
Supporting Posits in Deep Learning Frameworks:
A PyTorch Implementation

Afonso Vieira da Silva Luz
Instituto Superior Técnico, Universidade de Lisboa, Portugal

afonso.luz@tecnico.ulisboa.pt

Abstract—Reducing the energy consumption of computation-
ally intensive deep learning implementations has received a
growing interest in the last years. This is particularly relevant
in applications where there are strict energy restrictions, such
as space and aerial devices. To this end, the posit number
format has shown promising results as a more energy efficient
replacement to the standard IEEE-754 floating-point for deep
learning computations. Recent research suggests that 16-bit posits
achieve similar results as 32-bit floating-point and even smaller
posits can be used to train and evaluate deep learning models.
However, to study the use of posits for deep learning, researchers
have to develop customized functions, since the most popular deep
learning frameworks do not yet support posits. This work aims
at bridging this gap, by integrating posits natively in PyTorch,
the most popular framework for deep learning research. The
proposed implementation makes posits a built-in data type in the
framework, which means that they can be used in the same way
as any other data type that the framework already supports. To
validate the implementation, the convolutional neural network
LeNet-5 was trained and tested using posits on the MNIST
and FashionMNIST datasets. The obtained results with 16-bit
posits were similar to those with 32-bit floating-point, suggesting
that the implementation of the considered posit operators is
correct. To disseminate this contribution, the produced code
and documentation was made available on a public GitHub
repository.

Index Terms—Posit numerical format, Deep Learning (DL),
Neural Networks (NNs), PyTorch

I. INTRODUCTION

Deep Learning (DL) is, currently, one of the hottest topics
of research, with applications ranging from Natural Language
Processing to Computer Vision [1]. The most popular DL
model types are Deep Artificial Neural Networks (NNs) [2].
These are comprised of a variable number of layers, each
consisting of neurons holding weights that get updated with
the labeled input data. In complex networks, the number of
weights can reach hundreds of millions [3], representing very
high computational demands.

To design and train NNs, there are several available frame-
works that abstract the implementation details from the end
user. The most popular are PyTorch [4], developed by Face-
book, and TensorFlow [5], developed by Google. The first is
currently the most popular among researchers, while the latter
is the most used in production [6].

Given its computationally intensive nature, there is sig-
nificant research interest in reducing the memory footprint
and energy consumption of the operations performed by DL
models [7]. This is particularly relevant in domains where

there are strict constraints on processing capacity and energy
consumption, such as space applications [8].

One possible approach to reduce this footprint is by search-
ing for alternative formats to the traditional IEEE-754 32-bit
floating-point numbers for computations, such as integers [9]
and fixed-point numbers [10]. The introduction of the posit
number format in 2017, with claims that it offers a higher ac-
curacy and requires simpler hardware and exception handling
structures than IEEE-754 floating-point numbers [11], has led
to an increasing interest in using it within DL applications
[12]–[14]. Recent research as shown that the same accuracy
can be achieved with 16-bit posits as with 32-bit floats, and
even smaller posit configurations have achieved state-of-the-
art results [15] [16]. This means that, by using less bits,
there is the potential of reducing hardware resources, energy
consumption and memory footprint.

However, in order to train and test DL models with Posits,
researchers have to develop all the functions and operators
used for DL computations from scratch [15] [16]. This con-
stitutes a significant overhead in the research process, which
could only be mitigated if the most common DL frameworks
supported the posit number format.

This premise constituted the motivation for this work: to
introduce support of posits in the most widely used DL frame-
work for research, PyTorch. This way, the main objectives of
this work can be summarized as:

• Provide posit support to the main layers and functions of
NNs in PyTorch;

• Expose these functions in the Python frontend in the same
way as other native PyTorch data types;

• Document the process of extending posit support for
further operators;

• Provide a tool to test future developments of hardware
for posits within PyTorch.

The rest of this paper is organized as follows: Section II
presents the posit number format, the core concepts behind
DL and the most popular frameworks to design DL models.
Given the choice of the PyTorch framework for this work,
section III presents its frontend API. Then, in section IV, the
internal structure of the framework is described. Following
this structure, section V details the process of supporting NN
operators for posits in the framework. Section VI presents the
experimental evaluation conducted to validate this implemen-
tation. Finally, Section VII concludes with some final remarks
about this work and future studies.

II. BACKGROUND

Given that the purpose of this work is to integrate a
novel numerical format into an established Deep Learning
framework, it is important to understand its two main topics:
the posit number format and Deep Learning. This section
briefly explains these topics.

A. Posit Number Format

Despite the current ubiquity of IEEE’s floating point format
in computer systems, it has some problems and limitations,
such as breaking linear algebra laws (e.g. due to the rounding
process, (a + b) + c ̸= a + (b + c)), overflowing to infinity
and underflowing to 0, or the complexity of its manipulation,
especially due to the multiple NaN values, leading to complex
hardware to support it [17].

From the desire to overcome some of these problems,
John L. Gustafson has recently proposed a set of alternative
formats, denoted by Universal numbers (Unums). Firstly, Type
I unum [18] introduced an extra bit to IEEE’s floating point to
assert whether the represented number was exact or whether
it represented the lower end of an interval containing that
number. With the introduction of Type II unum, compatibility
with IEEE’s standard was broken, in order to have more
freedom to make it more hardware friendly [19].

In 2017, Type III unum - also known as Posit - was intro-
duced, having in mind the complete replacement of IEEE’s
floating point. Gustafson states that this new format offers a
larger dynamic range, a higher accuracy and requires simpler
hardware and exception handling structures than traditional
IEEE-754 standard floating-point numbers [11].

A posit number is defined by its total number of bits (nbits)
and by the size of the exponent field (es). This way, a posit
configuration is usually represented in the form posit(nbits,
es). The layout of a posit number (p) is represented in Figure
1, and its decoding is shown in equation (1).

Fig. 1. Generic representation of an nbits-bit posit with es exponent bits.

x =

0, p = 000...0,

±∞ = NaR, p = 100...0,

(−1)s × useedk × 2e × f, all other p.
(1)

The meaning of the sign bit is similar to other formats: 0 for
positive numbers and 1 for negative numbers. If the number is
negative, the 2’s complement of the other fields must be taken
before decoding. The regime field is characterized by a run of
identical bits (r) that is either terminated by an opposite bit
(r̄) or by using up all the nbits− 1 bits. The numerical value
(k) of the regime is given by the count of identical bits in this
run. For a run of m bits, all equal to 0, k = −m; if they are
1s then k = m− 1.

As represented in equation (1), the numerical value of the
regime, k, represents an additional exponent, applied over
useed = 22

es

. Hence, this scale factor is given by useedk.
The value encoded by the exponent bits (e) represents a scaling
by 2e. Finally, just as in normalized IEEE’s floats, the value
encoded in the fraction bits (f) has a hidden bit at 1. Therefore,
the scale factor is 1.f , as shown in equation (1).

There are two special encodings that represent 0 (all bits at
0) and Not a Real (NaR) or ±∞ (first bit at 1 followed by all
bits at 0). Having only two exception values with simple bit
patterns makes their manipulation at the hardware level easier
than the several NaN values of floats [11].

Contrary to IEEE floats, there is no bias for the exponent
field, since negative values of k already lead to negative
exponents. The variable size of the fraction field - determined
by the size of the regime - leads to a tapered precision,
that is, numbers with magnitude near 1 have more fraction
bits therefore greater precision, whereas very small and very
large numbers have smaller precision. This is illustrated in
Figure 2 where the decimal accuracy (i.e. how many digits
to the right of the decimal point are correctly represented) is
compared for 8-bit fixed point, 8-bit floatint-point and different
configurations of 8-bit Posits.

Fig. 2. Decimal accuracy of 8-bit fixed-point, 8-bit floating-point and several
8-bit Posits, obtained from [14].

The dynamic range of a positive (nbits, es) posit number is
[useednbits−2, useed2−nbits], which means that, for a given
posit size (nbits), the range increases only with the increase
of the number of exponent bits, since useed = 22

es

. Just as
in floats, increasing the size of the exponent field comes at
the cost of decreasing the size of the fraction, hence reducing
precision.

B. Deep Learning - Neural Networks

Deep Learning (DL) is a subfield of Artificial Intelligence
characterized by models with multiple layers, where each
layer builds knowledge on top of the previous one [1]. These
models are fed with input data and, by iterating over this
data, they update their parameters, effectively learning from
experience. The advantage of DL models over simpler machine
learning techniques is their ability to capture complex non-
linear behaviours by decomposing them into simpler tasks
addressed by each layer.

Currently, the most widespread DL models are Deep Arti-
ficial Neural Networks (NNs). Drawing inspiration from the
synapses that occur between neurons in the human brain,
NNs have weights connecting neurons in consecutive layers.
These weights represent the transmission of a signal between
neurons, which, together with an associated bias, pass through
a non-linear activation function to determine if the neuron is
”fired” or not.

Fig. 3. Example of a Neural Network with 2 hidden layers

Figure 3 shows an example NN with 3 layers (the input
layer is not counted). In order for a NN to be considered
deep, it should have at least 2 hidden layers. The input layer is
simply the input fed to the network: the pixels that constitute
an image, for example. The output layer is responsible for
connecting back to the real world problem at hand. If, for
example, the problem is that of determining the class of an
input image, each output neuron will represent the probability
of the image belonging to a given class, hence there will be
as many output neurons as there are classes of images.

Each circle in Figure 3 represents a neuron, and the arrows
between them are the connections, each of them with an
associated weight. Each neuron is connected to all the neurons
of the previous layer and to all the neurons of the next layer.

The output value of neuron i in layer l > 0, ali, is given by
equation (2).

ali = f(zli), with zli = bli +
∑

jϵprevious layer

wl
ija

l−1
j (2)

zli is the intermediate output, bli the bias, wl
ij the weight

connecting neuron j of the previous layer with this neuron
and f is a non-linear activation function. For the input layer,
a0i is simply equal to the the content at index i of the input
vector.

The ultimate goal of a NN is to receive an input (an image,
for example) and give a meaningful output (predict if the
image is of a dog, a person, etc., in an image classification
problem). This process is called inference. However, in order
for the network to be able to make correct predictions, it must
first learn from experience, just as humans do, in a process
called training.

Training a NN consists of updating its parameters (weights)
in order to obtain a model that can address as accurately as

possible the problem at hand. During the training procedure,
the measure that is used to evaluate whether the model is
accurate is a loss function (L). This function compares the
predicted value, ŷ, and the correct label, ytrue, penalizing wrong
predictions, L = f(ŷ, ytrue).

Since the predicted value is a function of all the weights of
the network, the loss will also be a function of these weights:
L = g(w1

11, w
1
12, ..., w

l
ij−1, w

l
ij , ytrue). Therefore, the goal of

the training procedure is to find the weights that minimize this
loss function.

Among the several techniques for NN training, the gradient
descent algorithm is the most popular [20]. The concept of
gradient descent is illustrated in Figure 4 for the simple case
of a single variable function where, for each step, the weight
is updated in the direction opposite to that of the gradient.

Fig. 4. Gradient Descent illustrated for a single variable function, obtained
from [21]

Mathematically, this can be formulated as

w(t+ 1) = w(t)− η
∂L

∂w

∣∣∣∣
w(t)

, (3)

where t is the step being considered and η is a hyperparameter
called the learning rate, used to adjust the magnitude of the
weight updates.

In order to calculate the derivative of the loss with respect
to a certain weight, the chain rule is usually used, following
equation (2) for the activation of each neuron. The influence on
the loss is felt through different paths in the network. Taking
as an example Figure 3, the weight w2

11 influences the first
neuron of the second hidden layer, which in turn affects both
output neurons, effectively affecting the loss in two ways. This
way, the derivative of the loss with respect to this weight will
be the sum of these two paths. The general formulation is,
then:

∂L
∂wl

ij

= ∂L
∂al

j

f ′(zlj)a
l−1
i

∂L
∂al

j

=
∑

mϵnext layer

∂L

∂al+1
m

f ′(zl+1
m)wl+1

mj .
(4)

From equation (4), the sum used to calculate ∂L
∂al

j

refers to
the next layer, which means that to calculate the gradients it is
more practical to do the computation in reverse: start from the
loss in the last layer, going backwards up to the input layer.
As a result, this algorithm is know as backpropagation, the
most commonly used to train NN [22].

In summary, the training of a neural network has 4 main
phases:

• forward pass: feeding an input to the network and
propagating forward to obtain an output;

• loss calculation: with the predicted output and the true
value, calculating the loss according to the chosen loss
function;

• backward pass: calculating the gradients with respect
to the weights, starting from the last layer up to the
beginning;

• weight update: following the principle of gradient de-
scent, update the weights to minimize the loss function.

C. Deep Learning Frameworks

In order to build, train and perform inference with NNs, one
can either implement all the mathematical operations for the
different layers, derivative calculations for backpropagation,
etc. from scratch, or leverage existing frameworks that provide
higher level APIs for these operations. Some of the most
popular frameworks are PyTorch, TensorFlow, Keras (built on
top of TensorFlow), Caffe and CNTK.

Among these, PyTorch [4] and TensorFlow [5] are the most
established [6]. The first is developed by Facebook and the
second by Google, but both of them are open source with very
active communities. Google’s TensorFlow was released earlier
with a stable API. It provided solutions both for server and
mobile and thus became dominant in production. However,
given PyTorch’s shallower learning curve and the easiness to
experiment and debug novel architectures, researchers have
been switching to PyTorch, and it has surpassed TensorFlow
in popularity, as shown in Figure 5.

Fig. 5. Unique mentions of PyTorch in DL articles that either mention
PyTorch or TensorFlow, obtained from [6].

Both frameworks offer similar functionalities, namely high
level Python APIs for all NN layers and associated functions,
along with automatic differentiation, responsible for calcu-
lating the gradients needed for backpropagation. From the
growing popularity of PyTorch within the research community,
as shown in Figure 5, this was the chosen framework to be
extended for posits in this work.

III. PYTORCH FRAMEWORK API

As mentioned in the previous section, PyTorch is currently
one of the most popular frameworks to build DL models. Its
Application Programming Interface (API) provides functions
for the most common DL operations, while abstracting their
implementation details from the end user. This section de-
scribes the core data structure within PyTorch and presents an
example of using the frontend API for the end to end design
and train of a NN model.

A. Tensors as the base data structure

Most operations within NN design and training can be
represented by a matrix multiplication. Hence, PyTorch uses
Tensors (multi-dimensional arrays) to represent all data within
NNs.

As an example, gray-scale images can be represented by a
2-D array, where each row and column position maps a pixel
in a certain height and width position on the image. If the
image is coloured, a new dimension representing each of the
3 channels is added. If images are grouped (within a batch,
for example), an extra dimension is added, where the index
denotes the image’s position in the batch. A 4-D tensor is,
thus, the adequate data structure to store a batch of coloured
images.

Along with the stored data, PyTorch’s Tensor class also
stores metadata that is relevant for NN design, namely:

• dtype: the type of the stored data (32-bit float, 16-bit
integer, 64-bit complex, etc);

• device: whether the tensor is allocated on the CPU or on
the GPU, and in which core;

• layout: How the tensor’s data is stored in memory (rows
concatenated contiguously, a sparse matrix representa-
tion, etc);

• requires grad: if, when integrated in a NN, this tensor
will need to have its gradient calculated for backpropa-
gation.

From these, the last attribute is particularly important. It
constitutes the main difference between Tensors dedicated to
NNs and multi-dimensional arrays. If this attribute is set to
True, PyTorch will automatically store the gradient of the
loss with respect to this tensor. Moreover, if other tensors
are constructed through mathematical operations on a tensor
with requires grad=True, these tensors will also keep track
of their gradient. With this, end users do not need to compute
gradients, everything is done in the background once the
network’s design is established.

B. Model Training Example

PyTorch provides a base class Module from which the
class representing the network should be derived. In the

init method of the network’s class, the design of the
network should be specified, through the layers that constitute
it. This class should also implement the method forward,
responsible for passing the input through the network’s layers
and returning the output.

After the definition of the model, the 4 phases of the
training process described in section II-B (forward pass, loss
calculation, backward pass and weight update) are done for
each batch of the training data. After going over the entire
training data, an epoch is said to be completed. For a neural
network to achieve a desirable precision on unseen data, the
training is repeated for several epochs. However, if the number
of epochs is too large, there is the risk of overfitting the
training data and thus perform poorly on unseen data.

Combining all these concepts, listing 1 provides an end-to-
end example of training the LeNet-5 network over the MNIST
dataset.
class LeNet5(nn.Module):

def __init__(self, n_classes):
super(LeNet5, self).__init__()

self.feature_extractor = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=6,

kernel_size=5, stride=1),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(in_channels=6, out_channels

=16, kernel_size=5, stride=1),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(in_channels=16, out_channels

=120, kernel_size=5, stride=1),
nn.Tanh()

)
self.classifier = nn.Sequential(

nn.Linear(in_features=120, out_features
=84),

nn.Tanh(),
nn.Linear(in_features=84, out_features=

n_classes),
)

def forward(self, x):
x = self.feature_extractor(x)
x = torch.flatten(x, 1)
logits = self.classifier(x)
return logits

model = LeNet5(n_classes=10)
optimizer = torch.optim.Adam(model.parameters())
loss_criterion = nn.CrossEntropyLoss()

train_dataset = datasets.MNIST(root=’mnist_data’,
train=True, transform=transforms.ToTensor(),
download=True)

train_loader = DataLoader(dataset=train_dataset,
batch_size=32, shuffle=True)

for epoch in range(0, epochs):
for X, y_true in train_loader:

optimizer.zero_grad()
y_hat = model(X)
loss = criterion(y_hat, y_true)
loss.backward()
optimizer.step()

Listing 1. Training the LeNet-5 network on the MNIST dataset

IV. PYTORCH INTERNAL STRUCTURE

In order to understand how posits were supported in Py-
Torch as one of the native data types, it is first important to
understand the internal structure of PyTorch’s codebase and
the main abstraction layers in it. Even though the codebase is

constantly mutating and has undergone a major design change
throughout 2019 [23], this section addresses its structure at
the time of writing of this paper.

A. Codebase Structure

The PyTorch codebase has over 8000 files with over 2
million lines of code. Of this, 60% is C++ code and 35%
Python code, the remaining 5% being comprised of C++
CUDA (gpu specific code) and mostly deprecated C code. [23].
The codebase is divided in 3 main directories that encompass
all the core functionalities of the framework:

• c10: The core library files that are used in every other
part of the code, common to both server and mobile;

• aten: The C++ tensor library, that is, where all the tensor
definitions and operators are implemented;

• torch: The translation from C++ code to the Python
frontend, with both C++ and Python files.

In order to support Posit, files from all of the 3 directories
must be altered: c10 to define the new data type for Posits; aten
to define the operators on tensors with posit data and torch to
expose posit tensors in the Python frontend. From these, aten
is the most relevant, since it is where every function actuating
on posits will be defined. This directory is further subdivided
in subdirectories comprising deprecated code (previous to the
major refactor undergone in 2019), and the more recent code
under aten/src/ATen. Within aten/src/ATen there are several
subdirectories (for CPU operators, cuda operators, operators
that use external libraries, etc.) making the code organized in
a way that makes it intuitive to navigate.

Besides those 3 core directories, there are others that address
the different stages of development of the codebase: a directory
with the scripts for the build process; a directory with the unit
tests of the Python frontend and another dedicated to the tool
used for integration of new code.

B. Tensor Implementation

As mentioned in section III-A, PyTorch uses tensors as the
core data structure to represent all data within NNs. A tensor’s
data is stored in memory, usually with each row contiguous
to the previous. This way, the tensor’s metadata should hold
not only the size of each dimension, but also the stride
associated with it. The stride is what the logical index should
be multiplied with in order to get to the physical index where
the element is stored. Moreover, there is an offset, representing
the position in memory where the count starts. Equation (5)
provides the translation between the logical indexes (i) and
strides (s) and the physical position in memory (mp) for a
tensor with n dimensions.

mp = i[n− 1]× s[n− 1] + · · ·+ i[0]× s[0] + offset (5)

From here, it follows that for each tensor some metadata
needs to be stored, namely the sizes and strides. Besides these,
three main parameters are stored as metadata:

• device: represents where the tensor’s physical memory is
stored: CPU, GPU, TPU, etc.;

• layout: describes how to logical interpret the physical
data. The most common is a strided tensor, but PyTorch
supports other types of memory configurations;

• dtype: corresponds to the type of the tensor’s data: 32-bit
floating-point, 64-bit integer, brain floating-point, etc..

However, the storing of this metadata is divided according
to whether it is metadata corresponding to the logical interpre-
tation of a tensor or to the physical storage of data. This way,
tensors have a level of indirection: the Tensor structure that
holds the metadata relative to the logical interpretation (layout,
sizes, strides, offset) and the Storage structure that records the
device and data type of the tensor as well as a pointer to the
raw data.

With this level of indirection, PyTorch effectively supports
different views of a Tensor, that is, different logical interpre-
tations of the same underlying data.

The number of possible types of tensors comes from the
cartesian product of the 3 parameters presented above: device,
layout and dtype. In order to extend tensors to support Posit,
it is enough to add another dtype representing Posit. This is
detailed in section V.

Tensor Iterator Utility: A lot of operations involve iterating
over all the elements of a tensor (or more than one tensor).
This is the case not only in all point-wise operations, where a
certain function is applied to all the elements of the tensor
individually, but also for operations involving two tensors,
(e.g. addition). In order to facilitate these operations, the
TensorIterator API offers a standardized way to iterate over
elements of a tensor, automatically parallelizing operations,
while abstracting device and data type details.

A TensorIterator should first be built through TensorItera-
torConfig, where the input and output tensors are specified,
along with more information such as whether there should be
checks on the data types or dimensions, among other utilities.
Once built, it can be iterated over using the for each function,
that can loop over 1 or 2 dimensions at once. There are
also built-in kernels that take a TensorIterator as argument
and apply an operation over each element. Listing 2 provides
an example of building a TensorIterator with two inputs
and using the built-in cpu kernel to perform addition. This
implementation works for all data types (as long as the +
operator is overloaded), since the dtype is abstracted in the
TensorIterator.

at::TensorIteratorConfig iter_config;
iter_config
.add_output(c)
.add_input(a)
.add_input(b);

auto iter = iter_config.build();
auto datatype = iter.dtype()
at::native::cpu_kernel(iter, [] (datatype a,

datatype b) -> datatype {
return a + b;

});

Listing 2. Example of usage of the TensorIterator utility

C. Dispatcher

Operators to actuate on tensors need to be different depend-
ing on the type of the tensor. The implementation of matrix
multiplication, for instance, is different if tensors are stored on
the CPU or the GPU, if the data type is integers or complex
reals, etc.. For this purpose, PyTorch has an abstraction layer,
working similarly to a virtual table, that addresses this issue,
called dispatcher.

The dispatcher is implemented through a bitset, called
DispatchKeySet, where each relevant metadata contributes with
a key to the set. These keys are ordered in decreasing order
of priority. A kernel is called for the first key of the set,
adding that key to the exclude set. In the next pass through
the dispatcher, the next key is used to identify the kernel to be
called. With this logic, the same dispatch key set can be used
for multiple calls, which is useful for PyTorch’s automatic
differentiation (autograd), for example.

Figure 6 provides an example where an operation is to be
performed on 2 tensors, one on the CPU and the other on the
GPU. The key for autograd is excluded from the bitset - since
it has already been handled in a previous dispatch - and the
backend select key is the one used to call the kernel that will
address this operation.

Fig. 6. Illustration of a dispatcher call.

The main advantage of the dispatcher is its decentralized
nature. Once the dispatch keys are defined, all the kernels cor-
responding to a given operator can be defined independently,
without the need for a centralized if statement.

D. Kernels

For each dispatch key, there should be a kernel that imple-
ments the intended operation. In order to register these kernels,
PyTorch provides the Registration API, which provides 4
endpoints in the form of C++ macros:

• DECLARE DISPATCH: where the function signature
is associated with the name of the dispatch registry;

• DEFINE DISPATCH: defines a function to be the dis-
patch registry;

• TORCH IMPL FUNC: calls the dispatch registry func-
tion through the function that is exposed to higher-level
APIs;

• REGISTER DISPATCH: associates the dispatch reg-
istry function with the kernel that implements the op-
eration.

Even though the API is not intuitive at first and implies
changing multiple files, it provides flexibility and speed when
calling dispatched functions [24]. Listing 3 provides an exam-
ple for the add function.

// file aten/src/ATen/native/BinaryOps.h
DECLARE_DISPATCH(void(*)(TensorIteratorBase&, const

Scalar& alpha), add_stub);

// file aten/src/ATen/native/BinaryOps.cpp
DEFINE_DISPATCH(add_stub);

TORCH_IMPL_FUNC(add_out) (
const Tensor& self, const Tensor& other, const

Scalar& alpha, const Tensor& result
) {
add_stub(device_type(), *this, alpha);

}

// file aten/src/ATen/native/cpu/BinaryOpsKernel.cpp
void add_kernel(TensorIteratorBase& iter, const

Scalar& alpha_scalar) {
//implementation of the add function on CPU

}

REGISTER_DISPATCH(add_stub, &add_kernel);

// file aten/src/ATen/native/cuda/BinaryAddSubKernel
.cu

void add_kernel_cuda(TensorIteratorBase& iter, const
Scalar& alpha_scalar) {

//implementation of the add function on gpu
}

REGISTER_DISPATCH(add_stub, &add_kernel_cuda);

Listing 3. Registration API to associate function calls to kernel
implementations

In this example, add stub is the dispatch registry function,
add out is the function that is exposed to higher level API’s,
add kernel is the CPU implementation of the add operation
and add kernel cuda the gpu implementation.

V. POSIT INTEGRATION IN PYTORCH

With an understanding of the main structure of the backend
as exposed in the previous section, adding support for posits
must make use of these tools. This section presents the
different stages of this work, starting from adding the posit
data type to Pytorch up to the support of the relevant operations
on posit tensors and the exposure in the Python frontend.

A. Posit Data Type

The adopted strategy to integrate posits was to add them
as one of the built-in data types supported by PyTorch. This
approach has the advantage of exposing posits in the frontend
as any other data type, avoiding the need for special represen-
tations. To emulate the operations with Posits, the Universal
library was the one chosen. Hence, in order for the posit ma-
nipulation functions to be available in the namespaces of Py-
Torch, two files were used as translation: c10/util/Posit16es2.h
for the posit declaration and c10/util/Posit16es2-math.h for the
math functions. A snippet of the code in these two files is
presented in listing 4.

// file c10/util/Posit16es2.h
#include <universal/number/posit/posit.hpp>

namespace c10 {
using posit16es2 = sw::universal::posit<16,2>;

}

// file c10/util/Posit16es2-math.h
namespace std {

inline c10::posit16es2 tanh(c10::posit16es2 a) {
return sw::universal::tanh(a);

}
}

Listing 4. Conversions from the Universal library functions to those in
PyTorch’s namespaces

PyTorch implements all the data types in the c10/core
directory (since this is the common directory to the whole
project) through the macro AT FORALL SCALAR TYPES
WITH COMPLEX AND QINTS. In it, a data type is asso-

ciated with an alias (with a number associated), to be used
throughout the codebase for comparison purposes. This file
also contains a macro that encompasses all the data types
belonging to a given set (integers, floats, complex, etc.), along
with a helper function to determine if a type belongs to a
given set. These were extended for posits with nbits = 16
and es = 2., as listing 5 shows.
#include <c10/util/Posit16es2.h>
// file c10/util/Posit16es2.h

// file c10/core/ScalarType.h
#define

AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(_)
\

_(uint8_t, Byte) /* 0 */ \
_(int8_t, Char) /* 1 */ \
_(int16_t, Short) /* 2 */ \
_(int, Int) /* 3 */ \
_(int64_t, Long) /* 4 */ \
_(at::Half, Half) /* 5 */ \
_(float, Float) /* 6 */ \
_(double, Double) /* 7 */ \
_(c10::complex<c10::Half>, ComplexHalf) /* 8 */

\
_(c10::complex<float>, ComplexFloat) /* 9 */

\
_(c10::complex<double>, ComplexDouble) /* 10 */

\
_(bool, Bool) /* 11 */ \
_(c10::qint8, QInt8) /* 12 */ \
_(c10::quint8, QUInt8) /* 13 */ \
_(c10::qint32, QInt32) /* 14 */ \
_(at::BFloat16, BFloat16) /* 15 */ \
_(c10::quint4x2, QUInt4x2) /* 16 */ \
_(c10::posit16es2, Posit16es2) /* 17 */

#define AT_FORALL_POSIT_TYPES(_) \
_(c10::posit16es2, Posit16es2)

static inline bool isPositType(ScalarType t) {
return t == ScalarType::Posit16es2;

}

Listing 5. Supported data types in PyTorch, including posit(16,2)

Since a macro is a pre-processor directive that is only
expanded at compile time, it is not possible to define a generic
data type for Posits. Despite the flexibility provided by the
templates of the Universal library to implement Posits, these
must be instantiated in the macro at compile time.

As a consequence, only a posit datatype with nbits = 16
and es = 2 was added, since it is the most used to re-

place 32-bit floating-point numbers for NN training [15] [16].
Nonetheless, in order to support more posit configurations, it
is enough to add them to the posit macros exposed throughout
this section.

B. Dispatcher for Posit Types

As presented in section IV-C, PyTorch implements a cas-
cading dispatcher system for operations on tensors. As such,
it was necessary to define a dispatcher for the posit data types.

This dispatcher receives 3 arguments:
• TYPE: the type of the tensor;
• NAME: the name of the function being called;
• a C++ lambda function for the operation in question.
The dispatcher stores the type of the data, gets its alias and

calls the passed function with the correct data type. Listing 6
shows the code for the newly created posit(16,2) datatype. To
support more posit types, they should be added to the switch
statement.

The amount of indirection levels is due to PyTorch’s struc-
ture, where the usage of macros is maximised to increase the
execution speed [25]. This comes at the cost of readability
of the code and increase in complexity and build times when
altering these core files.

#define AT_DISPATCH_POSIT_TYPES(TYPE, NAME, ...)
\

[&] { \
const auto& the_type = TYPE; \

at::ScalarType _st = ::detail::scalar_type(
the_type); \
RECORD_KERNEL_FUNCTION_DTYPE(NAME, _st);

\
switch (_st) {

\
AT_PRIVATE_CASE_TYPE(NAME, at::ScalarType::

Posit16es2, c10::posit16es2, __VA_ARGS__) \
default: \

AT_ERROR(#NAME, " not implemented for ’",
toString(TYPE), "’"); \
} \

}()

Listing 6. Supported data types in PyTorch, including posit(16,2)

The next section will present the operations that were
extended to support Posit. In all of them, this dispatcher is
used, given the structure of the indirection levels of PyTorch.

C. NN Operators for Posits

PyTorch contains thousands of operators, and supporting all
of them for a new data type results in a workload above the
scope of this work. This is evidenced by the two years taken
to have full support for complex tensors in PyTorch [23]. As
a result, the followed approach consisted of supporting the
subset of operators needed to train a NN solely with Posits.

The binding from a C++ operator implementation and the
corresponding Python frontend functions is mostly done by
auto-generated code. Adding this to the size of the codebase,
it is not recommended to navigate the stack trace to find the
C++ function that needs to be extended for the new data type
[25]. The most efficient way to locate the relevant function

is to call it, record the error message and search through the
codebase for that message. Listing 7 provides an example for
the MSE loss function, where the error message ”mse cpu”
not implemented for ’Posit16es2’ can be searched through the
codebase to find the kernel that implements this operation.
>>> loss = nn.MSELoss()
>>> input = torch.tensor ([[1.2 , 0.4, 2.3], [4.3,

6, -5.1]], dtype=torch.posit16es2)
>>> target = torch.tensor ([[1.2 , -1.2, 1], [4,

7.2, -5.4]], dtype=torch.posit16es2)
>>> output = loss(input, target)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/afonsoluz/pytorch/torch/nn/modules/

module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)

File "/home/afonsoluz/pytorch/torch/nn/modules/
loss.py", line 520, in forward
return F.mse_loss(input, target, reduction=self.
reduction)

File "/home/afonsoluz/pytorch/torch/nn/functional.
py", line 3112, in mse_loss
return torch._C._nn.mse_loss(expanded_input,
expanded_target, _Reduction.get_enum(reduction))

RuntimeError: "mse_cpu" not implemented for ’
Posit16es2’

Listing 7. Calling the MSE loss function before it was supported for Posits

Once the kernel is located, extending it for posits can
either consist of simply using the code that is being used for
other dtypes or writing a specific kernel. The second happens
when the implementation for other data types is making use
of hardware optimizations not available for Posits, such as
vectorization through the AVX2 instruction set.

Listing 8 provides an example of supporting the average
pooling kernel through the same operation that was being done
for the other data types. Since the kernel cpu avg pool only
performs operations that are supported by the Universal library
(and hence work with the posit datatype), it is enough to add it
to the dispatcher that was already being used for the other data
types. This is done by adding the alias for the posit(16,2) type
at::ScalarType::Posit16es2 as an argument to the dispatcher.
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Long

, at::ScalarType::Posit16es2, input.scalar_type
(), "avg_pool2d", [&] {

cpu_avg_pool<scalar_t>(output, input, kW, kH
, dW, dH, padW, padH, count_include_pad,
divisor_override);
});

Listing 8. Extending the average pooling operator for posits through the same
kernel as for other data types

Listing 9 provides an example of supporting the addition
with scaling operation, where a different kernel should be
used. Here, the TensorIterator API is explored, by using the
cpu kernel, which takes an iterator with two input tensors
and applies the lambda function passed to them. This is an
example of the case where for the other data types an hardware
optimization was being used.
if (isPositType(dtype)) {

AT_DISPATCH_POSIT_TYPES(dtype, "addcmul_cpu_out"
, [&] {
scalar_t scalar_val = value.to<scalar_t>();
cpu_kernel(

iter,
[=](scalar_t self_val, scalar_t t1_val,

scalar_t t2_val) -> scalar_t {
return self_val + scalar_val * t1_val *

t2_val;
}

);
});

}

Listing 9. Supporting addition with scaling by calling a separate kernel for
Posits

Table I lists all the operators whose support for posits was
implemented in the scope of this work. It presents the name
of the operator, its role and whether the extension was using
the existing kernel for other data types or through a custom
kernel for Posits. In the latter case, the TensorIterator API
was used, except for the softmax functions. Operators that call
others on this table, such as the cross entropy loss function
(combination of the log softmax function and the NLL loss
function), are automatically supported. Table II presents the
frontend functions resulting from the operators implemented.

TABLE I
OPERATORS THAT WERE EXTENDED TO SUPPORT POSITS, ALONG WITH

THEIR ROLE AND THE TYPE OF EXTENSION.

Name of the operator Role Extension type

scalar fill Tensor Implementation Same Kernel
local scalar dense Tensor Implementation Same Kernel
copy Tensor Implementation Specific Kernel
uniform Tensor Implementation Same Kernel
fill Tensor Implementation Specific Kernel
add Addition Specific Kernel
sub Subtraction Specific Kernel
sum Reduction addition Specific Kernel
max Maximum Tensor Value Specific Kernel
sqrt Square Root Specific Kernel
add mm Matrix Multiplication Same Kernel
addcmul Multiplication and Addition Specific Kernel
addcdiv Division and Addition Specific Kernel
unfolded2d acc Convolution Same Kernel
avg pool2d Average Pooling Same Kernel
avg pool2d backward Gradient Computation Same Kernel
tanh Activation function Specific Kernel
tanh backward Gradient Computation Specific Kernel
softmax Activation Function Specific Kernel
softmax backward Gradient Computation Specific Kernel
log softmax Activation Function Specific Kernel
log softmax backward Gradient Computation Specific Kernel
nll loss Loss Function Same Kernel
nll loss backward Gradient Computation Same Kernel
mse Loss Function Specific Kernel

VI. EXPERIMENTAL EVALUATION

To validate the implementation of the developed operators
for posits within PyTorch, the CNN LeNet-5 was trained with
posits with both the MNIST dataset and the more complex
Fashion MNIST dataset. Given the software emulated nature
of the posit library, computations take longer than with floats.
Thus, only a portion of the samples of the datasets were used

TABLE II
SUPPORTED NN FUNCTIONS AND LAYERS.

Function Name Function Type

Convolution Layer
Average Pooling Layer
Maximum Pooling Layer
Fully Connected Layer
Dropout Layer
TanH Activation Function
ReLU Activation Function
Softmax Activation Function
Mean Squared Error (MSE) Loss Function
Cross Entropy Loss Loss Function
Adam Optimizer

to have a manageable total training time. A block diagram
representing the layers and parameters of the network is
presented in Figure 7.

Fig. 7. Block Diagram representing the architecture of the evaluated LeNet-5.
K stands for kernel, S for stride and FC for fully connected.

In addition to the architecture of the network, it was neces-
sary to define the loss function and the optimizer algorithm.
The chosen loss function was the Cross Entropy Loss.

The training was conducted in a system with an Intel Xeon
E312xx CPU with 8 cores, operating at 2.4GHz and with 32
GB of RAM.

Figure 8 shows the evolution of the accuracy after each
epoch for 32-bit floats and 16-bit posits on the MNIST dataset.

Fig. 8. Comparison of the obtained accuracy of LeNet-5 training with floats
and posits on the MNIST dataset.

As it can be observed, the obtained accuracy with 16-bit
posits is similar to that of 32-bit floats, with a difference of
around 1% after 7 epochs. This is in line with the results
obtained in other works that evaluate training with small
precision posits [15] [16].

Figure 9 shows the evolution of the obtained accuracy after
the execution of the same experiment on the FashionMNIST
dataset.

Fig. 9. Comparison of the accuracy of LeNet-5 training with 32-bit floats
and 16-bit posits on the FashionMNIST dataset.

The FashionMNIST dataset is more complex, as it consists
of clothes’ items rather than digits. This leads to poorer per-
formances, which is evidenced by the lower accuracy attained
with 32-bit floats after 7 epochs of around 76%, contrasting
with the 97% obtained when evaluating MNIST. Nonetheless,
with posits with nbits = 16 and es = 2 the attained accuracy
of around 72% is 4% smaller than that of floats. This gap is
likely due to the reduced number of samples used for training,
which prevents the network from generalizing adequately.

VII. CONCLUSION

Up until now, to perform experiments with posits in the
context of DL, researchers had to build their own customized
functions and operators. As a result of this work, the main
NN operators and functions are supported in PyTorch, the
most popular DL framework for research. The code, along
with documentation on the process of supporting posits, was
made available on a public GitHub repository [26]. This
means further contributions can be made to extend the present
work. Moreover, the modular nature of this work allows for
future hardware implementations of the posit arithmetic to be
integrated and tested in PyTorch.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] A. Mosavi, S. Ardabili, and A. Varkonyi-Koczy, “List of deep learning
models,” in Engineering for Sustainable Future. Springer International
Publishing, 01 2020, pp. 202–214, doi:10.1007/978-3-030-36841-8 20.

[3] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The
computational limits of deep learning,” 2020, arXiv:2007.05558.

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[5] TensorFlow, “tensorflow/tensorflow: An open source machine learning
framework for everyone - github, v2.4.3,” 2021, accessed on 06/10/2021.
[Online]. Available: https://github.com/tensorflow/tensorflow

[6] H. He, “The state of machine learning frameworks
in 2019,” 2019, accessed on 06/10/2021. [Online].
Available: https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-
dominates-research-tensorflow-dominates-industry/

[7] J. Johnson, “Rethinking floating point for deep learning,” CoRR, vol.
abs/1811.01721, 2018.

[8] A. Mcgovern and K. Wagstaff, “Machine learning in space: Extending
our reach,” Machine Learning, vol. 84, pp. 335–340, 09 2011.

[9] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers
in deep neural networks,” 2018, arXiv:1802.04680.

[10] S. H. Fatemi Langroudi, T. Pandit, and D. Kudithipudi, “Deep learn-
ing inference on embedded devices: Fixed-point vs posit,” in 2018
1st Workshop on Energy Efficient Machine Learning and Cognitive
Computing for Embedded Applications (EMC2), 2018, pp. 19–23,
doi:10.1109/EMC2.2018.00012.

[11] J. L. Gustafson and I. Yonemoto, “Beating floating point at its own game:
Posit arithmetic,” Supercomputing Frontiers and Innovations, vol. 4,
no. 2, 2017.

[12] H. F. Langroudi, Z. Carmichael, J. L. Gustafson, and D. Kudithipudi,
“Positnn framework: Tapered precision deep learning inference for the
edge,” in 2019 IEEE Space Computing Conference (SCC), 2019, pp.
53–59.

[13] Z. Carmichael, S. H. F. Langroudi, C. Khazanov, J. Lillie, J. L.
Gustafson, and D. Kudithipudi, “Deep positron: A deep neural network
using the posit number system,” 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1421–1426, 2019.

[14] J. Lu, C. Fang, M. Xu, J. Lin, and Z. Wang, “Evaluations on deep neural
networks training using posit number system,” IEEE Transactions on
Computers, vol. 70, no. 2, pp. 174–187, 2021.

[15] G. E. C. Raposo, P. Tomás, and N. Roma, “Positnn: Training deep
neural networks with mixed low-precision posit,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP2021).
IEEE, June 2021.

[16] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep pensieve: A
deep learning framework based on the posit number system,” Digital
Signal Processing, vol. 102, p. 102762, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S105120042030107X

[17] J. L. Gustafson, “Beyond floating point: Next generation computer
arithmetic. stanford seminar,” 2016, accessed on 20/09/2021.
[Online]. Available: https://www.youtube.com/watch?v=aP0Y1uAA-
2Y&ab channel=stanfordonline

[18] ——, The End of Error, Unum Computing, 2nd ed. Chapman and
Hall/CRC, 2015, iSBN: 9781482239867.

[19] W. Tichy, “Unums 2.0: An interview with john l. gustafson,” Ubiquity,
September 2016.

[20] L. Bottou and Y. LeCun, “Large scale online learning,” in Advances in
Neural Information Processing Systems, vol. 16. MIT Press, 2004.

[21] S. Raschka, “Fitting a model via closed-form equations vs. gradient
descent vs stochastic gradient descent vs mini-batch learning. what is
the difference?” 2021, accessed on 27/09/2021. [Online]. Available:
https://sebastianraschka.com/faq/docs/closed-form-vs-gd.htmlfitting-a-
model-via-closed-form-equations-vs-gradient-descent-vs

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533 – 536,
1986.

[23] PyTorch, “pytorch/pytorch: Tensors and dynamic neural networks in
python with strong gpu acceleration - github, v1.9.1,” 2021, accessed
on 14/10/2021. [Online]. Available: https://github.com/pytorch/pytorch

[24] E. Yang, “Let’s talk about the pytorch dispatcher,” 2020, accessed on
19/10/2021. [Online]. Available: http://blog.ezyang.com/2020/09/lets-
talk-about-the-pytorch-dispatcher/

[25] ——, “Pytorch internals,” 2019, accessed on 18/10/2021. [Online].
Available: http://blog.ezyang.com/2019/05/pytorch-internals/

[26] A. Luz, “Afonso-2403/pytorch: Tensors and dynamic neural networks
in python with strong gpu acceleration - posit support,” 2021,
accessed on 25/10/2021. [Online]. Available: https://github.com/Afonso-
2403/pytorch

