concept consists of shifting a sound

event in time and the second controls the volume of the acoustic signal. Additive noise consists of

summing noise to the original signal, whether that represents Gaussian noise, uniform random noise,

or a background recording, process further detailed in Eklund (2019). One can add Gaussian or Pink

noise, with respect to the Signal-to-Noise Ratio (SNR), technique that adaptively sets an appropriate

noise level based on the amplitude of the original sound signal. Furthermore, Gaussian noise, often

referenced as white noise, is a noise over the whole frequency range, oppositely to Pink which has

a gradual decrease in noise intensity from low frequency to low frequency bands, approximating the

characteristics of noise of the natural world.

6http://dcase.community/challenge2018/index
7http://dcase.community/challenge2019/index
8https://www.sieve-analytics.com/arbimon
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3.7 Long Short-Term Memory Network

Recurrent Neural Networks (RNNs) Sherstinsky (2020) are a type of neural networks specifically de-

signed for processing sequential data. They distinguish themselves from the other approaches by having

a state which contains the information that the model has seen thus far. In particular, while traditional

deep neural networks assume that inputs and outputs are independent of each other, the output of

recurrent neural networks depends on the prior elements within a sequence. Another distinguishing

characteristic of recurrent networks is that they share parameters across each layer of the network,

with these weights parameters being adjusted through backpropagation and gradient descent. In detail,

these neural networks leverage backpropagation through time (BPTT), an algorithm which determines

the gradients, being slightly different from the traditional method as it sums errors at each time step

whereas feedforward networks do not need to sum errors as they do not share parameters across each

layer. Nonetheless, RNNs tend to face the vanishing and exploding gradient phenomena, that arises

from the difficulty to capture long term dependencies because of the multiplicative gradient, which can

be exponentially decreasing/increasing with respect to the number of layers. This limitation results in a

model which is no longer learning, or in an unstable model, respectively. Gated Recurrent Units (GRU)

and Long Short-Term Memory units (LSTM) deal with the vanishing gradient problem encountered by

traditional RNNs, with LSTMs being a generalization of GRUs.

The Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997) networks address the

vanishing gradients problem, that is, succeed in keeping memory for a period of time. This is achieved

by having a ”memory cell” in the hidden layers of the neural network, that has three gates, an input,

output and forget gate. These gates control the flow of information which is needed to predict the output

in the network, being this specific network is further detailed in Hochreiter and Schmidhuber (1997),

Lezhenin et al. (2019).

As described in Lezhenin et al. (2019), LSTMs have been successfully applied to tasks such as

speech recognition, speech synthesis, and video classification when in combination with CNNs. More-

over, these networks have also been introduced to sound event detection and classification Wang et al.

(2016) and to urban sound classification Lezhenin et al. (2019). Additionally, one can find several im-

plementations of these networks on the DCASE challenge 9, which explores and evaluates the LSTM’s

performance when conducting sound event detection.

3.8 Weak Labeling

Multi-instance learning, originally proposed by Dietterich Dietterich et al. (1997) for drug activity detec-

tion, arises as a solution to tackle the common lack of labelled data.
9http://dcase.community/challenge2016/task-sound-event-detection-in-real-life-audio-results
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In this setting, the training set is composed of several bags, each one with multiple instances, and if

a bag contains at least one positive instance then it is labeled as a positive bag, otherwise, if it contains

only negative instances is labeled as a negative one. Moreover, the only known labels are the ones

belonging to each bag, being the training instances labels unknown.

The MIL of Neural Networks BP-MIP Kumar and Raj (2016) achieves good performance in compar-

ison to well-established multi-instance learning methods, despite being a general algorithm, not opti-

mized towards any data. It introduces a new error function, in relation to BP Zhou and Zhang (2002),

in which the BP-MIP algorithm modifies the network’s weights according to training bags, and not to

training instances, therefore capturing the nature of multi-instance learning, a BP’s shortcoming.

Particularly, audio event detection (AED) is conducted in Kumar and Raj (2016), by using the MFCCs

and a Gaussian mixture model (GMM) to ensure a robust set of features, later fed to a detector model.

Although the presented results showed reasonable performance for the BP-MIL framework, more ex-

haustive parameter tuning, concerning the neural networks’s training, could have led to better results.

Additionally, the MIL framework can be extend to a multi-instance multilabel (MIML) framework,

where a bag can be associated with multiple labels instead of only being linked to one. In Briggs et al.

(2012), the data is transformed from its original representation into a suitable bag-of-instances repre-

sentation, through the proposed MIML bag generator for audio. This makes possible the application of

existing MIML classifiers, that in this article, perform the detection of birds species in audio files, namely

in recordings collected from a forest.

The mentioned frameworks still required a set of manually annotated spectrograms, and the frame-

work proposed in Ruiz-Muñoz et al. (2015) introduces a unsupervised segmentation method which does

not requires training from manually segmented spectrograms. Nevertheless, the results show that there

is no significant difference between the proposed method and its baseline Briggs et al. (2012).

3.9 Evaluation Environment

The approach developed in Branco (2020) is evaluated through the Numenta Anomaly Benchmark,

which addresses anomaly detection in data streams. Nonetheless, nothing similar was found in the

literature concerning motif detection, being Eammon Keogh’s the major source of the work made in this

field.

The matrix profile algorithm strongly relies on visual inspection, and as shown in Hao et al. (2013),

Yeh et al. (2016), Zhu et al. (2016), one can carry out a posterior evaluation of the motifs found, by

having labelled data at their disposal. Additionally, by correlating the observed motifs with other (internal

or external) data, one can form hypotheses and open avenues for further research.

This section follows the definitions described in Branco (2020), as the problem at hand is similar, in
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the sense that motif discovery is binary, that is, we either identify a time point as being a motif or not.

Furthermore, in the case of the ”Rainforest Connection Species Audio Detection” challenge, the objec-

tive is to classify bird and frog sounds. Consequently, multivariate evaluation metrics are necessary to

capture the aggregation of the multiple classification scores for each attribute, combining them, after-

wards, into a final result. In addition, the results obtained in this competition may serve as a benchmark

to our developed solutions.

A Confusion Matrix is a table that accounts for the differences between the observed prediction

and the true outcome. It comprises the number of true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) classifications, widely used metrics for binary classification performance.

Nonetheless, it holds reduced interpretation in cases where a class imbalance is present and, due to the

nature of streaming data, does not reflect change detection in due time. Furthermore, several metrics

can be extracted from it such as:

Definition 17. Accuracy: Corresponds to the percentage of correct predictions over the total number

of instances evaluated.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3.2)

Definition 18. Sensitivity or Recall: Measures the fraction of positive patterns correctly classified.

Sensitivity =
tp

tp+ fn
(3.3)

Definition 19. Precision: Measures the fraction of an identified event correctly classified.

Precision =
tp

tp+ fp
(3.4)

Definition 20. Average-precision: Summarizes the precision-recall curve as the weighted mean of

precisions achieved at each threshold, with the increase in recall from the previous threshold used as

the weight. Pn and Rn correspond to the precision and recall at the nth threshold.

AP =
∑
n

(Rn −Rn−1) Pn (3.5)

Definition 21. F-Measure: With β ranging in from [0,+∞[ with higher β values putting more emphasis

on false negatives. Default value is 1 where both false positives, and false negatives are weighted

evenly. This may be particularly important in our case since anomalies are usually a minority instance

and F-Measure is widely used in imbalanced situations.

F −Measure = (1 + β2)
precision ∗ recall

(β2 ∗ precision) ∗ recall
(3.6)
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Our preliminary work, revealed that the accuracy scores might be misleading, in the sense that they

did not capture how well the model was generalizing. In depth, as the training set was unbalanced,

the network was skewed towards the majority class. Thus, metrics such as Precision, Recall or the

F-measure represent better the relevancy of the obtained results, being the last metric commonly used

by Eammon Keogh Yeh et al. (2017a). It is also important to make sure such decisions are issued in due

time and models run in resource aware environments, being the least amount of space used (limited

memory).

Finally, the desire for a low false positive rate is worth mentioning as it might influence analysts into

disregarding warnings if they are too common. Similarly, a low false negative rate is also desirable, when

detecting chainsaw events, for instances, mainly because missing the detection of such events does not

contributes to the prevention of illegal deforestation.
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This section details the proposed methodologies that address the automation of species detection in

noisy environments with limited training data.

The first approach is centered on the idea that sound signals can be represented by images. Thus,

by extracting the spectral audio features, namely the Mel spectrograms, this methodology leverages

deep neural networks, such as Convolutional Neural Networks, to perform the aforementioned task.

Also, it takes advantage of transfer learning to reduce training requirements, both the amounts of data

and time. The obtained results validate the proposed framework, as the proposed model is capable of

differentiating the multiple events present in the image representations of sound.

Alternatively, the second methodology aims to reduce the procedures associated with an image-

based approach. Thus, the second approach presents an alternative procedure, that explores different

audio features and a distinct network, namely a Long Short-Term Memory (LSTM) network, to identify

the given species in the multiple recordings. The obtained results reveal that the models trained on the

cepstral features, namely the Mel-frequency cepstral coefficients (MFCCs), achieve better performance,

nevertheless, the results are relatively worse than the ones attained by the spectral based one. In this

sense, we complement this procedure with the motifs extracted by the matrix profile algorithm, as a

way of improving the performance of the concerned network. Moreover, we explore the standard and

the multidimensional implementation of the matrix profile algorithm, experimenting also different window

sizes and predictive thresholds.

Finally, it is important to note that the classifications models that result from both approaches were

trained and evaluated with a fixed training and test set. In particular, the results presented in section

5 reflect this condition, mainly because the definition of both methodologies results from numerous

experiments, in which we considered different network architectures, training configurations and feature

extraction and processing techniques. We only use cross-validation to train and test the developed

classification models in section 5.2.5, when both methodologies are well defined and matured.
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4.1 Spectral Based Classification Model

Our first proposal was a bioacoustic classification framework using transfer learning of deep neural

networks. Thus, this section focuses on detailing each step of the suggested end-to-end pipeline, a

process that results in a classification model, as represented in Fig. 4.1. The starting point consists

of converting the sound sequences (raw audio), that is, the time series, into audio features that can

capture the distinctive properties of each event. Given the results obtained by deep neural networks

in image classification problems our feature extraction step focuses on the extraction and processing

of the Mel spectrograms, that are image representations of sound. So, we explore the learning ability

of deep neural networks, namely Convolutional Neural Networks, describing their training process with

the mentioned spectral shape features.

Figure 4.1: Spectral based approach flowchart.

In addition, throughout the introduction of the framework we will apply the presented techniques to

a toy problem, which consists of one recording labelled with a positive event, to better illustrate the

suggested methodologies. The raw audio of the toy problem’s recording is displayed in Fig. 4.2.

Figure 4.2: Toy problem: raw audio.
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4.1.1 Feature Extraction and Processing

In audio processing and analysis, the frame length is critical to the neural network’s performance, as

it must be set long enough to preserve the meaningful events but not so long that temporal variations

disappear. In this regard, this report proposes a window function and evaluates the effect of different

window (frame) lengths on the model’s results.

Figure 4.3: Toy problem window extraction - Mel spectrogram: window start (1) window center (2) window end (3).

The proposed window function defines the frame’s center (window center) as the sum of half of the

maximum label interval (maximum delta) of a given dataset, to the interval’s beginning (interval start)

of the concerned label. The start (window start) and end (window end) of the frame are the result of

subtracting and adding to the center, respectively, the selected frame length (window duration) divided

by two.

window center = interval start + (maximum delta / 2)

window start = window center - (window duration / 2)

window end = window center + (window duration / 2)

Additionally, it is important to note that the sampling rate by which the audio is extracted must be

taken into consideration when extracting the mentioned window. All in all, the window function allows for

a training set composed only by frames that are linked to a given event.

The extracted Mel spectrogram (Mel spectrogram extraction) is represented in Fig. 4.3 by the

green box, being the white box the representation of the event’s labelled time interval. Each Mel spec-

trogram is computed using the librosa Python package with the default settings (sampling rate = 48 kHz,

NFFT = 2048, hop length = 512, window length = 2048, Hann window), specifying however the number

of mel bands (n mels = 224) and if available the minimum and maximum frequency. The frequency

interval corresponds to the minimum and maximum value registered in the dataset, with a 10% margin
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to increase the considered interval.

The resulting Mel spectrograms, as a part of the Mel spectrogram processing step, are converted

to units of decibel (dB), resized to the dimensions supported by the pre-trained model, that for the

ResNet50 case correspond to 224x224 images, and normalized with the min-max scaling. Finally, the

spectral features are converted to color images, that is, images with RGB channels and given the transfer

learning setting, the spectrogram is processed to the adequate image format of the selected backbone

model. For the ResNet50 model, for instances, the images are converted from RGB to BGR, then each

color channel is zero-centered with respect to the ImageNet dataset, without scaling. We applied the

mentioned techniques to the toy problem and the result of this procedure is showcased in Fig. 4.4.

Figure 4.4: Toy problem: Mel spectrogram processing.

4.1.2 Model Training

The proposed model uses the pre-trained ResNet50 weights used for ImageNet classification, and in-

cludes only the feature extraction layers of this model, excluding the remaining layers, often referred as

the network ”top”. Hence, the knowledge obtained in image classification, namely the detection of basic

image features, can be transferred (transfer learning) to the task at hand by using the weights of the

optimized model. In this sense, by freezing some layers of the pre-trained model and only training the

last several layers, the model can be fine-tuned to our problem. In addition to ResNet50, our work also

evaluates different backbone models, such as EfficientNetB0, InceptionResNetV2 and VGG19.

4.1.2.A Convolutional Neural Network

The proposed baseline model has as reference the networks introduced in Zhong et al. (2020), LeBien

et al. (2020).

Figure 4.5: Model 1 Architecture: Transfer learning of a pre-trained CNN model.
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The model architecture comprises the pre-trained model and two fully connected (FC) layers. The

first consists of 512 nodes and uses the ”Relu” activation function that converts negative inputs to 0.

This layer is followed by a batch normalization and drop-out layer, the latter with a drop-out rate of 50%

in which each node is ignored with a 50% probability, helping prevent overfitting. The final layer, given

the binary classification setting, consists of one node that passes through the sigmoid function.

4.1.2.B Convolutional Neural Network combined with a Long Short-Term Memory network

Additionally, we propose the addition of a LSTM layer to complement the above model, as a way of

improving the general model’s performance.

Figure 4.6: Model 2 Architecture: Transfer learning of a pre-trained CNN model combined a LSTM layer.

Hence, the model architecture includes the pre-trained network (ResNet50), and is followed by a

Flatten and LSTM layer, being the latter composed by 512 neurons. Then, the subsequent layers follow

the structure introduced in the section above (4.1.2.A), tuning however some parameters. In detail, we

include two fully connected (FC) layers, the first with 1024 nodes and that uses the ”Relu” activation

function and the last layer which comprises only one neuron. Likewise, between the aforementioned

fully connected layers there are a batch normalization and a dropout layer to help prevent overfitting.

4.1.2.C Training

Given the binary classification setting, the training step consists of training the network on the spectral

features to obtain a classification model. The optimizer uses the Adam optimization method with a

learning rate of 1∗10−4 and decay of 1∗10−7. Moreover, the binary cross entropy loss function is utilized

and 30 epochs are applied. These parameters result from a fine-tuning process in which we analysed

the values who favored the model’s performance. For instances, a higher number of epochs did not

contribute to a significant improvement on the performance, ending up in an overfitting situation in the

cases that did. Oppositely, a lower number of epochs usually did not lead to a convergence point, being

the proposed value a trade-off between both scenarios.

Model performance and capability to capture the natural variability of data can be increased with

the use of data augmentation techniques. Thus, two approaches are followed as a way of increasing

the training set’s effectiveness: the first randomly adds one of the two additive noises, Gaussian or
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Figure 4.7: Toy problem data augmentations: a) original b) SpecAugment c) Gaussian Noise + Time Shift + Volume
Control d) Pink Noise + Time Shift + Volume Control.

Pink, to the audio signal, time shifting and controlling its volume afterwards; the second applies the

SpecAugment technique to the Mel spectrogram. Also, the mentioned techniques were applied to the

toy problem and are showcased in Fig. 4.7.

4.1.2.D Overview

The presented end-to-end pipeline describes the feature extraction and processing steps required to

transform the raw audios into the Mel spectrograms through the proposed window function. Furthermore,

it details the training of two models that leverage transfer learning and data augmentation to improve their

learning effectiveness. All in all, as explained in section 5, this framework is the best performing one,

with the second model (4.1.2.B) improving the results attained by the first one (4.1.2.A).
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4.2 Cepstral Based Classification Model

This section complements the research on the bioacoustic classification framework as it presents an

alternative approach to the one proposed in section 4.1, the spectral based one. Despite having the

same goal, as it also aims to obtain a model capable of learning the distinctive characteristics of the

concerned events, it explores the use of different audio features, such as the Mel-frequency cepstral

coefficients (MFCCs), the root mean square (RMS), the zero-crossing rate (ZCR) attributes, and even

the raw audios. Nevertheless, it is important to remark that we focus our research on the cepstral ones.

Hence, the objective is to develop a simpler approach, in comparison to the previous one, in terms

of the required feature extraction and processing steps. In this sense, the Convolutional Neural Network

(CNN) was replaced by a Long Short-Term Memory network (LSTM), changing also the concerned fea-

tures by the previously mentioned ones. In detail, we change the network to determine if the LSTM’s re-

membering and forgetting nature contributes to the learning of the distinctive traits of the events present

in our bioacoustic classification problem.

Figure 4.8: Cepstral based approach flowchart.

Analogously, the starting point of the proposed procedure consists of transforming the raw audios,

displayed in Fig.4.2, into audio features that can be used to train the classification model. We describe

the extraction and processing of the aforementioned features, as well as the training of the concerned

classification model. Finally, we explore time series motif detection, facilitated by the matrix profile

algorithm, as a resourceful manner of increasing the training set of each model. We hope that the

larger training sets lead to better performance, as the data augmentation techniques did in the previous

approach.
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4.2.1 Feature Extraction and Processing

In this section, we cover the procedure that transforms the raw audios into the features used to train the

developed model. We assume the window function proposed in section 4.1.1, as we will also have a

training set composed only with frames associated with the presence or absence of a given event. So,

the difference in this step lies on the extracted features and in their processing.

The procedure introduced in this section focuses on the cepstral features (MFCCs), however, as

previously noted, it also addresses other audio attributes such as the ZCR, the RMS, and the raw

recordings. The librosa Python package once again enables the extraction of these features.

Figure 4.9: Toy problem window extraction - MFCC: window start (1) window center (2) window end (3).

As the lower order MFCCs contain most of the information present in the recordings we only extract

13 MFCCs. Also, although we initially tried normalizing this attribute, we ended up not performing this

step as it did not benefit the model’s performance. The toy problem’s MFCCs attribute is represented in

Fig.4.9. Lastly, the other features did not undergo through any additional processing.

4.2.2 Model Training

The training step is similar to the one described in section 4.1.2.C, differing only in the sense that it

trains each model on the cepstral features, instead of the spectral ones. Similarly, the model is trained

with the Adam optimization method, with a learning rate of 1 ∗ 10−4 and decay of 1 ∗ 10−7. Also, the

binary cross entropy loss function is utilized, due to the binary classification setting, and 30 epochs are

applied.

4.2.2.A Long Short-Term Memory network

The model architecture consists of one LSTM layer, that comprises 512 nodes and assumes the default

activation function, the hyperbolic tangent (tanh). This layer is responsible for handling the input features
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and it is followed by three fully connected layers, the first with 256 neurons and the second with 128,

both with a ”Relu” activation function. The final layer, given the binary classification setting, has one

neuron that goes through the sigmoid activation function.

Also, it is important to note that the proposed architecture is the result of multiple experiments, in

which we adjusted the configuration according to the attained results. The goal was to maintain the

model as simple as possible without compromising its performance.

4.2.3 Motif Discovery using the Matrix Profile

The proposed methodology addresses an intrinsic problem of environmental data, that has to do with the

limited amount of available training data. The spectral based approach, detailed in section 4.1, tackles

this limiting factor with different data augmentations techniques.

On the other hand, this section explores the discovery of repeated patterns in the recordings, as a

way of improving the general performance of the concerned classification model. In detail, we obtain

the motifs with the matrix profile algorithm, exploring two variants of this method. The first uses the

standard version of this technique and computes the matrix profile of one-dimensional features, of one

of the MFCCs or of the ZCR attribute. The second explores the multidimensional version of the matrix

profile, in which we conduct motif discovery on the whole MFCCs, as this variant is able to handle all

this feature’s dimensions.

Figure 4.10: Motif based approach flowchart.

The motif extraction procedure, represented in Fig. 4.10, involves the transformation of the motifs

extracted from the recordings into a training set that can serve as input to the classification model.

In depth, we separate the obtained motifs into two groups that have a direct correlation with the two

groups of labelled events. Thus, we end up with two datasets that contain the motifs related to these

annotated groups, that is, associated with the presence (positive) or absence (negative) of an event. In

the following sections, we detail the methodology used to perform motif discovery in both settings, the

one-dimensional and the multidimensional one, explaining also the training process of the developed
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model. The feature extraction and processing step is the one described in section 4.2.1.

4.2.3.A One-dimensional Motif Discovery

Firstly, we focus on describing the procedure related with the discovery of motifs on the concerned

one-dimensional features, as the original algorithm is not capable of handling multidimensional ones.

So, for each recording of the mentioned subsets we compute the matrix profile of the regarded sound

attributes. Note that the input of the matrix profile is either the ZCR feature or one of the MFCCs. After

a thorough analysis, we chose the first MFCC, out of the other 13, as input to this algorithm, which

is a consequence of the aforementioned condition of this method. Once the annotated time series

is computed, we carry out the motif discovery, concerning only the top motif or the top two repeated

patterns. Finally, as each motif details its interval, we can extract the corresponding windowed feature,

building both subsets with this methodology.

Figure 4.11: One-dimensional motif discovery example.
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An example of this procedure is showcased in Fig. 4.11, where the first row corresponds to the

regarded audio feature and the second represents its matrix profile. The final two rows match the top

two motifs, found in the recording considered for this explanation. The red color portrays the motifs and

the black color its neighbours, that is, the subsequences that are within a radius of 3 times the minimum

distance (motif distance) using the regular matrix profile.

For each labelled record, the final result of the proposed methodology is a subset of the concerned

audio feature, in which we only consider the part that corresponds to the discovered motif, having the

same representation as the one presented in Fig. 4.9.

4.2.3.B Multidimensional Motif Discovery

As previously noted, the standard matrix profile algorithm does not support multidimensional features.

In this regard, we leverage the multidimensional version Stumpy 1 to handle the MFCCs and Mel spec-

trogram features, and to compute their multidimensional matrix profile. This library implements methods

such as the ”stumpy.mstump” function, which provide a highly efficient, accurate, and scalable multi-

dimensional variant of the matrix profile definition found in Yeh et al. (2017b). Our work does not use

the mSTAMP library concerned in the referenced article, as this implementation does not provide GPU

oriented methods, for instances, as the Stumpy library does.

Firstly, it is important to demystify a common misconception concerning the multidimensional matrix

profile, which stems from the idea that this technique might consist of one-dimensional matrix profiles

stacked on top of each other. To do so, we introduce the following toy problem to better explain the

algorithm’s variant, having Yeh et al. (2017b) and the documentation of the Stumpy library as reference.

Figure 4.12: Multidimensional motif discovery toy problem.

1 Stumpy
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As represented in Fig. 4.12, it consists of 3 dimensions of the Mel spectrogram of a RFCx recording, that

for simplicity was reduced to half of its duration. This multidimensional time series, T = [D1, D2, D3],

has d = 3 and length = 2000, having a shape of d× n (3× 2000).

By choosing a window size of m = 200, for example, the ith multidimensional subsequence can be

defined as a continuous subset of values from T of length m, starting from position i and with an overall

shape of d × m (3 × 200). Hence, one can incrementally slide the rectangular slice l = 1801 times

(l = n −m + 1), before reaching the end of T . In addition, for the ith multidimensional subsequence,

we can iterate over each of its dimensions independently and compute an aggregated multidimensional

distance profile (i.e., three one-dimensional distance profiles stacked on top of each other). Essentially,

the ith multidimensional distance profile’ shape is d × l (3 × 1801) and gives us the pairwise distances

between the ith multidimensional subsequence and all possible multidimensional subsequences within

T .

ith distance profile =

0.3 0.1 0.5 ... 0.2 0.7 0.9
0.8 0.3 0.2 ... 0.8 0.3 0.9
0.6 0.5 0.3 ... 0.2 0.1 0.4

 (4.1)

Given that the values in the ith column of the multidimensional matrix profile are directly derived

from the ith multi-dimensional distance profile, Equation 4.1 represents the common multidimensional

distance profile for the ith multidimensional subsequence. With this, we can now identify the set of d

values that form the ith column vector of the multidimensional matrix profile with shape d × 1 (3 × 1).

The value for the first dimension is found by extracting the smallest value in each column of the ith

distance profile and then returning the minimum value in the reduced set. Then, the value for the

second dimension is found by extracting the two smallest values in each column of the ith distance

profile, averaging these two values and then returning the minimum averaged value in the reduced set.

Finally, the value for the kth out of d dimensions is found by extracting the k smallest values in each

column of the ith distance profile, averaging these k values and then returning the minimum averaged

value in the reduced set. Consequently, by simply advancing the ith multidimensional subsequence

along the entire length of T and computing its corresponding ith multidimensional matrix profile, we can

easily populate the full multidimensional matrix profile. To sum up, this explanation supports the idea

that the multidimensional matrix profile is not made up of one-dimensional matrix profiles stacked on top

of each other.

Furthermore, it is important to remark that the lower dimensional repeated pattern(s) may or may not

be a subset of the higher dimensional motif, since the lower dimensional motif pair can be closer than to

any subset of dimensions in the higher dimensional motif pair.

Nevertheless, we have that the k-dimensional motif can be found by locating the two lowest values

in the correspond k-dimensional matrix profile, which poses the problem of finding the ”correct” k value.
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Consequently, this unconstrained search problem is reduced to selecting the best motif out of all possible

k-dimensional motifs. As suggested in Yeh et al. (2017b), one can turn this into a classic elbow (or knee)

finding problem, by visually or algorithmically locating the inflection point when plotting the minimum

matrix profile value in each dimension for each k-dimensional motif.

Figure 4.13: The matrix profile value for each k-dimensional motif.

In line with the previous toy problem, Fig 4.13 is an example of the mentioned representation, as it

showcases the matrix profile value in each dimension for each k-dimensional motif. The inflection point

can be found automatically by using the kneed Python package.

4.2.3.C KNN Training

In this section we address the training of the K-Nearest Neighbors (KNN) classifier, from the motif dis-

covery process to the construction of the training set that includes the extracted repeated patterns and

serves as input to the developed model. In this paper, the concerned classifier considered the 3-nearest

neighbors (k = 3).

Firstly, we extract the motifs subsets, following one of the previously introduced methodologies. Sub-

sequently, for each recording we compute the respective audio feature, depending also on the chosen

matrix profile version. The distance of each audio feature to each motif is measured according to a dis-

tance function which we present later in this section. Consequently, the training set assumes a tabular

structure, as depicted in Fig. 4.14, which serves as input to the classification model

The premise of this approach lies in the fact that the classifier can learn the similarity, represented by

the distance, between each recording and each motif, whether they are positive or negative, being able

to classify each event accordingly. Thus, as represented in Fig. 4.14, the table’s columns correspond to

the motifs of the two subsets, which in practical terms end up merged, being the distinction between both

a way to facilitate the problem’s conceptualization. The table’s rows comprise the recordings’ features

from the training or test set, depending on whether we are training or testing the developed model. The

values in each cell correspond to the distance between each recording and each motif’s feature.
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Figure 4.14: Motif based training set.

Before delving into the proposed distance functions, it is important to get acquainted with the par-

ticularities of the introduced approach. In depth, both the recording and the motif’s features assume

a multidimensional shape, because they both correspond to the MFCCs. Hence, a distance function

capable of handling multidimensional features is required.

In the first proposed distance function, the distance is given by the difference between the norm of

the recording’s feature and the motif’s attribute, as presented in the following equation:

distance = norm (Audio N)− norm (Motif N) (4.2)

With the ”numpy.linalg.norm” method, of the ”NumPy” library, one can compute the norm of the record-

ing’s feature or the motif’s attribute.

The second approach takes advantage of the ”Stumpy” library, used to compute the multidimensional

matrix profile, to compute the z-normalized matrix profile distance measure between the recording’s fea-

ture and the motif’s attribute. Note that the only method of this library capable of handling the multidi-

mensional features is the one that computes the matrix profile. In this regard, despite several attempts,

we were not able to attain a meaningful distance between the recording’s attribute and the motif’s feature

when using this method.

Also, after an extensive search we did not find more methods capable of obtaining the aforemen-

tioned distance, being a topic to address in further research. To conclude, it is important to stress the

limited number of multidimensional matrix profile’s implementations, as this study is rather recent, re-

stricting the developed solution and being, alongside with the distance function, the bottleneck of this

approach.

4.2.3.D Overview

Despite considering other audio attributes, the presented end-to-end pipeline describes the feature ex-

traction and processing steps required to transform the raw audios into the MFCCs through the proposed

window function. Moreover, it details the training of a LSTM network with the extracted cepstral features.

As the results obtained by the developed network were considerable worse than the ones attained

by the spectral based one, we complemented this methodology with an additional step. In depth, we
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trained a KNN classifier with the motifs extracted by the matrix profile algorithm. It is also important to

mention that we studied the influence of the motifs extracted by the two matrix profile implementations,

namely the standard and the multidimensional one, on the developed classifier.

Figure 4.15: Ensemble approach flowchart.

Finally, as depicted in Fig. 4.15, we combine the output of the two models presented in this section

to determine if the classifier trained with the motifs helps improving the attained results. Besides eval-

uating the performance of the proposed ensemble approach, we also assess the performance of the

two proposed models, individually. All in all, the cepstral based approach needs further research and

development as the classification models of this framework achieve worse performance than the ones

concerned in the spectral based methodology.
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5.1 Case Studies

5.1.1 Kaggle Competition Dataset

The ”Rainforest Connection Species Audio Detection” 1 is a Kaggle competition that provides 6786 files:

64 TensorFlow records (.tfrec), 3 files which summarize the data (.csv) and 6719 audio files (.flac) that

include sounds from numerous species.

The proposed bioacoustic classification framework is evaluated on these audio files, which were

collected from about 700 sampling sites across the mountains of Puerto Rico at a sampling rate of 48

kHz with 24 kHz bandwidth, following a schedule of 1-minute audio recording every 10 min, as described

in Zhong et al. (2020). In detail, the competition concerns the classification of 24 bird and amphibian

species which inhabit the tropical mountains. It provides two distinct files to the competitors: the first has

data about the true positive events registered in all recordings, having a labelled interval which refers to

the specie call; the second has data about the false positive events, detailing by opposition the intervals

where a certain specie does not appear. Furthermore, both files also provide data about the specie

present in the audio sample, the sound´s song type as well as the frequency and time interval of the

event.

Finally, it is important to note that the 6719 audio files are divided into two datasets, the first consti-

tutes the training set, and whose information is summarized on the two mentioned above files, and the

second encompasses the recordings that form the test set, which are meant to evaluate the developed

solution.

5.1.2 Chainsaw Dataset

This dataset refers to the data provided by Hitachi Vantara through its partnership with Rainforest Con-

nection. It also includes the VisBig project (PTDC/CCI-CIF/28939/2017), being important to remark that

both connections enable more data to be considered. Despite that, our work only considers recordings

from January 2020, having the concerned dataset 6567 audio files (.flac and .wav). These particular

files have been preprocessed, a procedure in which files smaller than 1.1MB and with sampling rates

lower than 12,000 Hz were filtered out. Also, the remaining audios are approximately 90 seconds-long.

Nonetheless, we consider a subset of these recordings, as only 1091 of these audio files possess

annotations regarding chainsaw events. The labels were obtained by a manual confirmation process

that validated the output of a model, developed by Huawei, that detects chainsaw events. In detail,

each labelled recording can encompass multiple events, registering a total of 7885 confirmed and 3274

rejected chainsaw events, each one annotated with the corresponding event’s time interval.

1Rainforest Connection Species Audio Detection
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5.2 Experimental Results

5.2.1 Spectral Based Model - Kaggle

There are 24 annotated species in the provided dataset, which would suggest a 24 multi-label classi-

fication setting. Nevertheless, two species have more than one song type, having both type 1 and 4,

revealing the need of two additional labels. As a starting point, the created training set disregards the

song type 4 for the mentioned species.

In this sense, our approach transforms the 24 multi-label classification setting into 24 distinct clas-

sification problems, where in each we train a model so that it can learn the presence or absence of a

given specie. Moreover, the upcoming sections describe several experiments in which the concerned

models follow the architecture described in section 4.1.2. In particular, note that the experiments’ results

represent the average of each specie related model’s score, taking as an example the scores displayed

in Fig. 5.1, that refer to the average of the accuracy scores across all 24 species. It is also important to

remark that from these results, the ones presented in section 5.2.1.B refer to each specie related model

as this analysis discriminates all species.

Also, the baseline training set includes the maximum number of true positive events for each specie,

that for the majority of species corresponds to approximate 50 samples. Additionally, other variants

may encompass different quantities of true positive augmented samples, as further described in section

5.2.1.A. Lastly, a subset of the available 350 false positive samples is extracted, for each specie, in

the same quantity as the true positive subset, that may contain augmented instances. For example,

if we complement the baseline approach with data augmentation, one specie that has 50 true positive

samples, will also have 50 augmented samples and 100 false positive samples, resulting in a balanced

training set for each specie.

5.2.1.A Window Size and Data Augmentation

The first approach aims to assess the effect of different window sizes and data augmentation techniques

on the performance of each model. Thus, the considered frame lengths were 2, 5 and 10-second-long,

as more than 80 percent of the recorded events have intervals smaller or equal to 4 seconds. Also,

by including the 2 second window one can verify if smaller frames can capture enough image traits

to conduct automate species detection. In addition, for each window size, we trained a model with a

training set that did not include augmented samples (baseline) and compared it to two models whose

training set contained samples augmented by the two techniques described in Section 4.1.2.C.

As detailed in the previous section, the training set that does not takes advantage of data augmen-

tation techniques includes the maximum number of available true positive samples, having the same

number of negative samples. Conversely, both training sets with augmented instances, from the two
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aforementioned augmentation techniques, differ from the latter by having augmented samples in the

same number as the true positive calls, thus enabling the use of more negative instances. Finally, the

followed evaluation metrics were accuracy 17, precision 19, and recall 18, being the test set classi-

fied with a threshold score of 0.6. Once again, it is also relevant to stress that the evaluation metrics

represent the average of the scores of each individual model, excluding those who fail to learn the

distinguishing characteristics of the audio features.

As depicted in Fig. 5.1, by including the augmented samples in the training set we increased the

accuracy scores across all windows sizes. The model trained on the 10-second-long window failed to

capture the data’s variability, leading to the worse results in terms of precision and recall. The 5 second

window obtained a significant accuracy increase, registering the best precision and recall score (0.77

and 0.78) with the SpecAugmented spectrograms. Furthermore, the smallest concerned frame obtained

similar results in comparison to the 5 second window in terms of accuracy, achieving, nevertheless, lower

precision and recall scores.

Figure 5.1: Effect of different window sizes and data augmentation techniques on accuracy, precision and recall.

All in all, the results confirm the well-known precision-recall relation, in which generally an increase

in precision leads to a decrease in recall, and vice-versa. Consequently, a balance is desired if false

positives and false negatives are equally significant, which is not the case in our problem’s spectrum as

recall is slightly more important because false negatives are more costly. From this experiment, both the

2 and 5-second long frames seem to be able to capture the distinctive traits of each Mel spectrogram.

Nonetheless, as the model trained on the 5-second-long windows performed slightly better, this is the

frame length concerned from this point forward.
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5.2.1.B Dynamic Window Sizes

The results obtained in the previous section are strongly marked by the models that fail to differentiate

both classes, difficulty amplified with the 10 second frame. So, in order to assess if each model would

perform better with a tailored window size, a different approach was experimented. More concretely,

each specie related spectrogram was obtained by taking into consideration the mean time interval of

each specie call with a one second margin, which implied that, for instances, a specie with an average

interval call of 2 seconds would have a 3-second-long Mel spectrogram.

Hence, the average-precision, presented in the definition 20, was the metric used to compare the

model trained on the dynamic windows with the one trained on the fixed window size (5 seconds). Also,

both models had recordings augmented with the SpecAugment method.

Figure 5.2: Average-precision of dynamic and fixed window size approaches.

In particular, Fig. 5.2 demonstrates the difference in average-precision between each model trained

on the dynamic window size (red) and those trained on the 5 second window (blue). The mean average-

precision scores for the dynamic and fixed size approach are 0.52 and 0.63, respectively. Furthermore,

species with a mean window size smaller than 5, such as 11 and 18, for instances, are the ones who

benefit the most from the dynamic approach. Also, it is possible to understand the impact that models

with lower scores have on the metrics depicted in Fig. 5.1. Lastly, it is important to note that the

difference in the training size, that for species 2, 9, 17, 20 and 22, is significantly smaller due to the

available positive samples, is not the only cause for a poorer model’s performance, as the average-

precision of specie 17 is higher than the one of specie 23, for example. To sum up, the goal of this
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approach was to understand if a small combination of window sizes, as a large one would be extremely

costly in the prediction step, would favor the model’s results. Despite the aforementioned improvement

on the species that register smaller calls, the overall performance was not sufficient to justify the cost

that a windowed approach would require.

5.2.1.C Predictive threshold

The predictive threshold represents the probability value by which a given sample is classified, that is,

if the probability returned by the model is superior to the defined threshold the sample will be classified

as belonging to the class, and vice-versa. On that account, the previous experiments considered a

predictive threshold of 0.6, achieving a precision of 0.77 and a recall of 0.78 with the best performing

model. Nonetheless, one can try to improve the precision score by increasing the predictive threshold.

Figure 5.3: Precision/Recall threshold curve of the model trained on a 5-second-long window with SpecAugmented
samples.

Hence, Fig. 5.3 displays the mean precision and recall variation with different thresholds, so that

the influence of the threshold value on the obtained results could be determined. The increase in the

threshold value leads to higher precision scores, nevertheless, this increment also results in a significant

decrease in recall. The precision-recall balance is achieved somewhere between the 0.50 and the 0.65

predictive threshold value, with the 0.60 threshold registering the optimal value for the develop approach,

with a precision of 0.77 and a recall of 0.78.

Following the prior analysis, we analyzed the confusion matrices of 3 different thresholds (60%, 75%

and 90%) to better comprehend the increase in precision and the decrease in recall, as we incremented

the predictive threshold value. These matrices are represented in Fig. 5.4 and explain the mentioned

behaviour. Firstly, the reduction in the true positive explains why the balance between these metrics
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is not found in the higher threshold values, as a stricter threshold value reduces the ability of correctly

classifying the positives events of a given class. Regarding recall, the growth of the number of false

negative samples explains the abrupt reduction of this score. Oppositely, the drop in the false positives

samples justifies the rise of the precision score.

Figure 5.4: Confusion Matrices of 3 predictive thresholds (60%, 75% and 90%).

5.2.1.D Convolutional Neural Network combined with a Long Short-Term Memory network

As referenced in section 3.7, similar classification problems were addressed with a hybrid architecture,

that combined Convolutional Neural Networks with Long Short-Term Memory networks. In this sense,

we complement the previous architecture with an LSTM layer, as an attempt to improve the general

performance of the developed model.

The network architecture described in 4.1.2.B stems from several experiments in which we tried to

establish the optimal combination to the problem at hand. In depth, we started by adding an LSTM layer

with 512 neurons between the pretrained model and the fully connected layer with 512 neurons. Despite

being the initial experiment, it remained the best performing one, achieving an accuracy score of 94%

and a precision and recall score of 83% and 84%, respectively.

According to our experiments, an increase in the number of LSTM’s neurons led to a scenario where

we ended up with higher recall scores and slightly lower precision scores, such as 86% and 80%,

for example. Conversely, an increment in the number of neurons of the fully connected layer resulted

in lower precision (82%) and recall scores (79%). Finally, we also tested multiple settings where we

tried several combinations of LSTM and fully connected layers, nonetheless none of them improved the

results from the best performing one.
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5.2.2 Spectral Based Model - Chainsaw

In view of the results attained in the previous sections, we evaluated the proposed framework on the

dataset, previously introduced in section 5.1.2, that includes the recordings labelled with the chainsaw

events. The main difference to the annotations concerned in the previous dataset (5.1.1) lies on the

information regarding the event’s frequency interval, as the labels from this dataset do not detail the

mentioned interval. Thus, as we analysed the Mel spectrograms of the different recordings we noticed

that chainsaw events, for the most part, took place in the lower frequencies. Despite being possible to

find other animal sounds in this frequency range, we also observed that events such as bird sounds,

would generally assume higher frequencies in comparison to the chainsaw sounds. In this sense, as

our goal is to detect chainsaw events, we reduced the previous sampling rate of 48 kHz to 22kHz since

there was no need to concern such high frequencies when training our model, imposing also a minimum

and maximum frequency of 0.08 and 3kHz, respectively, for the extracted Mel Spectrogram.

Furthermore, the amount of available labelled recordings is considerable larger, in comparison to

the previous dataset, favoring the model greatly as it allows for a bigger training set. However, due to

hardware limitations we restricted the training set to 1600 positive and 1600 negatives samples. So,

apart from the aforementioned modifications, the training process of this particular classification model

was similar to the one described in section 4.1.

5.2.2.A Transfer Learning and Fine-Tuning

The transfer learning setting enables the use of multiples models which can be used for prediction, fea-

ture extraction, and fine-tuning. The ResNet50 network was the selected to complement the developed

baseline architecture, as it is often utilized in similar image classification problems, being the model used

as a start point in numerous solutions. Nevertheless, this section aims to compare the performance of

the previously mentioned model with other networks that were also trained on the ImageNet dataset.

Figure 5.5: Comparison between the performance of different pretrained models.
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Consequently, we experimented 3 other pretrained networks, EfficientNetB0, InceptionResNetV2

and VGG19, as the backbone of our proposed architecture. We then compared the obtained results with

the ones attained with the initial architecture, which comprised the ResNet50 model. The used training

set was the one described in the above section (5.2.2), being showcased in Fig 5.5 the comparison

between the aforementioned models’ performance.

The different networks present similar AUC (area under the ROC curve), being the Resnet50 model

the best performing one, along with the EfficientNetB3. Even though the ResNet50 network (as in 50

weight layers) is much deeper than VGG19, its model size is substantially smaller due to the usage of

the global average pooling layers rather than the fully-connected ones, which makes it preferable to the

latter.

Furthermore, it is also possible to compare all models against the family of EfficientNets (Efficient-

NetB0 to EfficientNetB7), considering only, for simplicity, the B0, B3 and B7 variants. This network

introduces a new Scaling method called Compound Scaling, as opposed to the one used by models

such as the ResNet50, that follow the conventional approach of scaling the dimensions arbitrarily and

adding up more and more layers. This method proposes that if we scale the dimensions by a fixed

amount at the same time and do so uniformly, we achieve much better performance. The performance

of the EfficientNetB0 network is very similar to the ResNet50 one, being also possible to notice that the

use of other EfficientNet variants does not increase significantly the obtained results.

Also, the combination of the Inception architecture with residual connections, present in the Incep-

tionResNetV2 network, does not justify the use of this specific architecture as it does not register a better

performance when comparing with the ResNet50 network.

Hitherto, the layers from the pretrained models were frozen, that is, they were not trained during the

training process to avoid destroying any of the information they contained. Nevertheless, in this setting

one can take one last optional step, referred to as fine-tuning, that consists of unfreezing the entire

model, or a part of it, and retraining it on the new data, with a very low learning rate. Despite multiples

attempts, we were not able to attain better results when fine-tuning our model, as all our experiments

ended up with poorer performance.
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5.2.3 Cepstral Based Model - Chainsaw

As stated in section 4.2, this approach aims to provide an alternative to the spectral based classification

model (4.1), by exploring a different network architecture, namely the Long Short-Term Memory network,

and different audio features. In particular, it focuses on features such as the root mean square (RMS),

a reliable indicator for silence detection, the zero-crossing rate (ZCR), useful for discriminating periodic

signals from those marked by noise, to understand if it is possible to perform biacoustic classification

without all the processing related with an image-based approach. Moreover, we also explore the MFCCs

as this feature is widely used in similar problems, as previously referenced.

The first experiment sets the baseline for the concerned approach, as it compares the performance

of the LSTM network when trained with the different referenced audio features. Additionally, it follows the

windowed approach introduced in section 4.1.1. Given the results presented in Fig.5.6, it is possible to

conclude that the multidimensional feature (MFCCs) outperforms the one-dimensional ones, obtaining

a similar performance to the spectral based approach, in this particular setting.

Figure 5.6: LSTM network’s performance with different audio features.

In addition, the networks trained with the raw recordings and with one of the MFCCs failed to learn the

unique properties of the labelled events, being the worse performing models. Also, the models trained

with the RMS and the ZCR features registered a significant improvement in performance when compar-

ing to the ones trained on the aforementioned attributes, being, nonetheless, quite far from achieving

similar results as the ones from the network trained on the cepstral features.

All in all, given the results, from this point forward we will only concern the MFCCs and the ZCR

attribute, being the latter considered as a way of confirming the above results, since we also evaluate

the framework on the Kaggle dataset.
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5.2.3.A Motif Discovery using the Matrix Profile

This section expands the research referenced in sections 3.3 and 3.4, that describes the use of the

matrix profile algorithm to conduct motif discovery on audio features. In this regard, we carry out several

experiments that test different approaches regarding the discovery of the repeated patterns. Thus, the

following analysis explores the methodology that best suits the motif discovery process in environmental

audios, namely with the recordings which encompass the labelled chainsaw events (5.1.2). Our goal

is to improve the performance of the developed model by using the extracted motifs to augment and

complement the available training set.

5.2.3.B One-Dimensional Motif Discovery

Firstly, we evaluate the algorithm’s ability to find motifs with different audio features. So, we start by con-

sidering a subset of 100 files from the dataset described in section 5.1.2, that only concerns confirmed

chainsaw events to better comprehend the features that favor the discovery of the repeated patterns.

The algorithm’s method responsible for the motif discovery by default finds the top 3 motifs and up to 10

of their neighbours, that is, the subsequences that are within a radius of 3 times the minimum distance

(motif distance) using the regular matrix profile. Nonetheless, we limited this analysis to the top 1 and 2

motifs as we only want to consider the most distinctive patterns of the concerned class.

Figure 5.7: One-dimensional motif discovery: top 1 and 2 motifs with different audio features.

As depicted in Fig. 5.7, all attributes present a similar number of found patterns, stressing however

the slightly smaller value for the RMS feature when considering the top motifs. The results suggest that

all four are capable of identifying the labelled motifs, nevertheless, from this point forward we will perform

motif discovery with the MFCCs, as they seem to achieve the more balanced results in both analysis.

When analysing the top 1 and 2 motifs, the ZCR attribute registers the highest number of found patterns

in both cases, and, by opposition, the RMS feature obtains the lowest value in both analysis.
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Furthermore, when we concern the motif’s neighbours, the feature that finds the most repeated

patterns is the first MFCC. Also, we analysed the distribution of the found motifs to determine if at least

one repeated pattern was detected in each recording. With the top motif, all 4 attributes manage to find

motifs in approximate 50 files, whereas with the top 2 motifs, the number increases to 71. In both cases,

when we consider the motif’s neighbours we are able to find motifs in almost all files.

Afterwards, we applied the methodology described in section 4.2.3 to the training set used to train

the developed models. In detail, we divided the labelled events into two groups, the one that refers to

positive events and the one related with the negative ones. For the two groups, we extracted the top motif

from each of their recordings, ending up with the motifs that describe the positive events and the ones

that refer to the negative ones. Despite being possible, in this setting, to extract a large amount of motifs

to complement the training data, we only consider a subset of 100 repeated patterns per group, mainly

because our goal is to improve the model’s performance when the available training data is limited, as

in the case of the Kaggle dataset (5.1.1).

With the two motif subsets, the training set is created by following the previously referenced proce-

dure. In particular, the training set assumes a tabular structure, having in the columns the features of

the two motif groups, that in practical terms end up merged, being the distinction between both subsets

(positive and negative) done to make the problem’s conceptualization clearer for us. The rows include

the recordings’ features from the training or test set, depending on whether we are training or testing the

developed model. The values in each cell correspond to the distance between the respective motif and

the recording’s feature, where the distance function is one of the introduced in section 4.2.3.C. However,

in this section, we only assess this approach with the first proposed distance function, that computes the

difference in the motif and recording feature’s norm.

Figure 5.8: Comparison between the performance of different classifiers trained on the motif based approach.
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Hence, we trained several classifiers, namely Random Forests, Gradient Boosting, K-Nearest Neigh-

bors (KNN) and Naive Bayes, on the mentioned training set and compared their performance on the test

set, as Fig. 5.8 showcases. The Random Forests, Gradient Boosting and the KNN classifier stand out

in comparison to the Naive Bayes, being the latter the worse performing one. Given the attained results,

we decided to choose the KNN classifier as the model concerned in our framework due the nature of

our problem. In detail, as we want to classify each recording according to its closest motif, in a sense,

we are overlapping the concept of the closest neighbour. Consequently, further research will consider

this classifier.

Finally, we compared the KNN classifier, whose training process included the motifs, with the LSTM

network trained on the MFCCs. Additionally, we compared both classifiers with a third approach where

we consider an ensemble of the two developed models, that is, in the prediction step this solution takes

into consideration the output of both methods. Moreover, the ensemble only concerns 50% of each

classifier’s prediction, despite being possible to use other combinations.

Figure 5.9: Comparison between the KNN (Motif Classifier), the LSTM network and the Ensemble classifier.

As Fig. 5.9 demonstrates, the difference between the 3 procedures is relatively small, being the

best performing model the KNN classifier that was trained on the motifs. Moreover, in the carried out

analysis we introduce the baseline ensemble approach, that can be the focus of further research. In this

particular setting, this classifier was able to attain similar results as the ones from the two other models.

5.2.3.C Multidimensional Motif Discovery

Apart from the previously introduced procedure, that concerns the one-dimensional motif discovery, we

also tested the proposed multidimensional methodology. In this setting, the matrix profile algorithm is ca-

pable of searching the repeated patterns in the whole set of feature’s dimensions, instead of considering
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just one of them.

Thus, we compute the multidimensional matrix profile for each recording feature’s, identifying the

k-dimensional motif as explained in section 4.2.3.B. In depth, the k-dimensional motif is found by trans-

forming the problem into a classic elbow (or knee) finding one, where we locate the inflection point,

when considering the minimum matrix profile value in each dimension for each k-dimensional motif. Fur-

ther research can focus on different approaches to address this problem, nevertheless, our work only

explores the mentioned one.

Once the k-dimensional motif is revealed, we consider only the MFCCs’ subset that encompasses

the repeated pattern’s interval, as in the one-dimensional approach. We repeat this process for each

recording, creating the subsets introduced in section 4.2.3, used to build the training set that enables

the training of the developed model.

Figure 5.10: Effect of the one-dimensional and multidimensional motif discovery on the KNN classifier’s perfor-
mance.

In Fig 5.10 we compare the effect of the one-dimensional and multidimensional motif discovery on

the classifier’s results. The attained results favour the one-dimensional motif discovery as it performed

better than the multidimensional one. In detail, it achieved higher accuracy and precision scores, having,

however, a worse recall score, despite not having a really significant difference. All in all, the chainsaw

dataset benefits the most from the KNN classifier that is complemented by the one-dimensional motif

discovery.
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5.2.4 Cepstral Based Model - Kaggle

In light of the results described above, the classification model presented in this section, was obtained by

following two different approaches. The first trains each specie related LSTM network with the MFCCs

and the second uses the ZCR attributes instead.

5.2.4.A Window Size

LSTM’s networks can keep track of arbitrary long-term dependencies in the input sequences, thus, in

this sense, the time component can play a major part on the outcome of the developed solution. So, we

complemented our research with the study of the window size’s effect on the model’s performance, as

we did in section 5.2.1.A. In particular, we want to determine if this type of network benefits more from

longer frames or smaller ones.

Figure 5.11: Effect of different window sizes on the LSTM’s accuracy, precision and recall scores.

The results, displayed in Fig. 5.11, reveal the discrepancies in relation to the previous experiment,

as the networks trained on this dataset have lower scores in comparison to the ones obtained by the

models trained on the chainsaw one. Also, it is important to remark that the starting point of this analysis

is significantly worse than the one described in section 5.2.1.A.

Moreover, from all the networks trained with the different frame lengths, it is possible to conclude

that the ones trained with the MFCCs achieved better results. When concerning only this feature, the

accuracy scores were very homogeneous, with a slight decrease in the one attained by the network

trained with the 10-second-long window. Oppositely, when regarding the ZCR feature, the model who

stands out in terms of accuracy is the one which considered the 10-second-long frame, as it achieved

the highest score.

In terms of precision, all models got similar results when regarding the same feature. However it is

important to mention that we registered multiple specie related networks that failed to distinguish both
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classes, when considering the models trained with the 5-second-long ZCR features, as their output was

made only of negative instances, a case which we do not consider.

In relation to recall, it is possible to observe that all models that concern the ZCR feature achieve

lower scores in comparison to the ones trained with the MFCCs, noting also the considerable low result

of the network trained with the 5-second-long ZCR attribute. In addition, the recall scores of the models

trained with the MFCCs were very similar, with the 2 and 5 frame lengths standing out in relation to the

other.

To sum up, when concerning the cepstral features, the 2 and 5-second-long window sizes are the

frame lengths which favour the learning capability of each model, similarly to in section 5.2.1.A. Nev-

ertheless, there is a significant gap between the performance of the cepstral based approach and the

spectral one, as the first attained worse results. As a consequence, further research will attempt to

improve this approach, focusing on the network trained with the 5-second MFCCs, as the difference to

model trained with the 2-second-long frame is relatively small.

5.2.4.B Predictive Threshold

Following the results of the above section, it is possible to notice the considerable difference between the

recall scores and the precision ones, being the first substantially higher. Thus, as introduced in section

5.2.1.C, one can attempt to diminish this gap by changing the predictive threshold value, that for the

previous analysis held a value of 60%.

Figure 5.12: Precision/Recall threshold curve of the LSTM network trained with the 5-second-long MFCCs.

From Fig. 5.12, it is possible to observe the effect that the predictive threshold holds on the precision

and recall scores. As previously noted, our experiments reveal that an increase in the threshold value
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leads to higher precision values and to lower recall ones. Moreover, as opposed to section 5.2.1.C,

the balance in both scores is not attained with a 60% threshold value but with a 75% one, achieving a

precision of 66% and a recall of 63%. Thus, this is the predictive threshold considered from this point

forward, in this approach, as it is the one that favours the developed model, as it increases the precision

score without compromising immensely the recall one.

5.2.4.C Motif Discovery using the Matrix Profile

As previously noted, this section complements the research made in section 5.2.3.A and applies the

methodology described in section 4.2.3 to the Kaggle dataset. In detail, we seek to improve the results

obtained in the previous section (5.2.4.B) by improving the effectiveness of the models trained with the

small training sets sizes.

Given the results obtained with the chainsaw dataset (5.1.2), we started by applying the procedure

used in that particular problem. In depth, for each specie we extracted the two subsets of motifs, asso-

ciated with the presence and absence of a given specie. Analogously, the training set of each model,

composed with the 5-second MFCCs of each recording, was transformed so that it could include the

insights present in the repeated patterns. So, it assumed a tabular shape, as depicted in Fig. 4.14,

where each cell stored the distance of a given recording’s feature to a certain motif.

Figure 5.13: Distance function’s effect on the KNN classifier.

Initially, the followed distance function was the one also used with the chainsaw dataset and in-

troduced in section 4.2.3.C, that computes the difference in the norm of the motif and the recording’s

feature. Nonetheless, this approach did not improve the model’s performance, suggesting that the con-

cerned distance function was not able to capture correctly the similarities (or dissimilarities) between a

given feature and a given motif. This learning difficulty stems from the fact that the introduced method

must be capable of computing the distance between two multidimensional features, the recording’s and

the motif’s one. As reported in the referenced section, the limited amount of methods capable of comput-
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ing such distance poses a bottleneck to the developed solution, so, in this sense, our work encompasses

the two distance functions that we were able to apply to the problem at hand.

In particular, Fig. 5.13 represents the average of the scores obtained by all the specie related models,

while using the two different distance functions. When we compare the scores achieved by the KNN

network trained with norm distance function in both datasets (chainsaw and Kaggle), it is possible to

conclude that the ones presented in this section are substantially worse. The precision score is the most

affected metric, achieving a score of 25%, contrasting with the recall one which registered a value of

75%.

Due to the obtained results, we tested a different distance function that relies on the ”Stumpy” method

to compute the z-normalized matrix profile distance measure between the recording’s and the motif’s

feature, being both one-dimensional. Note that the only available method, of the researched multidi-

mensional matrix profile implementations, capable of handling the multidimensional features is the one

responsible for the multidimensional matrix profile’s computation. Despite several approaches, we were

not able to obtain a meaningful distance between the recording’s attribute and the motif’s feature when

using the mentioned matrix profile variant. Consequently, as described in section 4.2.3.C, the sec-

ond proposed distance function uses the mentioned method to compute the z-normalized matrix profile

distance between each audio’s attribute and each motif’s feature dimension, being the final value the av-

erage of distances of all the dimensions. The introduced distance function helps the network achieving

higher accuracy and precision scores, reducing however the recall one, as displayed in Fig. 5.13.

Figure 5.14: Comparison between the LSTM network and two ensembles, that merge the output of the LSTM and
the KNN classifier, while using two distance functions.

Finally, we compared the learning ability of the LSTM network against the learning capability of two

ensembles, the first which considered 50% of the LSTM’s output and 50% of the KNN classifier, and

that used the norm distance function to build the training set. The second also encompassed 50% of the

LSTM’s output and 50% of the KNN classifier but used the average distance function to form the training

75



set. The results show that both the ensembles do not improve the model’s performance as they reduce

the recall score, despite achieving higher precision values. Nevertheless, it is important to note that, in

this particular experiment, the norm distance function achieved better results than the average one.

All in all, the results do not justify the use of an ensemble approach as the individual LSTM network

attained the most balanced results across all the 3 metrics.

5.2.4.D Multidimensional Motif Discovery

Similarly to section 5.2.3.C, we explore the multidimensional variant of the matrix profile to enable the

discovery of the motifs, later used in the training of the developed model. In particular, we evaluate the

performance of a model trained on the motifs obtained by this multidimensional algorithm’s version, as

the one-dimensional approach did not improve the attained results.

In this sense, Fig. 5.15 compares the results obtained by the KNN classifier when following the

multidimensional motif discovery approach and the one-dimensional one. Both techniques are analysed

with the two proposed distance functions, the one that computes the difference between the norm of

the recording’s feature and the motif’s attribute; and the one which concerns the difference between the

average of the z-normalized matrix profile distance of each dimension from the audio’s and from the

motif’s feature. In both cases, we can conclude that the use of the multidimensional motifs does not

improve the classifier’s performance, as the attained results are similar to the ones from the network

trained with the one-dimensional repeated patterns.

Figure 5.15: Effect of the one-dimensional and multidimensional motifs on the KNN classifier’s scores, while adopt-
ing two different distance functions.

Given that the presented approach did not improve the model’s performance, further research can

focus on the bottlenecks related with this procedure. In depth, as previously mentioned, the lack of

available distance functions, capable of computing the distance of two multidimensional features limits

the developed solution. The limitations of the proposed distance functions may contribute to the absence

of better results, as both may not give a correct representation of the similarity (dissimilarity) between

the concerned audio’s feature and the extracted motifs.
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5.2.5 Bioacoustic Framework Appreciation and Best Configuration Results

So far, we have only estimated the models’ performance, as the concerned metrics were measured in a

set of known records. Despite the insight given by those performance measures there is still uncertainty

regarding the models’ behaviour when facing unseen objects. So, this section focuses on determining

the confidence bounds which detail how much the attained estimate may deviate from the true value.

The mentioned process will only concern the best configurations of each approach, as the goal of this

work is to establish the best bioacoustic framework possible.

In this regard, to compute the aforementioned intervals we apply the stratified k-fold cross-validation

technique to both datasets, in which each dataset is divided in k equal-sized parts (folds), that preserve

the percentage of samples for each class. Afterwards, we train each model under the multiple proposed

configurations on the different folds. The concerned metrics are obtained regarding also their respective

confidence bound. We considered 5 folds for both datasets (k = 5) and we used the T-student (95%)

distribution to compute the confidence intervals. Note that the mentioned computation considers the

average of each metric across the 5 folds.

5.2.5.A Chainsaw Dataset

With the chainsaw dataset, both approaches performed well due to the considerable amount of available

labelled recordings. In this sense, regarding the spectral based approach, we only complement the

configuration described in section 5.2.2 with the use of cross-validation.

Figure 5.16: Cepstral and spectral based classification models performance (Chainsaw dataset).

The Convolutional Neural network is trained with 5-second-long Mel spectrograms and leverages

the use of the SpecAugment data augmentation technique to increase its training set. In relation to the

cepstral based approach, we expand the work developed in section 5.2.3, with the introduction of the
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cross-validation technique. In detail, the Long Short-Term Memory network is trained with the 5-second-

long MFCCs. Also, both procedures use a predictive threshold of 60%.

In Fig 5.16, it is possible to compare the accuracy, precision, and recall scores from both approaches.

From this figure, we can conclude that the spectral based classification model is the one that achieves

the best performance. Nevertheless, in this particular setting, the cepstral based classification network

registers similar results, stressing the scores obtained by the motif classifier as this alternative approach

was able to approximate the performance of the other two.

Model Accuracy
Lower

Accuracy
Upper

Precision
Lower

Precision
Upper

Recall
Lower

Recall
Upper

Spectral Based (CNN) 0.95 0.99 0.96 0.99 0.97 0.99
Cepstral Based (LSTM) 0.90 1.00 0.89 1.00 0.89 1.00

Cepstral Based (Motif Classifier) 0.92 0.93 0.92 0.93 0.92 0.93

Table 5.1: Spectral and cepstral based classification model accuracy, precision and recall T-student (95%) confi-
dence intervals (Chainsaw dataset).

Additionally, in Table. 5.1 it is possible to observe the confidence bounds for each metric (accuracy,

precision and recall), obtained at the final step of this analysis. Note that across all metrics, the spectral

based approach is the one with higher confidence bounds. Not only it attains better results as the higher

confidence intervals support our performance estimation.

All in all, the considerable amount of available labelled recordings is the key factor that contributes to

the good performance of the developed models.

5.2.5.B Kaggle Dataset

In this particular dataset, the number of labelled recordings is very small, as a consequence, both

approaches present different techniques to address this problem. As in the previous section, we expand

the analysis concerned up until this point, with the introduction of the cross-validation technique.

In regard to the spectral based approach, our analysis includes two different architectures, both

presented in section 4.1.2.A and 4.1.2.B. The main difference between them lies in the introduction of

an LSTM layer in the second architecture. Moreover, both networks are trained with 5-second-long Mel

spectrograms, the training set of the two is increased with the ”SpecAugment” technique, and the used

predictive threshold value is 60%. Oppositely, the cepstral approach is trained with the 5-second-long

MFCCs and according to the previous results, this procedure uses a predictive threshold of 75%.

The attained results are depicted in Fig. 5.17, and from a general point of view the spectral based

classification model performed better than the cepstral one, supporting the idea that this approach is the

more suitable to a bioacoustic classification task.
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Figure 5.17: Cepstral and Spectral based classification models’ performance comparison (Kaggle dataset).

In depth, apart from recall, it achieved the highest scores, with the network that includes the LSTM layer

standing out from the other one, and justifying the introduction of this layer. The cepstral based classi-

fication model benefited from the cross-validation technique, as it registered a significant improvement

in all scores, nevertheless, despite having a higher recall score, all the other metrics are lower than the

ones obtained by the spectral based classification model.

Model Accuracy
Lower

Accuracy
Upper

Precision
Lower

Precision
Upper

Recall
Lower

Recall
Upper

Spectral Based (CNN) 0.89 1.00 0.64 1.00 0.70 1.00
Spectral Based (CNN & LSTM) 0.90 0.99 0.74 1.00 0.75 1.00

Cepstral Based (LSTM) 0.74 1.00 0.56 1.00 0.76 1.00

Table 5.2: Spectral and cepstral based classification model accuracy, precision and recall T-student (95%) confi-
dence intervals (Kaggle dataset).

Moreover, in Table. 5.2 we showcase the confidence bounds for the previously presented results.

Once again, our performance estimation is much stronger for the spectral based classification model.

Nonetheless, in both approaches, the lower confidence bound value is much smaller in comparison to

the ones obtained in the previous setting. In a sense, the attained confidence intervals align with the

learning difficulties faced by the developed networks, since their training relied on a limited set of labelled

recordings. The spectral based classification model that includes the LSTM layer is the one that provides

more certainty regarding our performance estimation, being the cepstral based classification model the

one with the lower confidence bounds.

To sum up, once again the spectral based approach seems to be the more adequate approach to

a bioacoustic classification task, however, further research needs to focus on trying to attain higher

confidence bounds when using the proposed methodology with datasets that have limited training data.
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6.1 Conclusions

The field of bioacoustics is key to ensure the conservation of rainforests and their wildlife, as it helps

reducing human impact on the environment. In this sense, Rainforest Connection emerges as a promi-

nent source of environmental audio data, contributing to this cause by encouraging the development

of bioacoustic monitoring systems. Deep learning methods have been successful on automating the

process of species identification in environmental recordings, requiring nonetheless a large number of

training samples per species. Thus, recent research focused on developing solutions capable of auto-

mate high-accuracy species detection in noisy soundscapes with limited training data.

Our work proposes a bioacoustic classification framework that achieved encouraging results, pre-

senting capable solutions for the problem at hand. In depth, it details two different approaches to ad-

dress this task, and it evaluates different concepts and procedures to determine the most suitable one.

The first leverages off the transfer learning setting to reduce the training requirements, both the amounts

of data and time, and relies on the Mel spectrograms to train the developed classification model (CNN).

Conversely, the second uses the MFCCs to train the developed classification model (LSTM), proposing

also an additional network trained on the matrix profile motifs to complement the proposed methodology.

We have demonstrated that both approaches are able to automate this process and can be included

in bioacoustic monitoring systems. The spectral based approach performed better than the cepstral one,

in both datasets. In particular, it achieved an accuracy of 0.97, a mean precision of 0.99 and a mean

recall of 0.97, with the chainsaw dataset. With the Kaggle dataset, it registered an accuracy of 0.97, a

mean precision of 0.91 and a mean recall of 0.93. The cepstral based approach aimed to present an

alternative to the previous methodology, as it concerned other audio features and other network type.

Additionally, it attempted to improve the results obtained by this procedure, by exploring a setting in

which a classifier was trained with the motifs extracted by the matrix profile algorithm.

All in all, we can state that all the goals set for this work were fully met, namely the definition of a

capable bioacoustic classification framework.

6.2 System Limitations and Future Work

Concerning the spectral based approach, future work can address the used data augmentation tech-

niques, as this procedure can be optimized to further improve the effectiveness of the training set.

Despite several attempts, we were not able to fine-tune the developed network to our task, being also a

subject to be addressed in posterior work.

In regard to the cepstral based approach, subsequent research can focus on the reasons that limited

the performance of this solution. Moreover, as previously mentioned, we attempted to complement this

approach by including a classifier that considered the motifs obtained by the matrix profile algorithm.
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This procedure presented some bottlenecks, namely the introduced distance functions and the limited

amount of available methods capable of handling the matrix profile related matters and the concerned

multidimensional features.

All in all, this document encompasses an in-depth research on numerous audio related subjects

(audio features, processing techniques,...), that are key to the development of the proposed end-to-end

pipelines. In this regard, a natural subsequent step of our work would be to take advantage of the

proposed frameworks to built a model capable of performing sound classification in audio data streams.

In addition, as we address motif discovery with the matrix profile algorithm, future solutions can expand

the carried out experiments to achieve the aforementioned purpose.
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Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. (1997). Solving the multiple instance problem

with axis-parallel rectangles. Artificial Intelligence, 89(1):31 – 71.

Eklund, V.-V. (2019). Data augmentation techniques for robust audio analysis. Master’s thesis, Tampere

University.

85



Glaze, C. M. and Troyer, T. W. (2007). Behavioral measurements of a temporally precise motor code for

birdsong. Journal of Neuroscience, 27(29):7631–7639.
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