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Abstract

Countless benefits and applications of space technology led to a significant rise in the number of satellites being launched
into space over the years to perform a wide range of missions. To satisfy the mission objectives, the satellites need to be
operated at a certain nominal orbit. However, orbital injection errors and environmental perturbations cause the orbit to deviate
from the nominal one. Recent improvements in on-board computational performance allow transferring the orbit correction
process to on-board autonomous orbit control (AOC) algorithms. On that matter, this work is focused on the development
of an autonomous algorithm to perform orbit correction and maintenance of a LEO satellite using novel electric propulsion
solutions. Two different control methodologies are explored to achieve the proposed objective: linear quadratic regulator
(LQR) and model predictive control (MPC). A control solution based on a combination of these methods is proposed. The
MPC is used to correct large initial errors that result from the orbital injection, whereas the LQR assures the final convergence
and orbit maintenance by counteracting the effect of orbital perturbations. The TerraSAR-X mission was selected as a test-
bed to evaluate the algorithm performance. Simulation results show that the proposed AOC strategy effectively corrects
orbit injection errors in different Keplerian elements. Moreover, the AOC algorithm demonstrates good performance for orbit
maintenance activities, correcting the effect of orbital perturbations and maintaining the orbital error within the TerraSAR-X
mission requirements, even when considering realistic sensors and actuators.

Keywords: Autonomous orbit control, LEO satellite, electric propulsion, model predictive control, linear quadratic regulator.

1 Introduction

Low Earth orbit (LEO) satellites are used to fulfil a variety
of missions, from Earth and Space observation to commu-
nications and military applications. Most of the man-made
objects orbiting the Earth are in LEO as they require less en-
ergy for orbit placement and, therefore, less associated cost.
To satisfy the mission objectives, the orbit of these satellites
is designed to fulfil certain requirements. However, launch
injection errors and the effect of orbit perturbations cause
the orbit to deviate from the one originally projected. This
is normally not acceptable and, therefore, orbital maneuvers
are performed to correct the orbital deviation. Usually, this
process is completely managed by the ground-segment in a
time-consuming process. The increase of on-board compu-
tational resources created a new opportunity for the imple-
mentation of on-board algorithms to control the spacecraft
orbit automatically without ground intervention. In this con-
text, on-board autonomous orbit control (AOC) arises as the
answer to meet mission requirements and reduce the work-
load of operational teams. Simple control strategies, such as
the linear quadratic regulator (LQR), have been used to de-
velop autonomous orbit control algorithms (see [1]). Recent
improvements in computational performance enable the use
of more powerful control strategies, namely the model pre-
dictive control (MPC), to explore new AOC algorithms and
enhance control performance. Moreover, the emergence of
electric propulsion solutions allows for more precise and ef-
ficient orbit control, which enable novel AOC strategies.

One of the first groups to work on autonomous orbit con-
trol was Microcosm that tested their orbit control kit (OCK)
on-board the UoSAT-12 satellite, launched in April 1999 [2].
The success of that mission validated the use of autonomous
orbit control to correct deviations from the reference orbit
and maintain a satellite’s long-term orbit parameters. Fol-
lowing that, in 2011, the PRISMA mission validated the au-
tonomous orbit keeping algorithm to maintain the longitude
of the ascending node of the MANGO spacecraft, within a
certain tolerance [3]. Regarding the PRISMA mission, Ser-
gio De Florio and Simone D’Amico developed an orbit con-
trol strategy based on the relative motion of two satellites.
They approached the orbit control problem as a formation
fly between a real satellite, affected by the orbital perturba-
tions, and a virtual satellite that fulfils the orbit requirements
imposed by the mission. A standard LQR controller was im-
plemented to compute the control actions and perform or-
bit corrections to maintain the position error between the
real and the virtual satellite below 250m (root-mean-square).
PRISMA mission was used as a test-bed to validate the con-
trol algorithms [1].

A more powerful, but more computationally demanding,
control strategy was proposed by Tavakoli and Assadian.
They investigated the use of MPC for autonomous orbit con-
trol of LEO satellites by applying a similar strategy as Florio
and D’Amico. The orbit control problem was converted into
a relative orbit control problem in which an MPC controller
computes the finite horizon optimal firing times of the satel-
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lite thrusters, in order to drive the satellite to the reference
orbit, not affected by undesirable perturbations [2].

The majority of autonomous orbit control solutions use
chemical propulsion to perform corrective maneuvers. How-
ever, the emergence of electric propulsion systems enabled
new control strategies. Mirko Leomanni, Andrea Garulli, and
Antonio Giannitrapani developed a solution to maintain a
repeat ground track orbit of a spacecraft driven by electric
propulsion [4]. The control approach proposed uses a hys-
teresis controller that provides a pulse-widthmodulated com-
mand to the thruster. Simulation results showed that the
resulting control scheme was able to acquire and maintain
consistently in-orbit the desired repeat ground track pattern,
in a fully autonomous manner.

From the literature review, it is noticeable a clear lack of
AOC strategies that account for large initial errors due to the
orbital injection process. Navigation errors of the launcher
and thrust inaccuracies originate an error between the tar-
geted orbit and the actual injection orbit. In this work, a so-
lution to overcome these injection errors and drive the initial
orbit to the desired one is proposed. This solution is based
on an advanced control strategy, namely the MPC. Despite
the increased computational effort, this more powerful con-
trol technique offers enhanced capabilities to the control sys-
tem, which are not present in the solutions usually proposed
in the literature. The control strategy was developed based
on the use of electric thrusters as the actuators to correct
the satellite orbit, which is an emergent solution in the field
of autonomous orbit correction and maintenance.

To summarise, the objective of this work is the devel-
opment of an algorithm to perform autonomous orbit con-
trol of a LEO satellite using electric propulsion that can cope
with a wide range of initial error conditions. This algorithm
computes the required control actions to correct initial orbit
injection errors and maintain the orbital parameters of the
satellite close to the reference, counteracting the effect of or-
bital perturbations. Two different control solutions are used
to achieve this objective: LQR and MPC. Due to its demand-
ing orbit control requirements, the TerraSAR-X mission was
selected as a test-bed to evaluate the algorithm performance
(see [5]).

2 TerraSAR-X mission

The TerraSAR-X mission, which was operated in close
formation with the Tandem-X mission at distances of a few
hundred meters, is used as a test-bed for the proposed
controllers, given its demanding orbit control requirements.
TerraSAR-X is a German synthetic-aperture radar (SAR)
satellite based on a public-private partnership agreement be-
tween the German Aerospace Center (DLR) and EADS As-
trium GmbH, which was launched on 15th June, 2007 [5].

The spacecraft characteristics and orbit properties of the
TerraSAR-X mission are presented in Table 1. The orbit of
TerraSAR-X is LEO, sun-synchronous and has to fulfill the

requirements presented in Table 2 to accomplish its mission.

Table 1: Spacecraft and orbit properties of the TerraSAR-X
mission [5].

TerraSAR-X characteristics

Wet mass 1230 kg
Dimensions 5 m height ×2.4 m diam.

Semi-major axis 6892.944 km
Eccentricity 0.0014252

Inclination 97.4401 deg
Altitude 505− 533 km

Nominal revisit period 11 days

Table 2: TerraSAR-X mission requirements [5].
TerraSAR-X requirements

LTAN 18 : 00 hrs (± 0.25 hrs)
Tr ± 500 m per revisit period

The local time of ascending node (LTAN) is used to de-
scribe sun-synchronous orbits. It is defined by the mean lo-
cal time at which the spacecraft passes the Earth equator on
the ascending branch of its orbit. The ground track repeata-
bility defines with which accuracy the spacecraft should fly
over a given path on the Earth’s surface. The ground track
repeatability is evaluated by the ground track repeatability
error (Tr) which is the distance along the Earth surface be-
tween the satellite real position and its desired location.

The AOC problem can be formulated as a two satellite
formation problem, in which one of them is virtual and not
affected by non-gravitational orbit perturbations. This virtual
satellite is referred to as the reference satellite, which com-
plies with the mission requirements, having an error of zero
in the ground track repeatability at all times. The reference
satellite orbit to be used should be affected by the aspherical
terms of the Earth gravity field, so that the orbital precession
due to the oblateness of the Earth can be leveraged to keep
the LTAN constant.

The ground track repeatability error (Tr), illustrated in
Fig. 1 can be represented, at a given epoch, as the dis-
tance along the Earth surface between the real propagated
satellite at point A and the reference satellite at point B.

Figure 1: Ground track repeatability error schematic diagram
[6].
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The approximate formula for small values of Tr based on
spherical geometry is given by (see [6])

Tr ≈ R⊕

√
∆φ2 + (cosφTf∆λ)2, (1)

where φTf is the geocentric latitude of point B, and ∆φ and
∆λ are the geocentric latitude and longitude difference be-
tween points A and B, respectively.

3 Fundamentals of Orbital Motion

3.1 Reference Frames Definition

Two distinct reference frames are used in this work: the
True of Date (ToD) coordinate frame and the Local Orbit
(LOF) coordinate frame (see [7]).

The ToD coordinate frame has its origin coincident with
the center of mass of the Earth and is approximately an in-
ertial reference frame, even though its origin suffers an ac-
celeration caused by other celestial bodies, mainly the Sun.
This acceleration can be neglected for the accuracy required
for the applications considered in this work given its small
magnitude when compared with the magnitude of the gravi-
tational acceleration caused by the Earth.

Throughout this work, the ToD frame is represented by
the basis I = {i1, i2, i3}. The i1 axis points from the cen-
ter of mass of the Earth to the vernal equinox, at the current
epoch. The i3 axis is along the axis of the Earth’s rotation at
the current epoch and pointing towards the North Pole. Fi-
nally, the i2 axis completes the right-handed orthogonal ref-
erence frame. Due to the precession of the Earth’s rotation
axis, the direction of the coordinate system axes varies with
time. Therefore, the direction of these axes is defined rela-
tive to the current epoch of the analysis.

The Local Orbit frame is defined with respect to the or-
bit of the spacecraft and is represented by the basis O =

{o1,o2,o3}. The o3 axis points from the center of the Earth
to the spacecraft, whereas the o2 axis points in the direction
of the spacecraft’s orbital angular velocity. The o1 axis com-
pletes the right-handed orthogonal reference frame, pointing
in the direction of the motion for a circular orbit. This coordi-
nate frame has its origin in the spacecraft’s center of mass.

3.2 Orbital Motion Models

3.2.1 Cartesian Coordinates Representation

If the motion of a satellite is described relative to the
ToD frame and perturbations are taken into account, then
the equation of motion can be written in the form (see [8])

r̈+ µ

||r||3 r =
I f(r, v) + I fc, (2)

where r and v are, respectively, the position and the veloc-
ity of the spacecraft expressed in the ToD coordinate frame,

I f(r, v) is a 3 × 1 vector that corresponds to an accelera-
tion vector caused by orbital perturbations, µ is the stan-
dard gravitational parameter, and I fc is a 3 × 1 vector that
corresponds to a control acceleration, expressed in the ToD
reference frame, used to control the satellite motion

From (2), the set of first-order differential equations of the
position and the velocity of a satellite, expressed in the ToD
reference frame, is given byṙ = v

v̇ = − µ
||r||3 r+

I f(r, v) + I fc
. (3)

3.2.2 Keplerian Elements Representation

Keplerian elements are parameters used to represent
the spacecraft position in its orbit about the Earth, which pro-
vide immediate insight about the orientation and geometry of
the orbit. In fact, the Cartesian position and velocity of the
spacecraft may be useful for some computational applica-
tions but provide little insight into important aspects of the
orbital motion [1], [9].

Gauss’ Variational Equations (GVEs) adapted for near-
circular orbits provide a convenient model to fully charac-
terise the orbit and location of the satellite, using the set of
Keplerian elements Ixk = [a ex ey i Ω u]T , where a is the
semi-major axis, ex and ey are the components of the ec-
centricity vector, i is the inclination, Ω is the longitude of the
ascending node, and u is the argument of latitude. Although
TerraSAR-X initial orbit can be modeled as near-circular,
during the orbit correction maneuvers the orbit eccentricity
presents values that are not characteristic of a near-circular
orbit. Therefore, an adaptation of the near-circular orbit sys-
tem dynamics proposed in [8] is considered, as given by



ȧ = 2 a2
√

µp

[
Of3e sin θ + Of3

p
||r||

]
ėx =

√
p
µ

[
Of3 sin θ + Of3(cosE + cos θ)

]
ėy =

√
p
µ

[
−Of3 cos θ + Of3(sinE + sin θ)

]
i̇ = Of3

||r||√
µp cosu

Ω̇ = Of3
||r||√
µp sin i sinu

u̇ = n + Of1

[
1
e

√
p
µ − 1−e2

e

√
a
µ

]
sin θ

[
1 +

||r||
p

]
−

Of2
||r||√
pµ cot i sinu − Of3

[
2||r||√

µa +

(
1
e

√
p
µ − 1−e2

e

√
a
µ

)
cos θ

]
,

(4)

where Of1, Of2, and Of3 are the components of the accel-
eration vector felt by the spacecraft expressed in the Local
Orbit frame and include all the perturbative and the control
accelerations, p is the semi-latus rectum (p = a(1 − e2)), E
is the eccentric anomaly, θ is the true anomaly, and n is the
mean motion.

3.3 Perturbation forces

Perturbation forces cause a time-variation of the Keple-
rian elements, causing the orbit to deviate from the unper-
turbed Keplerian model. The most significant perturbation
forces in low Earth orbits are the atmospheric drag (I faero),
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the solar radiation pressure (I fSRP ), the third-body gravita-
tional attraction (I fTBG) from the Moon and the Sun, and the
non-spherical Earth gravity field (I f⊕) [10]. These accelera-
tions are expressed in the ToD reference frame. Therefore, a
rotation to the Local Orbit frame is necessary in order to use
them in the GVEs. The resulting perturbative acceleration
(Of = [Of1

Of2
Of3]

T ), in the O-frame, is given by

Of = Ofaero + OfSRP + OfTBG + Of⊕.

4 Control Design

TerraSAR-X mission requires that the ground track re-
peatability error is maintained within a specific range of val-
ues to fulfill the mission objectives. To achieve that, the pro-
jection on the Earth surface of the position of the real satellite
should be driven and maintained close to the projection on
the Earth of the reference satellite, so the ground track re-
peatability error is small enough. This is possible if the orbital
position of the real satellite is driven to the reference satellite
orbital position, considering that the projection of the satellite
is directly dependent on its orbital position. Furthermore, by
correcting the orbital velocity of the real satellite, its orbit will
converge to the reference satellite orbit. This strategy will
also maintain the LTAN within the range of values specified
by the requirements since this is a property of the reference
orbit. To achieve this objective, two different control strate-
gies are considered: LQR and MPC.

4.1 LQR Design

4.1.1 Dynamic Model

In the ToD reference frame, the Cartesian representation
of the error dynamics between the real satellite and the ref-
erence is a straightforward model, which simplifies the con-
troller implementation.

Let Ix = [rT vT ]T be the vector that contains the posi-
tion and the velocity of the real satellite expressed in the ToD
reference frame. Recalling (3), the time derivative of vector
Ix can be written as

I ẋ =

 v
− µ

||r||3 r+
I f(r, v)

+ B I fc, (5)

where

B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


.

As mentioned in Section 2, it is intended that the orbit
precession still occurs in order to maintain the LTAN con-

stant. Therefore, for the reference orbit, the only perturba-
tive acceleration that is considered is the one caused by the
Earth’s gravity field and no input accelerations are consid-
ered. This orbit is modelled by

I ẋr =

 vr
− µ

||rr||3 rr +
I fr(rr, vr)

 , (6)

where Ixr = [rTr vTr ]T is a vector that contains the position
and the velocity of the reference satellite in the ToD reference
frame and I fr(rr, vr) is a perturbative acceleration caused
by the Earth’s gravity field. To obtain a ground track error
close to zero, the error ϵ = Ix− Ixr must converge to zero.
Subtracting (6) from (5), the dynamic model in matrix form
for the error between the real and the reference satellite is
given by

ϵ̇ =

 v− vr
− µ

||r||3 r+
I f(r, v) + µ

||rr||3 rr −
I fr(rr, vr)

+B I fc. (7)

Defining∆v = v−vr and∆r = r−rr, it is possible to rewrite
(7) as

ϵ̇ =

[
∆v
g(ϵ)

]
+ B I fc, (8)

where

g(ϵ) =− µ

||∆r+ rr||3
(∆r+ rr) +

µ

||rr||3
rr+

I f(∆r+ rr,∆v+ vr)− I fr(rr, vr).

4.1.2 Linearization

The dynamic model for the error between the real and the
reference satellite is given by (8). Notice that this model
is nonlinear and, therefore, to implement an LQR controller
based on this system dynamics, a linearization process must
be carried out.

Starting by defining an equilibrium point given by ∆r0 =

∆v0 = [0 0 0]T and I fc0 = [0 0 0]T , which, by the definition
of equilibrium point, provides ϵ̇0 = [0 0 0 0 0 0]T , the small
perturbation model for operations near this equilibrium point
is given by 

∆r1 = ∆r10 + δ∆r1

∆r2 = ∆r20 + δ∆r2

∆r3 = ∆r30 + δ∆r3

∆v1 = ∆v10 + δ∆v1

∆v2 = ∆v20 + δ∆v2

∆v3 = ∆v30 + δ∆v3
I fc = I fc0 + δI fc

. (9)

Note that∆r = [∆r1 ∆r2 ∆r3]
T ,∆v = [∆v1 ∆v2 ∆v3]

T , and
rr = [rr1 rr2 rr3 ]

T , which are expressed in the ToD reference
frame. The referred equilibrium point is chosen based on the
control objective of driving the error between the real and the
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reference satellite to zero. Therefore, it was decided to lin-
earize (8) about the equilibrium point where the error is zero,
given by ϵ = [0 0 0 0 0 0]T ⇒ ∆r = ∆v = [0 0 0]T . Remem-
bering that ϵ = [∆rT ∆vT ]T , it is possible to write g(ϵ) (see
Section 4.1.1) as a Taylor series expansion, which provides
a linear form of g(ϵ). Since the magnitude of the perturba-
tive acceleration caused by the J2 Earth gravity component
is 103 times higher than the magnitude of other perturbative
accelerations that affect the real orbit, for the sake of sim-
plicity, it was decided to only consider the J2 term influence
in the system. With that in mind, and using the small pertur-
bation model given by (9), it is possible to linearize the error
dynamics (8), as given by

δϵ̇ = Aϵδϵ+ Bϵδ
I fc, (10)

where

Aϵδϵ =

 δ∆v
∂g(ϵ)
∂∆r1

∣∣∣
ϵ=0

δ∆r1 +
∂g(ϵ)
∂∆r2

∣∣∣
ϵ=0

δ∆r2 +
∂g(ϵ)
∂∆r3

∣∣∣
ϵ=0

δ∆r3


and

Bϵ =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


.

The linearized dynamics for the error between the real
and the reference satellite given by (10) operates around the
equilibrium point where the error is zero and uses the devi-
ations from this equilibrium δϵ = [δ∆rT δ∆vT ]T as the sys-
tem state. For operating points far from zero, the linearized
model is no longer valid.

4.1.3 LQR Synthesis

A MATLAB script was developed to evaluate the effect
that the control input computed by the LQR has on the sys-
tem and assess its performance in driving the error between
the real satellite and the reference one to zero. These
two satellites have the same physical characteristics as the
TerraSAR-X spacecraft. The real satellite orbit is affected
by the orbital perturbations caused by the Earth gravity field,
the solar radiation pressure, the atmospheric drag, the third-
body gravitational attraction, and by the control action com-
puted by the controller. Furthermore, it is possible to define
an initial orbital error for this satellite in any of its Keplerian
elements.

The control input computed by the LQR controller takes
the form of an acceleration δI fc that will affect the orbit of the
real satellite. This control acceleration is limited by the ac-
tuators saturation, which depends on the selected thruster.

This acceleration is calculated every simulation step and is
obtained by the optimal linear control law for the linearized
version of the system

δI fc = −K δϵ,

where the Kalman gain K is calculated using the MATLAB
command

K = lqr(Aϵ,Bϵ,Q,R).

Matrices Aϵ and Bϵ are defined using the linearized dynam-
ics for the error between the real satellite and the reference
(10). Notice that Aϵ is dependent on the reference satellite
Cartesian position on the ToD reference frame, which is up-
dated every simulation step. However, to avoid an excessive
computational effort, the Kalman gain might have a different
update rate from the simulation step, since the most signifi-
cant terms of thematrixK present a small variation over time,
as verified in the simulations. Therefore, it is not necessary
to update this matrix every simulation step. The calibration
of matrices Q and R is done using a trial-and-error method
and has, as a starting point, Bryson’s method to reduce the
level of arbitrariness (see [11]).

4.2 MPC Design

4.2.1 Comparison between Keplerian Elements
and Cartesian Coordinates

Similarly to the LQR, to design an MPC, it is necessary to
define a state function that will be used during the optimisa-
tion process to predict the system behaviour over the predic-
tion horizon. One possibility is to use Cartesian coordinates
representation as the state function given the simplicity of
this model when compared to the Keplerian elements repre-
sentation. However, the implementation of this model leads
to a difficult tuning of the MPC controller due to the large vari-
ation with time of the position and the velocity of the satellite
expressed in Cartesian coordinates representation.

For this reason, the Keplerian elements representation
for the orbital motion laws was selected as a state function.
This set of equations allows for a simpler controller tuning
given that the variation of the osculating orbital elements
with time is smoother than the variation of the corresponding
Cartesian components. Moreover, this allows for larger in-
tegration steps and therefore a faster computation process,
despite the increased complexity of the model. The state
dynamics based on Keplerian elements is not used as the
dynamic model for the LQR since it leads to a more complex
linearization process and result. For theMPC, it is not neces-
sary to linearize the system since this control strategy allows
to use nonlinear system dynamics as the state function.
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4.2.2 State Function

The orbital motion model (4) provide a convenient model
to fully characterise the orbit and location of the satellite, us-
ing the set of Keplerian elements Ixk = [a ex ey i Ω u]T as
the system state, which is then compared with the reference
satellite set of Keplerian elements to correct the real satellite
orbital position and velocity. For the design of the MPC, it
is considered that Of = Ofc + OfJ2 , where Ofc is the con-
trol acceleration vector expressed in the Local Orbit frame
centered in the real spacecraft and OfJ2 is the acceleration
caused by the J2 Earth gravity component, expressed in the
same reference frame. Notice that, to reduce the computa-
tional effort during the optimisation process, only the J2 Earth
gravity component is considered.

4.2.3 MPC Synthesis

A MATLAB script was developed that implements the
MPC and allows to assess its performance in driving the er-
ror between the real satellite and the reference to zero. The
MPC computes the next control action as a result of an op-
timisation process that uses a prediction of the system be-
haviour during the prediction horizon. Notice that the state
function defined in Section 4.2.2 is nonlinear. Thus, nonlin-
ear MPC is used as the control strategy. This state func-
tion is used to obtain the system evolution during the predic-
tion horizon. However, the MPC uses a discrete-time model
for this prediction. Therefore, it is good practice to provide
the controller with a discrete-time state function. Otherwise,
MATLAB automatically discretizes the model using the im-
plicit trapezoidal rule, increasing the computational effort. To
hasten the optimisation process, the Forward Euler’s method
was used to discretize the state function (4).

An output function to compute the system output that
will be compared with the reference need to be defined.
Since the spacecraft will be equipped with sensors providing
position and velocity and the state Ixk can be directly ob-
tained from these measurements, the system output is the
state itself. Therefore, the output function is simply given by
Iy = I6Ixk, where I6 is the 6× 6 identity matrix. The system
output is used to compute the reference tracking term of the
cost function. The cost associated with the control action is
also considered by the manipulated variable cost term. To
achieve good results, it is crucial to fine-tune the weight of
these terms. The strategy implemented uses an empirical
method that considers the magnitude of each of the terms
evaluated by the cost function to find initial values for the
tuning process. Contrasting with the LQR implementation,
the MPC allows to define constraints on the control acceler-
ation, so that the optimisation process only considers control
actions that are within the saturation limits of the actuators.

The MPC controller performance can be assessed in or-
der to evaluate the effect that the control input, computed
by the controller, has on the system. A similar strategy to
the one used to implement the LQR (Section 4.1.3) is pro-

posed. The properties of the reference and the real satellites
are as described in Section 4.1.3. Contrasting with the LQR
implementation, in which case the system state is the error
between the real satellite and the reference one, the MPC
uses the set of Keplerian elements for near-circular orbits of
the real satellite, expressed in the ToD reference frame, as
the system state. The system output is compared with the
reference satellite set of Keplerian elements, expressed in
the same reference frame.

The control acceleration is computed using the MATLAB
command

[mv,opt] = nlmpcmove(nlmpcobj, Ixk, lastmv,Ref),

where mv is the next control acceleration to be used in the
system, nlmpcobj is a MATLAB object containing the MPC
design properties, Ixk is the current system state, lastmv is
a 3×1 vector containing the last control action used, and Ref
is a ph×6matrix containing the Keplerian elements of the ref-
erence satellite during the prediction horizon. The MATLAB
object opt contains initial guesses for the state and manip-
ulated variable (control action) trajectories to be used in the
next control intervals, until the end of the prediction horizon
[12]. It is possible to use several of these guesses for the
next control actions in order to avoid running the optimisa-
tion process at every simulation step and, in this way, reduce
the computational effort. It is good practice to use this strat-
egy when the orbital error is large, given that, in this situation,
the variations of the control acceleration, from one simulation
step to the other, are not very significant when compared to
a situation characterised by an orbital error closer to zero.

4.3 Control Solution

To achieve good performance for different magnitudes of
the position error, four different controllers are implemented
– MPC 1, MPC 2, LQR 1, and LQR 2 – that drive and main-
tain at zero the orbital error between the real satellite and
the reference. The two LQR controllers are used to cor-
rect small orbital errors given that the LQR is able to correct
errors close to zero with less computational effort than the
MPC. LQR 1 is designed to correct small errors between the
real satellite and the reference. LQR 2, on the other hand, is
optimised to reduce the error in steady-state. Its purpose is
to counter perturbative accelerations that affect the real orbit
and handle sensors and actuators noise, in order to maintain
the orbital error within the required values. The difference in
the implementation of these two controllers is in the definition
of matrices Q and R. The two MPC controllers are used to
correct orbital errors far from zero since, in this case, the lin-
earized model is no longer valid. Moreover, for large orbital
errors, the control acceleration computed is saturated by the
actuators. Therefore, the MPC provides better results since
it accounts for actuators saturation in the optimisation pro-
cess. MPC 1 is designed to correct larger orbital errors than
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the MPC 2 and these two controllers differ in the following
design parameters:

• Sample time, Ts - a higher sample time is used for
MPC 1 (high orbital errors), given that a smaller prop-
agation accuracy is required in this case;

• Prediction horizon, ph - a higher prediction horizon is
used for MPC 1 (high orbital errors), given that the re-
sponse time is higher in this case;

• Weights - tuning of the weights to use in the cost func-
tion is also needed for each of the MPC controllers.

The orbital position error between the real satellite and
the reference, at the current simulation step, is used to select
the controller that will compute the next control acceleration.
Therefore, at every simulation step, the orbital position er-
ror is evaluated to decide which controller is the best to use.
For orbital position errors below a given threshold, a differ-
ent controller is selected. However, if the orbital position er-
ror returns to a value above that threshold, the controller in
use remains the same, except in the transition from LQR 2
to LQR 1. In this case, the controller in use returns to LQR
1 since LQR 2 is designed for steady-state.

5 Simulation Setup

The TerraSAR-X spacecraft physical characteristics and
orbit described in Table 1 are used in the simulations.

The NavSBR GPS receiver is used for accurate naviga-
tion datameasurements. The NavSBR has a 3σ position and
velocity accuracy of 1 m and 0.02 m/s, respectively. This ac-
curacy was modeled by adding Gaussian noise, with zero
mean and 3σ equal to the receiver position and velocity ac-
curacy, to the system output.

Electric propulsion systems present several advantages
when compared to chemical propulsion, namely a higher
specific impulse, the capability of operating high variations
of thrust, and also provide better actuation accuracy [13].
On the other hand, the amount of thrust produced by elec-
tric engines is very small, which may lengthen the correc-
tion of large orbital errors, such as the ones resulting from
the launcher orbital injection. Therefore, this type of propul-
sion is more suitable for low-thrust and long-duration appli-
cations, such as orbit maintenance maneuvers. However,
most missions cannot afford embarking two different types of
thrusters. Therefore, in this work, it was decided to equip the
spacecraft solely with electrical propulsion, which is the sys-
tem that offers better prospects of reducing the orbit mainte-
nance errors.

TerraSAR-X has a total wet mass of 1230 kg, meaning
that significant thrust values are required to correct large
orbital errors. BUSEK BHT-8000 Hall thruster provides a
high nominal thrust, which means that this actuator fits to
achieve the control objectives. Nevertheless, one single
thruster does not provide sufficient thrust to correct consid-
erable orbital errors of a large satellite such as TerraSAR-X.

Therefore, the strategy adopted uses 9× BUSEK BHT-8000
thrusters, three in each of the corresponding actuation axis.
Table 3 summarises BUSEK BHT-8000 properties.

Table 3: BUSEK BHT-8000 thruster properties [14].
BUSEK BHT-8000

Nominal thrust (max.) 450 mN
Isp 2210 s

Power 8 kW
Thrust error (2σ) 1%

Qty. 9

Since chemical propulsion systems for this class of
spacecraft can weigh more than 100 kg and electrical propul-
sion is nowadays the subject of intensive research and its
thrust-to-mass ratio is expected to improve in the coming
years, it was decided to maintain the original TerraSAR-X
wet mass. Since no information is provided on the data-
sheet of BUSEK BHT-8000 about thrust accuracy, a general
example of a mission that uses electric thrusters is used to
estimate this parameter. According to [15], the difference
between thrust demand and actual thrust for the QinetiQ T5
ion thrusters used in the ESA GOCE mission occurs within
±1% of the thrust demand. Therefore, a similar thrust error
is assumed for the BUSEK BHT-8000. This error is modeled
by adding Gaussian noise, with zero mean and 2σ equal to
1% of the thrust demand, to the actuator’s output.

The Forward Euler method, with a time step of 1 s, is
used for the propagation of the real and the reference satel-
lite since good propagation accuracy was achieved using
this method without the need for excessive computational
effort, as verified in the simulations.

Three threshold values, that are compared with the or-
bital position error between the real satellite and the refer-
ence, are defined to decide which controller will compute
the next control acceleration. A variable threshold deter-
mines the transition from MPC 2 to LQR 1. The value of
this threshold is empirically adapted to the simulation to per-
form, in order to improve the performance. The threshold
values to determine the transition between each controller
are presented in Table 4.

Table 4: Threshold values to select the controller.
Controller threshold

MPC 1 ≥ 100 km
MPC 2 100 km ↔ variable
LQR 1 variable ↔ 0.5 km
LQR 2 ≤ 0.5 km

To design the two MPC controllers, several control pa-
rameters must be selected. The values used are sum-
marised in Table 5. A compromise is achieved between com-
putational effort and control performance since it is not feasi-
ble to define a prediction time (ph Ts) equal to the closed-loop
response. For the MPC 2, since the orbital error is closer
to zero, the propagation accuracy becomes more important

7



to achieve convergence. Therefore, a smaller sample time
is chosen. The control horizon has the same dimension as
the prediction horizon for both MPC controllers, since a de-
crease in the value of this parameter results in a loss of con-
trol performance, as observed in the simulations. For the
MPC 1, all the control actions of the control vector (with di-
mension equal to the control horizon) computed by the MPC
are used to control the real satellite, before a new control
vector is obtained. On the other hand, for the MPC 2, only
the first 40 elements of the control vector are used.

Table 5: MPC controllers parameters.
Parameters MPC 1 MPC 2

Ts 10 s 5 s
ph 50 steps 50 steps
m 50 steps 50 steps
wy [0.009 11 11 2 2 4]T [0.009 11 11 2 2 4]T

wu [0.1 0.1 0.1]T [0.1 0.1 0.1]T

To implement the two LQR controllers, the matrices Q
and R need to be defined using the methodology presented
in Section 4.1.3. For LQR 1, these matrices are given by

QLQR1 = diag

([
1

10−2

1

10−2

1

10−2

1

10−8

1

10−8

1

10−8

]T)

and

RLQR1 = diag

([
1

1.7183−15

1

1.7183−15

1

1.7183−15

]T)
.

For LQR 2, the matrix R is adapted to work when the er-
ror in the system state is small. Therefore, the cost of the
control action is reduced in order to deal with actuator and
sensors noise and maintain the orbital error small enough to
fulfil the mission requirements, despite the effect of orbital
perturbations. Defining QLQR2 = QLQR1, the matrix R, for
LQR 2, is given by

RLQR2 = diag

([
1

3.4285−14

1

3.4285−14

1

3.4285−14

]T)
.

An update time of 50 s is chosen to update the Kalman
gain, for both LQR controllers, since the elements of K
present small variations over time. This value offers good re-
sults while reducing the computational effort and is obtained
using a trial-and-error methodology.

6 Simulation Results

In order to have a representative example of the type
of orbital errors that can occur, the injection accuracy of the
Vega-C launch system is used to set the initial errors. The in-
jection accuracy (3σ of a Gaussian distribution) of the Vega-
C launch system is presented in Table 6, based on [16]. In

addition, an error in u is simulated in this section to represent
the correction of an advance in the orbital position of the real
satellite.

Table 6: Vega-C injection accuracy (3σ) [16].
Injection accuracy

a 15 km
e 0.0012

i 0.15 deg
Ω 0.2 deg

6.1 Combined injection error

Using a combination of errors in the Keplerian elements
between the real and the reference satellite, it is possible
to define three different sets of injection errors with different
magnitudes. The worst-case scenario error, the one with the
highest magnitude, is defined considering the maximum in-
jection error in all Keplerian elements shown in Table 6 and
an additional error in u. The other two errors are also charac-
terised by a combination of errors in all Keplerian elements,
but with a smaller magnitude in each of them. These three
orbital errors are defined in Table 7.

Table 7: Combined injection errors between the real and the
reference satellite.

Error a (km) ex ey i (deg) Ω (deg) u (deg)

a) −15 +0.0012 0 +0.15 +0.2 +2

b) +8 +0.0006 0 −0.07 +0.1 +1.2

c) +3 −0.0002 0 −0.04 −0.07 −0.5

The controller performance is assessed for a simulation
with a duration equal to 7 complete orbits of the reference
satellite (approximately 39830 s). In this simulation, ideal
actuators and sensors are considered, in the sense that no
noise interference is simulated. Later in this document, the
controller performance is evaluated in a simulation with real-
istic actuators and sensors.
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Figure 2: Ground track repeatability error between the real
and the reference satellite for the errors defined in Table 7.
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Figure 2 illustrates the ground track repeatability error,
throughout the simulation, for each of the initial errors de-
fined in Table 7. Notice that all of them converge to zero, en-
suring that the ground track repeatability error requirement
is fulfilled. In this case, the transition from MPC 2 to LQR 1
occurs at a position error magnitude of 8 km.

Further analysis is performed for the worst case scenario
injection error (error a)). Figure 3 illustrates the variation of
the Keplerian elements error between the real and the refer-
ence satellite, for this initial error. The correction of all Kep-
lerian elements is successfully achieved after approximately
6 complete orbits (34081 s), at the transition from LQR 1 to
LQR 2. However, due to the large errors to be corrected,
this process is very demanding with significant oscillations
in all Keplerian elements, mainly in the semi-major axis and
the eccentricity vector, which justifies the need to adapt the
near-circular orbit system dynamics proposed in [8] to the
system dynamics given by (4).
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Figure 3: Keplerian elements error between the real and the
reference satellite for error a). The transition between the
controller in use is marked with a dashed line.

6.2 Combined injection error with realistic sen-
sors and actuators

Error a), defined in Section 6.1, is used to assess the
controller performance in a simulation with realistic actuators
and sensors, as defined in the simulation setup. Figure 4 il-
lustrates the evolution of the ground track repeatability error
for a simulation with a duration equal to 7 complete orbits of
the reference satellite (approximately 39830 s). In this case,
the transition from MPC 2 to LQR 1 occurs at a position er-
ror magnitude of 8 km. As presented, the objective to reduce
the value of this error to less than 500 m is still achieved af-
ter approximately 5.5 complete orbits (30985 s), despite us-
ing realistic sensors and actuators that induce noise in the
system. Actually, the effect of the non-idealities of the sen-
sors and the actuators is not visible when compared to the
magnitude of the initial error, as illustrated in Fig. 4.
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Figure 4: Ground track repeatability error between the real
and the reference satellite for initial error a), using realistic
sensors and actuators.

The effect of using realistic sensors and actuators be-
comes visible after reaching the steady-state. Figure 5
shows the evolution of the ground track repeatability error
during three complete orbits of the reference satellite (ap-
proximately 17070 s), after the seventh complete orbit of this
satellite. At this point, the system is in steady-state and LQR
2 is controlling the system. Notice that the ground track re-
peatability error presents values up to 0.21 km. These er-
ror values are well within the requirements for this parame-
ter (0.5 km), which confirms the effectiveness of the control
strategy.
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Figure 5: Ground track repeatability error between the real
and the reference satellite after reaching the steady-state,
using realistic sensors and actuators.

7 Conclusions and Future Work

Although good results were obtained, the controller tun-
ing was proven difficult and its performance dependent on
the initial orbital state, due to the complexity of the system

9



and the relatively small prediction window used in the de-
sign of the MPC. The computational effort required to com-
pute the control actions limited the dimension of the predic-
tion window, decreasing the control performance. A strategy
to simplify the system model can be explored to reduce the
computational effort and, in that way, enable the increase
of the prediction horizon. The obtained MPC results in cor-
recting large initial orbit errors were interesting to overcome
the limitations of the LQR related to the linearization process.
Nonetheless, LQR is a computationally efficient strategy and
presented good results for orbit maintenance routines, when
the orbit error is close to zero.

The AOC strategy developed in this work demonstrated
effective results in correcting orbit injection errors in differ-
ent Keplerian elements. The TerraSAR-X mission require-
ments were fulfilled even in the worst-case scenario when a
combination of maximum injection error in all Keplerian ele-
ments was used as the initial state. However, the actuation
induces an initial oscillatory response of some orbital param-
eters (Fig. 3) before reaching the steady-state. It is expected
that a larger prediction horizon will significantly improve the
results obtained, at the cost of increased computational ef-
fort. Moreover, the AOC algorithm demonstrated good per-
formance for orbit maintenance activities. The controller was
capable of counteracting the effect of orbital perturbations,
maintaining the orbital error close to zero. The use of real-
istic sensors and actuators, which introduced noise in the
system, did not impact the initial convergence of the pro-
posed algorithm. In the steady-state, the impact of these
non-idealities is more evident and caused the ground track
repeatability error to present values up to 0.21 km, still well
within the requirements defined for the TerraSAR-X mission.
The performance of the developed AOC algorithm should
also be evaluated for a smaller satellite. In this case, the re-
quired thrust to perform orbit correction activities is smaller
and, therefore, the electric propulsion is best suited.

The use of electric propulsion was proven effective for or-
bit maintenance activities. However, the correction of large
initial errors required the use of multiple thrusters to achieve
sufficient actuation force to correct the orbit of TerraSAR-X,
due to its relatively high mass. Future improvements on the
electric propulsion topic might overcome this problem with
the development of more powerful thrusters. Future work
should also compare the use of chemical propulsion with the
one proposed in this research, which is based on electrical
propulsion, taking into consideration convergence time and
propellant and energy costs. Moreover, a solution that com-
bines the two types of propulsion mentioned should not be
discarded.
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