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ABSTRACT
Intelligent Tutoring Systems (ITSs) are computer-based in-
structional systems that specify what to teach and how to
teach it[10]. Given a specific knowledge base, an ITS
presents activities related to this base for the user so they
can ”learn by doing” in realistic and meaningful contexts,
thus providing a personalised learning experience dependent
on the user’s experience. However, constructing an ITS is a
challenge in itself[11], being a multidisciplinary task involv-
ing multiple research fields, from which artificial intelligence
and education stand out. To simplify, the ”intelligent” part of
an ITS can be independent of the knowledge base, being in-
stead based on the empirical estimation of learning progress
of the user given the correctness of their answer[3].
This dissertation focuses on the construction of an online ITS,
P-res Tutor, with the purpose of teaching Propositional Reso-
lution[14], a rule of inference of Propositional Logic, and its
applications in solving theorems. Since learning this rule re-
quires learning other subjects, the system also teaches the ba-
sics of Propositional Logic and the Conjunctive Normal Form
(CNF) with different activities based on Logic exercises and
other rules of inference. For this system, we apply multi-
armed bandit methods [3] and develop a unique error diagno-
sis process [6] for exercise selection and student modelling.
The prototype of the system was implemented and a user-
study was conducted from which we got results validating
our system’s teaching potential.
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INTRODUCTION
As a teaching supplement, computer courses have been re-
searched and developed intensively. Inevitably, Artificial
Intelligence methods were introduced to the area of online
teaching, from which the area of Intelligent Tutoring Systems
was born. These systems, in a general manner, are computer
courses based on AI programming techniques, which change

according to the student’s input[1], providing an individu-
alised and personalised learning experience. For a student
to learn a skill, a sequence of exercises or activities is fol-
lowed. For an expert/teacher, the challenge lies on creating
a sequence that maximizes learning for every student. An
ITS serves as an artificial expert that determines the optimal
sequence of activities for the acquisition of the skill, while
being customized to fit each student’s unique characteristics.
The design and development of ITSs require resources from
multiple research fields, including artificial intelligence, cog-
nitive sciences, education, human-computer interaction, and
software engineering, all of this without taking into account
knowledge about the ITS’s main subject of teaching. As
such, building this kind of system presents a thoroughly chal-
lenging task, given the massive multidisciplinary require-
ments[11].
There are two main motivating factors for researchers to build
an ITS[12]:

• Pure Research Needs: Since ITS research lies at the inter-
section of multiple domains, it provides an excellent test-
bed for various theories from cognitive psychologists, ed-
ucational theorists and/or AI scientists. Different teaching
scenarios can be simulated by changing parameters of the
system, such as presenting different activities or changing
the overall difficulty of the course midway.

• Practical Needs: Since generally there are more students
than teachers, most educational systems become geared to-
wards group teaching methods, while losing most advan-
tages that are found in one-on-one tutoring. One of the
primary advantages of an ITS is the possibility to provide
one-on-one tutoring without necessarily losing the advan-
tages of the group teaching environment, for example by
providing each student their own copy of the ITS.

The aim of this thesis is, thus, to create a practical system
which can serve as a research tool for ITS researchers and
as a teaching tool for anyone who wishes to teach or learn
Propositional Resolution. This system must include exercises
and activities that test every skill needed to learn Resolution.
Subsequently, it must also estimate the knowledge of the stu-
dent given their answers on the exercises shown and select
exercises accordingly using this student model.
It must also provide feedback to the learner, so they can op-
erate independently, and to the teacher, so the system can be
improved if needed and to study the importance of different
adjustable parameters in the system. These can range from



having a limited set of fixed exercises to adjusting the learn-
ing speed.

RELATED WORK
In this section we discuss previous work done in the area,
starting with ITS construction and common components,
knowledge estimation, Multi-armed bandit methods for ITSs,
error diagnosis processes and recommended metrics for eval-
uating student steps and, finally, a theoretical introduction to
our system’s domain, Propositional Resolution.

ITS Construction and Components
Due to their complexity, ITSs are normally not easy to con-
struct [11]. Since the resources needed come from very dif-
ferent areas, such as artificial intelligence, education, human-
computer interaction and software engineering, the process
of building an ITS is inherently a challenging task. The con-
struction also highly depends on the views and priorities of
the author. They can choose to focus on exercise selection [7,
3], ensuring the system’s tutoring decision making is based
on sound pedagogical principles, or in error diagnosis [5, 4],
using appropriate knowledge structure and algorithms to in-
terpret users’ decisions correctly and give proper feedback to
the user.
The structure of an ITS varies tremendously between differ-
ent systems. Since the work in this area is experimental in
nature, there is no clear-cut way to construct an ITS’s struc-
ture [12] although many common elements can be found in
the structure of different ITSs. The most common structure is
a composition of different modules comprising different parts
needed for the tutoring process. The basic components, Ex-
pert Knowledge module, Student Model module and the Tu-
toring module, make up the intelligent part of the system and
is where most work in constructing an ITS is had, while a
fourth component, the User Interface module, has also been
identified [9] as essential as it serves as the only communica-
tion channel between the user and the system. A simplified
model of this structure can be found in the following figure 1.

KNOWLEDGE ESTIMATION
For the purpose of teaching a student, the system must also
ascertain what the student already knows, building the stu-
dent model, but also of what he/she must know to achieve
the taught skill, by having a clearly defined expert knowledge
module.

Knowledge Components
In any Intelligent Tutoring System, we can define its main
goal the learning of a certain skill, in this case being Proposi-
tional Resolution. To facilitate the learning process, this goal
can be subdivided into sub-goals, smaller skills that must be
learnt first since they are applied in the main skill. These sub-
goals are called Knowledge Components, KCs. They can be
represented as nodes in an acyclic graph to allow the creation
of a hierarchy between them to model their increasing diffi-
culty and required precedence of other KCs.
As defined by Lindsey et al. [8], KCs are provided by ex-
perts on the matter which can then be refined by automated

Figure 1. Basic structure of an ITS

techniques. For this problem, we will propose our own KCs
required to learn Propositional Resolution, which we will dis-
cuss further in this paper.

Zone of Proximal Development
When learning a skill, it is important to take note of what
activities to perform. If they are too easy, no new knowledge
is attained, if they are too hard, the student cannot complete or
understand it, meaning that the exercises recommended can
neither be too hard nor too easy. They must be challenging
enough to maintain the student’s interest and easy enough that
they can solve it, which requires exercises to be at a level
of required knowledge only slightly higher than the current.
These activities belong to what is called the Zone of Proximal
Development[15], or ZPD, for short, which comprises of all
the activities which give the most learning progress.

MULTI-ARMED BANDITS FOR ITS
When making an ITS specialized in choosing sequences of
exercises customized for each student, the most pressing issue
is how to define and optimize this sequence. A solution is us-
ing Multi-Armed Bandit methods [3, 16]. In short, in a prob-
lem with various activities to perform and each with a differ-
ent unknown reward, the problem lies in choosing whether to
explore different activities to see the reward of each one, “Ex-
ploration”, or exploit the activity that is guaranteed to give a
good reward, “Exploitation”. Taking a casino analogy into
account, multi-armed bandits would be described as trying to
find the most profitable slot machine.
Since the bandit must spend money exploring all of them be-
fore choosing the best one, the dilemma lies in simultane-
ously trying new activities to know their payoff while also



selecting the best ones so actual profit can be made. In the
context of an ITS, the slot machines are the different exer-
cises that the algorithm recommends to the student, the re-
ward is the learning gain and the choice of “Exploration vs
Exploitation” is made by the teaching algorithm, considering
the reward information it gets previously.
The usage of these methods allows us to have a weaker depen-
dency on a Student Model, in favor of optimizing the Tutoring
module to adapt to each individual student. This, in turn, also
allows us to use methods of student model construction that
make no assumptions about how students learn and only re-
quire information regarding the estimated learning progress
of activities, which creates a simple, yet unique model for
each user. As such, by focusing on optimization of the MAB
algorithm, the system becomes more accurate as student mod-
els and the tutoring module become more defined.
There are some particularities in an MAB approach to
ITSs. Firstly, the reward for each activity, which is learning
progress, does not stay the same, since it depends on the com-
petence level of the student for the exercise, which will stop
giving a reward after a certain competence level is achieved.
Secondly, rewards are not independent and identically dis-
tributed, as we are dealing with humans, which brings various
effects into play that can affect the reward, such as distrac-
tions, mistakes using the system and mainly different prefer-
ences between students.
Thus, every activity a will have a weight wa which tracks its
reward, correlated to the learning progress given by activity
a. Each time this activity is performed, this wa is updated:

wa ←− Bwa + ur (1)

As shown, the reward given by the activity, r, is added to the
current weight of the activity to update the new weight. By
altering the parameters B, u, we can change the relevance of
the reward or the previous weight. These weights come into
use when the system has to choose the next activity to recom-
mend, as each activity is assigned a probability, pi, for it to
be selected, which uses the normalized weight of the activity,
ẃa, the exploration rate, y, and a uniform distribution, eu, to
ensure sufficient exploration of activities:

pi = ẃa(1− y) + yeu (2)

Since it is needed that all activities have an associated weight
to determine their probability, it would be needed to explore
all activities to estimate their impact on each knowledge com-
ponent. This would be very time-consuming and could pro-
duce an under-performing learning sequence, so instead, a
canonical learning sequence is used to initialize the algo-
rithm, after which this sequence can be optimized. This
sequence is determined by an expert, and normally has a
higher reward on the introductory low difficulty activities and
a lower reward in the more advanced activities.
Two different algorithms using MAB technology can be used,
the first one requiring little domain knowledge named Zone of
Proximal Development and Empirical Success, ZPDES. The
second approach assumes there is a simple relation between
the activities and skills of the student, estimates the learning
progress obtained at a given point in time and proposes to the
student the activities which provide higher learning progress,

thus the name of the algorithm being Right activity at the
Right time, RiaRit.

ZPDES
This algorithm is inspired by the ZPD and the empirical es-
timation of learning progress, and, as such, it requires very
little domain/user knowledge. To estimate the reward of each
skill, that is, the estimated learning that the skill provides, the
correctness of the answer given by the student is the only pa-
rameter needed.
Instead of comparing the correctness of the answer given at
a certain time t with all of the previous answers d, it instead
compares the last half of d/2 answers with the earlier half of
d/2 answers given. This allows the measure of the quality
of each activity, since we can measure how much progress a
certain activity has provided in a short time window and we
consider activities with a faster progress to be better than oth-
ers with a slower progress [2].
Thus, the computation of the learning progress r, where
Ck = 1 if the exercise at time k is correct, is as follows:

r =

t∑
k=t−d/2

Ck

d/2
−

t−d/2∑
k=t−d

Ck

d− d/2
(3)

When an activity has already been acquired or when the
student is not progressing in any way, which are both extreme
cases, the reward given will be zero. To reduce the number of
activities that are needed to explore, there is also the added
restriction that only activities in the ZPD are selected for the
user.
Initially, the ZPD is defined as a graph with every activity
ordered by levels of difficulty. Only the most basic skills are
included in the ZPD, with more advanced ones having the
prerequisite of attaining previous easier skills. For activities
already in the ZPD, free exploration is allowed since these
are considered to always give some learning progress.
After enough progress is attained in a certain activity, it is
considered mastered, is removed from the ZPD and the more
advanced skills that had the previous one as prerequisite
being added to the ZPD.
This algorithm also allows the tutor to limit or expand
exploration of activities if needed, depending on whether the
set of activities have a clear progression of difficulty between
them. If they do, then exploration is limited to force students
to follow a specific path between each skill, if not, meaning
different students can have very different orders when they
are obtaining skills, then wider exploration is allowed in
order to accommodate individual differences.

ERROR DIAGNOSIS
For the purpose of constructing and maintaining a stable stu-
dent model, diagnosing the user’s input can contribute signif-
icantly to this effort. An ITS can be said to consist of two
different loops, an outer loop, which chooses activities for
the student by matching their learning progress to adequate
activities, and an inner loop, which gives feedback and hints
about steps the student must take to solve the activity [18]. An
important responsibility of the inner loop is analyzing these



steps the student takes, in order to find exactly where the user
made a mistake, and give proper feedback.
Different approaches for error diagnosis have been studied
extensively in ITSs [17] and 8 different aspects have been
identified in multiple ITSs as relevant for diagnosing student
steps:

• Correctness: refers to whether or not a student step
matches an expected step, with the only possible outcomes
being correct or incorrect;

• Difference: similar to correctness but measures the edit
distance, how different it is, between the student step and
the expected step. This measure is normally a number or
percentage, for example, if the only difference between the
student step and the correct step is a single character, a
’+’ for a ’-’, then the edit distance would be one, since it
requires only one edit operation for the student step to be
correct;

• Redundancy: refers to whether the student step is signifi-
cant in any way, if the difference between the current stu-
dent step and the previous one is too small, it can be con-
sidered redundant. Possible outcomes are redundant, not
redundant and unknown;

• Type of Error: refers to classifying errors, for example,
classifying a + (b as a syntax error. Possible outcomes
depend on the domain of the ITS;

• Common Errors: refers to errors students make based on
common misconceptions, for example, when forgetting to
change the sign when moving an expression to another side
of an equation (a + b = 0 → a = b). Possible outcomes
depend on the domain of the ITS;

• Order: refers to the order in which the student takes differ-
ent steps, with the possible outcomes being correct order,
incorrect order and unknown;

• Preference: refers to existing preferable solutions to prob-
lems than the one the student presents, with the possible
outcomes being preferred, not preferred and unknown.

• Time: refers to the time the student took to submit a step
or solve a problem, normally measured in milliseconds.

In regards to diagnostic processes, most ITSs use multiple as-
pects for diagnosing student responses. The most basic pro-
cess consists of a single aspect, correctness, only checking
whether the answer is correct or not. A more complex pro-
cess involving more aspects is used in the system AITS [6].
By calculating the edit distance between the student and the
ideal step, other aspects of the error can be better analyzed by
checking the number and the content of the different nodes to
determine redundancy and the type of error. Using these as-
pects, an error is classified according to its completeness and
its accuracy, meaning an incorrect student step can be either
complete but inaccurate, incomplete but accurate and incom-
plete and inaccurate. The diagnosis complete and accurate
never occurs since it means the edit distance is zero, and the
student step is equal to the best response.

PROPOSITIONAL LOGIC
Propositional Logic [14] is a branch of logic that deals only
with propositions, which are facts represented by symbols.
They can be a single affirmation or literal, which is called an
atomic proposition (an example of this is the proposition “It is
raining”), or a set of these affirmations/literals connected by
logical connectives, which is called a compound proposition
(an example of this is “It is raining, and it is cloudy” which is
a compound proposition of the literals “It is raining” and “It
is cloudy” with the logical connective “and”).
Propositions are normally represented by uppercase letters
(we can represent the propositions “It is raining” and “It is
cloudy” as A and B, respectively, and “It is raining, and it is
cloudy” as “A ∧ B”). Logical connectives are symbols used
to connect two literals to create a compound proposition, ex-
cept for the negation symbol, which is the only connective
that operates on a single proposition.
The logical connectives used in Propositional Logic are:

• Negation; represented by ¬,∼, or “NOT”, is the only con-
nective that is used in relation to a single literal and isn’t
used to connect two literals. Represents denial of a literal,
for example: ∼ A is only true when A is false.

• Conjunction; represented by ∧, &, ∩ or “AND”. Rep-
resents the intersection between two literals, for example:
A ∧B is only true when both A and B are true.

• Disjunction, represented by ∨, |, ∪ or “OR”. Represents
the junction of two literals, for example: A∨B is true when
A or B or both are true.

• Implication, represented by =⇒ , ==>, or ”IF...THEN”.
Represents dependence between two literals, for example:
A =⇒ B, meaning if A happens then B must happen, is
true when B is true or when A is false.

Resolution
Resolution is a rule of inference that leads to a theorem-
proving technique in propositional logic and first-order logic.
The resolution rule states that, from two different proposi-
tions, a new one can be created by uniting both and removing
the complementary literals. The new proposition is said to
be the resolvent of the previous two. This can be seen in the
following expression where P1 and P2 are propositions and
l ∈ P1 and ¬l ∈ P2:

Res(P1, P2) = (P1 − {l}) ∨ (P2 − {¬l}) (4)

A set of complementary literals is a set of a literal and its
negation, for example A and ¬A. The resolvent between
these two literals is the empty set {}. If there are other literals
in the proposition, the same principle is applied and the com-
plementary literals are removed, for example with the propo-
sitions P = A ∨B ∨ ¬C and Q = B ∨C ∨ ¬E, if we apply
the resolution rule, we get the expression:

Res(P,Q) = ((A∨B∨¬C)−{¬C})∨((B∨C∨¬E)−{C})

Res(P,Q) = (A ∨B) ∨ (B ∨ ¬E)

Res(P,Q) = A ∨B ∨ ¬E



The only restriction for this rule is propositional resolution
can only be applied to propositions in the Clausal Nominal
Form, CNF, or clausal form. A proposition is in the clausal
form if it is a conjunction of one or more clauses, where a
clause can either be a single literal, A or ¬B, or a disjunction
of literals, A ∨ B or ¬C ∨ D. The only logical connectives
a proposition in the CNF can contain are AND, OR and NOT,
and the NOT operator can only be used in reference to a single
literal. The empty set is also a clause, {}, and it is equivalent
to an empty disjunction.
To convert sentences to the clausal form, the following steps
must be taken:

1. Convert any implications to its disjunction form, Ex:
A =⇒ B is equivalent to ¬A ∨B;

2. Push the negation symbol inwards using De Morgan’s
Laws:

(a) For double negation: ¬¬A is equivalent to A;
(b) For negated disjunction: ¬(A ∨ B) is equivalent to
¬A ∧ ¬B;

(c) For negated conjunction: ¬(A ∧ B) is equivalent to
¬A ∨ ¬B;

3. Apply the distributive property of disjunctions, Ex: (A ∧
B) ∨ C is (A ∨ C) ∧ (B ∨ C).

An application of the resolution rule is to prove theorems.
With the application of the satisfiability theorem, which dic-
tates that given a set of premises P and a literal C we wish to
prove, the premises logically entail the literal C if P ∧¬{C}
is unsatisfiable and vice-versa, we deny our theorem and at-
tempt to reach the unsatisfiable state, the empty set {}, with
the given premises. With the set of premises and a denied
conclusion in the clausal form, we must reach the empty set
by applying the resolution rule to prove the theorem, for ex-
ample with P ∧ ¬C = {{A}, {¬A,B}, {¬B,D}, {¬D}},
we can reach the empty clause.

P = {{A}, {¬A,B}, {¬B,D}}

C = {{D}}

P ∧ ¬{C} = Q = {{A}, {¬A,B}, {¬B,D}, {¬D}}

Res(Q1, Q2) = R1 = {B}

Res(R1, Q3) = R2 = {D}

Res(R2, Q4) = {}

IMPLEMENTATION
The prototype of the system is built on a python Flask ap-
plication in an internet browser form, found in figure 2, with
the user interface being a free HTML5 template available on-
line and the tutoring module, student model module and ex-
pert knowledge module built entirely with Python. For the
propositional logic structures, operations and expressions, a
python library logic.py from the book AIMA [14] was used.
This library provides a framework for propositional logic in a

python context, from which we use structures for logical ex-
pressions and operations with logical connectives, such as all
the steps of conversion to the clausal form.
It is composed of three different activities the user can choose
from or a stream of activities chosen by the system using the
ZPDES algorithm, where the possible activities are one of the
three. The three activities are:

• Truth or False exercises, where a formula and its supposed
CNF formula are shown, and the user must answer whether
the CNF formula is correct or not;

• CNF conversion, where a formula is shown and the user
must input its clausal form;

• Connecting Clauses: Application of the resolution rule,
where a formula in its CNF form is shown and the user
must figure out if it is possible to achieve the empty clause
by applying the resolution rule and eliminating clauses.
This activity consists of selecting clauses to apply the reso-
lution rule, the activity ends when the user can achieve the
empty clause with any combination of the existing clauses
or if the user selects it is not possible to do so;

• Full Resolution exercise, where a set of premises P and a
conclusion C are presented and the user must prove that
the conclusion is proven by the premises, by converting
P ∧¬C to its clausal form, and apply the resolution rule to
the remaining clauses to achieve the empty clause {}. It is
the only activity to consist of two different steps, one where
the user must input the clausal form of P ∧¬C and another
one where the user must connect the resulting clauses to
achieve the empty clause {}.

Figure 2. User interface of P-res Tutor

Interaction Loop
When choosing a specific activity function, a random exercise
of the chosen type will appear. After this, the user receives
feedback for the correctness of the input and can check the
solution. When using the stream of exercises option, an ex-
ercise is selected based on the student model and presented.
After the student’s input, the correctness of the exercise is



evaluated by the expert knowledge model, the student model
is updated according to the correctness, feedback is shown
and a new exercise is selected and presented based on the new
student model. The solution for the previous exercise can also
be consulted.
This stream of new exercises is only stopped if the student
wishes to go to the main menu or if the student model shows
that the user has learned everything there is to learn. If a user
wishes to start over and reset the student model, there is an
option that resets it to its initial state in the main menu.

Knowledge Estimation
To estimate the knowledge of the student regarding Propo-
sitional Resolution, we divide it into different Knowledge
Components and represent them in the Student model mod-
ule.

Knowledge Components
The proposed KCs for Propositional Logic and Propositional
Resolution and its corresponding KC tree are the following:

1. Atomic propositions, ”It is raining” is A;

2. Negation of atomic propositions, ”It is not raining” is ¬A;

3. Conjunction of propositions, ”It is raining and it is cloudy”
is A ∧B;

4. Disjunction of propositions, ”It is raining or it is cloudy” is
A ∨B;

5. Implication of propositions and its decomposition, ”If it is
raining then it is cloudy” is A =⇒ B;

6. Removal of double negation, ¬¬A is A;

7. Distributive property of the OR connective, (A∧B)∨C is
(A ∨ C) ∧ (B ∨ C);

8. Negation of a conjunction, ¬(A ∨B) is ¬A ∧ ¬B;

9. Negation of a disjunction, ¬(A ∧B) is ¬A ∨ ¬B;

10. Application of the resolution rule, Res((A ∨ C),¬A) =
(P1 − {A}) ∨ (P2 − {¬A}) = C;

11. Proving a theorem using the resolution rule with proof by
contradiction.

Figure 3. KC tree with skill dependency represented by the directional
arrows

Student model Module
For the student model, we define it as a list of 10 values, for
every KC except KC1, corresponding to each KCs learning
progress. This value is percentage based, ranging from 0%,
where the KC has not been attempted yet, to 100%, where
the KC has been fully taught. The ZPD is also included in
the student model, initialized with KC2, KC3 and KC4, and,
as KCs are learned by the user, it is updated with new KCs
according to the KC tree.
After every activity, both the KC values and the ZPD are up-
dated. Depending on the correctness c of the exercise, which
can be -1 for incorrect answers and 1 for correct ones, and on
the learning speed ls, a possible way [13] to update every KC
value uk,n would be:

uk,n+1 = uk,n + ls× cn+1 (5)

To give even more importance to recent inputs, we build on
this method by including a parameter representing the streak
σ of exercises the student has gotten correct in a row, to a
maximum of 10 exercises. As with the learning speed, we add
an α parameter to adjust the streak’s relevance. In practical
uses, we use a small value for α, for example 0.1 or 0.2, so at
a maximum streak of 10 exercises in a row, it would not add
more than 1 or 2 to the KC value. Thus, the method becomes:

uk,n+1 = uk,n + ls× cn+1 + ασ (6)

Expert Knowledge Module
This module is built using logic.py library, with a change to
the CNF conversion function. After all steps of CNF conver-
sion, if we are left with an expression with repeated symbols
in conjunction or disjunction with each other, for example
A ∨ A or ¬B ∧ ¬B, these symbols are merged together, to
A and ¬B respectively, as having both would be redundant.
This module also includes a database of exercises testing ev-
ery KC. Depending on their content, these are classified ac-
cording to which KCs they affect prioritizing the higher rated
KCs. For example, for a proposition to be classified with KC2
it must only have a NOT connective, ¬, and for KC6 it must
have two in succession, ¬¬. As such, if an exercise is classi-
fied with KC6 we do not classify it with KC2.
Instead of letters, we use sequential numbers for each differ-
ent letter and, if the exercise is shown to the user, all numbers
are replaced with a random letter, for example 1 =⇒ 2 can
become A =⇒ B or Q =⇒ D or any other combina-
tion. This is done so the same exercise can be shown multiple
times without looking repetitive. The exercises available in
the system are mostly randomly generated, created using a
script that randomizes the number of clauses and the num-
ber and order of logical connectives, keeping into account the
validity of the generated expression.

TUTORING MODULE
This module is responsible for exercise selection and uses the
ZPDES algorithm for such. With the KC values and the ZPD
from the student model, we verify the ZPD for which KCs we
can choose, then select a KC with the lowest value. With the
KC chosen, we filter the exercises for the only exercises that
have an impact on that KC and order them by length since,
if an exercise has more clauses or symbols, it is considered



harder. With the learning value for the chosen KC as Lkc

the number of exercises that impact that KC as Nkc and the
learning value at which we consider that KC to be taught as
Lmaxkc, we choose an exercise based on the following ex-
pression:

ExerciseNumber =
Nkc × Lkc

Lmaxkc
(7)

With the exercise chosen, the activity must also be chosen,
which depend on the KC and its learning value:

• Truth and False exercises are always picked for every
novice and intermediate KC when they are below 25%
taught and have a chance to be chosen between 25% and
75%, after this threshold, these activities stop being cho-
sen;

• CNF conversion exercises have a chance to be chosen for
every novice and intermediate KC when they are over 25%
taught and are always chosen when they are over 75%;

• Connecting Clauses exercises are only picked for KC10;

• Full Resolution exercises are only picked for KC11.

Error Diagnosis
For error diagnosis, we first check the validity of the answer
given, by verifying there are no syntax issues or illegal char-
acters or if there is an empty answer. After this verifica-
tion there are two approaches we use for error diagnosis, one
where we only check for correctness and an approach similar
to AITS [6] diagnosis process, where we check for the edit
distance and the type of error to give better feedback and up-
date the KC values.
When measuring correctness, we compare the expression in-
putted, or shown in the Truth and False exercises, with the
expected expression. If they include the same symbols and
connectives in a similar order as the expected expression, for
example A∧B is equal to B∧A, the response is deemed opti-
mal and correct. Otherwise, if there is a significant difference
between the two formulas, the answer is deemed incorrect.
In the other approach, we verify the edit distance between
the input and the ideal response. If there is any difference
the answer is checked for its error. Here we make a distinc-
tion between basic errors, that students might make in the ini-
tial stages, and normal errors, where the student misses some
steps of CNF conversion. Basic errors provide detailed feed-
back according to the type of error while normal errors also
provide feedback but also influence the KCs they reference
by decreasing their learning value. The types of error are as
following:

• Basic Errors:

– Not enough clauses;
– Too many clauses;
– Clause not in original expression;

• Normal errors:

– KC5 error, if =⇒ is not simplified;

– KC6 error, if ¬¬ two negation symbols are not can-
celled out;

– KC7 error, if ∨ is not distributed to other conjunc-
tions;

– KC8 error, if negation of a disjunction is not con-
verted;

– KC9 error, if negation of a conjunction is not con-
verted.

Firstly we verify the number of clauses to verify basic errors,
then we check for any differing combination of symbols not
present in CNF. For any error that is found, we display feed-
back on it and what steps the student missed. The full error
diagnosis process can be found in the following figure 4.

Figure 4. Full process of error diagnosis of P-res tutor

USER STUDY
In order to evaluate P-res tutor for its learning capabilities,
more specifically, how much learning progress can be at-
tained with it and how efficient it is at teaching, a user study
was conducted. This study consisted of letting users interact
with the system for a specified time and evaluating whether
they had learned anything after, whether they were engaged
during this interaction and whether the system is clear enough
for users to understand without outside help.
Two different versions of the system were tested:

• P-res Tutor only with ZPDES algorithm;

• P-res Tutor with error diagnosis integrated with ZPDES al-
gorithm.



The study was conducted using fourteen participants, seven
for each version, with most being current or former students
of Engineering in Instituto Superior Técnico. Instead of only
selecting students of Computer Engineering, we included stu-
dents from various different courses, such as Mechanical En-
gineering, Civil Engineering and Electrical Engineering, with
most being second year students. In this way, we also manage
to assess whether the system can teach a random college-level
student a subject normally reserved for computer science stu-
dents.
Before the study, every participant was given a short theoret-
ical introduction to Propositional Logic, including the mean-
ing of propositions, logical connectives, how to convert a sen-
tence to CNF and how to apply the resolution rule to two
propositions. For non-computer science students, this is the
first contact they have with logic, more specifically, propo-
sitional logic (although some participants commented that
they still remembered some logic from learning Philosophy
in high school). Thus, we use the system to consolidate the
knowledge we introduce in a short, roughly fifteen minutes,
lesson.
After this introduction, we also present the interface and the
activities of the system to reduce errors unrelated to learning
logic. We then give unrestricted access to the system during
a minimum of thirty minutes, starting with an initial student
model and the stream of exercises. While the student hasn’t
learned everything, the stream keeps showing new exercises.
After the minimum time has passed, the student can choose
to stop the study or keep going to finish their learning. As-
sistance was also provided for the student for any question
regarding use of the system while the test was being carried
out.
At the end of the study, either from request of the student
or from finishing the system, general questions about the in-
terface, the exercise selection and how much propositional
logic they have actually learned were asked and the answers
recorded. Pen and paper were also supplied to each user.

Results
To evaluate each student’s learning progress, our first ap-
proach was to register how many KCs had been learned after
the interaction but, since most of the participants wished to
finish the system and achieve all KCs by continuing to use
the system after the thirty minutes, we instead chose to mea-
sure the percentage of correctness of each student for both ap-
proaches and compare the two populations of students, with
the results in figure 5. We also measured the overall correct-
ness of each KC to evaluate whether proper feedback and er-
ror diagnosis influence certain KCs learning, with the results
in figure 6.

By only looking at the statistical results, we can clearly
see the ZPDES plus Error Diagnosis system provided bet-
ter results and was a more efficient approach since the stu-
dents using this version achieved the same learning progress
with less exercises. These results were expected as this ap-
proach provided a better environment for students to not re-
peat their errors, as proper feedback allowed students to un-
derstand where they had made their mistake and correct it in
the future. This is also proven by the KC correctness values,

Figure 5. Graph showing the results of the correctness for each student
in the user study

Figure 6. Graph showing the average correctness of each KC for each
approach

as KCs that were harder to understand without feedback were
now easier to attain and had a better correctness value.
In general, students seemed engaged when using the system,
proven by the fact that most wished to end the training even
when told the minimum time had passed. As such, these same
students commented that they considered they had actually
learned the basics of propositional logic and how to perform
Propositional Resolution. Students who used the Error Di-
agnosis version of the system commented that the feedback
and explanation of the previous exercise’s solution was clear
and concise. Users also complimented the clean interface and
some commented that they considered the exercises were tai-
lored for their needs.
Regarding criticisms, one of the most prominent opinions was
that the system was not very user friendly, as activities and
the descriptions of what to do were a bit vague, which left
them unsure of what to do. This difficulty was pointed out
mostly about the Connecting Clauses activity since it resem-
bled a multiple choice activity. Another criticism was related
to a lack of a sense of progress to the stream of exercises.
A common comment during user testing was if the system
would endlessly present exercises or if it had an end, since
the only feedback received was related to the user’s input and
no feedback is given related to how much learning progress
the student has achieved.
Overall, this study was conclusive in evaluating our both
approaches with college students, although a more exten-
sive study, with a more diverse population of different back-



grounds and ages would provide more conclusions about the
system, its advantages and its shortcomings.

CONCLUSION AND FUTURE WORK
Concluding this dissertation, we sum up the achievements
made with this work and discuss future work. We managed
to create P-res Tutor, an ITS that is able to provide a cus-
tomizable and adaptive experience for any student to learn
Propositional Resolution. In terms of improvements, the pri-
ority would be to improve on the existing activities to make
them more user friendly, by changing the activities descrip-
tions or even the activities themselves. A possible improve-
ment would be to change the form of input in CNF conversion
exercises, instead of being text-based, all of the possible sym-
bols and connectives would be in selection boxes and the in-
put for the exercise would be created by clicking these boxes.
A major extension for P-res Tutor would be to implement
First-Order Logic and First-Order Resolution in the system.
This would require some extensions to the logic.py library,
as it only includes a framework for Propositional Logic. It
would also require implementation of the existential quanti-
fier ∃ and the universal quantifier ∀ and their decomposition
to CNF. Furthermore, both different KCs and a different KC
tree would have to be created since First-Order Logic includes
many concepts, such as predicates, which Propositional Logic
does not consider. For this extension, help could be obtained
from analysing ITSs which test First-Order Logic [5].
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