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Resumo

Os inúmeros benefícios da tecnologia espacial, bem como as suas aplicações, levaram a um au-

mento significativo do número de satélites lançados para o espaço ao longo dos anos. Estes satélites

são projetados para realizar uma grande variedade de missões e, para tal, é necessário que os satélites

sejam operados a partir de uma determinada órbita nominal. Contudo, os erros de injeção e as pertur-

bações orbitais provocam um desvio da órbita do satélite relativamente à órbita nominal. Os desenvolvi-

mentos recentes no desempenho computacional a bordo permitem realizar o processo de correção da

órbita através de algoritmos de controlo orbital autónomo. Neste contexto, o objetivo desta tese consiste

no desenvolvimento de um algoritmo autónomo para correção e manutenção da órbita de um satélite

LEO (low Earth orbit na literatura Inglesa), utilizando soluções inovadoras de propulsão elétrica. Para

alcançar o objetivo proposto, são exploradas duas diferentes metodologias de controlo: regulador linear

quadrático e modelo de controlo preditivo. A solução de controlo final é baseada numa combinação

destes dois métodos. O modelo de controlo preditivo é utilizado para corrigir erros iniciais elevados

resultantes da injeção orbital, enquanto o regulador linear quadrático assegura a convergência final e a

manutenção da órbita, compensando o efeito das perturbações orbitais. A missão TerraSAR-X foi sele-

cionada para avaliar o desempenho do algoritmo desenvolvido. Os resultados obtidos nas simulações

revelam que a estratégia de controlo proposta corrige eficazmente os erros de injeção em diferences

elementos de Kepler. Para além disso, o algoritmo demonstra um bom desempenho na manutenção

da órbita, corrigindo o efeito das perturbações orbitais de forma a satisfazer os requisitos da missão

TerraSAR-X, mesmo quando se considera sensores e atuadores reais.

Palavras-chave: Controlo de órbita autónomo, satélite LEO, propulsão elétrica, modelo de

controlo preditivo, regulador linear quadrático.
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Abstract

Countless benefits and applications of space technology led to a significant rise in the number of

satellites being launched into space over the years to perform a wide range of missions. To satisfy the

mission objectives, the satellites need to be operated at a certain nominal orbit. However, orbital in-

jection errors and environmental perturbations cause the orbit to deviate from the nominal one. Recent

improvements in on-board computational performance allow transferring the orbit correction process to

on-board autonomous orbit control (AOC) algorithms. On that matter, this thesis focuses on the de-

velopment of an autonomous algorithm to perform orbit correction and maintenance of a LEO satellite

using novel electric propulsion solutions. Two different control methodologies are explored to achieve

the proposed objective: linear quadratic regulator (LQR) and model predictive control (MPC). A control

solution based on a combination of these methods is proposed. The MPC is used to correct large initial

errors that result from the orbital injection, whereas the LQR assures the final convergence and orbit

maintenance by counteracting the effect of orbital perturbations. The TerraSAR-X mission was selected

as a test-bed to evaluate the algorithm performance. Simulation results show that the proposed AOC

strategy effectively corrects orbit injection errors in different Keplerian elements. Moreover, the AOC al-

gorithm demonstrates good performance for orbit maintenance activities, correcting the effect of orbital

perturbations and maintaining the orbital error within the TerraSAR-X mission requirements, even when

considering realistic sensors and actuators.

Keywords: Autonomous orbit control, LEO satellite, electric propulsion, model predictive con-

trol, linear quadratic regulator.
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A State matrix.
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Chapter 1

Introduction

1.1 Context

Over 2500 active satellites are orbiting the Earth, of which more than 1900 are in low Earth orbit (LEO)

[1]. The significant increase in the number of satellites being sent into space is strictly related to the role

played by space technologies in various development sectors, such as agriculture, security, climate, rural

development, public management, telecommunications, urban development, and disaster management

[2]. Over the next decade, it is expected that the number of orbiting satellites will significantly increase

due to the growing dependence of the industry on satellite-based solutions [3].

The rapid increase in the number of active satellites motivates the need for enhanced autonomous

strategies to reduce the workload of ground-based teams. This thesis, for instance, focuses on novel on-

board orbit control algorithms that allow to perform orbital correction maneuvers without ground-segment

intervention.

1.2 Motivation

LEO satellites are used to fulfil a variety of missions, from Earth and space observation to commu-

nications and military applications. Most of the man-made objects orbiting the Earth are in LEO as they

require less energy for orbit placement and, therefore, less associated cost. To satisfy the mission ob-

jectives, the orbit of these satellites is designed to fulfil certain requirements. However, launch injection

errors and the effect of orbit perturbations (e.g. gravity influence of other celestial bodies, non-uniform

Earth gravity field, and the atmospheric drag) cause the orbit to deviate from the one originally projected.

For instance, long-duration missions at low altitudes will face an orbital decay with time due to the effect

of the atmospheric drag. This is normally not acceptable and, therefore, orbital maneuvers are performed

to correct the orbital deviation. Usually, this process is completely managed by the ground-segment in a

time-consuming and inefficient process that requires visibility of the satellite to download data to compute

the correction maneuvers and, subsequently, upload the maneuver plan to the satellite [4].

The increase of on-board computational resources created a new opportunity for the implementation
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of on-board algorithms to control the spacecraft orbit automatically without ground intervention. In this

context, on-board autonomous orbit control (AOC) arises as the answer to meet mission requirements

and reduce the workload of operational teams. In fact, autonomous orbit control systems achieve better

results in a more efficient and economical way since the correction maneuvers can be computed in real

time and with a significant reduction of ground operations [5]. Simple control strategies, such as the

linear quadratic regulator (LQR), have been used to develop autonomous orbit control algorithms (see

[5]). The recent improvement in computational performance enables the use of more powerful control

strategies, namely the model predictive control (MPC), to explore new AOC algorithms and enhance

control performance. Moreover, the emergence of electric propulsion solutions, which allows for more

precise and efficient orbit control, promotes increased on-board autonomy and the development of new

AOC strategies.

1.3 Literature Review

Autonomous orbit control is a new topic that, in comparison to autonomous attitude control, has

only been recently paid attention to. One of the first groups to work on autonomous orbit control was

Microcosm that tested their orbit control kit (OCK) on-board the UoSAT-12 satellite, launched in April 1999

[6]. The success of that mission validated the use of autonomous orbit control to correct deviations from

the reference orbit and maintain a satellite’s long-term orbit parameters. Following that, new experiments

and missions emerged to validate different strategies for autonomous orbit control implementation.

CNES DEMETER satellite, launched in 2004, demonstrated the feasibility of in-track autonomous

control as a routine feature [5]. In 2011, the PRISMA mission validated the autonomous orbit keeping

algorithm to maintain the longitude of the ascending node of the MANGO spacecraft, within a certain

tolerance [7]. Regarding the PRISMA mission, Sergio De Florio and Simone D’Amico developed an orbit

control strategy based on the relative motion of two satellites. They approached the orbit control problem

as a formation fly between a real satellite, affected by the orbital perturbations, and a virtual satellite that

fulfils the orbit requirements imposed by the mission. A standard LQR controller was implemented to

compute the control actions and perform orbit corrections to maintain the position error between the real

and the virtual satellite below 250 m (root-mean-square). PRISMA mission was used as a test-bed to

validate the control algorithms [5].

The strategy proposed in [4] uses a proportional-derivative controller to compute in-track and cross-

track corrections based on the relative position of the satellite’s orbit parameters, provided by the navi-

gation system, and the reference orbit. To ensure an optimal maneuver, control actions are determined

taking into account AOC maneuver slots available along the orbit. Simulations demonstrated that an

in-track error window of ±2000 m and a cross-track error window of ±1000 m was achieved.

A more powerful, but more computationally demanding, control strategy was proposed by Tavakoli

and Assadian. They investigated the use of MPC for autonomous orbit control of LEO satellites by apply-

ing a similar strategy as Florio and D’Amico. The orbit control problem was converted into a relative orbit

control problem in which an MPC controller computes the finite horizon optimal firing times of the satellite

2



thrusters, in order to drive the satellite to the reference orbit, not affected by undesirable perturbations. It

was proven that the MPC method can compensate for the disturbances that affect a satellite orbit while

minimising fuel consumption and, therefore, increasing the satellite lifetime when compared to an LQR

based strategy [6].

The majority of autonomous orbit control solutions use chemical propulsion to perform corrective

maneuvers. The strategy proposed in [8], for instance, uses tangential impulses produced by chemical

thrusters to correct the effect of the atmospheric drag on the orbit of the LightSAR. The LightSARmission

requires the orbit to be maintained within a 125 m radius tube centered on a reference orbit over the

lifetime of the mission. The strategy developed to meet the orbit maintenance requirement maximises the

length of time between thruster firings using tangential impulses. The simulations demonstrated that the

orbit maintenance strategy was able to successfully maintain the LightSAR orbit within the requirements

for an entire repeat cycle of 8 days using a total of 5 maneuvers.

The emergence of electric propulsion systems, such as Hall and ion thrusters, enabled new con-

trol strategies. Mirko Leomanni, Andrea Garulli, and Antonio Giannitrapani developed a solution, for

a spacecraft driven by electric propulsion, to maintain a repeat ground track orbit [9]. The control ap-

proach proposed uses a hysteresis controller that provides a pulse-width modulated command to the

thruster. Simulation results showed that the resulting control scheme was able to acquire and maintain

consistently in-orbit the desired repeat ground track pattern, in a fully autonomous manner.

Based on the literature review, it is concluded that autonomous orbit control strategies are mainly

based on the assumption that the orbit injection process is precise. In fact, the control solutions previously

mentioned are directed to counteract the effect of orbital perturbations and maintain the satellite in its

desired orbit, neglecting initial errors originated by the orbital injection. However, navigation errors of the

launcher and thrust inaccuracies originate an error between the targeted orbit and the actual injection

orbit. The continuous improvements in computational performance and control techniques, together with

the recent advance in the electric propulsion topic, promote the emergence of novel autonomous orbit

control strategies to overcome this problem.

1.4 Objectives

The objective of this thesis is the development of an algorithm to perform autonomous orbit control

of a LEO satellite using electric propulsion that can cope with a wide range of initial error conditions.

This algorithm computes the required control actions to correct initial orbit injection errors and maintain

the orbital parameters of the satellite close to the reference, counteracting the effect of orbital pertur-

bations. Two different control solutions are used to achieve this objective: LQR and MPC. Due to its

demanding orbit control requirements, the TerraSAR-X mission was selected as a test-bed to evaluate

the algorithm performance. One of the main requirements of this mission is the maintenance of a ground

track repeatability of ± 500 m per revisit orbit [10].

The goals for this master thesis are summarised as follows:

• Identify and model the dynamics of the orbit of a satellite;
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• Investigate and study the different types of propulsion systems;

• Analyse and compare the LQR and the MPC performance for the AOC problem;

• Design of a control algorithm to perform AOC activities;

• Demonstrate that the designed AOC algorithm can meet the TerraSAR-X mission requirements,

particularly the maintenance of the ground track repeatability.

1.5 Contributions

From the literature review, it is noticeable a clear lack of AOC strategies that account for large initial

errors due to the orbital injection process. In this thesis, a solution to overcome these injection errors

and drive the initial orbit to the desired one is proposed. This solution is based on an advanced con-

trol strategy, namely the MPC. Despite the increased computational effort, this more powerful control

technique offers enhanced capabilities to the control system (e.g. the possibility of introducing actuator

saturation and of using directly a nonlinear system model), which are not present in the solutions usually

proposed in the literature. The control strategy was developed based on the use of electric thrusters as

the actuators to correct the satellite orbit, which is an emergent solution in the field of autonomous orbit

correction and maintenance.

1.6 Thesis Outline

This thesis is organised as follows:

• Chapter 2 includes a summary of the background concepts required for the research presented in

this document, such as the definition of the reference frames used throughout the work, the orbital

motion models and the perturbation forces that affect this motion, the different control strategies

implemented, and a discussion between the available types of sensors and actuators.

• Chapter 3 introduces the problem of the autonomous orbit control applied to a particular mission

– TerraSAR-X. A description of the mission and its requirements is provided in this chapter.

• Chapter 4 provides an overview of the proposed control strategy and the corresponding implemen-

tation. The process used in the design of the LQR and the MPC controllers is also described.

• Chapter 5 provides a description of the simulation setup including the parameters used in the

MATLAB script.

• Chapter 6 presents and analyses the simulation results for different types of orbital errors.

• Chapter 7 summarises and discusses the results obtained in this thesis and presents some sug-

gestions for future work.
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Chapter 2

Theoretical Background

This chapter provides a summary of the background concepts required for the work presented in

this document. Section 2.1 introduces the two reference frames considered in this research. Following,

Section 2.2 provides a description of the orbital motion laws expressed in Cartesian coordinates and

Keplerian elements. The most relevant perturbation forces that affect a spacecraft motion are presented

in Section 2.3. It then follows, in Section 2.4, with the validation of the orbital motion laws and the

perturbative forces models introduced in the previous sections. Lastly, Section 2.5 introduces the control

methodologies considered in this thesis and Section 2.6 provides a description of the relevant sensors

and actuators to perform orbital control.

2.1 Reference Frames Definition

There are several reference frames relevant to describe the orbit of a spacecraft about the Earth. To

provide a better understanding of the reference frames used in this thesis, this section introduces two

distinct frames: the True of Date (ToD) coordinate frame and the Local Orbit (LOF) coordinate frame

(see [11], [12], and [13]).

2.1.1 True of Date Frame

The equations that describe the orbital motion are more straightforward when described in an inertial

reference frame ratter than when described in an accelerated or rotating frame, which simplifies the

design of automatic orbit controllers. The ToD coordinate frame (see Fig. 2.1) has its origin coincident

with the center of mass of the Earth and is approximately an inertial reference frame, even though its

origin suffers an acceleration caused by other celestial bodies, mainly the Sun. This acceleration can be

neglected for the accuracy required for the applications considered in this thesis given its small magnitude

when compared with the magnitude of the gravitational acceleration caused by the Earth.

Throughout this thesis, the ToD frame is represented by the basis I = {i1, i2, i3}, with the following

orientation:
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• The i1 axis points from the center of mass of the Earth to the vernal equinox, at the current epoch,

which is the intersection between the ecliptic plane and the equatorial plane, where the Sun crosses

the equator from the Southern Hemisphere to the Northern Hemisphere;

• The i3 axis is along the axis of the Earth’s rotation at the current epoch and pointing towards the

North Pole;

• Finally, the i2 axis completes the right-handed orthogonal reference frame.

Due to the precession of the Earth’s rotation axis, the direction of the coordinate system axes varies

with time. Therefore, the direction of these axes is defined relative to the current epoch of the analysis.

This is advantageous when compared to inertial frames defined at a specific date, such as the J2000

inertial frame, defined on 1 January 2000, since these frames do not consider the constant precession of

the Earth’s rotational axis during the analysis period. This way, the Earth gravity field perturbations pre-

sented in Section 2.3.4, which are Earth-fixed reference frame, can be directly used in the orbit dynamics

expressed in the ToD coordinate frame.

Figure 2.1: ToD coordinate frame [12].

2.1.2 Local Orbit Frame

The Local Orbit frame is defined with respect to the orbit of the spacecraft and is represented by

the basis O = {o1,o2,o3}. The o3 axis points from the center of the Earth to the spacecraft, whereas

the o2 axis points in the direction of the spacecraft’s orbital angular velocity. The o1 axis completes the

right-handed orthogonal reference frame, pointing in the direction of the motion for a circular orbit. This

coordinate frame has its origin in the spacecraft’s center of mass. An illustration of the Local Orbit frame

is shown in Fig. 2.2.

The representation of these vectors in the ToD frame is given by

o3 =
r

∥r∥ ,

o2 =
(r× v)
∥r× v∥ ,
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o1 = o2 × o3,

where r and v are, respectively, the position and the velocity of the spacecraft expressed in the ToD

coordinate frame, I. The rotation matrix RI
O that maps vectors expressed in the O-frame to the I-frame

is given by

RI
O = [o1 o2 o3].

To fully map a point expressed in the O-frame to the I-frame, it is also necessary to translate the origin

of the reference frame.

Figure 2.2: Local Orbit coordinate frame [12].

2.2 Orbital Motion

Orbital motion is considered as the movement of a body about a planet, due to the gravity effect. This

thesis introduces two different orbital motion models to describe the motion of a satellite in its orbit about

the Earth.

2.2.1 Cartesian Coordinates Representation

If the motion of a satellite is described relative to the ToD frame and perturbations are taken into

account, then the equation of motion can be written in the form (see [14])

r̈+ µ

||r||3 r = −∇U(r, v) + I f(r, v), (2.1)

where U(r, v) stands for the perturbing or disturbing potential and describes all perturbing forces that

can be expressed by a potential function, I f(r, v) accounts for all perturbing accelerations that cannot be

written as the gradient of a scalar function of the satellite’s coordinates, and µ is the standard gravitational

parameter. The term µ
||r||3 r is related to the central body acceleration, assuming that the mass of the

primary body is much greater than the mass of the spacecraft, so the center of mass of the system is
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coincident with that of the primary body. From (2.1), the set of first-order differential equations of the

position and the velocity of a satellite, expressed in the ToD reference frame, is given by


ṙ = v

v̇ = − µ
||r||3 r−∇U(r, v) + I f(r, v)

. (2.2)

The set of equations (2.2) is a simple model to compute the position and the velocity of a spacecraft by

means of numerical integration and when one pretends to work with Cartesian coordinates.

2.2.2 Keplerian Elements Representation

Keplerian elements are parameters used to represent the spacecraft position in its orbit about the

Earth, which provide immediate insight about the orientation and geometry of the orbit. In fact, the

Cartesian position and velocity of the spacecraft may be useful for some computational applications but

provide little insight into important aspects of the orbital motion [5], [15].

It is then necessary to choose a set of orbital elements for the absolute state representation of the

spacecraft orbit, given by (see [16])

Ik =



a

e

i

Ω

ω

M0


,

where

• a (semi-major axis) is related to the size of the orbit and it is given by the sum of the perigee and

apogee distances (rp and ra respectively) divided by two, a =
ra+rp

2 ;

• e (eccentricity) defines the shape of the ellipse, describing how much it is elongated compared to

a circle, and it is given by e =
ra−rp
ra+rp

;

• i (inclination) stands for the angle between the orbital plane and the equator plane;

• Ω (longitude of the ascending node) is the angle between the i1 axis and the intersection of the

orbit with the equator plane, where the spacecraft crosses from the Southern Hemisphere to the

Northern Hemisphere;

• ω (argument of perigee) is the angle formed between the intersection of the orbit with the equator

plane, where the spacecraft crosses from the Southern Hemisphere to the Northern Hemisphere,

and the perigee, on the orbital plane;
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• M0 (mean anomaly) defines the position of the spacecraft in its orbit. It is the only element that

varies with time in an unperturbed orbit (ignoring non-spherical components of Earth’s gravity field

and the non-gravitational forces), as given by

M0 = n(t− t0),

where n is themeanmotion, given by n = 2π
T , where T stands for the orbital period and (t−t0) denotes the

time since the spacecraft was at the periapsis. The set of orbital elements fully describe the spacecraft

orbital position and velocity, as illustrated in Fig. 2.3.

Figure 2.3: Representation of the orbital elements used for the absolute state representation of the spacecraft orbit

(a, e, i,Ω, ω,M0).

Several methods were developed to compute the orbital motion using Keplerian elements. The values

of these orbital elements can be obtained, at any moment of time, by integrating a set of first-order

differential equations. One type of this first-order differential equations often used to deal with spacecraft

formation control, and, therefore, with autonomous orbit control, are the Gauss’ Variational Equations

(GVEs). This set of equations are obtained mathematically from the Lagrange’s planetary equations.

However, contrasting with Lagrange’s equations, they also take into account perturbing forces that cannot

be described by a perturbing potential. These perturbing forces are described in the form of accelerations

on the spacecraft and are represented on the Local Orbit frame (see Section 2.1.2). It is assumed that the

perturbing force is small when compared to the central body force [17]. The so-called Gauss’ Variational

Equations of Motion (GVEs) are given by
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ȧ = 2
a2
√
µp

[
Of3e sin θ + Of1

p

||r||

]
, (2.3a)

ė =

√
p

µ

[
Of3 sin θ + Of1(cosE + cos θ)

]
, (2.3b)

i̇ = Of2
||r||
√
µp

cosu, (2.3c)

Ω̇ = Of2
||r||

√
µp sin i

sinu, (2.3d)

ω̇ = −
√

p

µ

Of2
||r||
p

cot i sinu+
1

e

(
Of3 cos θ − Of1

[
1 +

||r||
p

]
sin θ

) , (2.3e)

Ṁ0 = n− Of3

[
2||r||
√
µa

− 1− e2

e

√
a

µ
cos θ

]
− Of1

1− e2

e

√
a

µ

[
1 +

||r||
p

]
sin θ, (2.3f)

where Of1, Of2, and Of3 are the components of the acceleration vector felt by the spacecraft expressed

in the Local Orbit frame and include all the perturbative accelerations, whether they might be expressed

by a potential function or not, p is the semi-latus rectum (p = a(1 − e2)), E is the eccentric anomaly, θ

is the true anomaly, and u is the argument of latitude, which is the angular position of the satellite along

its orbit relative to the ascending node [14]. The eccentric anomaly, E, can be obtained by drawing the

auxiliary circle of an ellipse with centerO and focus F , and drawing a line perpendicular to the semi-major

axis and intersecting it at A, see Fig. 2.4, where the point P is the position of the spacecraft. The angle

E is then defined as illustrated in Fig. 2.4. The true anomaly, θ, is the angle between the direction of

periapsis and the current position of the body, as seen from the main focus of the ellipse, as presented

in Fig. 2.4.

Figure 2.4: Representation of eccentric and true anomaly [18].

The GVEs provide a convenient and computationally simple method to assess the effect of a perturb-

ing acceleration on the Keplerian elements, whether it is caused, for example, by the atmospheric drag

or by a control acceleration vector [5].

Notice that, for small values of the eccentricity (e), (2.3) suffers from singularities. That makes sense

since, for circular orbits, the perigee is not defined and, therefore, the parameters ω and M0 are inap-

propriate for describing the satellite’s position. The time derivative of the eccentricity, e, should then be
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replaced for the eccentricity vector, given by e = [ex ey]
T , where ex = e cosω and ey = e sinω. The

eccentricity vector is a dimensionless vector in the orbital plane with direction pointing from apogee to

perigee of the orbit and with magnitude equal to the orbit’s scalar eccentricity. The time derivatives of

this vector take the form

ėx =

√
p

µ

[
Of3 sin θ + Of1(cosE + cos θ)

]
,

ėy =

√
p

µ

[
−Of3 cos θ + Of1(sinE + sin θ)

]
,

and (2.3e) and (2.3f) should be replaced by (see [14])

u̇ ≃ n−
√

a

µ
(2 Of3 +

Of2 cot i sinu). (2.4)

As discussed previously, the orbital elements provide a much clearer picture of the geometric prop-

erties of the orbit perturbations than the variation of the Cartesian position and velocity. Moreover, the

variation of the osculating orbital elements with time is smoother than the variation of the corresponding

Cartesian components, which allows for larger integration steps and therefore a faster computation pro-

cess. On the other hand, the use of Keplerian elements leads to a more complex dynamic system and

linearization process, which may make the use of some control strategies more involved.

2.3 Perturbation Forces

Perturbation forces cause a time-variation of the Keplerian elements, causing the orbit to deviate from

the unperturbed Keplerian model. In this section, the most significant forces that affect the spacecraft

are described.

By Newton’s Second Law, these forces cause a perturbative acceleration on the spacecraft. In Fig.

2.5 it is possible to compare the resulting acceleration caused by several different perturbation forces,

as a function of the spacecraft altitude.

As illustrated in Fig. 2.5, the most significant perturbative accelerations in low Earth orbits are at-

mospheric drag (I faero), solar radiation pressure (I fSRP ), third-body gravitational attraction (I fTBG), and

non-spherical Earth gravity field (I f⊕). Tidal perturbation, caused by the ocean and Earth’s crust tides

due to the perturbing effects of the Sun and Moon, is not considered given its small magnitude when

compared to other perturbative accelerations.

In the following subsections, the different perturbative accelerations are described. For the sake

of clarity, these accelerations are expressed in the ToD reference frame. Therefore, a rotation to the

Local Orbit frame (as shown in Section 2.1.2) is necessary in order to use them in the GVEs. Also, the

perturbation forces are represented in these equations by its resulting acceleration on the spacecraft.

Thus, all the forces in this section are mathematically modeled as accelerations, whether they might be

expressed by a potential function or not.

The resulting perturbative acceleration (Of = [Of1
Of2

Of3]
T ), in the O-frame, is given by
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Of = Ofaero + OfSRP + OfTBG + Of⊕,

where all the accelerations are expressed in the Local Orbit frame [5].

Figure 2.5: Central acceleration (GM) and perturbative accelerations as a function of the spacecraft altitude, shown

on a logarithmic scale [19].

2.3.1 Atmospheric Drag

Spacecrafts in low orbits experience a significant effect caused by the collision with particles of the

upper atmosphere. This interaction is manifested as an aerodynamic drag force that opposes the space-

craft velocity vector. The acceleration caused by the atmospheric drag force is approximated by

I faero = −1

2

ρCD S

M
∥vrel∥vrel, (2.5)

where ρ is the local atmospheric density, CD is a dimensionless drag coefficient, S is the spacecraft area

projected along the direction of motion, M is the spacecraft total mass, and vrel is the relative velocity

of the spacecraft with respect to the atmosphere [11].

The relative velocity, vrel, is different from the spacecraft orbital velocity in the ToD frame since the

Earth’s atmosphere is not stationary. Then, a simple approximation can be done in order to obtain the

relative velocity. If it is assumed that the atmosphere rotates with the same angular velocity as the Earth,

then
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vrel = v− θ̇ × r,

where v is the velocity vector of the spacecraft expressed on the ToD frame and θ̇ is the angular velocity

vector of the Earth on the ToD frame, given by θ̇ = θ̇ [0 0 1]T , see [20].

The drag coefficient, CD, quantifies how the spacecraft interacts with the surrounding medium and it

is often determined via experimental or finite element analysis. As to the atmospheric density, ρ, the most

simple model assumes that it decays exponentially with increasing height. This model is fully static, in the

sense that the densities are independent of time, and it also assumes an axially symmetric atmosphere

about the polar axis. The exponential model is given by

ρ = ρ0 exp[−(h̄− h̄0)/H],

where ρ0 is the atmospheric density at reference altitude h̄0,H is a scaling factor that is called the density

scale height, and h̄ is the altitude of the satellite above the surface of the Earth [11].

The NRLMSISE-00 is amore accuratemodel to obtain ρ. This empirical atmospheric model computes

the neutral temperature and densities in Earth’s atmosphere from ground to thermospheric heights (up

to 1000 km). The NRLMSISE-00 was released in 2001 by the United States Naval Research Laboratory

as an upgrade of the MSISE-90 atmospheric model, updated with actual satellite data obtained using

mass spectrometry and incoherent scatter radar techniques. To obtain the local atmospheric density, the

geodetic latitude, longitude, and altitude of the spacecraft, as well as the local time, are required [21].

2.3.2 Solar Radiation Pressure

The mechanism by which the solar radiation pressure (SRP) affects the orbit of a spacecraft is related

to the momentum exchange between the photons emitted by the Sun and the spacecraft [11]. Unlike the

atmospheric drag perturbation, the SRP does not act throughout the entire orbit, since it only contributes

when the spacecraft is not in the shadow of the Earth.

The acceleration caused by the SRP is given by

I fSRP = −CR
IS AS

M c
eS, (2.6)

where CR is the spacecraft’s reflectivity, IS is the energy flux of the incoming radiation, AS is the cross-

sectional area of the spacecraft exposed to the radiation, c is the speed of light, and eS is the unit vector

from the spacecraft to the Sun [14]. The value of IS fluctuates during a year due to the Earth’s varying

distance from the Sun. This variation can be modeled by

IS =
1361

1 + 0.0334 cos(2πDap/365)
W/m2,

where Dap is the number of days from when the Earth is at aphelion [14].
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2.3.3 Third-Body Gravitational Attraction

Nearby celestial bodies also cause a perturbative force that affects the spacecraft orbit about the

Earth. The gravitational force caused by several celestial bodies induces an acceleration on the space-

craft, given by

I fTBG = −
N∑
i=1

µTBGi

(
r− rTBGi

d3TBGi

−
rTBGIi

∥rTBGi
∥3

) , (2.7)

where N is the number of celestial bodies that have a perturbative effect on the spacecraft, µTBGi is the

standard gravitational parameter of the celestial body, dTBGi
is the distance between the spacecraft and

the body, and rTBGi
is the celestial body position expressed in the ToD frame [14].

In order to compute the third-body perturbative acceleration, the positions of the spacecraft and the

celestial body should be determined relative to the ToD reference frame. A closer inspection of (2.7)

shows that the perturbative acceleration is given by the difference between the celestial body gravity

acting on the spacecraft and the celestial body gravity acting on the Earth [20]. As it was presented

in the introductory part of this section, the two bodies with the greatest influence in low Earth orbits

are the Moon and the Sun. Therefore, neglecting the influence of other celestial bodies, the third-body

acceleration is given by

I fTBG = I fTBGMoon
+ I fTBGSun

.

2.3.4 Earth Gravity Field

Since the Earth is not a perfect sphere and its mass is not uniformly distributed throughout the Earth,

and having in consideration that gravity depends directly on mass, it follows that the gravity field is not

uniform.

One approach to deal with the non-uniformity of the gravitational field is to divide the Earth into a

large number, N , of portions of mass, mi, located at point ri. With that in mind, it is possible to obtain

the gravitational potential at a point r as

U⊕(r) =
N∑
i=1

Gmi

∥r− ri∥
,

where G is Newton’s universal gravitational constant [11]. Alternatively, the gravitational potential can be

written as a spherical harmonics expansion, as given by

U⊕(r, λ, ϕ) =
µ

r

1 + ∞∑
n=1

(
R⊕

r

)n n∑
m=0

Pm
n (sinλ)[Cm

n cos(mϕ) + Sm
n sin(mϕ)]

 , (2.8)

where {r, λ, ϕ} are the spherical coordinates of the point that is considered, relative to the geocentric

rotating reference frame (r is the distance from the mass center of the Earth, λ is the geocentric latitude,

and ϕ is the geographic longitude), R⊕ is the mean equatorial Earth radius, Cm
n and Sm

n are model
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parameters, and Pm
n are associated Legendre functions of degree n and orderm, see [14]. The spherical

harmonics fall into three classes: zonal harmonics for m = 0, tesseral harmonics for 0 < m < n, and

sectoral harmonics for m = n, as shown in Fig. 2.6.

Figure 2.6: Types of spherical harmonics: (a) Zonal. (b) Tesseral. (c) Sectoral [11].

Zonal harmonics are of particular interest since they are symmetrical about the polar axis, which means

that there is no dependence on the longitude or the Greenwich hour angle. Also, the strongest pertur-

bations due to the Earth shape arises from these harmonics [11]. A specific notation, Jn = −C0
n, is

used for these coefficients. The even zonal harmonics, those of degree 2,4,6..., are symmetric about

the equator, contrasting with the odd zonal harmonics, those of degree 3,5,7,..., that are anti-symmetric

about the equator, causing near-sinusoidal oscillations in several orbital elements [22]. The values for

the first six zonal coefficients are presented in Table 2.1. Note that the J2 coefficient is about 400 times

larger than the next largest aspherical coefficient, and is, therefore, the strongest perturbation due to the

Earth’s shape.

Table 2.1: Zonal coefficients [11].

i Ji ×10

2 1.08262668355 -3

3 -2.53265648533 -6

4 -1.61962159137 -6

5 -2.27296082869 -7

6 5.40681239107 -7

The perturbative acceleration due to zonal harmonics can be obtained by the gradient of the potential

given by (2.8), considering m = 0. Also, note that the first term µ/r of (2.8) is already considered in the

left-hand side of (2.1). Moreover, since the equatorial plane of True of Date reference frame is (nearly)

aligned with the Earth equator, the values of Ji can be directly used to compute the associated acceler-

ations expressed in the ToD reference frame. Then, considering the six zonal coefficients presented in

Table 2.1, the perturbative acceleration due to the Earth gravity field, in the ToD frame, is given by (see

[11])

I f⊕ =

6∑
i=2

I fJi ,

15



where the individual I fJi terms are given by

I fJ2 = −3

2
J2

µ

||r||2

(
R⊕

||r||

)2



(
1− 5

(
r.i3
||r||

)2) r.i1
||r||(

1− 5
(

r.i3
||r||

)2) r.i2
||r||(

3− 5
(

r.i3
||r||

)2) r.i3
||r||


,

I fJ3
= −1

2
J3

µ

||r||2

(
R⊕

||r||

)3


5

(
7
(

r.i3
||r||

)3
− 3

(
r.i3
||r||

))
r.i1
||r||

5

(
7
(
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||r||

)3
− 3

(
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||r||

))
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||r||

3

(
10
(
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3

(
r.i3
||r||

)4
− 1

)


,

I fJ4 = −5

8
J4

µ

||r||2

(
R⊕

||r||

)4



(
3− 42

(
r.i3
||r||

)2
+ 63

(
r.i3
||r||

)4) r.i1
||r||(

3− 42
(

r.i3
||r||

)2
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(
r.i3
||r||

)4) r.i2
||r||

−
(
15− 70

(
r.i3
||r||

)2
+ 63

(
r.i3
||r||

)4) r.i3
||r||


,

I fJ5
= −1

8
J5

µ

||r||2

(
R⊕

||r||

)5


3

(
35
(

r.i3
||r||

)
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(
r.i3
||r||

)3
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(
r.i3
||r||
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35
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(
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||r||

)2
+ 945

(
r.i3
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(
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||r||
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,

I fJ6
=

1

16
J6

µ

||r||2

(
R⊕

||r||
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(
35− 945

(
r.i3
||r||

)2
+ 3465

(
r.i3
||r||

)4
− 3003

(
r.i3
||r||

)6) r.i1
||r||(

35− 945
(

r.i3
||r||

)2
+ 3465

(
r.i3
||r||

)4
− 3003

(
r.i3
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)6) r.i2
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2205
(
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)2
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(
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||r||

)4
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(
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||r||
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)
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.

2.4 Validation of the Orbital Motion Models

In order to verify the validity of the orbital motion models proposed in Section 2.2, a Simulink model

was developed. In it, the two forms of the equations of motion that were presented, in Cartesian co-

ordinates (2.2) and Keplerian elements (2.3), are implemented, together with the models that describe

the different types of perturbation forces that affect a satellite in orbit about the Earth, as introduced in

Section 2.3.

Several simulations are carried out to evaluate the accuracy of the models and, in this section, the

most relevant results are presented. To perform the simulations, a spacecraft with the physical charac-

teristics and orbit as described in Table 2.2 is used. The parameters are arbitrary and describe a generic

spacecraft in LEO orbit.
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Table 2.2: Test spacecraft physical characteristics and orbit parameters.

Test spacecraft

Physical Parameters Keplerian Elements

a = 7000 km

Mass = 100 kg e = 0.01

Reflectivity Coefficient = 1.4 i = 5 deg

Drag Coefficient = 2.2 Ω = 60 deg

Cross-Sectional Area = 1 m2 ω = 10 deg

M0 = 0 deg

Initially, a comparison between the two orbital motion models (Cartesian coordinates orbital motion

model (2.2) and GVEs (2.3)) is made by computing the difference in the position of the spacecraft ex-

pressed in the ToD frame when propagated using the two models. The Runge-Kutta 4th order method,

with a time step of 1 s, is used for the propagation of this spacecraft. The magnitude of the position

difference is depicted in Fig. 2.7, for a simulation of 4 four complete orbits around the Earth (approxi-

mately 23300 s). In this simulation, the perturbative accelerations caused by the atmospheric drag, the

SRP, the third-body gravitational attraction, and the Earth gravity field affect the spacecraft orbit. The

position difference between the two orbital motion models derives from both numerical errors related to

the Runge-Kutta 4th order method and the different strategies of each orbital motion model.

0 1 2 3 4

Orbits (#)

0

1

2

3

4

5

6

P
os

iti
on

 D
iff

er
en

ce
 (

km
)

10-9

Figure 2.7: Modulus of the difference in the position of the Test spacecraft propagated using the Cartesian coordi-

nates orbital motion model and GVEs.
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In order to validate both the orbital motion and perturbations models, a simulation is performed using

NASA’s General Mission Analysis Tool (GMAT). The same spacecraft and orbit described in Table 2.2

are used and the perturbation forces described in Section 2.3 are selected in the GMAT propagation

model. The simulator outputs the position and the velocity, at each time step, which are then used to

define a Local Orbit reference frame (see Section 2.1.2), centered at the spacecraft’s center of mass

propagated in the GMAT environment. After that, the position of the test spacecraft propagated using

GVEs in the Simulink model is expressed in the GMAT Local Orbit reference frame, so the difference in

position between the two environments could be compared in this reference frame. In this simulation, the

Forward Euler method, with a time step of 1 s, is used for the propagation of the spacecraft. This method

is interesting for some applications since it is computationally more efficient than the Runge-Kutta 4th

order method, so its accuracy is assessed in this simulation. The Forward Euler method is not used to

propagate the spacecraft when working with Cartesian coordinates since the position and the velocity

vectors present significant variations over time when compared to the Keplerian elements, which leads

to inaccurate results due to the simplicity of the propagation method. Therefore, a comparison between

the propagation of the test spacecraft using GMAT and the Cartesian coordinates orbital motion model is

not presented since a more accurate propagation method, such as the Runge-Kutta 4th order method, is

needed. In this case, the difference in position between the propagation using GVEs and the Cartesian

coordinates orbital motion model is negligible, as shown in Fig. 2.7, so the results of comparing both

models with the propagation using GMAT are similar.

The results of comparing the position obtained using GMAT with the position obtained using GVEs

are presented in Fig. 2.8. At the end of the simulation, the magnitude of the difference between the

positions is 1.86 km. It is possible to notice a secular variation in the o1 axis (along-track) that is the

major responsible for the difference in the position of the spacecraft when propagated in the two different

environments.

An analysis is carried out in order to understand the cause of this variation and evaluate the accuracy

of the model. For that, an initial analysis is made by comparing the position of the spacecraft, propagated

using both the GMAT and the Simulink models, in an environment where no perturbation forces are

present. The result is presented in Fig. 2.9a, where it is possible to observe that the difference between

the two environments presents amaximum value of 1.25×10−3 kmwhen propagated during four complete

orbits around the Earth, which can be assumed to be caused by numerical errors of the propagation

methods.

After, the SRP and the third-body gravitational attraction, with contributions from the Sun and the

Moon, are added to both GMAT and the Simulink model. The difference in position, when each of these

perturbation forces is added to the models, is presented in Fig. 2.9b and Fig. 2.9c. It is possible to notice

that the difference has increased due to the addition of these perturbation forces, being more significant,

between the two, in the case of the solar radiation pressure, although it still presents a small value when

compared to the plot of Fig. 2.8. It is possible to assume that this increase in the position difference is

derived from a different implementation of solar radiation pressure and third-body gravitational attraction

perturbations models in the two different environments. Also, regarding the solar radiation pressure, it
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Figure 2.8: Position of the spacecraft, propagated using GVEs, expressed in a Local Orbit frame centered at the

spacecraft center of mass propagated using GMAT.

must be taken into account that eclipse events are not considered in the Simulink model.

The atmospheric drag perturbation is then added to the two environments. As presented in Fig. 2.9d,

the addition of this perturbation results in an increase of the error between the twomodels, which is mainly

derived from the different atmospheric models used in the two environments (MSISE90 in GMAT and

NRLMSISE-00 in the Simulink model). Since the drag force is proportional to the atmospheric density

and different atmospheric models may present differences for the total densities in the same orbital

location, the atmospheric drag perturbation force presents different values in the two environments, which

is responsible for the error presented. It is expected that this error increase when the altitude of the orbit

is reduced since, in this case, the perturbation due to the atmospheric drag is stronger.

It is when the non-uniform gravity field of the Earth is added to the models that the position difference

presented in Fig. 2.8 arises. The difference presented in Fig. 2.9e is related to different Earth gravity

models used in the two environments since GMAT uses a more accurate geopotential model – EGM96.

This Earth gravitational model was published in 1996 and uses more harmonic coefficients to provide a

precise model of the Earth’s gravity field. Therefore, the error presented can be reduced if a more precise

gravity field model is used in the Simulink model. Moreover, numerical errors related to the Forward Euler

propagation method are also responsible for the position error presented in the simulations.
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(a) Without perturbations.
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(b) Solar Radiation Pressure.
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(c) Third-Body Gravitational Attraction.
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(d) Atmospheric Drag.

0 1 2 3 4

Orbits (#)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
os

iti
on

 D
iff

er
en

ce
 (

km
)

(e) Earth Gravity Field.

Figure 2.9: Modulus of the difference in the position of the Test spacecraft propagated using GMAT and the Simulink

model when different perturbation forces are acting on the spacecraft.

Using the developed Simulink model, it is possible to evaluate the effect that the perturbation forces,

described in Section 2.3, have on the position of the Test spacecraft in its orbit. Utilising the parameters
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described in Table 2.2, a simulation is carried out during 20 complete orbits around the Earth, where

the spacecraft position is propagated in an environment where no perturbation forces are present. This

position with time, of the unperturbed orbit, is used to define a Local Orbit reference frame, centered on

the spacecraft center of mass. After that, the perturbed spacecraft position is propagated and expressed

in the obtained unperturbed Local Orbit frame, at each time step. The results are presented in Fig.

2.10. It is possible to notice that the perturbation forces have a major impact on the spacecraft position,

leading to a significant difference in position between a perturbed and an unperturbed spacecraft with

time. In some cases, this position difference may not be compliant with the mission requirements, which

motivates the need for orbit control systems to reduce this error.
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Figure 2.10: Position of the perturbed spacecraft in a Local Orbit frame centered at the unperturbed spacecraft

center of mass.

2.5 Control Methodology

Two different control strategies are considered in this thesis: linear quadratic regulator (LQR) and

model predictive control (MPC). In this section, a brief description of these two methodologies is pre-

sented, as well as a comparison between the two.
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2.5.1 Linear Quadratic Regulator (LQR)

An LQR controller is obtained as a solution of an optimisation process, subjected, in this case, to

the linear time-invariant system dynamics ẋ = Ax + Bu, which is a mathematical representation of the

system behaviour over time, where x is the system state, u is the control input, A is the state matrix, and

B is the input matrix. The LQR minimises a cost function expressed as the integral of a quadratic form

of the error between the state and the reference plus a second quadratic form of the input. Considering

the control window as infinite, the cost function of the LQR is given by

J =
1

2

∫ ∞

0

xTQx+ uTRu dt, (2.9)

where Q ⪰ 0 is a symmetric, positive semi-definite matrix that weighs the state error and R ≻ 0 is a

symmetric, positive definite matrix that weighs the input [23]. In other words, xTQx represents a penalty

on the state error and uTRu a penalty on the control input, in order to minimise the fuel consumption and

eventually prevent saturation of the actuators. The correct tuning of these matrices is crucial to obtain

an efficient and effective controller, in a trade-off between control action cost and control accuracy [5].

The optimisation process consists of determining the control action u that minimises J . This can be

achieved if A and B are stabilisable, by finding the symmetric matrix P ⪰ 0 that is the solution of the

algebraic Riccati equation (see [23])

ATP+ PA− PBR−1BTP+Q = 0.

The LQR state-feedback gain, or Kalman gain, K, is given by

K = R−1BTP,

which in turn yields the linear control law that minimises the cost function (2.9)

u = −Kx. (2.10)

The Kalman gain can be computed offline. Then, the optimal control action, u, is computed using (2.10)

during the control loop and applied to the plant [23].

2.5.2 Model Predictive Controller (MPC)

Model predictive control is a control strategy that uses predictions of the behaviour of the plant, which

corresponds to the systemmodel, over time in a defined time horizon, to find the optimum control strategy.

In other words, the controller evaluates the evolution of the state during that time horizon, using a system

model and the current state of the plant as the initial state, for different input strategies to find theminimum

of a cost function.

The proper tuning of the MPC parameters (see Fig. 2.11) is of extreme importance to obtain an

efficient controller that drives the system to the reference without an excessive computational cost [24].

The parameters that characterise an MPC are:
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• Sample time, Ts - The plant model used by the MPC to predict the system behaviour is a discrete-

time model. Therefore, the sample time is used in this discrete model to propagate the prediction

of the system. In general, a large sample time will reduce the accuracy of the propagation model,

but will increase the prediction time, for the same number of prediction steps;

• Prediction horizon, ph - The number of steps that the MPC uses to predict the model behaviour.

The product of the prediction horizon and the sample time is the prediction time, that is, how far the

controller looks into the future. The bigger the prediction horizon, the further the controller will look

into the future to find the best actuation strategy, despite causing an increase in the computational

effort;

• Control horizon, m - The number of control actions computed by the MPC. Each control move is

obtained by the optimiser, at each prediction step, until the end of the control horizon. A smaller

control horizon will decrease the computational effort but may lead to a less accurate prediction

since the controller holds constant its output computed in the last step of the control horizon for the

remaining prediction horizon steps. The control horizon must verify m ≤ ph.

Figure 2.11: Principle of MPC parameters [24].

The control inputs to be applied to the plant until the next control interval are obtained by solving an

optimisation problem, that includes the following features (see [25]):

• Cost function - a scalar measure of the controller performance to be minimised. The cost function

used in the controller developed for this thesis is the sum of two terms, both of them including

weights to balance competing objectives,

J(zk) = Jy(zk) + Ju(zk),

where zk = [u(k)T u(k+1)T ... u(k+ph)
T ] is the control input vector to be used during the prediction

horizon.
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– Reference tracking – this term is related to the difference between the plant output and the

reference, and is given by

Jy(zk) =
ny∑
j=1

ph∑
i=1

[
wy

i,j(rj(k + i)− yj(k + i))
]2

, (2.11)

where k is the current simulation step, ny is the number of plant output variables, rj(k +

i) is the reference value for j-th plant output at i-th prediction horizon step, in engineering

units, yj(k + i) is the predicted value of j-th plant output at i-th prediction horizon step, in

engineering units, and wy
i,j is the tuning weight for j-th plant output at i-th prediction horizon

step (dimensionless).

– Manipulated variable cost – this term penalises the control actions to be taken in order to

prevent the saturation of the actuators and reduce the use of energy by the system, and is

given by

Ju(zk) =
nu∑
j=1

ph−1∑
i=0

[
wu

i,juj(k + i)
]2

, (2.12)

where nu is the number of control input variables, wu
i,j is the tuning weight for j-th control input

variable at i-th prediction horizon step (dimensionless), and uj(k + i) is the predicted value

for j-th control input variable at i-th prediction horizon step, in engineering units.

• Constraints - conditions that the solution must satisfy, such as bounds on the control inputs due to

actuators saturation. These constraints might be hard if the optimiser does not consider solutions

that violate these constraints, or soft if their violation is allowed but with a penalty considered in the

cost function. In the controller developed in this thesis, only hard constraints were considered. If

soft constraints were added to the problem, a new term should be included in the cost function to

quantify the worst-case constraint violation.

Nonlinear Model Predictive Controller

In the case of a nonlinear system, which can not be easily approximated by a linear model, it is

possible to use nonlinear MPC. This method allows a more accurate representation of the system as

the state function since it uses the original nonlinear plant model, improving the prediction results and,

therefore, leading to better control actions. This method also allows the use of nonlinear constraints and

cost function.

However, the use of nonlinear models might lead to a non-convex optimisation process. In that case,

the cost function has several local optimums and, in order to find the global optimum, a more complex

computation process is needed [26].

2.5.3 Comparison between LQR and MPC

One of the main advantages of the nonlinear MPC over the LQR controller is that the MPC handles

constraints in the optimisation process. Therefore, the controller finds a solution for the minimisation
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problem without exceeding the imposed limits. The use of an LQR controller might lead to the computa-

tion of control inputs that will be saturated by the actuators, worsening the controller performance.

Furthermore, unlike the LQR, the MPC is able to utilise the nonlinear system dynamics, without a

previous linearization process, as explained before, using a more accurate representation of the plant.

In the case of the LQR, it is expected that its performance will decrease for any operating points different

from the one used for the linearization.

Besides that, the MPC uses a prediction of the model behaviour to find the best long-term solution

for the optimisation problem, whereas the LQR uses only the current state of the system. On the other

hand, the MPC requires a much higher computational load and, for that reason, its use might not be

feasible in some applications.

2.6 Sensors and Actuators

In this section, a description of the relevant sensors and actuators to perform orbital control is pre-

sented. The study is based on several existing missions and an evaluation of the most efficient hardware

to use is also discussed. Since the goal of this thesis does not encompass attitude determination and

control of the spacecraft, this section will only focus on the sensors and actuators that are related to

aspects of spacecraft’s translational motion.

2.6.1 Sensors

Accurate and frequent information about the position and the velocity of the spacecraft are key for

autonomous orbital control. The position and velocity errors are used by the orbit controller to assess if

corrections on the trajectory are needed. The requirements of the mission also determines the necessary

accuracy for the position and velocity data and, therefore, which sensors to use.

Commonly, three different strategies are used to obtain the spacecraft’s position and velocity: space-

based tracking, ground-station tracking, and autonomous navigation systems. Space-based tracking

systems are generally able to provide high accuracy navigation data at any desired update rate. They

require a specific type of transponder on-board of the spacecraft, which has an impact on the cost of

the mission, comprising both the acquisition costs and the indirect costs related to mass and power us-

age [27]. One example is the Tracking Data Relay Satellite System (TDRSS) launched by NASA in the

early 1980s. The TDRSS space segment is currently composed of eight operational geosynchronous

satellites, providing position determination with a 3σ accuracy of about 50 m [27]. On the other hand,

ground-station tracking is only available when the spacecraft is visible to the ground tracking station.

Even if a geographically distributed ground-station network is used, such as the space Surveillance Net-

work, resource sharing and allocation constraints might limit the rate at which navigation data is obtained.

This latter strategy also requires a transponder and telemetry equipment on-board the spacecraft. Fi-

nally, autonomous navigation systems utilise sensors on-board the spacecraft to determine its position

and velocity in real-time. These sensors may require data transmitted from other satellites or ground-
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stations (semi-autonomous), or be fully autonomous if no transmitted signals are needed.

A different approach, that does not require any on-board equipment and has no costs associated,

consists of using the publicly available data from the US space Surveillance Network, which is provided

in the form of two-line element (TLE) sets. However, this data is updated only twice a day and the

accuracy is smaller than the obtained by transponder signals [27]. In fact, with the referred update rate,

position accuracy is also dependent on the spacecraft’s propagator accuracy. According to [28] and

[29], for an orbit with an altitude of approximately 400 km and using TLEs and an accurate propagator

such as SPG4, the cumulative position error after one day is around 1 km. This error magnitude might

present some difficulties to specific missions that require higher position accuracy. In the case of orbit

maintenance activities, adding to the problem the uncertainty associated with the propulsion system itself

and its resulting acceleration on the satellite, the position error that arises might not satisfy the mission

requirements. However, this error could still be acceptable for missions that do not require a high position

accuracy to satisfy its requirements, reducing, that way, the complexity and the cost of the spacecraft.

Therefore, the requirements of the mission must be well defined and an analysis should be performed

to evaluate which strategy is the most suitable to achieve the objectives, considering a balance between

the needed navigation data accuracy and update rate, as well as the cost and complexity of the system

to be implemented.

A study through several missions related to this topic revealed that navigation data is usually obtained

using autonomous navigation systems. One example is the Prisma mission, a formation flying mission

that requires an accuracy of few tenths of meters. The two spacecraft of the formation were equipped

with Phoenix GPS receivers for position and velocity measurements [30]. The US Navstar Global Posi-

tioning System, most commonly known as GPS, is a type of Global Navigation Satellite System (GNSS)

consisting of 24 satellites (plus spares), in 6 orbital planes, with an orbital period of 12 hours. These

GNSS constellations provide global coverage for LEO orbits and use signals from four or more satellites

to compute the receiver’s position vector [27]. Other GNSS constellations are the Russian GLONASS

and the civilian-operated European Galileo. A different mission, of a larger satellite, is the TacSat-2. This

satellite is equipped with an AZ IGOR Integrated GPS receiver, with an accuracy of few centimeters after

ground-base post processing, to perform autonomous station-keeping activities [31].

In some specific cases, high accuracy for the orbit determination is required in order to achieve the

mission objectives. For that, a Precise Orbit Determination (POD) method is used, which combines the

data obtained by the GNSS measurements with ground-based data to achieve the required accuracy.

This method was used in the TerraSAR-X mission, where the mission objectives required a position

determination accuracy smaller than 5 cm.

In Table 2.3, five available GNSS receivers are presented, together with their main characteristics.

Notice that a position accuracy of at least 10m can be obtained and more accurate systems can achieve

values as small as 1 m. However, if the mission requires higher accuracy, ground-based post process-

ing can reduce these values to few centimeters. The refereed accuracy values correspond to 3σ of a

Gaussian distribution.
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Table 2.3: Commercial GNSS receivers and properties. The presented accuracy values correspond to 3σ of a

Gaussian distribution.

Name GNSS type Mass Pos. accuracy Vel. accuracy Power

Phoenix [32] GPS 20 g 10 m 0.1 m/s 0.85 W

ISIS GNSS [33] GPS+GALILEO 20 g 10 m 0.01 m/s 0.45 W

NGPS-03-422 [34] GPS 130 g 10 m 0.05 m/s 1 W

NavSBR [35] GPS 2300 g 1 m 0.02 m/s 12 W

PODRIX [36] GPS+GALILEO 3000 g 1 m 0.002 m/s 15 W

AZ IGOR [37] GPS 4600 g 1 m 0.012 m/s 16 W

2.6.2 Actuators

To perform orbital control activities, acceleration must be applied to the spacecraft center of mass

in order to achieve a change on the velocity vector. A propulsion system is then needed to provide the

spacecraft with the impulse per unit of spacecraft mass, denoted by ∆v and measured in m/s. In this

section, an introduction to space propulsion and the different types of thrusters is presented, as well as

a discussion of the advantages and disadvantages of each type.

The Rocket Equation and Specific Impulse

Assuming a spacecraft in orbit and neglecting all forces acting on the vehicle but the trust provided

by the thrusters, it is possible to write (see [20])

v̇ =
g0Isp
M

Ṁ, (2.13)

where v̇ is the spacecraft’s acceleration, g0 = 9.80665 m/s2 is Earth’s standard gravitational acceleration

at sea level, Ṁ is the mass flow rate expelled by the nozzle, and Isp is defined as the specific impulse,

given by

Isp =
Tt

Ṁg0
,

where Tt is the thrust produced by the spacecraft’s thrusters. The specific impulse is computed as the

ratio of the thrust produced to the weight flow of the propellants. In other words, it is the time dura-

tion, given in units of time, that a given quantity of propellant is able to generate a thrust equal to the

propellant’s initial weight [20].

With some algebraic manipulation, (2.13) can be integrated yielding

∆v = g0Isp ln
M0

Mf
, (2.14)

where M0 and Mf are, respectively, the initial and final masses of the spacecraft before and after the

propulsive burn. Equation (2.14) is commonly known as the Ideal Rocket Equation or Tsiolkovsky Equa-

tion [27] and it can be used to estimate the maximum velocity increment,∆v, that is possible to obtain for
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a certain propellant mass burn M0 − Mf , given an engine-propellant combination with a characteristic

specific impulse, Isp. A consequence of (2.14) is that, given a certain propellant mass, the propulsive

velocity increment is maximised by using a thruster with the highest possible specific impulse. In other

words, a thruster with a higher specific impulse will require less propellant mass to achieve a certain

velocity increment. Therefore, specific impulse can be interpreted as an efficiency parameter to charac-

terise a thruster [20].

Types of Thrusters

In this section, a brief description of the different types of thrusters is presented. The principal propul-

sion technologies are cold gas, chemical, and electrical.

Cold Gas Thrusters Cold gas thrusters are the simplest form of propulsion. These thrusters are

based on a controlled and pressurised gas source expelled through a nozzle, without combustion. This

type of propulsion is characterised by small specific impulses despite being cheaper and have a simpler

implementation than the other alternatives [27].

Chemical Thrusters In this type of thrusters, the gases resulting from the combustion of the pro-

pellants are redirected through the nozzle. Three different types of chemical thrusters are available,

depending on the initial state of the stored propellants, with important changes in the internal architec-

ture of the thrusters (see [27]):

• Liquid propellant systems – These systems use liquid propellants that are fed to the combustion

chamber using a pump or by gas pressurisation. Depending on the number of propellant compo-

nents, these thrusters can be defined as monopropellant, if only one propellant is used, or bipropel-

lant, if two propellants are used, usually a fuel and an oxidiser that chemically react in a combustion

process. Monopropellant systems are simpler and, therefore, more reliable but, on the other hand,

bi-propellant systems can provide higher specific impulses;

• Solid propellant systems – In this case, the propellant is stored in solid form. These thrusters

have lower performance than liquid ones but they are simpler and require less storage room since

they have a higher density. The main limitation of these thrusters is that, once combustion of the

propellant is established, there is no mechanism to stop it. For this reason, they cannot be used in

missions with multiple starts;

• Hybrid propellant systems – This type of system is not very common and, as the name indicates,

they have the propellants in different states. Usually, the fuel is solid and the oxidiser is a liquid or

a gas.

Electric Propulsion Electric propulsion makes use of electrical power to accelerate a propellant

that is responsible for the creation of thrust once the fluid is expelled. It is, therefore, limited by the

available electrical power on-board the spacecraft. Depending on the way that electrical power is used
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to create this thrust, it is possible to establish three main classes of electric propulsion systems: elec-

trothermal, if the propellant is electrically heated and then expanded through a nozzle; electrostatic,

where electric fields are used to accelerate charged particles; and electromagnetic, if the force on the

charged particles is produced by their interaction with the magnetic field generated electrically. The pro-

pellant used in these thrusters depends on its type and can be a rare gas, like xenon or argon, a liquid

metal, or, in some cases, a conventional propellant [27].

Comparison between the different types of thrusters

An evaluation of the most suitable propulsion method and thrusters to use should consider mission

requirements and the impact of this system on the rest of the spacecraft. For example, in terms of power

consumption, it will be low unless the system used requires a heated propellant or it is an electric thruster.

Also, it must be taken into consideration the impact that the propulsion system, including thrusters, stor-

age tanks and propellants, have on the mass budget. Finally, from a thermal perspective, it will depend

on the type of thruster used but, in principle, it is possible to admit that heaters may be required to prevent

the propellant and the lines from freezing [27]. The propulsion methods addressed in Section 2.6.2 are

summarised in Table 2.4, with typical specific impulses and possible usage.

Table 2.4: Principal options for spacecraft propulsion systems [27].

Propulsion technology Orbit Control Attitude Control Typical Isp(s)

Cold gas X X 30-70

Solid 280-300

Liquid: monopropellant X X 220-240

Liquid: bi-propellant X X 305-310

Hybrid X 250-340

Electric X X 250-3000

Despite being less expensive and simpler to implement, cold gas propulsion systems present low

performance due to a small typical specific impulse. Notice that the use of solid propulsion is almost

limited to launchers and is not used neither for orbit control nor for attitude control since these propulsion

systems can only be used once during the mission. A widely used type of spacecraft propulsion relies

on monopropellant hydrazine since it is simple to implement and reliable, despite its lower efficiency

when compared to other propulsion options [27]. A different monopropellant propulsion system was

used on the Prisma formation flying mission, where High Performance Green Propulsion was used.

This type of propulsion presents several advantages relatively to hydrazine, namely its higher specific

impulse, higher propellant density and reduced cost [30]. Regarding electric propulsion systems, several

advantages are mentioned in [38], namely higher specific impulse systems, capable of operating high

variations of thrust, and also providing accurate compliance with the thrust required. On the other hand,

since space power systems only put out small amounts of power, the amount of thrust electric engines

produce is very small when compared to chemical engines. Therefore, electric propulsion is suitable
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for low-thrust, long-duration applications on-board spacecraft [39]. Since orbit maintenance maneuvers

typically require small amounts of thrust and are performed numerous times during mission lifetime [27],

electric propulsion shall be taken into consideration as a viable strategy to perform these maneuvers.

One example of this usage is the TacSat-2 mission, which used Hall effect thrusters, a type of electric

propulsion system, to perform orbit maintenance activities [31]. Other examples of electric propulsion

systems are presented in Table 2.5, along with several main parameters. It is possible to notice that,

depending on the technology used, these different types of electric propulsion present major differences

in the power requirements, specific impulse, efficiency, and thrust provided, so a meticulous evaluation

shall be carried in order to choose the best propulsion system to fulfill the mission requirements [27].

Table 2.5: Main characteristics of electric propulsion systems [27].

Class Technology Power Typical Isp(s) Efficiency Thrust

Electrothermal Resistojet 0.5-1.5 kW 250 80% 0.1-0.5 N

Electrothermal Arcjet 0.3-100 kW 500-2000 35% 0.2-2 N

Electrostatic Ion 0.5-2.5 kW 3000 60%-80% 10-200 mN

Electrostatic Hall 1.5-5 kW 1500-2000 50% 80-200 mN

Electromagnetic MPD 1-4000 kW 2000-5000 25% 1-200 N

Electromagnetic VASIMR 1-10 MW 3000-30000 20%-60% 1-2 kN

In Table 2.6 some examples of cold gas, chemical, and electric thrusters are presented, together

with their main characteristics. Notice the difference in nominal thrust and specific impulse between the

different propulsion technologies.

Table 2.6: Commercial thrusters and properties.

Model Propulsion Technology Nominal Thrust Isp Mass

Moog 058E142A [40] Cold gas 120 mN 57 s 16 g

Moog 058-118 [40] Cold gas 3.6 N 56 s 23 g

Ariane EM007 [41] Monopropellant 1 N 220 s 290 g

MONARC-5 [42] Monopropellant 4.5 N 226.1 s 490 g

Dawn bi-propellant [43] Bi-propellant 0.5 N 285 s 170 g

Moog DST-12 [44] Bi-propellant 22 N 302 s 640 g

BUSEK BIT-3 [45] Ion 1.25 mN 2300 s 1.4 kg

Ariane Rit 10 EVO [46] Ion 15 mN 3000 s 1.8 kg

Ariane Rit 2X [46] Ion 215 mN 2750 s 10 kg

BUSEK Resistojet [47] Resistojet 10 mN 150 s 1.25 kg

BUSEK BHT-200 [48] Hall 13 mN 1390 s 980 g

BUSEK BHT-8000 [49] Hall 450 mN 2210 s 25 kg
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Chapter 3

Problem Statement

This thesis is focused on the development of an autonomous orbit controller for a low-Earth orbit

spacecraft. The TerraSAR-X mission, which was operated in close formation with the Tandem-X mission

at distances of a few hundred meters, is used in this thesis as a test-bed for the proposed controllers,

given its demanding orbit control requirements.

3.1 TerraSAR-X Mission

TerraSAR-X is a German synthetic-aperture radar (SAR) satellite based on a public-private partner-

ship agreement between the German Aerospace Center (DLR) and EADS Astrium GmbH, which was

launched on 15th June, 2007. The science objectives of the mission are to make multi-mode and high-

resolution X-band SAR data available for a large variety of applications in scientific fields such as hy-

drology, geology, climatology, oceanography, environmental and disaster monitoring, and cartography,

making use of interferometry and stereometry [50].

The spacecraft characteristics and orbit properties of the TerraSAR-X mission are presented in Table

3.1. The orbit of TerraSAR-X is LEO, sun-synchronous and has to fulfill the requirements presented in

Table 3.2 to accomplish its mission.

Table 3.1: Spacecraft and orbit properties of the TerraSAR-X mission, where S/C stands for spacecraft [10].

TerraSAR-X characteristics

S/C wet mass 1230 kg

S/C dimensions 5 m height × 2.4 m diameter

Semi-major axis 6892.944 km

Eccentricity 0.0014252

Inclination 97.4401 deg

Altitude 505− 533 km

Nominal revisit period 11 days
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Table 3.2: TerraSAR-X mission requirements [10].

TerraSAR-X requirements

Local time of ascending node 18 : 00 hrs (± 0.25 hrs)

Ground track repeatability ± 500 m per revisit period

The local time of ascending node (LTAN) is used to describe sun-synchronous orbits. This type of

orbits is often used by Earth observation missions, which require that their observations are obtained

at the same local mean solar time. It is defined by the mean local time at which the spacecraft passes

the Earth equator on the ascending branch of its orbit. LTAN values of 6:00 hrs and 18:00 hrs repre-

sent sunrise and sunset, respectively, and, in this case, the vector from the centre of the Earth to the

ascending node is perpendicular to the projection of the vector that points from the Earth to the Sun on

the equatorial plane. On the other hand, LTAN values of 00:00 hrs and 12:00 hrs represent midnight and

noon, respectively, in which case the vector from the centre of the Earth to the ascending node is parallel

to the projection of the vector that points from the Earth to the Sun on the equatorial plane.

The ground track repeatability defines with which accuracy the spacecraft should fly over a given

path on the Earth’s surface. The ground track repeatability is evaluated by the ground track repeatability

error, which is the distance along the Earth surface between the satellite real position and its desired

location. The controller designed shall actuate on the satellite in order to maintain this parameter within

the allowed values (in this case ± 500 m per revisit period).

In this mission, the orbit perturbations due to the Earth gravity field are not corrected by the orbit

control system, so that the orbital precession due to the oblateness of the Earth can be leveraged to

keep the LTAN constant. For the LTAN to be constant, the drift rate of the longitude of the ascending

node (orbital precession) needs to match the angular velocity of the Earth’s orbit around the Sun. Other

perturbations such as the atmospheric drag, the third-body gravity attraction, and the solar radiation

pressure, that cause an error on the ground track repeatability, should be corrected.

3.2 Ground Track Repeatability Error

One of the main control objectives of the mission presented in Section 3.1, with particular emphasis

in this thesis, is to maintain the projection of the real satellite on the Earth’s surface within the allowed

values during the entire mission. As stated in Section 1.3, this problem can be formulated as a two

satellite formation problem, in which one of them is virtual and not affected by non-gravitational orbit

perturbations. This virtual satellite is referred to as the reference satellite.

The ground track repeatability error (Tr), illustrated in Fig. 3.1, is a key mission requirement and it can

be represented, at a given epoch, as the distance along the Earth surface between the real propagated

satellite at point A and the reference satellite at point B. The reference satellite complies with the mission

requirements, having an error of zero in the ground track repeatability at all times.
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Figure 3.1: Ground track repeatability error schematic diagram [51].

The approximate formula for small values of Tr based on spherical geometry is given by (see [51])

Tr ≈ R⊕

√
∆φ2 + (cosφTf

∆λ)2, (3.1)

where φTf
is the geocentric latitude of point B, and ∆φ and ∆λ are the geocentric latitude and longitude

difference between points A and B, respectively.

Figure 3.2 presents the obtained ground track repeatability error for the TerraSAR-X satellite using

this methodology and if no control actions are performed. Notice that, approximately after 3.8 × 104

s (approximately 7 complete orbits around the Earth), the ground track repeatability error exceeds the

allowed value of 500 m, due to the influence of perturbation forces that affect the real satellite. Therefore,

the controller is expected to perform control actions that prevent this value to be exceeded.

0 1 2 3 4 5

Time (s) 104

0

0.2

0.4

0.6

0.8

1

1.2

G
T

r 
(k

m
)

Figure 3.2: TerraSAR-X ground track repeatability error.
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Asmentioned in Section 3.1, the orbit precession due to the Earth gravity field should not be corrected

by the orbit control system. For that reason, the reference orbit to be used should not be completely

unperturbed. Actually, it should be affected by the aspherical terms of the Earth gravity field. However,

other perturbation forces that affect the real orbit shall be corrected, namely the atmospheric drag, the

solar radiation pressure, and the third-body gravitational attraction.

34



Chapter 4

Control Design

The control strategy is projected to maintain the orbit of the TerraSAR-X within the range of values

specified by the mission requirements. This chapter presents the design of the control algorithm to

achieve this objective and describes the strategy to implement the LQR (Section 4.2) and the MPC

(Section 4.3). The final control solution, which combines 2 LQR and 2MPC, is introduced in Section 4.4.

4.1 Overview

The mission described in Section 3 requires that the ground track repeatability error is maintained

within a specific range of values to fulfill the mission objectives. Recalling (3.1), the ground track repeata-

bility error is given by the position difference along the Earth surface between the real spacecraft and the

reference. Therefore, the projection on the Earth surface of the position of the real satellite should be

driven and maintained close to the projection on the Earth of the reference satellite, so the ground track

repeatability error is small enough. This is possible if the orbital position of the real satellite is driven to

the reference satellite orbital position, considering that the projection of the satellite is directly dependent

on its orbital position. Furthermore, by correcting the orbital velocity of the real satellite, its orbit will

converge to the reference satellite orbit. This strategy will also maintain the LTAN within the range of

values specified by the requirements since this is a property of the reference orbit, which is designed in

a way that all mission requirements are met.

To achieve this objective, two different control strategies are considered: LQR (see Section 2.5.1)

and MPC (see Section 2.5.2). The motivation to use these two different strategies is to compare the

performance of a simple control methodology, such as the LQR, with a more complex methodology,

such as MPC. The LQR only uses the current state of the system to compute the next control action and

does not take into account the existence of system and actuators constraints for that computation. On

the other hand, the MPC uses the prediction of the system behaviour for an optimisation process that

accounts for system and actuators constraints to compute a vector of control actions to guide the state

of the system to the reference. The control design based on these two strategies is described in this

chapter.
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4.2 LQR Design

4.2.1 Dynamic Model

To design a linear quadratic regulator that maintains the ground track repeatability error within the

allowed values, the dynamic model of the system must be expressed in the form ẋ = ALQRx+ BLQRu,

as described in Section 2.5.1. Notice that this dynamic model must be linear, with ALQR and BLQR inde-

pendent of x. The Cartesian representation, in the ToD reference frame, of the error dynamics between

the real satellite and the reference is a straightforward model that simplifies the controller implementa-

tion. This controller is designed to drive and maintain the difference between the orbital position and

velocity of the real and the reference spacecraft close to zero.

Using the Cartesian coordinates representation for the orbital motion laws (see Section 2.2.1), it is

possible to write


ṙ = v

v̇ = − µ
||r||3 r+ I f(r, v) + I fc

, (4.1)

where I f(r, v) is a 3×1 vector that corresponds to an acceleration vector caused by orbital perturbations

and I fc is a 3×1 vector that corresponds to a control acceleration, expressed in the ToD reference frame,

used to control the satellite motion. Let Ix = [rT vT ]T be the vector that contains the position and the

velocity of the real satellite expressed in the ToD reference frame. Recalling (4.1), the time derivative of

vector Ix can be written as

I ẋ = a(Ix) + B I fc, (4.2)

where

a(Ix) =

 v

− µ
||r||3 r+ I f(r, v)


and

B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


,

where a(Ix) is a 6 × 1 vector that includes the acceleration caused by the central body and perturba-

tion forces acting on the system, and B is a 6 × 3 matrix that represents the influence of the control

acceleration, I fc, on the system. As mentioned in Section 3.1, it is intended that the orbit precession still
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occurs in order to maintain the LTAN constant. Therefore, for the reference orbit, the only perturbative

acceleration that is considered is the one caused by the Earth’s gravity field and no input accelerations

are considered. This orbit is modelled by

I ẋr =

 vr
− µ

||rr||3 rr +
I fr(rr, vr)

 , (4.3)

where Ixr = [rTr vTr ]T is a vector that contains the position and the velocity of the reference satellite

in the ToD reference frame and I fr(rr, vr) is a perturbative acceleration caused by the Earth’s gravity

field. To obtain a ground track error close to zero, the controller objective is to drive the difference of the

position and the velocity between the real and the reference satellite to zero. In other words, the error

ϵ = Ix − Ixr must converge to zero. Subtracting (4.3) from (4.2), the dynamic model in matrix form for

the error between the real and the reference satellite is given by

ϵ̇ =

 v− vr
− µ

||r||3 r+ I f(r, v) + µ
||rr||3 rr −

I fr(rr, vr)

+ BI fc. (4.4)

Defining ∆v = v− vr and ∆r = r− rr, it is possible to rewrite (4.4) as

ϵ̇ =

 ∆v

− µ
||∆r+rr||3 (∆r+ rr) + µ

||rr||3 rr +
I f(∆r+ rr,∆v+ vr)− I fr(rr, vr)

+ BI fc. (4.5)

The dynamic model for the error between the real and the reference satellite is given by (4.5). Notice that

this model is nonlinear and, therefore, to implement an LQR controller based on this system dynamics,

a linearization process must be carried out.

4.2.2 Linearization

As referred to in Section 4.2.1, the system dynamics modelled by (4.5) is nonlinear, since it is not

possible to write it in the form ϵ̇ = Aϵϵ + Bϵ
I fc, where Aϵ and Bϵ are independent of the system state,

ϵ. Therefore, in order to apply the LQR control methodology, a linearization process is performed. This

method consists in finding the linear approximation of a nonlinear function at a given equilibrium point,

which is a constant state solution of the system in the sense that the dynamics imposed by the equation

keep the state constant. The linear approximation of a function is obtained from the first-order term of the

Taylor expansion around the operating point and is valid in a small region around this point. Operations

near the equilibrium point take the form of small perturbations, which are sufficiently small variations about

the equilibrium point such that the state evolves back to the rest point [52]. Using this methodology, it is

possible to obtain the linearized dynamics of (4.5) to be used in the implementation of the LQR controller.

Notice that the first row of (4.5) is already linear.

Starting by defining an equilibrium point given by ∆r0 = ∆v0 = [0 0 0]T and I fc0 = [0 0 0]T , which, by

the definition of equilibrium point, provides ϵ̇0 = [0 0 0 0 0 0]T , the small perturbation model for operations

near this equilibrium point is given by
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∆r1 = ∆r10 + δ∆r1

∆r2 = ∆r20 + δ∆r2

∆r3 = ∆r30 + δ∆r3

∆v1 = ∆v10 + δ∆v1

∆v2 = ∆v20 + δ∆v2

∆v3 = ∆v30 + δ∆v3

I fc = I fc0 + δI fc

. (4.6)

Note that ∆r = [∆r1 ∆r2 ∆r3]
T , ∆v = [∆v1 ∆v2 ∆v3]

T , and rr = [rr1 rr2 rr3 ]
T , which are expressed in

the ToD reference frame. The referred equilibrium point was chosen based on the control objective of

driving the error between the real and the reference satellite to zero. Therefore, it was decided to linearize

(4.5) about the equilibrium point where the error is zero, given by ϵ = [0 0 0 0 0 0]T ⇒ ∆r = ∆v = [0 0 0]T .

Remembering that ϵ = [∆rT ∆vT ]T and defining the nonlinear row (second row) of (4.5) as

g(ϵ) = − µ

||∆r+ rr||3
(∆r+ rr) +

µ

||rr||3
rr + I f(∆r+ rr,∆v+ vr)− I fr(rr, vr),

it is possible to write g(ϵ) as the Taylor series expansion

g(ϵ) =����:0
g(ϵI0) +

∂g(ϵ)

∂∆r1

∣∣∣
ϵ=0

δ∆r1 +
∂g(ϵ)

∂∆r2

∣∣∣
ϵ=0

δ∆r2 +
∂g(ϵ)

∂∆r3

∣∣∣
ϵ=0

δ∆r3+

∂g(ϵ)

∂∆v1

∣∣∣
ϵ=0

δ∆v1 +
∂g(ϵ)

∂∆v2

∣∣∣
ϵ=0

δ∆v2 +
∂g(ϵ)

∂∆v3

∣∣∣
ϵ=0

δ∆v3 + h.o.t.

(4.7)

Since the magnitude of the perturbative acceleration caused by the J2 Earth gravity component is 103

times higher than the magnitude of other perturbative accelerations that affect the real orbit, for the sake

of simplicity, it was decided to only consider the J2 term influence in the system. Neglecting higher-order

terms, the partial derivatives of (4.7) evaluated at ϵ = 0 are given by

∂g(ϵ)

∂∆r1

∣∣∣
ϵ=0

=
3µrr1
||rr||5

rr −
µ

||rr||3


1

0

0

+

J2µR
2
⊕


−

3

(
1−

5r2r3
||rr||2

)
2||rr||5 +

15r2r1

(
1−

5r2r3
||rr||2

)
2||rr||7 − 15r2r3

r2r1
||rr||9

15rr1rr2
(
−6r2r3 + r2r2 + r2r1

)
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,
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=
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= 0.

The Taylor series expansion (4.7) provides a linear form of g(ϵ). With that in mind, and using the small

perturbation model given by (4.6), it is possible to linearize the error dynamics (4.5), as given by

δϵ̇ = Aϵδϵ+ Bϵδ
I fc, (4.8)

where

Aϵδϵ =

 δ∆v
∂g(ϵ)
∂∆r1

∣∣∣
ϵ=0

δ∆r1 +
∂g(ϵ)
∂∆r2

∣∣∣
ϵ=0

δ∆r2 +
∂g(ϵ)
∂∆r3

∣∣∣
ϵ=0

δ∆r3


and

Bϵ =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


.

The linearized dynamics for the error between the real and the reference satellite given by (4.8) op-

erates around the equilibrium point where the error is zero and uses the deviations from this equilibrium,
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δϵ = [δ∆rT δ∆vT ]T , as the system state. For operating points far from zero, the linearized model is no

longer valid. However, for operations near the equilibrium point, these linearized dynamics can be used

for the implementation of the LQR controller.

4.2.3 LQR Synthesis

In order to assess the LQR performance, a MATLAB script was developed using the propagation

model validated in Section 2.4. It is intended to evaluate the effect that the control input computed by the

controller has on the system and assess its performance in driving the error between the real satellite

and the reference to zero. A schematic representation of the MATLAB script is presented in Fig. 4.1.

As presented, two satellites with the same physical characteristics as the TerraSAR-X spacecraft are

defined:

• Reference satellite - This satellite has initial orbital parameters in accordance with the mission

requirements and is only affected by the orbital perturbation caused by the Earth gravity field;

• Real satellite - It is possible to define an initial orbital error for this satellite in any of its orbital

elements. Furthermore, this satellite orbit is affected by the orbital perturbations caused by the

Earth gravity field, the solar radiation pressure, the atmospheric drag, the third-body gravitational

attraction, and by the control action computed by the controller.
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Figure 4.1: LQR implementation scheme.

The control input computed by the LQR controller takes the form of an acceleration δI fc that affects the

orbit of the real satellite, aiming to drive the error between the real satellite and the reference to zero.
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This control acceleration is limited by the actuators saturation, which depends on the selected thruster.

This acceleration is calculated every simulation step and is obtained by the optimal linear control law for

the linearized version of the system

δI fc = −K δϵ,

where the Kalman gain K is calculated using the MATLAB command

K = lqr(Aϵ,Bϵ,Q,R).

Matrices Aϵ and Bϵ are defined using the linearized dynamics for the error between the real satellite and

the reference (4.8). Notice that Aϵ is dependent on the reference satellite Cartesian position on the ToD

reference frame, which is updated every simulation step. However, to avoid an excessive computational

effort, the Kalman gain might have a different update rate from the simulation step, since the most sig-

nificant terms of the matrix K present a small variation over time and, therefore, it is not necessary to

update this matrix every simulation step. The calibration of matrices Q and R is done using a trial-and-

error method and had, as a starting point, the Bryson’s method to reduce the level of arbitrariness (see

[53]). In this method, Q and R are diagonal matrices, where each of the diagonal terms is the square

of the inverse of the maximum value expected for each of the state variables error and the input control

variables during the control manoeuvre respectively, that is

Q = diag(Qi), R = diag(Rj),

where

Qi =
1

δϵ2i,max

, Rj =
1

δI f2cj,max

,

with i ∈ {1, 2, 3, 4, 5, 6} and j ∈ {1, 2, 3} [53]. The method of Bryson is used to compute the initial values

of matricesQ andR. However, empirical fine-tuning is still necessary in order to improve the performance

of the controller.

4.3 MPC Design

4.3.1 Comparison between Keplerian Elements and Cartesian Coordinates

Similarly to the LQR, to design an MPC, it is necessary to define a state function that is used during

the optimisation process to predict the system behaviour over the prediction horizon. To reduce the com-

putational effort, one possibility is to use the Cartesian coordinates representation as the state function

given the simplicity of this model when compared to the Keplerian elements representation. However, the

implementation of this model lead to a difficult tuning of the MPC controller due to the large variation with

time of the position and the velocity of the satellite expressed in Cartesian coordinates representation.
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It is considered that the most effective strategy is to use the Keplerian elements representation for

the orbital motion laws (see Section 2.2.2) as a state function. This set of equations provide immediate

insight into the orientation and geometry of the orbit. Moreover, this representation allows for a simpler

controller tuning given that the orbital elements do not present significant variations over time when

compared to the Cartesian coordinates representation. On the other hand, the state dynamics based

on Keplerian elements is not used as the dynamic model for the LQR since it leads to a more complex

linearization process and result. For the MPC, it is not necessary to linearize the system since this control

strategy allows to use nonlinear system dynamics as the state function.

4.3.2 State Function

GVEs adapted for near-circular orbits (see Section 2.2.2) provide a convenient model to fully char-

acterise the orbit and location of the satellite, using the set of Keplerian elements Ixk = [a ex ey i Ω u]T

as the system state, which is then compared with the reference satellite set of Keplerian elements to

correct the real satellite orbital position and velocity. Although TerraSAR-X initial orbit can be modeled

as near-circular, (2.4) is not used in this model since, during the orbit correction maneuvers, the orbit

eccentricity presents values that are not characteristic of a near-circular orbit. Therefore, an adaptation

of the near-circular orbit system dynamics is used as the MPC state function, given by



ȧ = 2 a2
√
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[
Of3e sin θ + Of3

p
||r||

]
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√
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, (4.9)

where [Of1
Of2

Of3]
T = Of and Of = Ofc+OfJ2 , where Ofc is the control acceleration vector expressed in

the Local Orbit frame centered in the real spacecraft and OfJ2
is the acceleration caused by the J2 Earth

gravity component, expressed in the same reference frame. Notice that, to reduce the computational

effort during the optimisation process, only the J2 Earth gravity component was considered given that the

magnitude of this acceleration is 103 times higher than the magnitude of other perturbative accelerations

that affect the real orbit [19].

4.3.3 MPC Synthesis

A MATLAB script was developed that implements the MPC and allows to assess its performance in

driving the error between the real satellite and the reference to zero. Recalling Section 2.5.2, the MPC
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computes the next control action as a result of an optimisation process that uses a prediction of the

system behaviour during the prediction horizon. Notice that the state function defined in Section 4.3.2 is

nonlinear. Thus, nonlinear MPC will be used as the control strategy. This state function is used to obtain

the system evolution during the prediction horizon. However, the MPC uses a discrete-timemodel for this

prediction and, therefore, it is good practice to provide the controller with a discrete-time state function.

Otherwise, MATLAB automatically discretizes the model using the implicit trapezoidal rule, increasing

the computational effort. To hasten the optimisation process, the Forward Euler’s method was used

to discretize the state function (4.9) since good propagation accuracy was achieved using this method

without the need for excessive computational effort, as depicted in Section 2.4.

An output function to compute the system output that will be compared with the reference need to be

defined. Since the spacecraft will be equipped with sensors providing position and velocity and the state
Ixk can be directly obtained from these measurements, the system output is the state itself. Therefore,

the output function is simply given by

Iy = I6Ixk,

where I6 is the 6 × 6 identity matrix. The system output is used to compute the reference tracking

term of the cost function (2.11). The cost associated with the control action is also considered by the

manipulated variable cost term (2.12). To achieve good results, it is crucial to fine-tune the weight of

these terms. The strategy implemented uses an empirical method that considers the magnitude of each

of the terms evaluated by the cost function to find initial values for the tuning process. Contrasting with

the LQR implementation, the MPC allows to define constraints on the control acceleration, so that the

optimisation process only considers control actions that are within the saturation limits of the actuators.

It is also necessary to select three design parameters, namely the prediction horizon, ph, the control

horizon, m, and the sample time, Ts. The selection of these parameters requires a good understand-

ing of the system since they determine how far the controller looks into the future to predict the system

behaviour, the number of control actions computed, and the time interval between each prediction step,

respectively. The prediction time window should be large enough so that the optimisation process com-

putes the best solution for the orbit control problem. Recalling that the prediction time is equal to the

product between the prediction horizon and the sample time, a compromise must be achieved between

computational effort and propagation accuracy, since the sample time must be small enough to achieve

an accurate propagation of the prediction model, but large enough to achieve an acceptable prediction

time window, for a given prediction horizon. Notice that a large prediction horizon means that more steps

will be considered in the optimisation process, which leads to an increase in computational effort. It is

good practice to choose the prediction horizon such that phTs is equal to the closed-loop response time

and then adjust from that point until further increases on ph have a minor impact on performance [54].

For this problem, the tuning strategy is to initially set the control horizon with the same dimension as the

prediction horizon (given the complexity of the system and the effect of perturbative accelerations) and

then, iteratively decrease this parameter as long as the controller performance is not affected.
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The MPC controller performance can be assessed in order to evaluate the effect that the control

input, computed by the controller, has on the system. A similar strategy to the one used to implement

the LQR (Section 4.2.3) is proposed. The properties of the reference and the real satellites are as

described in Section 4.2.3. Contrasting with the LQR implementation, in which case the system state is

the error between the real satellite and the reference one, the MPC uses the set of Keplerian elements

for near-circular orbits of the real satellite, expressed in the ToD reference frame, as the system state.

The system output is compared with the reference satellite set of Keplerian elements, expressed in the

same reference frame. However, given that the optimisation process compares these orbital elements

in a certain time window and the reference satellite position and velocity vary with time, a vector with the

dimension of the prediction horizon, containing the Keplerian elements of the reference satellite at every

prediction step, must be provided to the controller. This vector must be updated every simulation step so

that the first element of the vector corresponds to the Keplerian elements of the reference at time k + 1,

where k is the current simulation step. A schematic representation of the MATLAB script is presented in

Fig. 4.2.
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Figure 4.2: MPC implementation scheme.

The control acceleration is computed using the MATLAB command

[mv,opt] = nlmpcmove(nlmpcobj, Ixk, lastmv,Ref),

where mv is the next control acceleration to be used in the system, nlmpcobj is a MATLAB object

containing the MPC design properties, Ixk is the current system state, lastmv is a 3×1 vector containing

the last control action used, and Ref is a ph×6matrix containing the Keplerian elements of the reference

satellite during the prediction horizon. The MATLAB object opt contains initial guesses for the state and
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manipulated variable (control action) trajectories to be used in the next control intervals, until the end

of the prediction horizon [55]. It is possible to use several of these guesses for the next control actions

in order to avoid running the optimisation process at every simulation step and, in this way, reduce the

computational effort. It is good practice to use this strategy when the orbital error is large, given that,

in this situation, the variations of the control acceleration, from one simulation step to the other, are not

very significant when compared to a situation characterised by an orbital error closer to zero.

4.4 Control Solution

To achieve good performance for different magnitudes of position error, four different controllers were

implemented – MPC 1, MPC 2, LQR 1, and LQR 2 – that drive and maintain at zero the orbital error

between the real satellite and the reference. The two LQR controllers are used to correct small orbital

errors given that the LQR is able to correct errors close to zero with less computational effort than the

MPC. LQR 1 is designed to correct small errors between the real satellite and the reference. LQR 2, on

the other hand, is optimised to reduce the error in steady-state. Its purpose is to counter perturbative

accelerations that affect the real orbit and handle sensors and actuators noise, in order to maintain the

orbital error within the required values. The difference in the implementation of these two controllers is

in the definition of matrices Q and R. The two MPC controllers are used to correct orbital errors far from

zero since, in this case, the linearized model is no longer valid. Moreover, for large orbital errors, the

control acceleration computed is saturated by the actuators. Therefore, the MPC provides better results

since it accounts for actuators saturation in the optimisation process. MPC 1 is designed to correct larger

orbital errors than the MPC 2 and these two controllers differ in the following design parameters:

• Sample time, Ts - a higher sample time is used for MPC 1 (high orbital errors), given that a smaller

propagation accuracy is required in this case;

• Prediction horizon, ph - a higher prediction horizon is used for MPC 1 (high orbital errors), given

that the response time is higher in this case;

• Weights - tuning of the weights to use in the cost function is also needed for each of the MPC

controllers.

A schematic representation of the MATLAB script for the complete control solution is presented in Fig.

4.3. Notice the need to convert the Cartesian position and velocity to the corresponding Keplerian ele-

ments that are used by the two MPC controllers. Also, the MPC computes the control actions vector in

the Local Orbit reference frame, centered at the real spacecraft, which needs to be converted to the ToD

reference frame to be used in the Cartesian orbital propagator.

The orbital position error between the real satellite and the reference, at the current simulation step, is

used to select the controller that will compute the next control acceleration. Therefore, at every simulation

step, the orbital position error is evaluated to decide which controller is the best to use. For orbital position

errors below a given threshold, a different controller is selected. However, if the orbital position error
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returns to a value above that threshold, the controller in use remains the same, except in the transition

from LQR 2 to LQR 1. In this case, the controller in use returns to LQR 1 since LQR 2 is designed for

steady-state.
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Figure 4.3: Implementation scheme of the complete control solution.
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Chapter 5

Simulation Setup

In this chapter, the parameters used in the MATLAB script to characterise the TerraSAR-X spacecraft,

orbit properties, and simulation environment are defined and justified. The controller parameters and the

implementation strategy are also discussed in order to provide better insight and analysis of the results

obtained.

5.1 TerraSAR-X Properties

The spacecraft physical characteristics of TerraSAR-X, used in the simulations, are as described in

Table 3.1. The spacecraft wet mass (total mass including propellant) is 1230 kg. Since the spacecraft is

affected by the drag acceleration caused by the atmosphere, the cross-sectional area of the spacecraft

projected along the direction of motion, S, has to be defined in order to compute the drag acceleration

using (2.5). The spacecraft has a cylindrical shape with dimensions 5mheight× 2.4mdiameter. Thus, to

evaluate the controller performance in the worst-case scenario, it is considered that the cylinder circular

base is parallel to the direction of the satellite motion. In this case, the cross-sectional area is a 5 m ×

2.4 m rectangle and, therefore, S = 12 m2. Moreover, the drag coefficient, CD, also needs to be known.

According to [56], a drag coefficient value of 2.2 is an approximation for the physical drag coefficient

of satellites with compact shapes that is widely used for the computation of the drag acceleration. The

spacecraft’s coefficient of reflectivity, CR, is required to compute the solar radiation pressure acceleration

(2.6). A value of CR of zero means the spacecraft is translucent to incoming radiation, a value of 1

indicates all radiation is absorbed and all the force is transmitted to the spacecraft, and a value of 2

indicates all radiation is reflected and twice the force is transmitted to the spacecraft [57]. Once more, to

simulate the worst-case scenario, it is considered that CR = 2. To calculate the solar radiation pressure

acceleration, the cross-sectional area of the spacecraft exposed to the radiation, AS , must be defined.

Given that the worst-case scenario is considered, it is assumed that the cylinder circular base is parallel

to the direction of the unit vector from the spacecraft to the Sun. In this case, the cross-sectional area

is a 5 m × 2.4 m rectangle and, therefore, equal to AS = 12 m2. Table 5.1 summarises the physical

properties of TerraSAR-X.
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Table 5.1: Spacecraft physical characteristics of the TerraSAR-X mission.

TerraSAR-X physical characteristics

Wet mass 1230 kg [10]

S 12 m2 (based on [10])

AS 12 m2 (based on [10])

CD 2.2

CR 2

The orbit of TerraSAR-X is LEO, sun-synchronous, and near-circular. Therefore, using the data from

Table 3.1 and the set of Keplerian elements for near-circular orbits described in Section 4.3.2 (Ixk =

[a ex ey i Ω u]T ), the orbit properties are as described in Table 5.2. The scalar eccentricity of TerraSAR-X

orbit is 0.0014252 [10]. However, no information is provided regarding the direction of the eccentricity

vector and, therefore, an arbitrary direction is chosen, yielding e = [0.0014252 0]. According to the

mission requirements, the LTAN should maintain a value of 18 : 00 hrs (± 0.25 hrs). From this value and

the launch date of June 15, 2007, 02 : 14 : 00 UTC, it is possible to obtain a value of the right ascension of

the ascending node of Ω = 172.993 deg using a MATLAB function that performs the conversion between

LTAN and Ω [58]. No information is provided regarding the value of the argument of latitude, so an

arbitrary value of u = 0 deg is considered.

Table 5.2: Orbit properties of the TerraSAR-X, launched on June 15, 2007, 02 : 14 : 00 UTC [10].

TerraSAR-X Keplerian elements

a 6892.944 km

ex 0.0014252

ey 0

i 97.4401 deg

Ω 172.993 deg

u 0 deg

To measure the satellite orbital position and velocity, a commercial GNSS receiver was selected from

Table 2.3. Due to the instability of the nonlinear system, the NavSBR GPS receiver is used for accurate

navigation data measurements. The NavSBR has a 3σ position and velocity accuracy of 1 m and 0.02

m/s, respectively. This accuracy was modeled by adding Gaussian noise, with zero mean and 3σ equal

to the receiver position and velocity accuracy, to the system output. Table 5.3 summarises the NavSBR

GPS properties.

As mentioned in Section 2.6.2, electric propulsion systems present several advantages when com-

pared to chemical propulsion, namely a higher specific impulse, the capability of operating high variations

of thrust, and also provide better actuation accuracy [38]. On the other hand, the amount of thrust pro-

duced by electric engines is very small, which may lengthen the correction of large orbital errors, such as
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Table 5.3: NavSBR GPS receiver properties [35].

NavSBR GPS receiver

Pos. accuracy (±3σ) 1 m

Vel. accuracy (±3σ) 0.02 m/s

the ones resulting from the launcher orbital injection. Therefore, this type of propulsion is more suitable

for low-thrust and long-duration applications, such as orbit maintenance maneuvers. However, most mis-

sions cannot afford embarking two different types of thrusters. Therefore, in this thesis, it was decided

to equip the spacecraft solely with electrical propulsion, which is the system that offers better prospects

of reducing the orbit maintenance errors.

TerraSAR-X has a total wet mass of 1230 kg, meaning that significant thrust values are required to

correct large orbital errors. A feasible strategy must be devised based on the electric thrusters presented

in Table 2.6. BUSEK BHT-8000 Hall thruster provides the highest nominal thrust, which means that it is

the most suitable actuator for the control objectives. Nevertheless, one single thruster does not provide

sufficient thrust to correct considerable orbital errors of a large satellite such as TerraSAR-X. Therefore,

the strategy adopted uses 9 × BUSEK BHT-8000 thrusters, three in each of the corresponding actuation

axis. Table 5.4 summarises BUSEK BHT-8000 properties.

Table 5.4: BUSEK BHT-8000 thruster properties [49].

BUSEK BHT-8000

Nominal thrust (max.) 450 mN

Isp 2210 s

Power 8 kW

Thrust error (2σ) 1%

Qty. 9

Since chemical propulsion systems for this class of spacecraft can weigh more than 100 kg and elec-

trical propulsion is nowadays the subject of intensive research and its thrust-to-mass ratio is expected

to improve in the coming years, it was decided to maintain the original TerraSAR-X wet mass. Never-

theless, the relatively small thrust-to-mass ratio is one drawback in the use of electric propulsion, given

that a large number of actuators may be required to correct large orbital errors. Since no information is

provided on the data-sheet of BUSEK BHT-8000 about thrust accuracy, a general example of a mission

that uses electric thrusters is used to estimate this parameter. According to [59], the difference between

thrust demand and actual thrust for the QinetiQ T5 ion thrusters used in the ESA GOCE mission occurs

within ±1% of the thrust demand. Therefore, a similar thrust error is assumed for the BUSEK BHT-

8000. This error is modeled by adding Gaussian noise, with zero mean and 2σ equal to 1% of the thrust

demand, to the actuator’s output.
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5.2 Simulation Environment

As referred to in Section 4.2.3, the reference satellite orbit is only affected by the orbital perturbation

caused by the Earth gravity field, so that the orbital precession due to the oblateness of the Earth can be

leveraged to keep the LTAN constant. On the other hand, the real satellite orbit is affected by the orbital

perturbations caused by the Earth gravity field, the solar radiation pressure, the atmospheric drag, and

the third-body gravitational attraction. TheNRLMSISE-00 atmosphericmodel, described in Section 2.3.1,

is used to calculate the local atmospheric density, which is required to calculate the atmospheric drag

acceleration.

Table 5.5: Perturbation forces that affect the real and the reference satellite.

Perturbative force Reference Satellite Real Satellite

Atmospheric drag X

Solar radiation pressure X

Third-body gravitational attraction X

Earth gravity field X X

The Forward Euler method, with a time step of 1 s, is used for the propagation of the real and the

reference satellite since good propagation accuracy was achieved using this method without the need

for excessive computational effort, as depicted in Section 2.4.

Table 5.6: Propagation method and simulation time step used in the simulations.

Propagation method Simulation time step

Forward Euler 1 s

5.3 Controller Definition

Four different controllers are implemented to perform orbit correction activities depending on the

error magnitude, as described in Section 4.4. Therefore, three threshold values, that are compared

with the orbital position error between the real satellite and the reference, need to be defined to decide

which controller will compute the next control acceleration. MPC 1 is designed to correct large orbital

errors, so, this controller, is used for orbital position errors larger than 100 km. MPC 2 is used for orbital

position errors smaller than 100 km. A variable threshold determines the transition from MPC 2 to LQR

1. The value of this threshold is empirically adapted to the simulation to perform, in order to improve

the performance. The transition from LQR 1 to LQR 2 occurs when the orbital position error is smaller

than 0.5 km. When the orbital error reaches this threshold, convergence is assured, as verified in the

simulations. The threshold values to determine the transition between each controller are presented in

Table 5.7.
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Table 5.7: Threshold values to select the controller.

Controller threshold

MPC 1 ≥ 100 km

MPC 2 100 km ↔ variable

LQR 1 variable ↔ 0.5 km

LQR 2 ≤ 0.5 km

To design the two MPC controllers, several control parameters must be selected. The values used

are summarised in Table 5.8. A compromise is achieved between computational effort and control per-

formance since it is not feasible to define a prediction time (ph Ts) equal to the closed-loop response.

Therefore, a prediction horizon of 50 steps is used for both MPC controllers, since that does not require

an excessive amount of computational effort. Moreover, a sample time of 10 s is chosen for the MPC 1,

given that this value allows extending the prediction time to compute the best sequence of maneuvers,

at the cost of reducing the propagation accuracy. For the MPC 2, a smaller value is used. In this case,

since the orbital error is closer to zero, the propagation accuracy becomes more important to achieve

convergence. Therefore, a sample time of 5 s is chosen for the MPC 2. The control horizon has the

same dimension as the prediction horizon for both MPC controllers, since a decrease in the value of this

parameter results in a loss of control performance, as observed in the simulations. For the MPC 1, all

the control actions of the control vector (with dimension equal to the control horizon) computed by the

MPC are used to control the real satellite, before a new control vector is obtained. On the other hand,

for the MPC 2, only the first 40 elements of the control vector are used. The tuning of the reference

tracking weights, wy, and manipulated variable cost weights, wu, to use in the cost function, resulted in

the vectors presented in Table 5.8, which are the same for both MPC controllers.

Table 5.8: MPC controllers parameters.

Parameters MPC 1 MPC 2

Ts 10 s 5 s

ph 50 steps 50 steps

m 50 steps 50 steps

Control vector usage 50 control actions 40 control actions

wy [0.009 11 11 2 2 4]T [0.009 11 11 2 2 4]T

wu [0.1 0.1 0.1]T [0.1 0.1 0.1]T

To implement the two LQR controllers, the matrices Q and R need to be defined using the methodol-

ogy presented in Section 4.2.3. For LQR 1, these matrices are given by

QLQR1 = diag

([
1

10−2

1

10−2

1

10−2

1

10−8

1

10−8

1

10−8

]T)
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and

RLQR1 = diag

([
1

1.7183−15

1

1.7183−15

1

1.7183−15

]T)
.

For LQR 2, the matrix R is adapted to work when the error in the system state is small. Therefore,

the cost of the control action is reduced in order to deal with actuator and sensors noise and maintain the

orbital error small enough to fulfill the mission requirements, despite the effect of orbital perturbations.

Defining QLQR2 = QLQR1, the matrix R, for LQR 2, is given by

RLQR2 = diag

([
1

3.4285−14

1

3.4285−14

1

3.4285−14

]T)
.

An update time of 50 s is chosen to update the Kalman gain, for both LQR controllers, since the

elements of K present small variations over time. This value offers good results while reducing the

computational effort and is obtained using a trial-and-error methodology.
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Chapter 6

Simulation Results

In this chapter, the controller performance in driving and maintaining the orbital error of the TerraSAR-

X at zero is shown and analysed. In order to have a representative example of the type of orbital errors

that can occur, the injection accuracy of the Vega-C launch system is used to set the initial errors. The

objective is to evaluate the controller performance in correcting different real-case scenario errors that

result from the orbital injection process. The injection accuracy (3σ of a Gaussian distribution) of the

Vega-C launch system is presented in Table 6.1, based on [60]. In addition, an error in u is simulated in

this section to represent the correction of an advance in the orbital position of the real satellite.

Table 6.1: Vega-C launch system injection accuracy (3σ) [60].

Injection accuracy

a 15 km

e 0.0012

i 0.15 deg

Ω 0.2 deg

6.1 Semi-major axis injection error

Based on Table 6.1, an initial error of −15 km is set for the semi-major axis of the real satellite. Thus,

the initial Keplerian elements vector of the real satellite is given by

Ixk0
= [6877.944 0.0014252 0 97.4401 172.993 0]T .

The controller performance is assessed for a simulation with a duration equal to 2 complete orbits of

the reference satellite around the Earth (approximately 11380 s). In this simulation, ideal actuators and

sensors are considered, in the sense that no noise interference is simulated. Later in this document, the

controller performance is evaluated in a simulation with realistic actuators and sensors.
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Figure 6.1 illustrates the variation of the Keplerian elements error between the real and the reference

satellite. Notice that, since the semi-major axis of the real satellite is smaller than the one of the reference

satellite, the mean motion of the real satellite is higher than the mean motion of the reference satellite,

which justifies the initial increase in the argument of latitude error. The effect of the control acceleration

causes a significant variation on the eccentricity, visible on the variation of the eccentricity vector, which

justifies why (2.4) is not used in the state function (4.9). Also, a different value of the semi-major axis for

the real and the reference satellite causes a different variation on the longitude of the ascending node

due to the effect of the Earth gravity field. This results in the error in the longitude of the ascending node,

illustrated in Fig. 6.1.

Figure 6.1: Keplerian elements error between the real and the reference satellite for an initial error in the semi-major

axis. The transition between the controller in use is marked with a dashed line.

A better perspective on the relative motion between the real and the reference satellite is provided by

Fig. 6.2. This figure illustrates the variation of the Cartesian components of the real satellite expressed

in a Local Orbit reference frame, centered at the reference satellite center of mass. The initial semi-

major axis error is reflected in the radial direction, o3. Since the altitude of the real satellite orbit is lower,
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the mean motion of the satellite is higher and, therefore, the tangential velocity, vo1 is also higher. This
causes an advance of the real satellite relative to the reference, reflected in o1 and u (see Fig. 6.1), due

to the actuators saturation, which are not capable of rapidly correct the real satellite orbital error. The

controller acts on the real satellite increasing its altitude, so it is higher than the reference satellite altitude

as reflected in o3, in order to reduce its mean motion and, consequently, reduce vo1 to correct the initial
orbital advance. Notice that the described motion happens during the MPC actuation regime, which is

able to predict the best long-term strategy to correct the orbital error.

Figure 6.2: Variation of the Cartesian components of the real satellite expressed in a Local Orbit reference frame,

centered at the reference satellite center of mass, for an initial error in the semi-major axis.

Figure 6.3 illustrates the control acceleration described in a Local Orbit reference frame, centered at

the real satellite center of mass. From this figure, it is noticeable that the control acceleration magnitude

has a maximum limit due to the actuators saturation.
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Figure 6.3: Control acceleration described in a Local Orbit reference frame, centered at the real satellite center of

mass, for an initial error in the semi-major axis.

Figure 6.4 and Fig. 6.5 illustrate the magnitude of the position and the velocity error, respectively,

throughout the simulation. Notice the oscillations that are present, mainly, in the magnitude of the velocity

error since the control acceleration has a more direct impact on the velocity than on the position of the

satellite. The initial increase in the magnitude of the position error is related to the initial advance of the

real satellite, relative to the reference. The transition between controllers, marked with dashed lines, is

also illustrated in the figures. For this simulation, the transition from MPC 2 to LQR 1 occurs at a position

error magnitude of 4.8 km. This value is obtained using a trial-and-error methodology.
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Figure 6.4: Magnitude of the position error for an initial error in the semi-major axis.
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Figure 6.5: Magnitude of the velocity error for an initial error in the semi-major axis.

The response time of the system is evaluated in the transition from LQR 1 to LQR 2. In this case,

a response time of 8514 s (approximately 1.5 complete orbits of the reference satellite) is obtained. On

that occasion, the ground track repeatability error is below 500 m, fulfilling the mission requirements, as

illustrated in Fig. 6.6.
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Figure 6.6: Ground track repeatability error for an initial error in the semi-major axis.
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6.2 Inclination injection error

Based on Table 6.1, an initial error of +0.15 deg is set for the orbital inclination of the real satellite. In

this case, the Keplerian elements vector of the real satellite is given by

Ixk0
= [6892.944 0.0014252 0 97.5901 172.993 0]T .

A simulation with a duration equal to 3 complete orbits of the reference satellite (approximately 17070

s) is used to assess the controller performance. In this simulation, ideal actuators and sensors are

considered, in the sense that no noise interference is present.

Figure 6.7 illustrates the variation of the Keplerian elements error between the real and the reference

satellite. The initial error in the orbital inclination converges to zero, causing the error in the other orbital

elements, mainly in the semi-major axis and in the longitude of the ascending node, to present slight

variations that are also corrected.

Figure 6.7: Keplerian elements error between the real and the reference satellite for an initial error in the orbital

inclination.

A better perspective on the relative motion between the real and the reference satellite is provided by

Fig. 6.8. This figure illustrates the variation of the Cartesian components of the real satellite expressed in
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a Local Orbit reference frame, centered at the reference satellite center of mass. The orbital inclination

error of +0.15 deg causes an initial error in the normal direction, o2. The transition from positive to

negative values, observable in this direction, occurs at the point where the orbit of the real and the

reference satellite cross, due to the different orbital inclination. However, this value is converging to zero

as a consequence of the control actuation.

Figure 6.8: Variation of the Cartesian components of the real satellite described in a Local Orbit reference frame,

centered at the reference satellite center of mass, for an initial error in the orbital inclination.

Figure 6.9 illustrates the control acceleration described in a Local Orbit reference frame, centered at

the real satellite center of mass. From this figure, it is noticeable that most of the actuation is done in the

o2 direction.

The position and the velocity error magnitude, throughout the simulation, is illustrated in Fig. 6.10.

The oscillations derive from the relative motion of the real and the reference satellite described above.

For this simulation, notice that only the two LQR controllers are used, given that this type of controllers

are capable of reducing the orbital error with less computational effort. The response time of the system

is assessed based on the transition from LQR 1 to LQR 2. In this case, a response time of 10877 s

(approximately 2 complete orbits of the reference satellite) is obtained. At this point, the ground track

repeatability error is below 500 m, fulfilling the mission requirements, as illustrated in Fig. 6.11.
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Figure 6.9: Control acceleration described in a Local Orbit reference frame, centered at the real satellite center of

mass, for an initial error in the orbital inclination.
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Figure 6.10: Magnitude of the position and the velocity error for an initial error in the orbital inclination.
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Figure 6.11: Ground track repeatability error between the real and the reference satellite for an initial error in the

orbital inclination.

6.3 Argument of latitude injection error

To simulate the correction of an advance in the orbital position of the real satellite, an initial error of

+2 deg is set for the argument of latitude of this satellite. Thus, the Keplerian elements vector of the real

satellite is given by

Ixk0 = [6892.944 0.0014252 0 97.4401 172.993 2]T .

The controller performance is assessed for a simulation with a duration equal to 7 complete orbits

of the reference satellite (approximately 39830 s). This simulation is longer than the previous two due

to the large magnitude of the error to be corrected. In this simulation, ideal actuators and sensors are

considered, in the sense that no noise interference is simulated.

Figure 6.12 illustrates the variation of the Keplerian elements error between the real and the reference

satellite. To correct the error in the argument of latitude, the semi-major axis of the real satellite is

increased, while maintaining a near-circular orbit, to reduce the mean motion of the real satellite. This

causes a delay in the argument of latitude of the real satellite until the initial error in this parameter is

corrected. This process is very demanding with significant oscillations of all Keplerian elements due to

the complexity of the system to be controlled.
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Figure 6.12: Keplerian elements error between the real and the reference satellite for an initial error in the argument

of latitude.

Figure 6.13 illustrates the variation of the Cartesian components of the real satellite expressed in

a Local Orbit reference frame, centered at the reference satellite center of mass. This figure provides

a good perspective on the relative motion between the real and the reference satellite. The error in

the argument of latitude is mainly reflected in the tangential direction, o1. To correct this error, the real

satellite altitude is increased, as reflected on o3, in order to reduce its mean motion. This decrease in

the real satellite mean motion is reflected on vo1 , dominated by negative values, which, consequently,

correct the orbital advance of this satellite.

Figure 6.14 illustrates the control acceleration described in a Local Orbit reference frame, centered

at the real satellite center of mass. From this figure, it is noticeable a large number of variations in the

control acceleration direction when compared to Fig. 6.3. This oscillatory response occurs since a large

argument of latitude error is defined when compared to the error simulated for the semi-major axis.
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Figure 6.13: Variation of the Cartesian components of the real satellite expressed in a Local Orbit reference frame,

centered at the reference satellite center of mass, for an initial error in the argument of latitude.
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Figure 6.14: Control acceleration described in a Local Orbit reference frame, centered at the real satellite center of

mass, for an initial error in the argument of latitude.
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The position and velocity error magnitude between the real and the reference satellite, throughout the

simulation, is illustrated in Fig. 6.15. Notice the magnitude of the initial position error, which determines

the use of MPC 1. For this simulation, the transition from MPC 2 to LQR 1 occurs at a position error

magnitude of 5 km. This value is obtained using a trial-and-error methodology.
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Figure 6.15: Magnitude of the position and the velocity error for an initial error in the argument of latitude.
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Figure 6.16: Ground track repeatability error between the real and the reference satellite for an initial error in the

argument of latitude.
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The response time of the system is evaluated in the transition from LQR 1 to LQR 2. In this case, a

response time of 34679 s (approximately 6 complete orbits of the reference satellite) is obtained. Notice

that the ground track repeatability error is below 500 m when the transition from LQR 1 to LQR 2 occurs,

fulfilling the mission requirements, as illustrated in Fig. 6.16.

6.4 Combined injection error

Using a combination of errors in the Keplerian elements between the real and the reference satellite,

it is possible to define three different sets of injection errors with different magnitudes. The worst-case

scenario error, the one with the highest magnitude, is defined considering the maximum injection error

in all Keplerian elements shown in Table 6.1 and an additional error in u. The other two errors are also

characterised by a combination of errors in all Keplerian elements, but with a smaller magnitude in each

of them. These three orbital errors are defined in Table 6.2.

Table 6.2: Combined injection errors between the real and the reference satellite.

Error a ex ey i Ω u

Error a) −15 km +0.0012 0 +0.15 deg +0.2 deg +2 deg

Error b) +8 km +0.0006 0 −0.07 deg +0.1 deg +1.2 deg

Error c) +3 km −0.0002 0 −0.04 deg −0.07 deg −0.5 deg

The controller performance is assessed for a simulation with a duration equal to 7 complete orbits

of the reference satellite (approximately 39830 s). In this simulation, ideal actuators and sensors are

considered, in the sense that no noise interference is simulated.

Figure 6.17 and Fig. 6.18 illustrate, respectively, the position and the velocity error magnitude,

throughout the simulation, for each of the initial errors defined at Table 6.2. Notice that all of them

converge to zero, as intended, and that the ground track repeatability error requirement is fulfilled, as

illustrated in Fig. 6.19. The use of each of the controllers is processed as described in Table 5.7 and, in

this case, the transition from MPC 2 to LQR 1 occurs at a position error magnitude of 8 km. Therefore,

MPC 1 is only used to correct error a) and error b), whereas MPC 2, LQR 1 and LQR 2 are used for all

three errors.
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Figure 6.17: Magnitude of the position error for initial errors defined in Table 6.2.
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Figure 6.18: Magnitude of the velocity error for initial errors defined in Table 6.2.
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Figure 6.19: Ground track repeatability error for initial errors defined in Table 6.2.

Further analysis is performed for the worst case scenario injection error (error a)). Figure 6.20 il-

lustrates the variation of the Keplerian elements error between the real and the reference satellite, for

this initial error. The correction of all Keplerian elements is successfully achieved after approximately 6

complete orbits (34081 s), at the transition from LQR 1 to LQR 2. However, due to the large errors to be

corrected, this process is very demanding with significant oscillations in all Keplerian elements, mainly

in the semi-major axis and the eccentricity vector. Figure 6.21 illustrates the variation of the Cartesian

components of the real satellite, for initial error a), expressed in a Local Orbit reference frame, centered

at the reference satellite center of mass. Notice that the highest error is reflected in the o1 component

due to the argument of latitude error that causes an advance in the orbit of the real satellite.
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Figure 6.20: Keplerian elements error between the real and the reference satellite for error a). The transition between

the controller in use is marked with a dashed line.
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Figure 6.21: Variation of the Cartesian components of the real satellite expressed in a Local Orbit reference frame,

centered at the reference satellite center of mass, for error a).
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Figure 6.22 illustrates the control acceleration expressed in a Local Orbit reference frame, centered

at the real satellite center of mass. The control acceleration magnitude has a maximum limit due to the

actuators saturation. This is evident during the period of actuation of the MPC controllers given that the

orbital error is larger and a higher control acceleration is needed to correct this error. Notice the variations

in direction of each component of the control acceleration to correct the evolution of the system.
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Figure 6.22: Control acceleration expressed in a Local Orbit reference frame, centered at the real satellite center of

mass, for error a).

After reaching the steady-state, LQR 2 is used to correct the effect of the orbital perturbations and

maintain the error between the real and the reference satellite close to zero. Figure 6.23 shows the

evolution of the ground track repeatability error during 3 complete orbits of the reference satellite (ap-

proximately 17070 s), after the seventh complete orbit of this satellite. This error oscillates due to the

effect of perturbative accelerations having its maximum around 7.5 × 10−6 km. This value completely

satisfies the requirement to maintain the ground track repeatability error below 0.5 km.

To understand the behaviour of the ground track repeatability error, it is important to analyse the

evolution of the Keplerian elements error between the real and the reference satellite at the steady-

state, illustrated in Fig. 6.24. Notice that a oscillates about −7 × 10−5 km, approximately, and u about

−4 × 10−8 deg, approximately. This happens due to the effect of atmospheric drag that produces a

force in the opposite direction of the real satellite motion and causes a decrease in a and an orbital

delay, reflected on the negative value of u. The effect of the solar radiation pressure and third-body

gravitational attraction is evident on the oscillations of i about −3.35 × 10−8 deg, approximately, and Ω

about −1.3× 10−8 deg, approximately.
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Figure 6.23: Ground track repeatability error between the real and the reference satellite after reaching the steady-

state.

Figure 6.24: Keplerian elements error between the real and the reference satellite after reaching the steady-state.
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The variation of the Cartesian components of the real satellite expressed in a Local Orbit reference

frame, centered at the reference satellite center of mass, allows for another perspective on the effect of

the atmospheric drag, as illustrated in Fig. 6.25. The component o3 oscillates about −1.75 × 10−5 km

since the real satellite is orbiting at a lower altitude, and the component o1 oscillates about −0.5× 10−5

km, given that the real satellite has an orbital delay relative to the reference satellite, which correlates

with the analysis of the Keplerian elements.

Figure 6.25: Variation of the Cartesian components of the real satellite expressed in a Local Orbit reference frame,

centered at the reference satellite center of mass, after reaching the steady-state.

Figure 6.26 illustrates the control acceleration expressed in a Local Orbit reference frame, centered

at the real satellite center of mass, after reaching the steady-state. From this figure, it is possible to

conclude that most of the actuation is done in the o1 and o3 directions to counteract the effect of the

atmospheric drag. The actuation in the o2 direction is mainly directed to correct the error caused in i and

Ω, due to the effect of the other orbital perturbations.
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Figure 6.26: Control acceleration expressed in a Local Orbit reference frame, centered at the real satellite center of

mass, after reaching the steady-state.

6.5 Combined injection error with realistic sensors and actuators

Error a), defined in Section 6.4, is used to assess the controller performance in a simulation with

realistic actuators and sensors, as defined in Table 5.3 and in Table 5.4.

Figure 6.27 illustrates the evolution of the ground track repeatability error for a simulation with a

duration equal to 7 complete orbits of the reference satellite (approximately 39830 s). In this case, the

transition from MPC 2 to LQR 1 occurs at a position error magnitude of 8 km. As presented, the objective

to reduce the value of this error to less than 0.5 km is still achieved after approximately 5.5 complete

orbits (30985 s), despite using realistic sensors and actuators that induce noise in the system. Actually,

the effect of the non-idealities of the sensors and the actuators is not visible when compared to the

magnitude of the initial error, as illustrated in Fig. 6.27.

The effect of using realistic sensors and actuators becomes visible after reaching the steady-state.

Figure 6.28 shows the evolution of the ground track repeatability error during 3 complete orbits of the

reference satellite (approximately 17070 s), after the seventh complete orbit of this satellite. At this point,

the system is in steady-state and LQR 2 is controlling the system. This controller is designed to handle

the noise generated by the sensors and actuators and, at the same time, to counteract the effect of orbital

perturbations. Notice that the ground track repeatability error presents values up to 0.21 km, high above

the values illustrated in Fig. 6.23. However, these error values are well within the requirements for this

parameter (0.5 km), which confirms the effectiveness of the control strategy.
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Figure 6.27: Ground track repeatability error between the real and the reference satellite for initial error a), using

realistic sensors and actuators.
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Figure 6.28: Ground track repeatability error between the real and the reference satellite after reaching the steady-

state, using realistic sensors and actuators.
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A different perspective on the effect of using realist sensors and actuators is provided by Fig. 6.29

and by Fig. 6.30. Figure 6.29 illustrates the control acceleration expressed in a Local Orbit reference

frame, centered at the real satellite center of mass, after reaching the steady-state. The noise induced

by the realistic actuators, which preclude the maintenance of the orbital error at zero, is visible in this

figure. Figure 6.30 illustrates the evolution of the Keplerian elements error between the real and the

reference satellite after reaching the steady-state. Notice the noise effect in all Keplerian elements,

causing significant variations in the values of these parameters.
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Figure 6.29: Control acceleration expressed in a Local Orbit reference frame, centered at the real satellite center of

mass, after reaching the steady-state, using realistic sensors and actuators.
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Figure 6.30: Keplerian elements error between the real and the reference satellite after reaching the steady-state,

using realistic sensors and actuators.

74



Chapter 7

Conclusions

7.1 Achievements

The objective of this work was the design of an autonomous orbit control algorithm, capable of cor-

recting large orbit injection errors and counteract the effect of environmental perturbations to maintain the

desired orbit parameters. The TerraSAR-X mission was used as the reference mission and provided the

spacecraft characteristics and orbit requirements to evaluate the algorithm performance in correcting dif-

ferent types of orbital errors and maintaining the satellite in the required orbit location. The performance

analysis was done using an accurate orbital simulator developed in MATLAB and the results obtained

were presented and discussed in Chapter 6.

Although good results were obtained, the controller tuning was proven difficult and its performance

dependent on the initial orbital state, due to the complexity of the system and the relatively small pre-

diction window used in the design of the MPC. The computational effort required to compute the control

actions limited the dimension of the prediction window, decreasing the control performance. A strategy

to simplify the system model can be explored to reduce the computational effort and, in that way, enable

the increase of the prediction horizon.

The obtained MPC results in correcting large initial orbit errors were interesting to overcome the

limitations of the LQR related to the linearization process. Nonetheless, LQR is a computationally efficient

strategy and presented good results for orbit maintenance routines, when the orbit error is close to zero.

The AOC strategy developed in this thesis demonstrated effective results in correcting orbit injection

errors in different Keplerian elements. Initial errors in the semi-major axis and inclination were success-

fully driven to zero without significant variations on the control acceleration direction (expressed in a Local

Orbit reference frame, centered at the satellite center of mass). However, the correction of the initial error

in the argument of latitude led to an oscillatory response of the system before reaching the steady-state.

Note that, the argument of latitude error defined is very large when compared to the error simulated for

other Keplerian elements. Therefore, the response time for the correction of the argument of latitude

error is not near to the prediction time of the MPC. It is expected that a larger prediction horizon will sig-

nificantly improve the results obtained, at the cost of increased computational effort. Nevertheless, the
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TerraSAR-X mission requirements were fulfilled even in the worst-case scenario, when a combination of

maximum injection error in all Keplerian elements was used as the initial state.

The AOC algorithm demonstrated good performance for orbit maintenance activities. The controller

was capable of counteracting the effect of orbital perturbations, maintaining the orbital error close to zero.

Environmental perturbations cause the error to oscillate about a negligible value when compared to the

mission requirements. The use of realistic sensors and actuators, which introduced noise in the system,

did not impact the initial convergence of the proposed algorithm. In the steady-state, the impact of these

non-idealities is more evident and caused the ground track repeatability error to present values up to

0.21 km, widely above the values for a situation of ideal sensors and actuators, but still well within the

requirements defined for the TerraSAR-X mission.

The use of electric propulsion was proven effective for orbit maintenance activities. However, the

correction of large initial errors required the use of multiple thrusters to achieve sufficient actuation force

to correct the orbit of TerraSAR-X, due to its relatively high mass. Future improvements on the electric

propulsion topic might overcome this problem with the development of more powerful thrusters. Though,

this strategy is interesting and should be explored to control the orbit of smaller satellites. The con-

trol strategy based on electric propulsion developed in this thesis should be tested against a chemical

propulsion solution to assess the efficiency in terms of propellant and energy costs.

To summarise, the AOC strategy was proven to be effective in achieving the objectives proposed for

this thesis. Nevertheless, further improvements to the proposed strategy can increase the performance

of the controller and refine the results.

7.2 Future Work

Further steps can be taken in order to improve the control strategy. The design of an MPC to correct

orbit errors close to zero and perform orbit maintenance activities should be explored and its performance

compared with the LQR solution, considering energy and propellant costs. The optimisation of the MPC

controller should also be pursued in order to reduce the computational effort required, allowing the use

of a larger prediction time window.

Future work should also compare the use of chemical propulsion with the one proposed in this thesis,

which is based on electrical propulsion, taking into consideration convergence time and propellant and

energy costs. Moreover, a solution that combines the two types of propulsion mentioned should not be

discarded. For instance, an autonomous control strategy that uses chemical thrusters to correct large

injection errors and electric thrusters for orbit maintenance activities could be an interesting solution

to overcome the lack of thrust provided by the electric systems. This strategy still offers the efficiency

associated with electric propulsion systems when working close to the desired orbit, at the cost of the

additional complexity of having two propulsion systems on-board.

The performance of the developed AOC algorithm should also be evaluated for a smaller satellite. In

this case, the required thrust to perform orbit correction activities is smaller and, therefore, the electric

propulsion is best suited.
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