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Resumo

Esta tese propõe o uso de Sfm (Structure-from-motion) e de ICP (Iterative Closest Point) para

georeferenciação em missões de patrulha de incêndio florestal, utilizando imagens capturadas por

aeronaves não tripuladas. Sfm+ICP usa o video da câmara da aeronave, bem como os dados fornecidos

pelo GPS e IMU (Unidade de medição inercial) para reconstruir uma nuvem de pontos 3D da área do

desastre. A reconstrução Sfm é separada em dois passos: uma reconstrução esparsa usando Speeded

up robust features (SURF) para estimar as poses da câmara ao longo do tempo, e uma reconstrução

densa usando um rastreador de pontos Kanade-Lucas-Tomasi (KLT) inicializado com o algoritmo de

valores próprios mı́nimos.

A reconstrução densa é depois registrada a um DEM (Digital Elevation Model) real da área à volta

do fogo, e usada para obter as estimativas de georeferenciação, calculando a média das coordenadas

3D correspondentes aos pixels do alvo.

Este algoritmo foi validado em dois datasets artificiais criados no Blender, e dois datasets reais de

aeronaves em missões de patrulha em incêndios florestais. Os resultados demonstram que Sfm+ICP

consegue fazer reconstruções 3D fiéis, e, ao mesmo tempo, georeferenciar de forma precisa e exata

numa situação de fogo florestal. Os resultados mostram também robustez a erros altos de IMU e

GPS, tornando este algoritmo numa opção ágil para georeferenciação com UAVs com sensores pouco

precisos.

Palavras-chave: fogo florestal, Veı́culo Aéreo Não Tripulado, structure from motion, georeferenciação,

DEM, ICP
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Abstract

This work proposes the use of Structure-from-motion (Sfm) and Iterative Closest Point (ICP) as a

forest fire georeferencing algorithm to be used with images captured by an aerial vehicle. Sfm+ICP

uses the real time video captured by an aircraft’s camera, as well as its IMU and GPS measurements to

reconstruct a dense 3D point cloud of the disaster area captured by the camera. The Sfm reconstruction

is divided in two steps: a sparse reconstruction step using Speeded up robust features (SURF) for

camera pose estimation, and a dense reconstruction step relying on a Kanade–Lucas–Tomasi (KLT)

feature tracker initialized using the minimum eigenvalue algorithm.

This dense 3D reconstruction is then registered to a real Digital Elevation Model (DEM) of the sur-

rounding area, thus refining the point cloud to better match the terrain. The reconstruction is then used

as the basis of the georeferencing estimates, as any target’s location can be estimated by averaging the

3D coordinates corresponding to its nearby pixels.

The algorithm was validated with two artificial Blender datasets and two real forest fire monitoring

videos. The results demonstrate that Sfm+ICP can perform accurate 3D reconstructions while also

georefering several targets in a forest fire environment. The results also show the algorithm is robust

to high IMU and GPS errors, making it a far better option than optic-ray-based georeferencing for UAVs

with unreliable telemetry.

Keywords: forest fire, UAV, structure from motion, georeferencing, DEM, ICP
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

In recent years, the ever decreasing cost of Unmanned Aerial Vehicles (UAVs) has sparked major

scienti�c interest in remote sensing and disaster monitoring. UAVs are now used for forest monitoring [1],

coastal geohazard assessments [2] [3] and forest �re monitoring [4].

One of the major problems any remote sensing application must solve is Georeferencing: relating an

image's internal coordinate frame to a ground system of geographic coordinates. Most applications use

a direct georeferencing method, as the one already developed for the FIREFRONT project [5], in which

Iterative Ray-Tracing is used.

Remote sensing is a set of techniques to obtain information about objects or areas from a distance,

which is often performed using UAVs with a camera or other types of sensors, such as Light Detection

And Ranging (LIDAR). Most UAVs used in remote sensing carry a GPS, a camera and an IMU to perform

georeferencing, however, payload constraints force them to only carry small and error-prone IMUs, which

signi�cantly hinders these systems' georeferencing potential. In forest �re monitoring systems, this

is compounded by an extremely demanding environment: heavy smoke, strong wind and a dynamic

scenario.

Georeferencing is the process of assigning locations to geographical objects within a geographic

frame of reference. In practice this means associating a set of 2D pixel coordinates from one image to

a set of 3D world coordinates, most often expressed in latitude, longitude and altitude. There are two

main methods to solve the georeferencing problem: direct and indirect georeferencing.

On the one hand, direct georeferencing uses navigational information and the camera to determine

a target's geographic coordinates. Most direct georeferencing methods try to solve a single-ray back-

projection problem: the process of determining the ground coordinates of pixels in a single aerial image

with the support of a DEM.

On the other hand, indirect georeferencing methods do not rely on navigational information, instead,

1



they register photographs to georeferenced data, such as a DEM or satellite images. This registration

can be done by directly comparing a photograph to a satellite image, but most state of the art algorithms

process the image before the registration. For example, Structure from motion (Sfm) constructs a 3D

point cloud from several sequential images, which can then registered to a DEM. Note that not all Sfm

algorithms are examples indirect georeferencing, as some do rely on navigational data, but most do not.

The georeferencing method proposed in this work is designed to operate in medium altitude forest

�re monitoring operations, using an UAV with a camera, GPS and IMU. The camera can be oriented

remotely to track a �re, while the GPS and IMU provide camera pose estimates. The UAV's mission

pro�le involves a loiter around the �re in which the algorithm is meant to georefer several ground targets

chosen by the operator.

1.1 Motivation

Forest �res have reached unprecedented �gures in Portugal. In the 1980's, 75000ha of Portuguese

land burned in forest �res. That number increased to 100000ha in the 1990's and 150000ha in the

2000's, and that trend shows no signs of slowing down, with a series of socioeconomic and climate

change related effects contributing to an ever increasing �re risk [6].

While downward economic cycles, budget scarcity, rural depopulation and forest land mismanage-

ment have exacerbated Portugal's �re risk, other southern European nations have also been affected

by forest �res. In the 2010's, over 3 million hectares of European land were burned as a result of forest

�res. Whilst the main victims were Portugal and the Mediterranean countries of Spain, Italy, France and

Greece, climate change will continue to cause rising temperatures and decreasing rainfall, which will

likely increase the length and severity of the �re season [7]. Additionally, high emissions climate models

predict that by 2070 most of Central Europe may also experience regular and lengthy �re seasons [8].

UAVs are relevant components of modern �re�ghting operations, which will help us �ght the next

waves of �re seasons. UAVs possess rapid maneuverability, extended operational range, improved

personal safety and cost ef�ciency, when compared to other remote sensing solutions, making them

particularly useful in �re monitoring and detection, given their ability to perform �re search, con�rmation

and observation [4]. Georeferencing algorithms are a critical aspect of these remote sensing systems:

by locating a �re quickly and accurately, �re monitoring systems can rely on quality data to be used by

�re propagation models and �re�ghting authorities, saving lives and property.

1.2 Objectives

This thesis entails two main objectives: the main objective is to develop an ef�cient and accurate

georeferencing algorithm for use in a forest �re scenario, using a medium-altitude aerial vehicle equipped

with a camera, GPS and an IMU.

The second objective is to design a robust Sfm (Structure from motion) approach that can be used,

not only in DEM matching-based georeferencing, but also in other applications: such as disaster recon-

2



struction and as a �rst layer of an IRT georeferencing algorithm. Hence, the Sfm block must be thorough

enough to build a detailed view of the scene, whilst also being fast and ef�cient so as to be used to

quickly re�ne the camera's EP.

1.3 Thesis Outline

This work is structured as follows:

• Chapter 2 provides a background on the main theoretical aspects mentioned throughout this doc-

ument, describes the current state of the art of georeferencing algorithms and �nally presents the

proposed approach.

• Chapter 3 explains the algorithm's implementation.

• Chapter 4 presents the results obtained in the simulations and experiments used to validate the

algorithm.

• Chapter 5 concludes this work by listing its achievements and providing future work ideas.
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Chapter 2

Background & State of the Art

Contents

2.1 Theoretical principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Structure from motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Digital Elevation Model (DEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Iterative Closest Point (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Optic-ray surface intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Structure from motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Registration with georeferenced imagery . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 DEM matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

This chapter is comprised of three main parts: section 2.1 provides a short theoretical background

over the major concepts explored in this work. Section 2.2 presents and reviews the state of art georefer-

encing approaches relevant to disaster monitoring using UAVs. Lastly, sections 2.3 and 2.4 present the

proposed approach and its contributions to the �elds of aerial georeferencing and disaster monitoring.

2.1 Theoretical principles

The subsections below present a quick introduction to the main theoretical principles revisited across

this document.
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2.1.1 Pinhole camera model

The camera is the main sensor used in any Structure from motion project: The accuracy and consis-

tency of the 3D reconstructions hinges on a precise knowledge of the camera's intrinsic parameters [9],

which mathematically express the pixel coordinates of any 3D point captured by the camera. Bundle

adjustment and point cloud registration may be able to greatly increase a reconstruction's accuracy, but

only if the camera model is sound [10].

The camera model used in this work is the pinhole camera model, chosen for its simplicity and

ef�ciency. This model is a simpli�cation of a real camera in which there is no lens and the camera

aperture is approximated by a single point, the pinhole [11].

Figure 2.1: Pinhole camera model

The mathematical formula (presented by Hartley and Zisserman in [12]) that describes how a 2D

pixel with coordinates (x,y) can be inferred from a 3D point with coordinates (X ,Y ,Z ) is

�

2

6
6
6
4

x

y

1

3

7
7
7
5

=

2

6
6
6
4

f x 0 cx

0 f y cy

0 0 1

3

7
7
7
5

2

6
6
6
4

X

Y

Z

3

7
7
7
5

; (2.1)

� is the scale parameter , f x and f y are the horizontal and vertical focal lengths, cx and cy are the optical

center coordinates expressed in pixels. The 3x3 matrix is often called the camera's intrinsic parameter

matrix, since it expresses the linear relation between the 3D world (in the camera's reference frame)

and the 2D pixel coordinates. Because these parameters are speci�c to the camera hardware (hence

the name intrinsic), we need to calculate them only once in the lifetime of a camera[12]. This is called

camera calibration.

Equation 2.1 is often a good approximation of the camera's behaviour, however, it ignores the effects

of the camera lens, which causes radial and tangential distortions. These distortions can be accounted

using the following equation [12]: 2
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, where [x; y]TU is the undistorted pixel, [x; y]TD is the distorted pixel, and dt and dr are the tangential and
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radial distortion parameters, respectively.

It is also worth mentioning that this mathematical relationship naturally only works one way: a 3D

point can only be expressed by a single 2D pixel, however, a 2D pixel can be an in�nity of 3D world

points.

2.1.2 Structure from motion

Structure from motion is the process of estimating the 3D structure of a scene from a set of images.

It can produce high quality, dense, 3D point clouds of a landform for minimal cost [10]. Sfm is already

well established in �elds such as archaeology and cultural heritage [9], and its use as a topographic

survey technique has surged in recent years.

The Sfm problem can be formulated as:

Given: m images of n �xed 3D points.

Problem: Estimate the m projection matrices, Pi , and n 3D points, X j , from the mn correspondences,

x ij , assuming the following camera model holds true:

x ij = Pi X j ; i = 1 ; ::::; m ; j = 1 ; :::; n; (2.3)

where Pi are 3x4 matrices and X j and x ij are, respectively, 3D and 2D points in homogeneous coordi-

nates.

Figure 2.2 shows a simple Sfm example with only 3 images. In real applications, not all the 3D points,

X j , are present in every single image, and the point correspondences, x ij , contain outlier matches,

however, the basic idea behind Sfm still holds true.

Figure 2.2: Structure from motion problem [12]

Sfm is not a single technique, it is a work�ow, employing multiple algorithms developed from 3D

computer vision, traditional photogrammetry and more conventional survey techniques. That being said,

most published Sfm implementations follow the same 5 step process [10]:

1. Keypoint detection: The �rst step is to detect keypoints in all the m images. Each keypoint is a

speci�c pixel that contains a distinct feature.
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2. Keypoint correspondence: The keypoints are matched across all images, in order to �nd the

correspondences x ij .

3. Multi-view triangulation: MVT is used to initially estimate the 3D points, X j , and the projection

matrices, Pi .

4. Bundle adjustment: BA re�nes the initial X j and Pi estimates provided by the previous step.

Some Sfm applications iterate MVT and BA to converge on a better 3D reconstructions, while

others do this just once.

5. Linear similarity transformation: The X j estimates provided by the BA are expressed in an

arbitrary reference frame relative to the camera. Hence, Sfm's �nal step is to scale, translate and

rotate the 3D points, X j , to get a reconstruction expressed in N-E-D reference frame.

At large scales, and when working with a physical environment, three main parameters have been

shown to affect the quality of the 3D model recovered by a Sfm algorithm:

• Lighting conditions: glare and variable contrast across a scene can negatively impact point

matching. This can be partially solved by using robust feature detectors and a rigorous keypoint

matching scheme [13].

• Changes in shadow length or albedo due to solar positioning: these dynamic changes can

severely reduce the quality and amount of feature matches. Other natural dynamic changes in-

clude: vegetation oscillation due to wind, smoke and �re. This effect can be easily minimized by

limiting each survey to less than 30 minutes [13].

• Errors in the position and orientation measurements: a small error in the pose of the aircraft

can cause a large bias in the subsequent reconstruction. However, since the relative reconstruction

itself is consistent to its arbitrary reference frame, this bias can be removed by registering the 3D

results with a known relief map of the scene.

2.1.3 Bundle adjustment

Bundle adjustment is the problem of re�ning a visual reconstruction to produce a jointly optimal

3D structure and viewing parameters (camera poses and/or calibration) estimates [14]. While Bundle

Adjustment has been used in Aerial photogrammetry since the 1950s, its popularity has resurfaced in the

past decades, mainly due to its ability to improve the accuracy and consistency of 3D reconstructions.

The Bundle adjustment problem is classically formulated as a nonlinear least squares problem, in which

the solution is found by minimizing the reprojection error of each feature point.

The idea behind the reprojection error is fairly straightforward: a feature point is a set o pixels in

multiple images that correspond to the same 3D feature, whose 3D location can be estimated using a

triangulation algorithm. The pinhole camera model (discussed in 2.1.1) can be used to determine the

pixel coordinates of any 3D point , including the estimated 3D feature point locations. In real applications,

the triangulation process will yield imperfect 3D location estimates, whose accuracy can be evaluated
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by reprojecting the estimated 3D point to the image and comparing the reprojected pixels with the initial

feature point pixels, hence the name reprojection error.

Table 2.1: Pros and cons of Bundle adjustment [14]

Pros Cons

Flexibility: Bundle adjustment handles a vari-
ety of feature, scene and camera types, as well
as different error models for minimization.

Accuracy: It is statistically optimal (assuming
Gaussian noise), giving good results even for
low quality reconstructions.

Ef�ciency: The Bundle Adjustment problem's
structure enables sparse linear equation solvers
to greatly outperform general-purpose optimiza-
tion routines.

Initialization: Bundle adjustment relies on a
good initial estimate. If this initialization contains
a large amount of outliers, the Bundle adjust-
ment will not produce a good result.

Problem size: Large problems may have mil-
lions of unknown variables, which is challenging
even for the best of sparse equation solvers.

Error accumulation: In long reconstructions,
error will accumulate over time, requiring the
use of special types of Bundle Adjustment,
which increase the algorithm's complexity.

In mathematical terms, the reprojection error Vx 0
ij

, of the point i in image j , is expressed by

x0
ij + Vx 0

ij
= �̂ ij P̂j (x ij ; IP; EP )X̂ i (2.4)

where x ij is the real position of point i in image j , in pixels, IP and EP represent the camera's intrinsic and

extrinsic parameters, respectively, and �̂ ij is the scene's scaling factor, which can be either minimized

by the Bundle adjustment, or remain �xed. Finally, P̂j is the camera's projection matrix, which converts

3D points into 2D pixel coordinates in image j , X̂ i is the initial guess of the 3D position of point i , and

x0
ij is the 2D pixel location of point i in image j , if we assume that X̂ i is correct.

This results in a very large number of unknown parameters to be minimized by the bundle adjustment:

• The 3D locations of all the points X̂ i

• The 1D scale vector �̂ ij , which may vary image to image.

• The 6D exterior pose of the camera for each frame, given by the Extrinsic parameters (EP)

• The 5D intrinsic parameters of the camera are sometimes optimized, however this is often ignored

in real time applications due to time constraints.

This high number of unknowns for each point/pixel can often lead to a total of millions of unknowns for a

reconstruction with just a few dozen images. Notwithstanding, this linear system is very sparse, as not

all the points are visible in all the images, and some unknowns are constant for each point, such as the

intrinsic parameters.

There are several notable variations of Bundle adjustment, which seek to improve its ef�ciency in

speci�c aspects:

• Local Bundle adjustment:
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Local Bundle adjustment divides the image sequence, performing the minimization in smaller

batches [15], instead of in one large global minimization, increasing the algorithm's time ef�ciency.

• Incremental Bundle adjustment:

In Incremental Bundle adjustment, the minimization is performed right after each image is pro-

cessed [16]. This is often coupled with Local Bundle adjustment, and is widely used in real time

applications.

• Constrained Bundle adjustment:

Constrained Bundle adjustment minimizes not only the reprojection error of each point, but also

another relevant error variable, such as the GPS or gymbal error [17]. This method greatly in-

creases the algorithm's accuracy, particularly the scale factor and camera's extrinsic parameters,

if the navigational data is reliable enough.

2.1.4 Digital Elevation Model (DEM)

Digital Elevation Models are digital representations of elevation data to represent terrain. Most DEMs

are represented as a regular grid with either Latitude and Longitude in degrees, or North and East in

metres, and in which each grid's square has a certain elevation value.

There are two types of DEM: Digital Surface Models (DSM) represent the earth's surface, including

buildings and trees and are mostly used in urban planning and visualization applications, while Digital

Terrain Models (DTM) only represent the bare ground, and are amply used for land use studies, �ood

prevention, geological applications and planetary science. The DEMs mentioned in this work are all

classi�ed DTMs, however, they do include trees in their elevation data, since the Radar and satellite

images used to create them cannot penetrate dense tree canopies [18].

Figure 2.3: EU-DEM v1.1 around Serra da Archeira, Portugal
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DEMs were traditionally created from existing topographic maps and aerial photos, however, most

recent DEMs are generated using synthetic-aperture radar usually mounted on a satellite, or from even

newer techniques such as LIDAR.

Europe's most accurate DEM is the EU-DEM v1.1 [19] which was made by merging elevation data

from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission

and Re�ection Radiometer (ASTER) DEMs. SRTM was generated using synthetic-aperture radar while

ASTER was made from satellite images. EU-DEM v1.1 combines the perks of both ASTER and SRTM,

resulting in a 25m resolution DEM with a 7m RMSE of most of Europe's countries.

DEMs are invaluable for most types of georeferencing algorithms: both direct and indirect methods

rely on them, however, they do have some limitations in forest �re applications:

• The 25m resolution of the EU-DEM is remarkable, but in practice this means that any method

relying on a DEM will struggle to have a better horizontal accuracy than 25m.

• Radar and satellite imagery cannot penetrate dense forests, but they can do that in areas with

sparser forests, such as some which are planted for industrial use. This leads to situations where

dense forests have higher elevations than sparser ones, which can be serious since, for example,

eucalyptus reach heights between 10 and 40 metres.

2.1.5 Iterative Closest Point (ICP)

ICP is a point cloud registration framework used to �nd a local transformation to align two sets

of points. Each step of the ICP algorithm attempts to align the two point clouds closer and closer,

converging on a rotation matrix and translation vector that minimize the average distance between the

two point clouds [20]. The ICP algorithm is based on a simple four step iterative process, designed to

sequentially bridge the gap between the �xed and moving point clouds:

1. Select points on one point cloud.

2. Find the closest points on the other point cloud. This point cloud is called the ”�xed point cloud”,

since it acts as a static reference.

3. Minimize the sum of the distances between the two sets of points. This produces a new point cloud

more similar to the �xed one than in the previous iteration.

4. Repeat the previous 3 steps until the the two point clouds are similar enough.
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Pros Cons

Simple: ICP is easy to understand and imple-

ment.

Versatility: It is highly modi�able, allowing it to

�t into diverse problems and solutions.

Accuracy: ICP performs well if a good initial

guess is available and there are few outliers.

Initialization: ICP relies on a good initial guess,

and may fail to produce a good transformation if

there are too many outliers or if the initial guess

is too wrong.

Unpredictability: Given it iteratively minimizes

the distance error, the ICP's speed is not known

a priori, instead the user has to specify a mini-

mum tolerance for the algorithm to stop.

Table 2.2: Pros and cons of Iterative closest point [21]

There are many ICP variants: most address the most dif�cult aspect of ICP, which is data association.

Data association has a large impact on the convergence and speed of the algorithm, and is especially

crucial in large and sparse point clouds with few features. There are also variants that change the

minimization metric employed, point-to-plane being the most widely used [21]. Others perform different

types of point sub-sampling to increase the algorithm's speed and accuracy. Finally, correspondence

weighting is sometimes used to give more importance to certain points or features.

2.2 State of the Art

This subsection enumerates and analyzes the different aerial georeferencing methods. Georeferenc-

ing can be summed as the problem of aligning geographic data to a known coordinate system so it can

be viewed, queried and analyzed.

2.2.1 Optic-ray surface intersection

Optic-ray surface intersection is the most ef�cient and versatile georeferencing method. Optic-ray-

based algorithms perform georeferencing by solving a single-ray back-projection problem: the process

of determining the ground coordinates of pixels in a single aerial image with the support of a DEM.

There are three main methods to solve the single-ray back-projection problem, which are quantitatively

evaluated in [22]:

• The Iterative Photogrammetric method is based on the inverse collinearity equations. It is the

most computationally ef�cient method and is able to produce precise coordinates for simple sur-

faces, however, it suffers from divergence and occlusion induced problems in more complicated

scenarios.

• The Ray Tracing method computes the coordinates by intersecting the view ray with the surface.

It is very popular in computer graphics and it is the most accurate of the three methods. However,

it is the most computationally intensive by far.
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• Iterative Ray Tracing �nds the intersection point by extending the view ray towards the surface by

a certain step at a time, until it hits the surface. The IRT is intermediate in terms of ef�ciency and

can produce coordinates with satisfactory precision

For these reasons, Iterative Ray Tracing (IRT) is the algorithm most widely used in real-time direct

georeferencing applications. IRT is used in [23] for direct georeferencing in an agricultural application

using a small low altitude drone. This technique achieves a high accuracy in low altitude �ight, but the

position and orientation sensor's errors are not accounted for, making this approach unscalable and

ineffective for medium altitude forest �re monitoring.

Santana [5] proposes the use of the IRT in conjunction with an unscented transform to both estimate

the target's position, and its uncertainty. This approach is better suited for medium altitude georeferenc-

ing, having an accuracy in the dozens of meters. This error is mostly due to sensor imperfections, which

makes it dif�cult to decrease by purely algorithmically means.

Xu [24] proposes an electro-optical stabilization and tracking platform which integrates the camera

with the UAV's navigational data, in order to stabilize the camera's orientation. Xu also proposes a CKF,

a non-linear Kalman �lter. These techniques greatly improve the georeferencing accuracy of the direct

algorithm, however, they also increase its implementation cost, complexity and computation time.

In conclusion, optic-ray-based georeferencing methods are computationally ef�cient and achieve a

satisfactory accuracy when fed with good quality navigational data. Some methods are able to account

for this uncertainty, but none can reduce it a posteriori, which means their accuracy degrades quickly

with altitude and orientation bias in particular.

2.2.2 Structure from motion

Sfm, which was initiated by the computer vision research community, has now been widely used

for automated triangulation of overlapping UAV-based frame imagery. Sfm is a set of computer vision

algorithms that facilitate the photogrammetric reconstruction of 3D scenes from images alone. It has

gained popularity in recent years due to its ability to deal with sets of unordered and heterogeneous

images without prior or accurate knowledge of the camera's intrinsic and extrinsic parameters.

Most of Sfm's variation happens in three aspects [9]:

• Camera pose estimation , which is usually performed with a sparse feature extractor, such as

SURF, SIFT or ORB, followed by a sparse bundle adjustment to re�ne the initial camera pose

estimations. Some approaches perform pose estimation and reconstruction at the same time,

while others do them in two separate steps.

• Exterior image parameters estimation , which is employed to recover 3D points from the images.

This was traditionally done with Ground Control Points (GCPs), however, most recent applications

use GPS to perform this step [13].

• Bundle adjustment , which is the most computationally intensive part of the Sfm algorithm. Mouragnon

[15] introduces a local bundle adjustment allowing 3D points and camera poses to be re�ned si-
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multaneously through the sequence, which allows Sfm to run much faster. Lhullier [17] introduces

a constrained bundle adjustment that minimizes both the reprojection error and the position error,

using GPS data in real time. This fusion improves BA's accuracy on long image sequences, and

increases the consistency of incremental BA. Incremental BA is also proposed by Lhullier in [25] as

a way to reduce its computation time by dividing it in several minimization problems. This greatly

improves Sfm's computation speed, but at the cost of decreased point cloud consistency.

Sfm is an agile algorithm, meaning it can easily be customized to �t a speci�c set of requirements.

Forlani [26] uses it to perform indirect landing strip georeferencing under poor GNSS satellite coverage.

Their approach achieves a satisfactory accuracy, but it is clear that either ground control points, or GNSS

data is needed to improve a Sfm algorithm's accuracy. Sfm is used for forest remote sensing in [1] and

[27]. These papers prove that Sfm can be used for medium altitude forest remote sensing with meter

level accuracy and LIDAR equivalent point cloud density. They also prove that it can be run in real time,

and perform georeferencing and data collection at the same time.

Notwithstanding, Sfm faces some obstacles in forest environments, as is highlighted by Iglhaut et

al. [13]: feature extractors perform poorly in forests, where the scene is often dynamic, and sudden

illumination changes are commonplace. All of these facts combine to make Sfm a tough proposition in

wild forest environments.

2.2.3 Registration with georeferenced imagery

Image registration is the process of overlaying two images of the same scene taken at different times,

from different viewpoints and with different sensors. The papers in this subsection use this process to

register images taken by an UAV with georeferenced satellite/aerial images, and use the result of that

registration to perform georeferencing.

Conte [28] proposes a correlation-based image registration approach. Correlation-based methods

are ef�cient and can be applied to areas with no obvious landmarks, such as forests. However, these

methods are not as accurate as pattern-based ones, being very sensitive to scene changes, such as

smoke, �re or tree canopy height differences.

Zhuo [29] uses SIFT in a pattern-based image registration approach, matching UAV images with

satellite images. This approach achieves a decimeter level accuracy, however, it is not practical for

medium altitude tilted camera platforms, especially when operating in dynamic environments, such as

wild forest �res.

Lindsten et al. [30] use environmental classi�cation to classify and match superpixels. This method

is more robust to orientation errors, but not to dynamic environment changes. Notwithstanding, environ-

mental classi�cation outperforms classic feature detectors in rural scenes.

Li et al. [31] propose a fusion of infra-red and visible light images to improve the registration's

robustness to low illumination and smoke. This is obviously useful for forest �re scenarios, but it suffers

from the same implementation issues that plague other image registration methods.

Hamidi and Samadzadegan [32] use database matching techniques to re�ne the coarse initial al-
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titude and position parameters of the camera derived from its navigational data. Image registration is

used as a �rst re�nement step, while a direct IRT method is used to perform the georeferencing step

itself, taking advantage of the re�ned camera poses. This is an intriguing approach, which maximizes

the bene�ts of direct and registration based georeferencing, highlighting that an indirect georeferencing

algorithm can either be an improvement to a classic direct method, or help improve it.

In conclusion, image registration can be more accurate than any other method, if the speci�c im-

plementation suits it. On the other hand, it is much slower and less �exible than direct georeferencing,

requiring more algorithmic complexity, while not being able to handle dynamic scenarios, such as a wild

forest �re.

2.2.4 DEM matching

DEM matching is a technique used to match two DEMs : one being the ”true” DEM, made by a

regulatory body, such as the EU-DEM v1.1, and the other being a DEM recovered from a set of 3D

points measured with a camera, LIDAR or Radar.

DEM matching was originally proposed to replace the need for GCPs for absolute orientation of

perspective images. Most methods solve the problem of adjusting the parameters of a 3D similarity

transform (scale, translation, rotation) to minimize the sum of squares of height differences.

Sim et al. [33] uses an interpolation of a 25 m DEM to achieve a metre level accuracy. Rodriguez [34]

proposes a quick stereo reconstruction and the use of cliff maps to perform a quick DEM registration.

Map registration is also used in military applications, to replace GPS when it is jammed [35], and in

extra-planetary navigation, where GNSS is not available. DEM matching performs well across survey

scales and �ight levels, making it useful in medium altitude forest �re remote sensing.

2.3 Proposed approach

This work's main objective is to design a georeferencing algorithm to be used in forest �re monitoring

applications as a part of the FIREFRONT project. The algorithm has access to the GPS, altimeter

and IMU data, which estimate the camera's location and orientation, as well as a sequence of images

captured by the camera as it moves around the �re. The �nal input is a series of user-selected target

pixels, which are speci�c image regions that the user wants to georefer.

The algorithm must be able to accurately georefer several targets in real time, furthermore, as high

telemetry data errors are expected, the algorithm needs to either correct them or estimate the result's

uncertainty.

There is no optimal solution for this problem, as there are several limitations in all the state of the art

medium altitude georeferencing algorithms presented in section 2.2. Optic-ray-based georeferencing

is time ef�cient and accurate when fed with good quality telemetry data, however, it produces wildly

innacurate results when this data is unreliable, which happens often in disaster monitoring operations.

And while they can estimate a result's inaccuracy, optic-ray-based methods cannot lower it a posteriori,
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which is especially bad when a large bias is present in any measurement.

Image registration is robust to telemetry errors and produces better georeferencing results than any

other method when used in low altitude areas with enough landmarks. Nonetheless, most forest �res

happen in areas with few landmarks, and while low altitude UAVs certainly have a role to play in disaster

monitoring, �re, smoke and wind make low altitude georeferencing impractical for this project.

Sfm is able to reconstruct the operational area while also performing georeferencing, however, its

work�ow is designed for of�ine georeferencing, as the accuracy of medium altitude real time methods

is lower than for other georeferencing types. Notwithstanding, Sfm can be paired with DEM match-

ing to improve a reconstruction's accuracy, and its inner workings are highly modi�able, enabling the

development of a speci�c Sfm approach to a speci�c problem.

DEM matching is by far the less popular georeferencing method for civil uses. It can greatly outper-

form any other method in high altitude georeferencing, hence its extensive use in military applications.

However, these applications use extremely expensive equipment, and while high altitude aircraft loiter-

ing is sometimes used in forest �re monitoring, it is performed at low speed, whilst DEM matching is

more suited to high speed and high altitude missions. Anyhow, the main premise of DEM matching is

still useful: that terrain maps can be used to improve a georeferencing estimate's accuracy.

This thesis' proposed approach can be classi�ed as a Sfm+ICP georeferencing method. Sfm is

used to reconstruct a 3D model of the �re area using techniques most similar to [1] and [25]. This

reconstruction is then improved by matching it to a known DEM of the terrain around the aircraft, similarly

to [33] but with a more �exible registration algorithm that matches the downsampled reconstructed point

cloud and the upsampled DEM. This registration is in essence similar to DEM matching, but instead

of matching DEMs, the algorithm matches high density point clouds, which is more computationally

intensive, but yields better registration results.

Using Sfm allows the algorithm to densely reconstruct the operational area and consequently geo-

refer dozens of targets at the same time with no increase in computation time. Using it in real time is

also challenging due to some of its time intensive routines, thus the algorithm needs to use a simple and

quick kind of Sfm that still guarantees high georeferencing accuracy . On the other hand, using the ICP

makes this algorithm robust to telemetry errors, even if they are exceedingly large.

2.4 Contributions

This work's main contribution is a georeferencing algorithm designed for medium altitude forest �re

monitoring operations. It has a comparable accuracy to state of the art algorithms, while also being more

robust to telemetry errors than other direct georeferencing methods.

The Sfm half has two Sfm blocks: one initial sparse one to estimate the camera's pose through-

out the image sequence, using SURF features and a single bundle adjustment, and a second dense

reconstruction to build a dense point cloud of the surrounding terrain, using a KLT point tracker with

low quality MinEigen features. This setup allows Sfm+ICP to perform well even with low resolution and

shaky footage captured above 900m altitude.
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The ICP half of the algorithm is designed to register a point cloud spanning 50-300ha to a reference

DEM. While there is no novelty in the ICP, its use with Sfm is new in the �eld of georeferencing.
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Chapter 3

Implementation
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This chapter provides a deep explanation over all phases and aspects of the proposed implemen-

tation. Section 3.1 details the algorithm's inputs and outputs. Section 3.2 presents a brief overview of

the core blocks of the georeferencing algorithm. Sections 3.3 and 3.4 focus on the individual parts of

the algorithm: Structure from motion and Registration. Finally, section 3.5 de�nes the metrics used to

optimize and evaluate the algorithm.

3.1 Inputs and outputs

The algorithms' inputs are:

• Images :

Being primarily a Sfm implementation, this georeferencing algorithm's main input is a set of se-

quential images. In fact, the extrinsic measurements are not strictly necessary for the algorithm to

work, they just increase its accuracy and convergence time.

The algorithm was designed to work with video frames sampled at a regular time interval, how-

ever, it can also work with regular aerial photos or with images taken by human observers in high
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elevation areas. The only constraint is that the images need to be taken sequentially and have

overlapping regions, so that the same feature points can be detected in several images.

While forest �re monitoring videos typically do have a 1080x1920 resolution, some regions of the

original frame are cluttered with �ight information, so only a smaller part of each frame may be

used as an input image. Figure 3.1 shows an original frame of one the videos used in this work.

This image has a 1080x1920 resolution, however, the usable part of it is only 630x930.

The video frames' sampling rate depends mainly on three factors: altitude, speed and image

resolution. Intuitively, high altitude, high speed and low image resolution all make it harder to

perform Sfm, hence a higher sample rate is needed to overcome this. For example, a sampling

rate of 2Hz was used for the 900m altitude dataset and one of 4Hz for the 1900m one. In truth, the

only drawback of having a higher sampling rate is an increased algorithm run time, so while it is

necessary to increase the sampling rate when faced with adverse conditions, it is not mandatory

to lower it when in more favourable ones.

Figure 3.1: Frame from the UAVision dataset

• DEM:

A DEM of the surrounding area is used to register the reconstructed point cloud to the terrain,

thereby improving the point cloud's accuracy. The DEMs used in this thesis' tests were all cropped

versions of the EU-DEM v1.1. This DEM has a 25m resolution and a vertical RMSE of 7m, making

it Europe's most accurate terrain map available for civilian purposes.

• GPS:

The GPS is used to initialize the ICP algorithm, providing an initial relationship between the air-

craft's reference frame and a global reference frame.

However, the GPS's main purpose is to help determine the reconstruction's scale factor: since Sfm

cannot directly estimate its scale factor, external measurements have to be used. The traditional

way of determining the scale factor is to use GCPs, which provide the real location of a speci�c
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feature point, but GCPs are not �exible enough to be used in forest �re missions, so a different

method must be used.

The aircraft measures its airspeed, altitude, orientation and GPS coordinates, so they may all be

used in conjunction with the reconstruction itself to determine its scale factor. Since the speed

measured is an air speed, not a ground speed, it cannot be used to accurately estimate the scale.

The next option is to use the camera's pitch, altitude and a DEM to determine the correct scale

factor for the reconstruction to have the same elevation as the DEM, however, the camera's pitch

has a very high error, which would force the use of a long iterative process to re�ne the pitch

estimate and the scale factor using several ICP loops.

Therefore, the method chosen to determine the scale factor was to compare the estimated trajec-

tory given by the motion estimation step with the measured trajectory given by the GPS, and use

the ratio between them to compute the scale factor.

• Altitude :

The camera's altitude is only used to initialize the ICP algorithm. Since forest �re monitoring is

performed in level �ight, the algorithm does not actually need the altitude measurements in order

to work, as the ICP can easily correct an altitude error by translating the entire point cloud vertically.

• Camera pitch and heading :

The cameras used by forest �re monitoring drones typically have their own stabilization system

which provides somewhat reliable pitch and heading measurements. It is important to remark

that since the camera is independent from the UAV itself, the aircraft's orientation (which is a far

more accurate estimate) cannot be used to estimate the camera's pitch and heading. Instead, the

camera's pitch and heading angles are de�ned as in Figure 3.2, and the roll angle is assumed to

be null, since the camera attempts to stabilize it in real time.

The camera's pitch and heading are only used to transform the reconstructed point cloud from the

camera's reference frame to a global inertial reference frame. Much like the altitude and the GPS,

Sfm+ICP can work without initial orientation estimates, however, reliable measurements do speed

the ICP's convergence and increase its success chance. This is especially true for the pitch angle,

which is the hardest for the ICP to correct.

Figure 3.2: Camera orientation axis (taken from [36])

• Targets' pixel coordinates :
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The user can choose several targets to be georeferenced at once. Each target is fed to the algo-

rithm as a speci�c pixel in a frame. Since the dense reconstructions can �nd dozens of features

next to each pixel, and each feature's 3D location is determined by Sfm+ICP, the estimated 3D

locations of all nearby features can be averaged to approximate the target's real location. And

since all the features are georeferenced during Sfm+ICP, there is no limit to the amount of targets

the user can georefer in a given algorithm iteration.

Using those inputs, the algorithm's outputs are:

• Target's geodetic coordinates :

Since its main purpose is georeferencing, the algorithm's main output is the target's location, ex-

pressed as latitude, longitude and altitude. This output's accuracy is discussed in chapter 4, by

comparing the algorithm's georeferencing estimates with manual georeferencing performed using

georeferenced satellite imagery. Unlike optic-ray-based georeferencing, Sfm+ICP cannot directly

compute its result's uncertainty, it can only qualitatively estimate the reconstruction's accuracy

using its reprojection error, and estimate the ICP's result by its RMSE.

• 3D reconstruction of the �re area :

The 3D point cloud containing the estimated locations of all the inlier feature points can be used

for more than just georeferencing a few targets: it can be used to study the �re's evolution, create

an updated 3D map of the disaster area, which may differ drastically from what is shown in older

satellite images and it can even help other georeferencing algorithms.

Since this Sfm+ICP implementation was designed to operate in real time, each reconstruction's

size was purposefully kept at less than 50 thousand points per algorithm run, since this is enough

to get accurate reconstructions and georeferencing estimates, however, the reconstruction can

have a much higher amount of points if the algorithm's time constraints are relaxed.

3.2 Algorithm overview

This section provides quick rundown of each of the algorithm's main components, contextualizing

them in the broader scheme of things. Figure 3.3 shows a schematized view of the Sfm+ICP algorithm.
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Figure 3.3: Algorithm diagram

The algorithm has four main blocks:

1. Motion estimation :

This step estimates the camera's pose at the time each photograph was taken. The camera poses

are estimated using a simple and quick Sfm, often called sparse Sfm in contrast to the dense Sfm

used in the next step. Sparse Sfm is a Sfm algorithm that uses sparse features, allowing it to be
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run several times faster than its dense counterpart.

The attribute sparse comes from the fact that this Sfm step extracts only the best quality features,

rejecting lower quality ones, which allows it to accurately estimate the camera's pose in each of

the images. These poses are this block's main output, and will be used in the next step to produce

the dense point cloud, which is then used as the basis for the georeferencing estimates.

2. Dense reconstruction :

Dense reconstruction generates a dense point cloud of the area captured in the images. This is

achieved in �ve steps: it starts by detecting features in each image and matching them across

all the images. Multi-view triangulation is then used to coarsely estimate the 3D location of these

features, which is then re�ned using a single bundle adjustment. These three steps produce

an unscaled point cloud in the camera's reference frame, that is transformed to a scaled inertial

reference frame using the telemetry data. The �nal step is to remove outliers from the point cloud,

using their location and reprojection error.

3. Point cloud registration :

Point cloud registration improves the point cloud's precision by matching it to a real DEM of the

surrounding area using ICP, i.e. translating and rotating the point cloud in a way that minimizes the

distance between the real map and the reconstruction. The DEM is interpolated to match the point

cloud's resolution, which is downsampled to a 2.5m resolution. Finally, the ICP's RMSE is used

to evaluate the algorithm success up to this point: if the RMSE is too high, it means that the 3D

reconstruction is of poor quality, thus the algorithm discard the current point cloud and goes back

to the �rst step, motion estimation.

4. Target georeferencing :

This �nal step computes the targets' geolocation using the re�ned dense reconstruction from the

last step. This the simplest and quickest of the four main blocks, as it simply averages the 3D

position of the 10 closest features to the target in order to estimate its location.

3.3 Structure from Motion

Structure from motion uses the the photographs taken by the aircraft and its telemetry to reconstruct

the scene captured in the images.

The Structure from motion block has two steps: motion estimation, used to estimate the camera's

pose throughout the images, and dense reconstruction, which generates a dense point cloud of the area

captured in the images.

24



3.3.1 Motion estimation

As depicted in Figure 3.3, the motion estimation step is composed of three smaller blocks, the �rst

of which is extracting Speeded Up Robust Features (SURF) from the input images.

SURF is a scale and rotation invariant interest point detector and descriptor. It is a quicker version of

SIFT, while also being more accurate than most state of the art feature extractors, due to its scale and

rotation invariability [37].

SURF's only major downside is that it extracts much fewer features when compared to SIFT, KAZE

and corner feature detectors such as the Minimum eigenvalue algorithm. However, SURF greatly out-

performs these algorithms in speed, and its lack of feature density is actually an advantage in motion

estimation: as the main purpose of this step is to estimate the camera's pose at each of the instants

it took a photograph, not to reconstruct the captured scene. In this way, having fewer but high quality

features as provided by SURF is much better than having a lot of low quality SIFT, KAZE or Min Eigen

features.

Figure 3.4: Features extracted by SURF

SURF's sparsity is clear in Figure 3.4, as it only extracts 250 features in one image. However, most

of these features are in regions favourable to feature matching, such as buildings, roads and the smoke's

outline.

Algorithm 1 describes the motion estimation algorithm: each camera pose is initially estimated rel-

ative to the previous pose, using the SURF feature matches found between each sequential image

pair. After performing this initial pose estimation loop, a bundle adjustment is used to re�ne the camera

poses. To improve the accuracy, an intermediary step was added to also estimate the 3D location of all

the SURF features matched across all images, however, the re�ned camera poses are the only relevant
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output from this multi-view triangulation and bundle adjustment sequence, since the recovered 3D point

cloud is very sparse and only used inside the motion estimation subroutine.

Algorithm 1 Motion estimation algorithm

Inputs: images, IP.
Outputs: camera poses.

1: Initialize the �rst camera pose as the global reference frame's origin.
2: Extract SURF features from the �rst image.
3: for all remaining images do
4: Extract SURF features from the image.
5: Match these features to the last image's features.
6: Estimate the pose of the camera relative to the previous camera, using the matched features.
7: Convert this relative pose to a global pose.
8: end for
9: Estimate the 3D location of all the features matched between all the images, using Multi-view trian-

gulation.
10: Re�ne the camera poses and feature 3D locations using Bundle adjustment.

This is a simple but quick con�guration: the use of a fast feature detector alongside a single global

bundle adjustment ensures that it runs smoothly even when dozens of images are processed in real

time. And while it is not as accurate as a con�guration with a denser feature detector and multiple

bundle adjustment steps, 3D feature accuracy is not the priority here, since the dense reconstruction

step re�nes the estimates provided by the motion estimation step.

This Motion estimation method does what it is supposed to do: quickly estimate the camera's pose

throughout the image sequence, considerably reducing the dense reconstruction's run time. Additionally,

the motion estimation step can be run alongside the initial parts of the dense reconstruction algorithm

without any loss in accuracy or point cloud density.

The results of the Motion estimation step can also be used to predict the �nal result's georeferencing

accuracy: the motion estimation's bundle adjustment has a certain mean reprojection error, correspond-

ing to the average image distance between the reprojected points and the measured ones. This value

can be easily calculated after the motion estimation step and used as a way to discard the current algo-

rithm run and start over, as a high reprojection error often leads to inconsistent 3D reconstructions and

a poor ICP registration, culminating in a bad georeferencing estimate.

3.3.2 Dense reconstruction

As shown in Figure 3.3, the dense reconstruction block uses the re�ned camera poses computed in

the motion estimation step alongside the images and telemetry data to produce a dense point cloud of

the photographed area.

Algorithm 2 provides a step by step overview of the dense reconstruction algorithm. It starts by

initializing a Kanade-Lukas-Tomasi point tracker using Min Eigen features. The KLT is a state of the art

feature tracking algorithm [38], which, like other point trackers, is rarely used in Structure from motion

projects, since it cannot handle long scenes with low overlap. However, the forest �re footage used in

�re monitoring scenarios is often focused on a single operational area, so the camera captures the same
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Algorithm 2 Dense reconstruction algorithm

Inputs: images, IP, re�ned camera poses, GPS, altitude and camera orientation (given by the IMU).
Outputs: dense point cloud in an inertial North-East-Down reference frame.

1: Initialize the KLT point tracker with Min Eigen features extracted from the �rst image.
2: for all remaining images do
3: Find the previous tracked features on the next image, using the KLT.
4: end for
5: Estimate the 3D location of all the points tracked, using multi-view triangulation.
6: Exclude points with reprojection error higher than 2 pixels.
7: Re�ne the camera poses and feature 3D locations using Bundle adjustment.
8: Rotate the point cloud using the pitch and heading of the �rst camera pose.
9: Translate the point cloud using the altitude of the �rst camera pose.

10: Scale the point cloud using the ratio. between the re�ned camera poses and the GPS.
11: Remove outliers from the point cloud using their distance and elevation.

scene from multiple angles, which suits the KLT.

Min Eigen features were selected for the KLT's initialization, since they greatly outperform other state

of the art feature extractors in feature density for low resolution images. This concern is especially

pressing given the dif�culties faced by SURF, SIFT and KAZE in extracting features from forest environ-

ments, which offer low color variability (they are often quite green). These dif�culties are ampli�ed by

the aircraft's altitude, usually between 800 m and 2000 m, and the disturbances common in forest �re

scenarios: heavy smoke and wind induced camera shaking. All these factors make the KLT the most

sensible dense feature extraction method for this type of medium altitude disaster monitoring.

Figure 3.5: Features extracted by KLT

Figure 3.5 shows the features tracked by the KLT in one of the datasets. The features shown in 3.5

are just the ones selected as inliers at the end of the dense reconstruction, not the entire reconstruction
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block, hence why faraway regions have no features. The KLT shows a good dispersion of features,

tracking them accurately in forests and in the town, while having a relatively low percentage of smoke

outliers.

The KLT is used to �nd feature matches across all the images, which are then used alongside the

re�ned camera poses estimated in algorithm 1 to compute the 3D locations of all the matched features,

using multi-view triangulation. Only one global Bundle adjustment is used to re�ne the 3D feature lo-

cations, since the alternative would be multiple local Bundle adjustments, each right after �nding the

tracked features in each image, which would severely increase the algorithm's computation time. How-

ever, multiple local bundle adjustments would work well in an approach with a low number of images, at

the cost of a smaller reconstruction area.

The bundle adjustment produces a dense unscaled point cloud in the reference frame of the �rst

camera pose, which is then converted into an inertial North-East-Down reference frame. This non-rigid

transformation uses the measured camera orientation, GPS and altitude to rotate, translate and scale

the point cloud. This operation will produce a highly inaccurate result, since the orientation given by the

on-board sensors is off by several degrees, which is enough to render the resulting point cloud useless

for georeferencing purposes, however, the registration block is able to rectify these errors.

On the other hand, the reconstruction's scale factor cannot be directly estimated by the ICP in the

next step , since it is a rigid point cloud registration method. Notwithstanding, a bad scale factor leads to

a poor DEM registration, which can be easily identi�ed as a high RMSE ICP value, therefore, bad dense

reconstructions cane be either discarded, or further recti�ed by iteratively performing DEM registration

with slightly different scale factors.

The scale factor is clearly the most critical parameter to accurately estimate: the translation and rota-

tion errors can be easily corrected by the ICP, even if they are extremely large, however, from empirical

evidence, a small 1% scale error leads to a 20% increase in georeferencing error. The best way to

estimate the scale factor is to compare the estimated trajectory from the motion estimation step and the

measured trajectory given by GPS.

The last operation in algorithm 2 is to remove outliers from the �nal dense N-E-D point cloud, using

their 3D attributes. Two types of outliers are detected and removed:

• Smoke outliers : these are points that correspond to the smoke outline tracked by the KLT, which

are not relevant for this georeferencing approach, since the goal is to geolocate ground points, not

smoke. Most of these points can be removed by �ltering out high elevation points.

• Distant points with high reprojection error: points that are more than a few kilometres away

from the camera are not relevant for this georeferencing approach. They are not only isolated from

the main body of the dense point cloud, but they also have a higher reprojection error than most

points, and are not useful for the registration step, since they are isolated and prone to high error.
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3.4 DEM Registration and georeferencing

DEM registration is the last major block of the proposed georeferencing algorithm, as shown in

Figure 3.3. The main goal of this block is to rectify the dense reconstruction obtained in the previous step

by applying a geometric transformation to the estimated point cloud, thereby improving the algorithm's

georeferencing accuracy. This transformation is obtained by registering the point cloud to a DEM.

The next subsections present and explain each of the components of this registration and georefer-

encing approach.

3.4.1 EU-DEM v1.1

The EU-DEM v1.1 was selected as the reference DEM used by the ICP. This DEM is provided for

free by European Environment Agency (EEA) under the Copernicus program. The EU-DEM v1.1 covers

all the EEA member states, as well as some countries to the east. However, it does not cover some

Mediterranean countries that suffer from forest �res [39], such as Morocco, Algeria, Jordan and Israel,

nor some eastern European countries such as Ukraine and Russia.

Figure 3.6: Extent of the EU-DEM v1.1

The EU-DEM v1.1 was created by merging elevation data from the SRTM and ASTER global datasets,

as well as from Soviet topographic maps at high latitudes. It has a 25 metre spatial resolution and a

vertical RMSE of 7 metres, which is quite good for such a large DEM. Recent validation studies such as

[40] conclude that the EU DEM v1.1 has the higher resolution of ASTER GDEM as well as the vertical

accuracy of both SRTM DEM and ASTER GDEM in low and high slope areas, respectively. It has also
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been used for georeferencing in forest �re scenarios by Santana in [5].

The DEM used as a reference for the ICP is an interpolation of the original EU-DEM v1.1, since a 2.5

metre resolution interpolated DEM yields better ICP registration results than the original 25 metre one.

3.4.2 ICP

After interpolating the DEM and downsampling the dense point cloud obtained in algorithm 2, the ICP

is employed to compute a rotation matrix and translation vector that better rectify the point cloud. This

transformation's goal is to counter the effect of the telemetry and camera model errors, which produce a

slightly innacurate reconstruction. For example, a pitch error produces a higher than normal slope on the

reconstruction, and an altitude error produces a point cloud with a certain vertical offset relative to the

real terrain. The rotation and translation corrections can also be used to re�ne the aircraft's telemetry,

which is especially useful for low cost camera rigs.

Algorithm 3 Registration and target georeferencing algorithm

Inputs: DEM, dense point cloud of the terrain, GPS coordinates, target pixels.
Outputs: target coordinates, recti�ed point cloud.

1: Select a relevant subsection of the EU DEM v1.1 using the GPS coordinates.
2: Interpolate the selected DEM to a 2.5 metre resolution.
3: Downsample the dense point cloud to a 2.5 metre resolution.
4: Perform ICP between the downsampled point cloud and the interpolated DEM. Use a point to plane

minimization metric.
5: Apply the rigid transformation provided by the ICP to the full dense point cloud.

6: for all target pixels do
7: Find the 10 closest features to each target pixel and their corresponding 3D locations in the

recti�ed point cloud.
8: Average the location of the 10 closest features, using Inverse distance weighting, where each

location estimate is weighted according to its pixel distance from the target.
9: end for

Algorithm 3 provides a brief overview of the registration and georeferencing algorithm. It starts

by preparing the two point clouds for registration. The DEM used is a 4km by 4km square centered

around the aircraft's GPS coordinates, extracted from the EU-DEM v1.1. This may seem an excessive

size, however, the reconstructions usually capture several hundred hectares, which depending on the

camera's altitude and pitch, may be several kilometers from the aircraft.

The DEM is interpolated to a 2.5m resolution to match the downsampled point cloud's own resolution.

The primary reason for this downsampling is to reduce the algorithm's run time, but empirical evidence

suggests that matching the two point cloud's resolutions also reduces the horizontal georeferencing

error. The speci�c resolution was set at 2.5m since medium altitude surveys can comfortably extract

several features per square metre, however, a 15m resolution was used in the high altitude tests (above

1500m).

Table 3.1 presents the ICP's parameters used for the medium altitude datasets.

Point-to-plane minimization was chosen, as it greatly outperforms point-to-point in both run time and

accuracy in surface to surface registration. Point-to-plane treats the �xed point cloud as a surface, rather
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Table 3.1: ICP parameters

Parameter Value
Dense point cloud's resolution 2.5m
DEM's resolution 2.5m
Minimization metric point-to-plane
Maximum iterations 120
Inlier ratio 0.5
Extrapolation step yes

than a set of points, by projecting the distance error onto a plane normal to the �xed surface, so as to

minimize the distance between surfaces. Hence, the ICP's metric may be de�ned as

min
NX

i =1

((si � di ) � ni )2; (3.1)

where si and di are, respectively, the moving and �xed points and ni are the surface normal unit vectors

at each �xed point. This idea is also schematized in Figure 3.7.

A 0.5 inlier ratio was used, since it delivered the best georeferencing results in the medium altitude

tests. This ratio is used by the ICP as to only consider the indicated fraction of possible inlier point

pairs: if it is too high, the ICP will be unable to remove outlier pairs (caused by smoke, high elevation

anomalies, etc), and if its too low, the ICP will reject too many good pairs and end up in a local minimum.

The optimal inlier ratio depends mostly on the camera's altitude, as lower surveys reconstruct the terrain

more accurately, while high altitude ones will have plenty of anomalies.

An extrapolation step was included at the end of each ICP iteration, which traces out a path in the

registration state space, resulting in a faster convergence, as the original pointcloud has a good initial

correlation with the DEM.

The parameters used in the medium altitude version of Sfm+ICP (shown in Table 3.1) had the lowest

georeferencing error and ICP RMSE. Since they correlate with both, they can be optimized during a

long survey by performing some initial reconstructions and computing the speci�c array of parameters

that minimize the RMSE. This is especially true for the inlier ratio and resolution, whose optimal values

depend mostly on the reconstruction's quality and camera altitude.

The ICP's effect can be seen in Figure 3.8, which shows the reconstruction before and after applying

the ICP transform in a speci�c dataset. The re�ned point cloud (in green) shifts several dozen metres

southwest (seen in 3.8a and 3.8c), indicating a large GPS error. The green point cloud is also pitched

down considerably (seen in 3.8b and 3.8d), thus �xing some orientation error. The resulting point cloud

is visibly much closer to the DEM than the original one, which results in a much lower georeferencing

error, as shown in the next chapter.
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Figure 3.7: Point-to-plane minimization (taken from[20])

(a) South view (b) Southeast view

(c) West view (d) Southwest

Figure 3.8: Point cloud before (in red) and after (in green) applying the ICP transform, and DEM (in
black)

3.4.3 Target georeferencing

The �nal loop in Algorithm 3 estimates each target's 3D location in an inertial NED reference frame

independent of the aircraft. Each target is provided by the user as a pixel in one image. The KLT used
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in the dense reconstruction step tracks a set of features identi�ed in the images, some of which are

very close to the input pixels. Since there are dozens of features less than a few pixels away from the

target pixel, the best target location estimate is an average of the surrounding features' corresponding

3D location.

However, not all features are weighted the same in this average, in fact, each feature's weight for

the �nal target location estimate is inversely proportional to the square of its pixel distance to the target.

This method ensures that outlier locations are not as detrimental to the �nal result, while also ensuring

that distant measurements are not given too much relevance.

Thus, the 3D location of the target, Ptarget is computed as

Ptarget =

NP

i =1
wi P i

target

NP

i =1
wi

(3.2)

where N is the number of nearby features, P i
target is the 3D location of feature i , and wi is the weight

given to feature i 's estimate, which is given by:

wi =
1

k pxtarget ; pxi k2 ; (3.3)

where pxtarget and pxi are the pixel coordinates of the target and feature i , respectively.

Figure 3.9 shows one dataset's target and the nearby feature points. The target in question is a large

house on the edge of a village. As can be seen, several features are extracted around the house, and

the 10 closest features to it could all be considered as part of the house, therefore, averaging all these

features' locations provides a better georeferencing estimate than simply choosing the closest feature to

the target pixel.

Figure 3.9: Target georeferencing example
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3.5 Metrics

This section introduces the metrics used to evaluate the performance of the Sfm+ICP algorithm,

which in�uenced how it was optimized throughout its development. There are three types of metrics,

depending on what they evaluate: those which evaluate the algorithm's georeferencing accuracy, the

reconstruction's quality and the ICP registration's success.

Georeferencing accuracy metrics are the most relevant algorithm performance indicators, since they

directly measure the difference between the target's estimated geolocation and the true one. Each

dataset had several targets chosen a priori. Most targets are either crossroads, large houses, churches

or cemeteries, which are easily manually georeferenced using google earth, which allows the estimated

geolocations to be compared with the real ones with precision.

Two accuracy metrics were used:

• Mean horizontal error ( XY ):

A target's horizontal error is the distance between its real position and the estimated one, in the

East (X ) and North (Y ) components. Therefore, a dataset's mean horizontal error, XY , is de�ned

as

XY =
P N

i =1 k(xe
i ; ye

i ) � (x r
i ; yr

i )k
N

; (3.4)

where N is the dataset's number of targets, xe
i and ye

i are the estimated east and north components

of target i 's location, while x r
i and yr

i are its real ones.

• Mean vertical error ( Z ):

Similarly, a target's vertical error is the absolute elevation difference between its real and estimated

positions, hence, the mean vertical error, Z , is de�ned as

Z =
P N

i =1 kZ e
i � Z r

i k
N

; (3.5)

with Z e
i and Z r

i being the real and estimated elevations for target i .

The XY is the most relevant of the two, because georeferencing algorithms are mostly relied on to

estimate longitude and latitude, while elevation can be consulted in a DEM. Additionally, since the ICP

registers the point cloud with the DEM, the XY error is usually one degree of magnitude higher than the

Z error, nonetheless, the Z error can provide insights into how well the registration was performed.

The mean reprojection error, MRE, was used to evaluate each reconstruction's quality. The repro-

jection error was already de�ned in subsection 2.1.3, as the pixel distance between a feature's actual

pixel, de�ned as x ij and the reprojected pixel, represented as x0
ij . The former is determined simply by

detecting the feature with a feature extractor, while the latter is the result of the reprojection of the fea-

ture's 3D location, X̂ i , back to the image. In theory, x0
ij should be as close as possible to x ij , since x ij is

used to estimate X̂ i , however, in practice, the camera has an inherent mean reprojection error which is

ampli�ed by feature pair outliers. All high reprojection error points are excluded from the reconstruction,
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however, a poor quality point cloud can still be identi�ed using the MRE.

The last metric to be presented is the ICP's RMSE, which is used to determine how similar to the

real terrain the 3D reconstruction is. As mentioned in subsection 2.1.5, each ICP's iteration attempts

to minimize the RMSE by rotating and translating the reconstructed point cloud to match the real DEM.

Since both point clouds have the same density and are both square grids, the RMSE can be de�ned

simply as

RMSE =

s
P M

i =1 kZ 0e
i � Z 0r

i k
M

; (3.6)

where Z 0e
i and Z 0r

i are the elevations on the estimated and real point clouds being registered, for grid

square number i , and M is the number of inlier grid squares. Note that the estimated point cloud used

here is a downsampled version of the original reconstruction, hence the notation Z 0 instead of Z , while

the real point cloud is an interpolated version of the original DEM, to match the estimated point cloud's

resolution.
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Chapter 4

Simulations and results
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This chapter presents the algorithm's results using four different datasets. The algorithm is subjected

to different image sources in diverse operational scenarios to evaluate its georeferencing accuracy.

These four datasets consist of:

1. A dataset obtained using Blender, a 3D simulation tool. This tool is used to simulate an UAV

�ying over a series of targets which the algorithm attempts to georefer. This dataset was used to

determine the algorithm's performance in ideal conditions.

2. A second Blender dataset with a slightly more complex camera trajectory and orientation.

3. A dataset obtained from real footage taken by an UAV operating in a forest �re environment. This

dataset was used to assess the algorithm's accuracy in a real medium altitude scenario.

4. A dataset obtained from real footage taken by an air force aircraft in a forest �re environment.

This last dataset was used to evaluate the algorithm's performance when subjected to low quality

images and a high operational altitude.

4.1 Blender datasets

Blender is a popular free and open source 3D creation tool used by researchers to simulate 3D

environments. It was particularly useful in this work for two reasons:
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• Blender can be used to animate a camera along a path. Moreover, the camera can be modelled

using the pinhole model, enabling the simulation to run with precise EP and IP.

• Blender has an extensive list of open source Addons, such as BlenderGIS. BlenderGIS is used to

import satellite images and elevation map data to construct a 3D terrain model, which the simulated

camera can capture from different viewpoints. These arti�cial photographs can then be fed to the

algorithm to test its accuracy in ideal conditions.

Both Blender datasets were obtained from the same arti�cial environment: Serra da Archeira, a small

mountain range south of Torres Vedras, at 39.029005°N -9.219768°E, as shown in Figure 4.1. This

location was chosen for its terrain complexity: the simulation covers a large �at valley, slopes, mountain

tops, small villages, high canopy forests and deforested areas.

Figure 4.1: Map and DEM view of the blender environment

The camera used in the blender simulations had the same focal distance as the one used in the real

datasets presented in 4.2 and 4.3, however, it had a slightly larger image size, 1080x1920. This ideal

camera used in blender has no distortions and is not subject to the rolling shutter effect. These factors

make this dataset better suited to the georeferencing algorithm, since its images have a higher quality.

4.1.1 Blender test 1 - Linear trajectory

The �rst blender dataset is the simplest one: the camera moves with constant velocity and orientation

in a straight line over the targets. The camera has a �xed pitch of -45 � , a perfect North heading and no

roll angle, as shown in Figure 4.6. It is important to mention that the position and orientation data fed

to the algorithm for these blender tests was not the one given by blender. Instead, each algorithm run
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