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Abstract

Ultrasound images are plagued by a characteristic type of noise named speckle noise. Although
filtering techniques that reduce this type of noise exist, they result in low quality images. A method
that has garnered attention recently is the use of generative adversarial networks (GAN) to create
images from other images (image-to-image translation). The most popular of these networks is the
pix2pix network, which can be trained with image pairs of the same ground truth image and learn to
transform one image into the other. This process requires a large number of images matched pixel
to pixel. Two pix2pix networks were trained. The first network was trained to transform phantoms
into ultrasound images so that a paired dataset of MRI-Ultrasound images could be created. The
second network was trained to transform ultrasound images into MRI-like versions. Several real and
simulated ultrasound images were processed by this denoising network and quality assessment metrics
were extracted from the results, as well as compared to those obtained from classical filtering methods.
All of the tests point to this work as an absolute success, with possibilities of being applied to other
imaging modalities and further improved.
Keywords: Ultrasound, GAN, pix2pix, Denoising, Speckle, Image-to-Image Translation

1. Introduction

To better understand this work, some concepts
should be introduced.

1.1. Ultrasound

The technique that is most relevant to this work is
ultrasound (US), although the work can be adapted
to other imaging modalities. The use of ultrasound
as an imaging technique is widespread and consid-
ered a basic necessity for any hospital. Important
factors for this are its low cost, unparalleled safety
rapport and simplicity of use. One area that bene-
fits greatly from the use of ultrasound is the diagno-
sis of cardiovascular diseases (CVD), more specifi-
cally, the diagnosis of atherosclerotic cardiovascular
disease. The two main predictors used for the di-
agnosis and assessment of atherosclerotic CVD risk
are the carotid intima-media thickness and the anal-
ysis of the carotid arterial plaque. Both of these
metrics rely on the use of US imaging, reinforcing
the importance of improving the quality of the re-
sulting images [1].

1.2. Neural Networks and Images

Artificial neural networks (ANN) started as a model
for a real neural network, a system of connected
neurons that receive stimuli and signal the neurons

on the next layer accordingly. Convolutional Neural
Networks (CNN) have been shown to be extraordi-
narily well suited for image processing. The key
lies in the convolutional layers of these networks
that work by feeding only the convolution of cer-
tain windows of information with certain kernels to
the next layer, allowing for fewer weights to be cal-
culated without a loss of performance[2]. CNNs are
very promising and have shown incredible useful-
ness in medical image analysis, opening the door
to other types of networks that also work magnifi-
cently well with image processing. One of these is
the Generative Adversarial Network (GAN), which
is composed of two different networks, a generator
network and a discriminator network. The basic
idea is that the generator network will learn to fool
the discriminator network, and the discriminator
network will learn to distinguish real data from fake
data. In this case, creating images and determining
their authenticity. These networks are known to in-
corporate aspects of CNNs into their architecture
[3]. In this manner, the generator network learns
how to produce realistic images based on the error
of the discriminator. In these models, only the dis-
criminator has access to the real images, forcing the
generator to learn solely on the interaction between
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the two [3]. It can be thought of as the discrimina-
tor learning an adequate error function, and, based
on this error, the generator will learn to minimize
it [4]. In essence, this means that a GAN can be
trained by using a set of paired images and learn
to generate images of one kind based on images of
another kind. As a matter of fact, this has already
been done successfully with the pix2pix network [4].

1.3. Objectives
The goal of the work done here is the creation of a
pipeline that, given US images, can produce images
that are closer to MRI images, which lack speckle
noise and possess increased sharpness. This pipeline
is built with the use of two GANs. The first GAN
is trained to produce US counterparts of simplified
phantoms and is referred to as the US simulator
GAN. This will allow for an increased sample of US
images, the generation of close approximations of
image pairs obtained through real medical images,
and an additional tool to simulate the noise asso-
ciated with US images. The second GAN will be
trained with medical and real-life objects so that
the input will be an US image and the output an
MRI counterpart of that same image This network
will be referred to as Denoising GAN. Much of the
work done was centered around the search for the
correct datasets to use, the image processing re-
quired and the architecture of the overall pipeline.
The value of a GAN such as this comes, not only
from the improvement of the image quality, but also
from an improvement in future automatic and semi-
automatic segmentation of structures. The datasets
used for the training and the parameters used both
in the training and processing of the images are de-
tailed in this document. The weights of both GANs
are available to be used directly in the Google Co-
laboratory code for pix2pix available online1 [4, 5].

2. Problem Formulation
With the basic concepts needed for the understand-
ing of this work detailed above, a more technical
view of the work is presented.

2.1. Speckle Noise
Speckle noise has the characteristic of being a type
of multiplicative noise. This means that it follows
the relation expressed in Equation. 1,

gi,j = fi,j · ui,j , (1)

where gi,j is the observed image, fi,j is the real
image and ui,j is the multiplicative component of
speckle noise while i and j are the indices of the
pixel [6].

1Cycle GAN - Colaboratory URL:
https://colab.research.google.com/github/junyanz/pytorch-
CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb
(Visited 02/09/2021)

The relationship shown in Equation. 1 is only ap-
plicable in the radiofrequency (RF) domain, while
most images are in brightness mode (B-Mode),
which involves a process of log-compression, as well
as other unknown processing steps. This process is
modelled in Equation. 2 [7].

zi,j = α · log(yi,j + 1) + β, (2)

where i and j are the indices of the pixel, zi,j is
the pixel in the B-Mode image, yi,j is the pixel in
the RF image while α and β are variable param-
eters dependent on the contrast and brightness of
the image during acquisition, in this order.

This same model can be inverted, as shown in
Equation. 3.

yi,j = e(
zi,j−β

α
) − 1 (3)

The statistical analysis of speckle noise reveals that
it can follow either a Rayleigh or Nakagami proba-
bility distribution function (PDF)[8, 9].

The Rayleigh PDF is mathematically written as
presented in Equation. 4.

ρ(yi,j) =
yi,j
σ2

e
−

y2
i,j

2σ2 , (4)

where ρ is the probability density function, yi,j is
the intensity value of the pixel at i and j indices in
the grayscale RF ultrasound image and σ is a scale
factor dependent on the scattering amplitude of the
medium.

The equation that describes the Nakagami PDF
is shown below as Equation. 5

ρηi,j (ηi,j) =
2LL

Γ(L)(2σ2)L
η2L−1
i,j e

(
−Lη2

i,j

2σ2

)
, ηi,j > 0, (5)

where ηi,j is the pixel intensity at position i and j,
Γ() is the gamma function, L is the Nakagami shape
parameter and 2σ2 is a scaling parameter [10].
One other interesting tool used was the Field

II program, that simulates all the elements of the
probe and allows for the calculation of the impulse
response, culminating in a powerful tool for the sim-
ulation of realistic ultrasound images [11, 12].

2.2. Denoising State of the Art
The most common denoising methods for US im-
ages available at the present are spatial domain fil-
ters.

Anisotropic Diffusion Filter

Some of these filters are based on anisotropic diffu-
sion, and are known as anisotropic diffusion filters.

They can be modelled by the differential equa-
tion: {

dI
dt

= div(D · ∇I) = D · ∇2I,

I(i, j, 0) = g(i, j),
(6)
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where g(i, j) is the pixel in the original noisy image
at indices i and j, the ∇ is the Laplacian operator
and t is the artificial time for this ”diffusion” of
the image, analogous to the number of iterations.
Solving the equation produces I(i, j, t), which is the
pixel at indices i and j in the filtered image at a
specific moment of the artificial time. The functions
for D are as such [13]:

d(|∇I|) = e
−
(

|∇I|
k

)2
(7)

This first equation (7) results in a D with a very
low value in areas with high contrast differences.

d(|∇I|) = 1

1 +
(

|∇I|
k

)2 (8)

In both equations, D = (|∇I|) and k is a fac-
tor that adjusts sensitivity to edges. The use of an
anisotropic diffusion filter for speckle noise removal
is commonplace, earning it the name of Speckle Re-
ducing Anisotropic Diffusion Filter (SRAD).

Adaptive Median Filter

Another type of filter that has proven useful at re-
moving speckle noise is the adaptive median filter,
proposed by Loupas et al, [14]. A median filter
works by analysing a patch of the image through
a window, taking the intensity values of that win-
dow into consideration and substituting the center
pixel with the median. This filter is non-linear and
has the advantage of preserving edges. A modified
version of this filter is the weighted median filter,
where taking the window into account, each posi-
tion in said window has a weight associated with
it. This filter can further be modified to become
an adaptive weighted system that makes use of the
parameters of variance (σ) and mean (m) obtained
locally from the window being analysed. The slope
is then adjusted for the window based on the ratio
of these two parameters in conjunction with a scal-
ing constant (c) and the distance from the point i, j
to the center of the window K + 1,K + 1 (d), as
shown in Equation. 9.

wi,j =

[
wK+1,K+1 −

cdσ2

m

]
(9)

2.3. Generative Adversarial Networks
The basis for the denoising method presented in
this work are Generative Adversarial Networks [15].
The core concept is based on the simultaneous de-
velopment of 2 neural networks [15].This approach
is powerful but it can be directed more precisely by
using conditional GANs (cGAN) [16], which have a
slightly different assumption than GANs: let x be
the data of the sample, D(x) the probability that x
belongs to the sample as given by the D network, z

is a noise vector and G(z) is the data generated by
the G network, as would be the case with regular
GANs. But also, give some information about the
sample desired, a label for example, together with
the input of the generator network G and also pro-
vide that label (y) to the discriminator network D.
This is modelled by the following equation [16]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+

Ez∼pz(z)[log(1−D(G(z|y)|y))]
(10)

This leads us to pix2pix [4], the GAN architec-
ture used in this work. Pix2pix is a cGAN which
accepts as input two images, a sketch and the ob-
ject from which the sketch was made. Following
the convention above, the sketch would be y and
the real object image would be x. As a result the
discriminator network has access to the sketch and
the image and attempts to discern if the image was
made from the sketch by the generator network or
if it is part of the sample, while the generator at-
tempts to create images of the real objects from the
sketch. This GAN harmonizes methods proven to
work in image processing and the first way in which
it does this is by adding the L1 norm to the error
to be minimized. More adaptations based on im-
age processing techniques learned from CNNs are
the use of U-net architecture for the generator net-
work, which ferries information across layers of the
network, and the use of PatchGAN in the discrim-
inator network, which analyses the image patch by
patch, taking into account all the contributions into
the final result. Both the generator and discrimina-
tor network are made up of modules of the form
convolution-BatchNorm-ReLu [4].

2.4. Assessment Methods
The full reference methods used in this work were
signal-to-noise ratio (SNR), peak signal-to-noise ra-
tio (PSNR), Structural Similarity Index (SSIM)
and the Multiscale Structural Similarity Index (MS-
SSIM).

The SNR is given by :

SNR = 10 log10

(
σ2

σ2
g−f

)
, (11)

where σ2 is the variance of the ground truth image
and σ2

g−f is the variance of the difference between
the ground truth image, g, and the noisy image, f .
[17].

The PSNR is given by:

PSNR = 10 log10

(
peakvalue2

MSE

)
, (12)

where peakvalue is the highest value possible for
the intensity (taking the value of 255 in this case)
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and MSE is the mean square error between the
images shown in Equation. 13 [17].

MSE =
1

M

M∑
j=1

(gi,j − fi,j)
2, (13)

where M is the total number of pixels in the image,
gi,j is the pixel at positions i and j on the noisy
image and fi,j is the pixel in the ground truth image
[17].
The SSIM, is calculated as:

SSIM(g, f) =
(2µgµf + C1)(2σgf + C2)

(µ2
g + µ2

f + C1)(σ2
g + σ2

f + C2)
, (14)

where σg and σf are the standard deviation for the
image g and f , σgf is the covariance between the
images, C1 = (K1L)

2 and C2 = (K2L)
2, where

K1 = 0.01, K2 = 0.03 and L is the dynamic range
of the image (in this case L = 255) [18].
The MS-SSIM score is calculated by Equation.

15:

MS-SSIM(g, f) =[
(2µgµf + C1)

(µ2
g + µ2

f + C1)

]
M

M∏
j=1

[
(2σgf + C2)

(σ2
g + σ2

f + C2)

]
j

, (15)

where g, f , σg, σf , σgf , C1 and C2 have the same
meaning as in Equation. 14, and j represents the
number of filter and downsampling procedures done
to obtain that image, where j = 1 is the original
image and j = M is the image after M iterations
of low-pass filtering and downsampling [19].
Another way to assess the results from the de-

noising GAN is based on a more statistical view.
With a small manipulation, Equation. 4 can be
used to, given the ground truth image (gi,j) and
the US image (in the RF domain, fi,j), extract the
speckle noise (ui,j). Afterwards, the distribution of
the histogram of the speckle noise can be studied.
These methods, however, depend on the existence

of a ground truth image, which is an impossibility
in the field of medical imaging. One of the most
used methods that do not require ground truth im-
ages and also boasts a good performance is the
Blind/Referenceless Image Spatial QUality Evalu-
ator, also known as BRISQUE. BRISQUE is based
on concepts regarding natural images. There are
some factors that strain the credibility of BRISQUE
when using it on medical images. As such, a control
test is made using US and MRI images, where the
notion that the BRISQUE score supports the con-
vention that MRI images have better quality than
US images is tested. Furthermore, it has also been
shown that BRISQUE presents good dataset inde-
pendence [20].

3. Methods

The high dependency of the ANN on the dataset
used for its training is an issue present in all ma-
chine learning models and the pix2pix GAN is not
an exception. Therefore, the careful choice of the
training images is important for the success of the
network. In the case of medical images, there is a
scarcity of data unlike the other fields.

3.1. US Simulator GAN

This hurdle in machine learning in the medical im-
age processing field highlights the value of the US
Simulator GAN. The existence of a method that
creates realistic US images using simplistic phan-
toms as a basis and can also allow for the develop-
ment of large annotated datasets is very valuable.

Dataset

All of the data used in the training of this US Sim-
ulator GAN was from cardiovascular diagnostic im-
ages and videos. The data was provided by physi-
cians of the Santa Maria Hospital’s department of
Cardiology, and was comprised of 1024 US images
of carotid arteries with different morphologies, in
different probe positions, along different anatomical
segments and some even displaying arterial plaques
or stenosis. Of these images, 670 were chosen for
the dataset after a selection process that excluded
images with low quality, several artifacts, and abun-
dance of zones with little information. The im-
ages used were grayscale, with intensity normalized
to values between 0 and 255 and the resolution is
256x256 pixels.

Preprocessing

The preprocessing itself follows a certain sequence
of smaller and simpler steps. As a reminder, the ob-
jective is to create a dataset composed of simplistic
phantoms of the dataset with corresponding US im-
ages. This correspondence must be in the order of
pixel-to-pixel. The first step of the preprocess deals
with the fact that US images in B-Mode do not rep-
resent the full range of information obtained from
a US scan. As shown in Equation. 3, the RF im-
age can be obtained from the B-Mode image with
relative simplicity. There are, however, two param-
eters that must be estimated: α and β. According
to the work done in this article by J. Sanches et
al.[21], these parameters can be approximated by
the following equations:

α̂ =

√
24

π2
σ2
z (16)

β̂ = min(z), (17)
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where σ2
z is the variance of the image and min(z) is

the minimum value of the image in B-Mode.

With a close representation of the ground truth
image, an attempt to simplify the information in
the image is made by narrowing the intervals of in-
tensity represented. This consists of dividing the
image and then multiplying it by the same number,
being that number a power of 2, based on the num-
ber of intensity intervals desired. In this case, the
image is divided and then multiplied by 32, as is the
case, the information on 5 of the bits is discarded
and the colors are represented in only 8 intensity
ranges (256/32 = 8). The information on these 5
bits is of the finer details, and as such, when dis-
regarded, the result is a coarser representation of
the original image. To further simplify the image,
without causing significant damage to the contours,
a median filter was applied 2 times. The entirety of
the preprocessing pipeline can be seen in Figure. 1.

Figure 1: Diagram of the preprocessing of the dataset.

Training

The preprocessing was done to the full chosen
dataset of 670 ultrasound images. The created pairs
were divided into 500 training pairs and 170 valida-
tion pairs. The network was then allowed to train
for 700 epochs using the default U-net architecture
as the generative network and Patch GAN as the
discriminator network. Furthermore, the λ that
controls the L1 part of the loss was set to 100, the
initial gain was set to 0.02, the learning rate was set
to 0.0001. The training was done using the pix2pix
PyTorch code and Google CoLab, making use of
one of their GPUs of the Intel(R) Xeon(R) CPU
@ 2.30GHz model. The training time is about 17
hours using the hardware with these specifications.
Several epoch values were tested by taking four im-
ages from the validation set and analysing the evo-
lution of the results through the plotting of the MSE
between the results from the epoch in question and
the results from 50 more epochs of training. It is not
wise to base the epoch choice only on image metrics
when it comes to GANs, and as such, direct obser-
vation of the images was also a key component in
this choice of the epoch number.

3.2. US Denoising GAN
As mentioned in the analogous section of the pre-
vious chapter, medical images are few and far be-
tween. Unlike that section, however, the images
needed for the training of this network are MRI im-
ages.

Dataset

Fortunately, a series of 1024 MRI slices of the heart
was made available from A. Andreopoulos et al.
[22]. Nonetheless, many of these images contained
undesirable features, such as large dark areas or
spots of extreme intensity. A manual selection of
these images was made to ensure that the data fed
to the network was of the best quality within the
available dataset. The final number of images cho-
sen was 440 structural MRI images of the heart.
To increase the versatility of the network and en-
sure the filtering aspect in regards to speckle noise
removal, the dataset was balanced with grayscale
images of real-world objects corrupted with the
Rayleigh noise model. The idea behind the incor-
poration of these images into the training of the
GAN was to allow for the learning of an array of
somewhat different contours that are not very easily
found in medical images or, when they are indeed
found, are somewhat unclear. The everyday ob-
ject image dataset used was the Columbia Object
Image Library (COIL-100) Dataset [23], which is
composed by color images of 100 different mundane
objects, taken at 5◦ intervals until a full rotation
around the object is accomplished. This dataset
contains 7200 images, and from these, 440 images
where sampled randomly to maintain an equilib-
rium between both approaches.

Preprocessing

Starting with the preprocessing of the medical im-
ages, the first step was to create the simplistic phan-
toms that the first network accepts as input. This
was done by recycling components of the method
detailed in the earlier section (section. 3.1). More
specifically, the intensity range reduction into val-
ues stored in 3 bits, followed by two iterations of
the adaptive median filter for smoother and more
rounded contours. With the phantoms of MRI im-
ages in hand, it is simply a matter of running these
images thru the network. It is noteworthy to men-
tion that the time necessary for the network to pro-
cess these images rounded the 30 seconds mark.
Beforehand, however, data augmentation was per-
formed on the raw MRI images. This data aug-
mentation entailed applying rotations, translations
or reflections to the images.

The preprocessing of the COIL-100 dataset be-
gins with a random sampling of 440 images. These
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images are converted from RGB to grayscale and,
as their resolution is different from the standard res-
olution used in this work of 256x256 pixels, a linear
interpolation was used. The COIL-100 dataset, be-
sides being vast, contains images from different an-
gles of the objects, and as such, data augmentation
was not used. These images were then considered
the ground-truth images. Firstly the Rayleigh noise
model in Equation. 4 was applied. This was fol-
lowed by a decimation and immediate upsample of
the images using a factor of 2. What this means is
that the image was reduced to half the size, dis-
carding the intensities in the even entries of the
image. Afterwards, the image is returned to the
original size, with the help of a linear interpolation.
The last step of the preprocessing is the logarith-
mic compression model. This model is reliant on
two unknown parameters, that vary with the acqui-
sition options of the device. To increase the robust-
ness of the network, these parameters were chosen
randomly for each image from the intervals [10, 50]
for α and [0, 40] for β. The images were then nor-
malized and stored.

Training

For the training of the network, the dataset was
once again divided into training images (600 im-
ages) and validation images (280 images). The ra-
tio was 1:1 for the distribution of medical images
to COIL-100 images in each subset. As was the
case with the first network, the default U-net archi-
tecture for the generative network and Patch GAN
for the discriminator network were used. The num-
ber of epochs chosen was 550 epochs. This value
was also chosen from calculating the MSE of 4 im-
ages resulting from one epoch to a previous epoch
(in intervals of 50 epochs) and plotting the values.
When the MSE remained somewhat constant across
the plots of the 4 chosen images after a given epoch,
that epoch was selected. In this case, the evalua-
tion encompassed 1000 epochs. The training was
done using the pix2pix PyTorch code and Google
CoLab, making use of one of their GPUs of the
Intel(R) Xeon(R) CPU @ 2.30GHz model. Once
again, the λ that controls the L1 part of the loss
was set to 100, the initial gain used was 0.02, the
learning rate chosen was 0.0001. The time that it
took for the training of this Denoising GAN was also
similar to the US Simulator GAN, approximately 15
hours. A simplification of the training pipeline can
be seen in Figure. 2.

4. Results and Assessment

One of the goals of this work was the removal of
speckle noise from US images. This type of noise
can be characterized by the Rayleigh and the Nak-
agami distributions. The analysis of the histograms

Figure 2: Diagram of the training of the Denoising
GAN.

of the multiplicative noise can be used to determine
if the networks are fulfilling their respective pur-
poses.

4.1. Statistical Analysis of the Noise of the
US Simulator GAN

Starting with the US Simulator GAN, whose pur-
pose is to transform simplistic phantoms of MRI
images into corresponding US images, the method-
ology described above is applied. In more practical
terms, this method consists in using the output of
the network (simulated US image), transforming it
into the RF domain, and divide it, pixel by pixel, by
the original MRI image. The images used for this
test were not part of the training process and are
nothing like carotid artery images. To ease the in-
terpretation and showcase the similarity of the dis-
tributions with the Rayleigh PDF, this distribution
was superimposed onto the histograms in Figure. 3.

Figure 3: The original MRI image (left), the image result-
ing from the US Simulator GAN (right) and the histogram
extracted from the multiplicative noise

As it can be seen, the distribution of the his-
togram shows an uncanny likeness to the Rayleigh
distribution, but does not perfectly align with it.
This can be due to the fact that the RF domain
image is obtained with α and β estimated from the
B-Mode image, and not the actual parameters from
the acquisition. Another factor is that the network
was trained to replicate every kind of noise and
transformation inherent to the US acquisition pro-
cess, not only speckle. Nonetheless, the histogram
displays strong components alike to the Rayleigh
distribution, indicating a strong presence of speckle
noise.
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4.2. Statistical Analysis of the Noise of the
Denoising GAN

The properties of the Denoising GAN will be tested
in this section.

US Simulator GAN

The first tests involve the outputs of the US Simu-
lator GAN based on real MRI images.

Figure 4: The top row shows the original (left), the US Sim-
ulator GAN (middle) and the Denoising GAN (right) images.
The bottom image shows the histogram extracted by the di-
vision of the Rayleigh model and Denoising GAN outputs.

Analysing Figure. 4, it is interesting to note that,
although the smaller details were not recovered
with the Denoising GAN, the larger-scale structures
seem continuous and sharp with little blurring. The
shape of the histogram is not a perfect fit of the dis-
tributions, but instead forms an intermediate shape
between them. There is also an increased number of
counts in the lower intensity ranges. A reasonable
explanation would be that the US Simulator GAN is
simulating noise that does not perfectly follow sta-
tistical distributions. The quality of the denoised
image was also be assessed by more conventional
means such as SNR, PSNR, SSIM, and MS-SSIM.

Table 1: Values of SNR, PSNR, SSIM and MS-SSIM for
the noisy (n) and denoised (d) images of the heart. The noisy
images were result of the US Simulator GAN.

Heart (d) Heart (n)

SNR 12.3958 0.2359

PSNR 28.001 15.8411

SSIM 0.725 0.3752

MS-SSIM 0.9098 0.7038

It is obvious from the analysis of Table. 1, that
the Denoising GAN improves the quality of the im-
age considerably, the higher the values of these met-
rics, the better the quality of the image.

Rayleigh Speckle noise and Logarithmic
Compression model

The subsequent step in the assessment of the De-
noising GAN was to use it to process MRI images
that were subjected to the Rayleigh noise model,
shown in Figure. 5.

Figure 5: The top row shows the original (left), the
Rayleigh model (middle) and the Denoising GAN (right) im-
ages. The bottom image shows the histogram extracted by
the division of the Rayleigh model and Denoising GAN out-
puts.

In these simulated US images the destruction of
the finer details by the noise is evident. As a con-
sequence, the denoising network was only able to
recover the larger structural details. The analysis
of the histogram and comparison with the curves of
both Rayleigh and Nakagami PDFs indicates that
the multiplicative noise contains similarities to both
distributions.

Table 2: Values of SNR, PSNR, SSIM and MS-SSIM for
the noisy (n) and denoised (d) images of the heart. The noisy
images were result of the Rayleigh and compression models.

Heart (d) Heart (n)

SNR 6.07 -6.03

PSNR 16.57 4.47

SSIM 0.30 0.14

MS-SSIM 0.77 0.55

The full reference image quality metrics were ex-
tracted and are displayed in Table. 2. As was the
previous case, when compared to the noisy image,
the denoised image improved across the board in
terms of these metrics.

Field II Program

The next step is the analysis of images simulated
with the Field II program. The image used was the
example of a kidney phantom given by the authors
of the program.
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Figure 6: The top row shows the original (left), the Field
II (middle) and the Denoising GAN (right) images. The
bottom image shows the histogram extracted by the division
of the Field II and Denoising GAN outputs.

The resulting image loses smaller structural in-
formation, as seen in Figure. 6, which could be ex-
plained by the differences in scale between the net-
work training images and the high-resolution orig-
inal image. The larger structures, however, are re-
covered with a smoothness and sharpness of con-
tours very agreeable to the goals of this work. From
the histogram, it can be seen that the Nakagami
distribution fits almost perfectly. This confirmed
likeness is very encouraging in terms of expected
results.
The distortion of the US images caused by the

Field II program means that the comparison met-
rics used in the previous sections are not useful. As
such, the use of a no-reference image quality metric
is introduced, the BRISQUE score, shown in Table.
3.

Table 3: BRISQUE score values for the versions of the
kidney image: original, output of the Field II program and
output of the Denoising GAN.

Original Field II Denoised

Kidney 30.71 36.83 33.37

From these values, a significant drop in the
BRISQUE score is noticeable, near to half the value
of the difference between worst (Field II) and best
(Original) case scenario.

Real US images

The final tests focus on real US images, the most
important of the results, seeing as the denoising of
this type of image is the purpose of the network.
Due to the lack of a ground truth image, the full-
reference metrics are not used as evaluation metrics.
As such the BRISQUE scores are calculated for the
original US images, denoised counterparts and the
MRI dataset. The scores of the MRI will serve as

reference and certification that a lower BRISQUE
is related to better quality.

Table 4: Metric extracted from the BRISQUE scores of
the 3 datasets, MRI, Denoised and US, namely the mean
and median.

Mean Median

US 37.47 38,61

Denoised 34.20 33.92

MRI 30.13 31.57

From the values in Table. 4, it can be seen that,
in most cases, the MRI dataset exceeds the US and
Denoised dataset, in terms of lowest mean and me-
dian, as was intended to prove. Moving on, some
examples of the Denoising GAN outputs are shown
in Figure. 7.

Figure 7: Comparison of the original US image (top row),
with the result from the Denoising GAN (bottom row).

From the images, the increase in contrast and
the abundance of smooth and well-defined contours
when compared to the original US images is clear.
Furthermore, analysing the number of times that
the denoising process leads to a lower BRISQUE
score, it can be said that in 372 images out of the
total 530 images, the score lowered after the de-
noising network was used (in 70% of cases in this
dataset).

4.3. Comparison with conventional tech-
niques

The best way to show the relevance and benefits this
Denoising GAN brings, is to compare it to methods
used presently, namely the adaptive median filter
(AMed) and the anisotropic diffusion filter (SRAD).

At first glance, it is immediately noticeable that
the Denoising GAN changes the image more drasti-
cally. As a consequence of these changes, the images
become more visually pleasing. This is noticeable
in the smoothness of the contours and structures.
The classical filters, on the other hand, tend to pre-
serve the initial visual information of the images
while sacrificing the removal of speckle noise. Like
in the previous sections, the quality metrics were
extracted.

From both these tables, the values that are most
indicative of image quality are presented in bold.
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Figure 8: Comparing the B-Mode image (B-Mode), with
the Adaptive Median filter (AMed), the Anisotropic Diffu-
sion filter (SRAD) and the Denoising network (Denoise). In
each line the origin of the B-Mode images is given, starting
with the output of the US simulator network (US-Sim), the
Rayleigh Speckle noise model and logarithmic compression
model (Rayl), the Field II software (Field II) and real US
image acquisition (Real).

Table 5: Values of SNR, PSNR, SSIM and MS-SSIM for the
B-Mode, Adaptive median filtered (AMed) and Anisotropic
Diffusion Filtered (SRAD) images, as well as the output of
the Denoising GAN (Denoise). These images used are shown
in the first line of Figure. 8 and the B-Mode image was
obtained from the US simulator network.

B-Mode AMed SRAD Denoise

SNR 0.126 0.189 0.281 13.037

PSNR 15.72 15.78 15.87 28.63

SSIM 0.381 0.409 0.433 0.760

MS-SSIM 0.691 0.711 0.0735 0.920

In comparison with each method of denoising, and
across the different metrics extracted, the superior-
ity of using the Denoising GAN in regards to these
images and metrics is obvious. Next, the BRISQUE
score is calculated for both the B-Mode image ob-
tained from the Field II program and a real US
image, as well as for their denoised versions.
When speaking of the image simulated by the

Field II program, the Adaptive Median filter out-
performs the Denoising GAN, while in terms of the
real US image, the Denoising GAN produces an im-
age with a much better score.

5. Conclusions
This work was developed as a way to improve
speckle noise removal and improve image quality in
ultrasound images. The approach chosen to achieve
this was based on the use of Generative Adversar-
ial Networks, more specifically the pix2pix network.
This network has the purpose of generating im-
ages based on other images, a procedure commonly
known as image-to-image translation.

Table 6: Values of SNR, PSNR, SSIM and MS-SSIM for the
B-Mode, Adaptive median filtered (AMed) and Anisotropic
Diffusion Filtered (SRAD) images, as well as the output of
the denoising network (Denoise). The images used are shown
in the second line of Figure. 8 and the B-Mode image was
obtained using the Rayleigh speckle noise and logarithmic
compression model.

B-Mode AMed SRAD Denoise

SNR 3.17 3.22 3.15 8.50

PSNR 12.39 12.45 12.38 17.73

SSIM 0.278 0.276 0.260 0.303

MS-SSIM 0.719 0.719 0.704 0.746

Table 7: Values of BRISQUE score for the B-Mode, Adap-
tive median filtered (AMed) and Anisotropic Diffusion Fil-
tered (SRAD) images, as well as the output of the denoising
network (Denoise). The images used are shown in the third
and fourth lines of figure.8.

B-Mode AMed SRAD Denoise

Field II 43.22 33.18 46.92 37.37

Real US 40.53 43.36 52.15 27.89

Firstly, a network that could create ultrasound
images based on simplistic phantoms was devel-
oped. This network was trained by using pairs of
real ultrasound images and phantoms, and its re-
sults are later certified as adequate ways of sim-
ulating speckle noise and the ultrasound acquisi-
tion process. The certification was based on the
noise extracted from these images and through the
observation that it followed the distributions that
characterize speckle noise. It must be said that the
network had a slightly worse performance than the
Field II software, at least visually, but the computa-
tional and time gains are very much worth it. The
Field II software needed 3 days for one image while
the network performed the processing of 999 images
in 2 to 7 minutes. This network was used to create
a dataset of paired US-MRI images of the heart.

The second network, responsible for denoising
and image enhancement, was trained with a mixed
dataset. Half of the dataset was composed of the
pairs of heart images produced by the first net-
work, and the other half was of mundane objects
corrupted with Rayleigh speckle noise model and
logarithmic compression. This network was proved
to reduce speckle noise significantly and improve
image quality, a result mirrored by the full refer-
ence metrics used to analyse the processed images.
In terms of processing real ultrasound images, this
network improved the visual quality as observable
in the examples and showcased by the BRISQUE
metric. There are some tests and examples where
the superiority of this network is not as clear, but
the overall analysis is positive.

Lastly, the performance of the denoising network
was compared to classical filtering algorithms. The
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results, both output images, and image quality
assessment scores, support the claim that this
network is a considerable upgrade in denoising
methods. Once again, the results of the BRISQUE
score are not as clear when analysing the denoised
Field II outputs. This metric, however, is simply a
guideline and direct visual analysis can be shown
to confirm that the Denoising GAN is a worthwhile
improvement. Be it in terms of the simulation
or denoising of ultrasound images, the training
of the pix2pix network as was described in this
work proves to be an effective novel approach that
already has merit, but can be further through
the use of more specialized training datasets or
modifications of the network architecture itself.
The weights of the networks used and some
more examples of the results are made avail-
able at: https://drive.google.com/drive/

folders/16WRXnFvXBVw7DWl1bE12o4j3MPOeDeG9?

usp=sharing and https://github.com/

AntonioAzeitona/DenoisingGANVideos.
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