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Abstract

Facial recognition is one of the most popular technologies nowadays, constituting the first security
barrier for devices like smartphones and tablets. This, in turn, makes facial recognition systems vulnera-
ble to attacks with one of the most notorious being face presentation attacks. Face presentation attacks
are an emerging threat and therefore have become more complex and unpredictable, through the years.
The challenge of detecting face presentation attacks has led to the appearance of solutions based on
liveness detection, facial appearance, contextual information, and more recently, solutions based on deep
learning techniques. Within the deep learning field, one topic that has been explored to recognize such
attacks is the domain generalization topic. This work focuses on a solution that incorporates this topic.
The adopted approach improves on an existing solution, taken as baseline, that trains a model with face
presentation attacks seen in different conditions, to be able to generalize to other acquisition conditions.
The present work proposes a source domain reorganization to enhance the generalized feature space,
together with a modified triplet loss function that is more suitable for the proposed domain reorganiza-
tion. The experiments were conducted on four public datasets. The solution proposed includes domain
reorganization and a more suitable triplet loss function, achieving on-pair performance when tested with
REPLAY-ATTACK dataset and outperforming the baseline architecture in the CASIA and MSU datasets.
Future work includes complementing the proposed solution with a liveness detection algorithm, and a
solution for addressing previously unseen attacks.
Keywords: Face presentation attack detection, domain generalization, multiple source domains,
triplet loss, remote photoplethysmography

1. Introduction
This section presents the problem’s motivation, re-
lated work and the contributions of the proposed
work.

1.1. Motivation
Facial recognition systems rely on the uniqueness
of a person’s facial features to recognize an indi-
vidual. Without the burden of having to memorize a
password or carrying a card, focusing on an intrin-
sic biometric property of an individual (the person’s
face), provides a solution of improved security.

With the widespread usage of cameras and we-
bcams in recent years, accompanied by the con-
stant need to have users confidentiality preserved,
utilizing face biometric data as an access key, has
opened new application areas. The widespread
use of face recognition systems makes them a tar-
get for attacks, notably to allow an attacker to im-
personate a genuine user. A presentation attack
(PA), also known as a spoofing attack, that for ex-
ample, can be as simple as presenting to the sys-

tem a non-living spoof, or a disguise, known as
presentation attack instruments (PAI), to look like
someone else, or to hide a person’s own identity.

There is a range of possible PAs, including:
printed photos, videos and photos displayed on the
screen of portable devices, face masks, make-up
and, in extreme scenarios, plastic surgery.

In order to mitigate the consequences of pre-
sentation attacks, finding effective ways to fight im-
postor attempts to spoof biometric systems are be-
coming urgent. By detecting the presence of a liv-
ing body, any type of objects with the goal of scam-
ming the system will be detected and consequently
the access to the impostor will be denied.

1.2. Related work
PAD technology. Presentation attack detection
(PAD) methods can be categorized as follows:

• Liveness detection - The main goal of liveness
detection methods is to identify physiological
signs of life. These proofs of liveness can
be provided by an interaction with the user,
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requiring his cooperation or not (voluntary or
involuntary, respectively), which in this case
head movement detection [16, 2], blink de-
tection [31], challenge-response [1, 30] have
been proposed, and/or using techniques such
as remote photoplethysmography (rPPG) to
detect the presence of a heart rate [22, 27].

• Facial appearance - Methods that use image
properties to detect PAs. In some cases these
methods can take in account temporal infor-
mation, for instance to detect video replay at-
tacks, or they may be designed to work on indi-
vidual images. This type of methods includes
frequency techniques [21, 23, 32, 4, 9], tex-
ture analysis based methods [26, 20, 5], im-
age quality assessment (IQA) [12, 13, 33] and
motion based methods [17, 28].

• Contextual information - Methods exploring
background information to detect PAs. In
some attacks, it is possible to observe suspect
content when looking away from the facial re-
gion, for example when the impostor presents
a printed photo or a display in front of the cam-
era. In these types of methods, contextual
scenic cues can contribute with valuable infor-
mation about the possibility of a PA [18, 19].

To address the diversity of PAs to which a bio-
metric recognition system can be subjected to,
multi-modal systems (combining different biometric
cues) have been proposed as a promising solution
to this problem [24, 10].

Zero-shot learning. The appearance of sam-
ples from unseen classes is a continuous problem
in the PAD context, since the variety of PAs carried
out by attackers is immense and constantly evolv-
ing. To overcome this issue, zero-shot learning
(ZSL) appeared as a solution to PAD by learning
generalized and discriminative features from a set
of known PAs for unseen novel PAs [25]. Collect-
ing labeled data for every new attack is impossible,
so ZSL tries to be able of detecting novelty attack
types, while not having samples from these attacks
on the training set.

Domain generalization. Domain generaliza-
tion makes the assumption that a generalized fea-
ture space exists that the multiple source domains
and the unseen target domain have in common,
which enables generalization capability to unseen
domains [29, 15]. In contrast to ZSL, domain gen-
eralization focuses on the PAD problem by having
training and testing data with the same types of at-
tacks but obtained in different conditions (PAI, il-
lumination, background, devices,...), which trans-
lates to having training and test data from the same
classes but with different distributions.

1.3. Contributions
The work basis was a domain generalization solu-
tion, that from a set of domains sharing different
facial image acquisition conditions, and using the
auxiliary cues obtained from a triplet loss function
and a depth estimator, tries to learn a shared fea-
ture space able to distinguish real and fake faces.
In an attempt to make this solution more robust
and provide better classification results when be-
ing tested, a set of innovative contributions was
implemented, and additional ideas to be pursued
in future research are proposed:

• Domain reorganization – This pro-
posal consists in a reorganization of the
datasets/domains used for training the sys-
tem, using an attack-oriented organization,
to extract more reliable generalization cues
relying on the characteristics shared between
PA types.

• Triplet loss function modification – This
proposal consists in a modification of the
baseline triplet loss function, to better learn
how to separate the different attacks types in
the feature space, while clustering real faces
closer together.

• Incorporation of rPPG – This is a proposal
for further work, as the conducted tests still
need to be extended. It consists in combining
the baseline solution with a different strategy,
able to detect the heart rate pulse from facial
images. It is therefore the proposal for a mul-
tiple cue approach, to achieve a more robust
PAD solution, able to improve classification re-
sults.

2. Domain generalization baseline
This section introduces the method that inspired
the work developed, entitled ”Multi-adversarial Dis-
criminative Deep Domain Generalization for Face
Presentation Attack Detection” [29].

2.1. Baseline architecture
The baseline method,presented in [29] had the ob-
jective of learning a generalized feature space, ca-
pable of identifying PAs obtained in conditions that
are different from the ones observed during train-
ing. This method is composed by three main com-
ponents: (i) multi-adversarial domain generaliza-
tion, (ii) triplet loss function, and (iii) depth esti-
mation. The general architecture of this solution
is presented in Figure 1.

2.2. Multi-adversarial domain generalization
The multi-adversarial domain generalization (pre-
sented with more detail in Figure 2) is divided into
two steps: (i) pre-training the feature extractors
(M 1,M 2,M 3 in Figure 2) one for each domain;
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Figure 1: Multi-adversarial deep domain generalization for face
PAD: Architecture [29]

(ii) train one feature generator to compete with all
the domain discriminators at the same time. The
first step obtains a set of discriminative feature
spaces, one from each dataset (or domain, in the
original paper’s terminology), that are biased to-
wards the dataset that originated it, making it un-
suitable for generalization to attacks obtained in
different conditions. With that in mind, the multi-
adversarial implementation tries to create a com-
mon feature space, that is sufficiently generic to
represent the cases seen in all the the consid-
ered source datasets, thus creating a generalized
feature space. Using a GAN the generator (de-
noted as G in Figure 2) tries to learn a general-
ized feature space capable of simultaneously fool-
ing the various domain discriminators (denoted as
D 1, D 2 and D 3 in Figure 2), while each domain
discriminator tries to distinguish between the gen-
eralized feature space and the respective discrimi-
native feature space.

Figure 2: Detailed architecture of multi-adversarial domain
generalization [29]

2.3. Triplet loss function
The triplet loss principle can be interpreted with the
help of Figure 3. Before applying the triplet-mining
constraint, one can assume that presentation at-
tacks and bonafide faces from the same individ-
uals share similar characteristics, while PAs and

bonafide faces from different individuals have dif-
ferent facial characteristics. To address this issue,
a triplet loss based constraint

LTriplet(X,Y ;G,E) =

=
∑
a,p,n

∀ya=yp 6=yn,i=j

[‖E(G(xai ))− E(G(xpj ))‖
2
2−

− ‖E(G(xai ))− E(G(xnj ))‖22 + α1]+

+ γ
∑
a,p,n

∀ya=yp 6=yn,i6=j

[‖E(G(xai ))− E(G(xpk))‖
2
2−

− ‖E(G(xai ))− E(G(xnk ))‖22 + α2] (1)

is designed to: (i) reduce the distance (in the fea-
ture space) of each subject sample to its intra-
domain positive samples (same dataset) in com-
parison to the distance to its intra-domain nega-
tive samples; and (ii) reduce the distance of each
subject sample to its inter-domain positive samples
(different dataset) in comparison to the distance to
its inter-domain negative samples.

Figure 3: Dual-force triplet-mining constraint objective [29]

2.4. Depth estimation
Depth estimation relies on the fact that bonafide
faces have depth, while several types of presenta-
tion attacks, like photo attacks or video replay at-
tacks, are presented using planar surfaces. The
depth information is exploited by measuring the dif-
ference between the depth estimated from the out-
put of the feature generator and the ground truth
depth. A example of a ground-truth sample is in
Figure 4. This information is incorporated since
it is possible that the computation of depth infor-
mation for a given dataset/domain is biased, being
included in the learning process to exploit differen-
tiation cues in the generalized feature space.

3. Methodology
The modifications to the baseline method are ex-
plained in this section.
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Figure 4: Example of depth estimation using the PRNet
software[11]

Table 1: Table with the organization of the domains for each
training case

Training Domain 1 samples Domain 2 samples Domain 3 samples Testing

MSU
REPLAY ATTACK
OULU

Real(all)
Print attack(all)

Real(all)
Replay attack
(all samples from REPLAY-ATTACK and OULU;
phone as PAI, from MSU)

Real(all)
Replay attack
(tablet as PAI, from MSU only)

CASIA

MSU
OULU
CASIA

Real(all)
Print attack
(all from MSU and OULU;
warped/flat only, from CASIA)

Real(all)
Replay attack(all)

Real(all)
Eye-cut print attack
(all from CASIA)

REPLAY
ATTACK

Real(all)
Print attack(all)

Real(all)
Replay attack
(all samples from CASIA and OULU;
using phone as PAI, from MSU)

Real(all)
Replay attack
(tablet as PAI, from MSU only)

MSU
REPLAY ATTACK
CASIA

Real(all)
Print attack
(all from MSU and OULU;
warped/flat only from CASIA)

Real(all)
Replay attack(all)

Real(all)
Eye-cut print attack
(all from CASIA) OULU

Real(all)
Print attack(all)

Real(all)
Replay attack
(all from CASIA and REPLAY;
using phone as PAI, from MSU)

Real(all)
Replay attack
(tablet as PAI;
from MSU only)

REPLAY ATTACK
OULU
CASIA

Real(all)
Print attack
(all from REPLAY and OULU;
warped/flat only, from CASIA)

Real(all)
Replay attack (all)

Real(all)
Eye-cut print attack
(all from CASIA)

MSU

3.1. Proposal 1: Modifying the domain generaliza-
tion procedure

As mentioned before, the organization of the data
into domains plays a crucial role on learning a gen-
eralized model and therefore also on the discrimi-
native power of the obtained features.

In the baseline solution, each dataset is allo-
cated to a domain, representing a set of conditions
shared by the images of that dataset. In this pro-
posal, depending on the datasets used for training,
an alternative domain constitution is proposed, us-
ing the type of PA as criteria for grouping the avail-
able data into the relevant domains.

Among the available datasets, for IDIAP
REPLAY-ATTACK and OULU datasets the avail-
able PA types were organized into: (i) print, and
(ii) replay attacks. For the remaining datasets used
for training, notably CASIA and MSU, the division
is more elaborated. CASIA is organized into: (i)
flat/warped prints, (ii) eye-cut prints, and (iii) replay
attacks. On the other hand, for MSU the attacks
are organized as: (i) print attacks, (ii) replay attacks
on phones and (iii) replay attacks on tablets. Each
domain will have samples from bonafide and one
type of PA extracted from all the databases consid-
ered for training. The training cases are in Table
1.

The default dataset division, to organize source
domains for training, requires separating genuine,
print and replay attacks. Since the considered ar-
chitecture considers three source domains, when
CASIA and MSU are both used for training, only
one of them can be divided as supposed, as the
CASIA dataset print attack samples are separated
into eye-cut print attacks and attacks using flat and

warped paper. For the MSU dataset, replay at-
tacks can be separated into attacks obtained with
tablets and phones. To able to consider the above
divisions of the CASIA and MSU datasets, the ar-
chitecture would need to consider more than three
source domains. Therefore, when testing with the
OULU and REPLAY-ATTACK datasets there are
two possibilities: (i) dividing CASIA print attacks
(flat/warped & cut) while for MSU all replay attacks
are considered as a single type of attack; (ii) divid-
ing MSU replay attacks according to the PAI used
(tablet and phone) while for the CASIA dataset all
print attacks are considered together.

With this arrangement, the focus of the model
is to identify discriminative features based on the
characteristics shared by each type of attack, what-
ever the acquisition conditions, rather than focus-
ing on the specific conditions found within each
dataset, as considered by the baseline architec-
ture. The domain organization considered by this
proposal is illustrated in 5.

Figure 5: Baseline organization and the modifications that led
to proposal 1

3.2. Proposal 2: Modifying the domain generaliza-
tion procedure and the triplet loss function

The second proposal made in this dissertation is
to consider an additional modification on top of
what was proposed in 3.1. It consist in modifying
the triplet loss function, still with the goal to min-
imize intra-class distance while maximizing inter-
class distance in both intra and cross domains, but
now considering a function that is more in line with
the new organization of the training data into do-
mains (which no longer include samples from a
single dataset). Since, the proposed modification
regarding source domain organization focuses on
separating domains by PA attack types, the mod-
ified triplet loss function follows the same logic.
Therefore, the triplet loss function should minimize
intra-class distance while maximizing inter-class
distance, resulting in a separation of the differ-
ent PA and the aggregation of real samples. The
implementation of this solution follows the same
steps of 3.1 with the exception of the triplet loss
function, which instead of Equation 1, now uses
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Equation 2, removing the cross-domain term:

LTriplet(X,Y ;G,E) =∑
a,p,n

∀ya=yp 6=yn,i=j

‖E(G(xai ))− E(G(xpj ))‖
2
2−

− ‖E(G(xai ))− E(G(xnj ))‖22 + α1 (2)

3.3. Proposal 3: Adding Remote Photoplethysmog-
raphy

In this proposal, the focus is not on the domain
generalization capacity of the solution, but instead
in considering an additional cue, rPPG, to improve
the classification results. Therefore, including the
rPPG module doesn’t aim at improving the domain
generalization capability, but rather to enhance the
overall classification performance of resulting sys-
tem.

The system proposed here consists of combin-
ing the baseline architecture, or one of the modi-
fied proposals presented in the previous sections,
with an rPPG module. A possible architecture for
the resulting system is proposed in 6.

Figure 6: Proposal 3 modification: Classification fusion of
baseline and rPPG classifications

To use rPPG methods that estimate the heart
rate for PAD, two additional steps are considered in
Figure 7: (i) gathering a feature vector with statis-
tical information of the heart rate estimation along
the video duration (blocks highlighted in green in
the figure); and (ii) applying a classifier, such as
SVM, to obtain a spoof/real score (blocks with
white background in the figure).

4. Experimental results and discussion
In this section, the experimental setup and
datasets used to obtain the experimental results
are presented. Next, the results for the baseline
and each proposal are reported.

Figure 7: rPPG component: Step-by-step design of proposal
three, with green blocks representing the steps to estimate
heart rate and white blocks the steps for the classification task

4.1. Experimental setup and datasets
To be able to obtain experimental results, the
images of four datasets will be needed in the
two phases comprising the experimental process:
training and testing. Three datasets have their ex-
amples exclusively distributed across the source
domains to perform training and the examples of
the remaining dataset are used for testing. Each of
the three datasets used for training contributes with
all their samples and, in the testing phase, classi-
fication is performed using all the samples of the
test dataset. The distribution of samples consid-
ered for training the baseline and the proposed so-
lutions were presented.

The training environment used was Google Co-
laboratory [14]. This environment offers free ac-
cess to GPU (indispensable to run any deep neu-
ral network) but with usage limitation, which led to
the training of the baseline and of the proposed so-
lutions to need some adjustments, notably: (i) de-
crease the batch size; and (ii) limit the maximum
number of epochs when training a model. The orig-
inal implementation of the baseline solution used
a batch size of 20 per domain [29], while for the
re-implemented version and for implementation of
the modification proposals a batch size of 3 had to
be considered. The size of the datasets used for
training, which was different for the various evalu-
ation scenarios considered, had a direct impact on
the number of epochs completed due to usage lim-
itations, culminating in different values across the
various scenarios.

Before proceeding to the training phase, two
more conditions need to be defined: (i) the op-
timizer needs to be chosen and configured, and
(ii) the hyperparameters of the triplet loss function
need to be set.

The optimizer used was Adam. The learning
rates for the two phases of training are: 10−5 for
the first phase, which consists in training the gen-
erator, embedder, classifier and discriminators to-
gether, and the second phase where the genera-
tor and depth estimator are trained simultaneously
with learning rate 10−4. β1 and β2 are equal to
0.9 and 0.999, respectively. ε maintains the default
value of 10−8.

Thus, the hyperparameters γ, α1, and α2, in-
volved in the triplet loss function defined in 1, are
set to 0.1, 0.1, and 0.5, respectively. These val-
ues were reported in the original article as the
ones used on the main solution and therefore, were
adopted for all the experimental cases.

In the testing phase, given a certain sample,
the classifier outputs a score corresponding to the
probability of that sample being genuine. This
means that higher scores correspond to higher
probabilities of the input image coming from a real
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Table 2: Summary: Datasets
Name Year Subjects PA type(s) Genuine & PAs samples

CASIA-FASD 2012 50 Print(flat,warped,cut);
Replay(tablet) 150/450

REPLAY-ATTACK 2012 50 Print(flat);
Replay(tablet, phone) 200/1000

MSU-MFSD 2015 35 Print(flat);
Replay(tablet, phone) 70/210

OULU-NPU 2017 55 Print(flat);
Replay(phone) 1980/3960

face, while lower score values reflect a higher prob-
ability of being a PA.

The established threshold to refer to a sample as
a FN, FP, TN or TP is 50%. A sample is presumed
as an attack (N - negative) if it’s classification score
is below 50%, and presumed as genuine (P- pos-
itive) otherwise. Then, depending on whether the
sample label obtained from the classification score
matches the ground-truth label or not, it is called
true (T) or false (F).

Regarding performance evaluation, the two met-
rics AUC and HTER are adopted; these metrics,
complemented by the classification score, allow
comparing performance of the various proposals.
It is also possible to compare against the origi-
nal implementation of the baseline, as the paper
proposing the baseline architecture [29] uses the
same metrics.

The four public face-antispoofing datasets used
to perform training and testing were CASIA-FASD
[34], REPLAY-ATTACK [7], MSU-MFSD [33] and
OULU-NPU [6]. These datasets are summarized
in Table 2.

4.2. Baseline architecture results
The obtained results correspond to exactly the
same solution, but they are very different. Compar-
ing these results it is possible to observe that the
re-implemented version performed a lot worse for
most of the domains/datasets combinations con-
sidered. Only for the condition where the tests
were performed on the MSU dataset we can ob-
serve somewhat similar results. These differences
can be explained due to the different amount of re-
sources available for training the model that were
available for the present work, which impacted the
maximum value of the batch size and the limits for
memory usage. As such, the difference between
both sets of results reflects the insufficient train-
ing in the re-implemented model, which, in most
cases, is still far from a convergence situation, pre-
venting to achieve a smaller gap between the two
implementations as would be expected.

4.3. Proposal 1 results
Comparing to the baseline, the results obtained
were satisfactory, with the tests performed on the
CASIA and REPLAY-ATTACK datasets showing
some improvements in AUC. In Figure 8 are some
genuine examples of CASIA samples that achieve

Table 3: Baseline results: comparison between the results re-
ported in [29] (original) and those obtained with the available
computational resources reported on 4.1 (re-implemented)

Original Re-implemented
Training Testing AUC(%) HTER(%) AUC(%) HTER(%)
OULU
MSU
REPLAY-ATTACK

CASIA 84.51 24.50 66.13 39.49

CASIA
OULU
REPLAY-ATTACK

MSU 88.06 17.69 84.72 22.62

CASIA
MSU
REPLAY-ATTACK

OULU 80.02 27.98 59.30 43.01

OULU
CASIA
MSU

REPLAY 84.99 22.19 61.79 37.55

better scores with proposal 1 and in Figure 9 the
comparison, regarding bonafide samples classifi-
cation, between training divisions is visualized, in
which CASIA division shows better results. On the
contrary, the results were not as good with MSU
dataset and were poor when testing with the OULU
dataset, presenting no improvements in the two
metrics.

Figure 8: Baseline vs proposal 1: comparing bonafide samples
classification in CASIA dataset

Figure 9: Proposal 1 using CASIA division vs proposal 1 us-
ing MSU division: comparing bonafide samples classification
on REPLAY-ATTACK dataset

4.4. Proposal 2 results
The results obtained for proposal two, that consists
in adding to the modification of the previous pro-
posal also a changed triplet loss function, were sat-
isfying in testing with CASIA and MSU datasets,
showing improvements in both AUC and HTER
metrics. The improvements introduced by this pro-
posal compared to the other implementations are
in Figure 10 regarding the MSU dataset, and in
Figure 11 improvements compared to the baseline
when it came to testing with CASIA dataset. The
testing case with OULU dataset, does not achieve
an improvement compared to the baseline, but
some of the results are very similar. Testing with
the REPLAY-ATTACK dataset provides either simi-
lar or better results in comparison with the baseline
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solution. In Figure 12 are some REPLAY-ATTACK
genuine samples that were better classified in pro-
posal 2 than in proposal 1.

Figure 10: Proposal 2: improvements presented by proposal 2
on print attack classification on MSU dataset

5. Proposal 3 results
The objective of this proposal was to enhance the
classification scores, by complementing the do-
main generalization solution with a different ap-
proach, capable of exploring another type of cue,
in this case liveness detection, that will hopefully
lead to better PA/bonafide classification.

For this purpose, reliably detecting the heart
rate, measured in beats per minute (BPM), for
bonafide samples is crucial. For instance, it is
known that for an adult the resting heart rate is ex-
pected to be between 60 and 100 BPM. And, ide-
ally, no heart rate should be detected for a PA sam-
ple. The solutions used to obtain the average BPM
value for a given sample, comprehend the steps
highlighted in green in Figure 7. The pyVHR[3] so-
lution relies on a set of rPPG algorithms to estimate
the heart rate, while the PythonVideoPulserateV2
solution[8] uses a chrominance-based method, fo-
cused on improved motion robustness.

With pyVHR it is possible to try a variety of al-
gorithms, and in the context of the present work
the goal was to check if any of them adapted well
to the datasets used, providing useful information
to differentiate between bonafide and PAs, through
the BPM heart rate estimation provided. Some ex-
amples, with the respective BPM value predictions,
are presented in Figure 13 and in Figure 14.

6. Discussion
The overall results are summarized in 4.

Proposal 1 achieved better AUC score when
testing with CASIA and REPLAY-ATTACK, but not
with MSU and OULU. As for HTER, the proposal

Figure 11: Baseline vs proposal 2: Low and medium attack
samples classification comparison in CASIA dataset

Figure 12: Proposal 1 vs proposal 2: Comparison between
proposals 1 and 2 (using CASIA attack division in training) re-
garding bonafide samples of REPLAY-ATTACK dataset

Figure 13: pyVHR[3]: Results on bonafide samples

showed no improvements, being only capable of
matching the HTER of the baseline architecture
with MSU testing.

With proposal 2, the AUC score was supe-
rior in CASIA, MSU and in one of the cases of
REPLAY-ATTACK, while achieving results similar to
the baseline in most of the remaining cases. With
this proposal some improvements were also ob-
served in terms of HTER, having CASIA and MSU
achieved a better result.

In proposal 3, looking at the results, the choice
for the best fitting algorithm is not obvious and
most importantly, it seems that none of the algo-
rithms was able to do a satisfying job regarding
heart rate prediction with a large sample of im-
ages from the considered datasets. For bonafide
samples, for example, not only the BPM values are
sometimes very imprecise, but also, the value vari-
ations for different portions of the same video are
in some cases very pronounced, which does not
correspond to the real situation. The PAs, overall,
present a behavior more in line with what was ex-
pected - values outside the 60-100 BPM range and
with absurd variations. Since is not possible to do
a good distinction between the two types of sam-
ples, this technique cannot be readily adopted for
the desired purpose of detecting PA.

Figure 14: pyVHR[3]: Results on PA samples
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Table 4: Experimental results summary: (1) CASIA print at-
tack division (flat/warped & cut); (2) MSU replay attack division
(tablet & phone) and in bold the best AUC and HTER for each
testing case

Testing Baseline Proposal 1 Proposal 2

CASIA AUC: 66.13 %
HTER: 39.49 %

AUC: 69.08 %
HTER: 39.71 %

AUC: 69.11 %
HTER: 35.29 %

MSU AUC: 84.72 %
HTER: 22.62 %

AUC: 81.06 %
HTER: 22.62 %

AUC: 87.02 %
HTER: 21.90 %

OULU AUC: 59.30 %
HTER: 43.01 %

AUC: 47.12 %
HTER: 51.82 %
(1)

AUC: 48.28 %
HTER: 52.05 %
(1)

AUC: 49.28 %
HTER: 51.00 %
(2)

AUC: 57.56 %
HTER: 43.31 %
(2)

REPLAY-ATTACK AUC: 61.79 %
HTER: 37.55 %

AUC: 62.64 %
HTER: 40.35 %
(1)

AUC: 67.79 %
HTER: 38.10 %
(1)

AUC: 65.47 %
HTER: 39.80 %
(2)

AUC: 60.75 %
HTER: 39.70 %
(2)

7. Conclusions and future work
In this section, the conclusions are drawn and fu-
ture work is discussed.

7.1. Conclusions
With the goal of improving generalization in PAD,
using as baseline a recently published solution
[29], this work introduced a group of proposals,
in an attempt to collect better generalization cues.
The proposals made target two fundamental el-
ements of the solution: the source domain or-
ganization considered for training the model, and
the triplet loss function used to improve the sys-
tem classification performance. A third proposal
was considered, relying in the incorporation of an
heart rate estimation technique, based on rPPG,
which was expected to help improve the classifica-
tion results for cases where the domain general-
ization would present some limitations. However,
the tested rPPG implementations did not perform
on the videos available from the databases used in
this work.

Proposal two, including both contributions listed
above, has achieved interesting results. Of the
four tested cases, with different combinations of
the datasets used for training and for testing, the
proposed solution has achieved better results than
the baseline in two of those cases (testing with the
CASIA and with the MSU datasets). For the other
two cases, each including two sub-cases, the re-
sults with the OULU dataset were inferior or sim-
ilar to the baseline, while tests with the Replay-
Attack dataset have shown similar or better results
than the baseline. In general, this proposal was
able to contribute with promising results, since in
most testing cases the metric results are better,
and those that are not, are very similar to the base-
line.

The improvements observed when compared to
the baseline suggest that the proposed modifica-
tions are of interest to improve PAD domain gener-

Figure 15: Proposal for the fusion of ZSL with DG

alization. Therefore, it would be desirable to repeat
the same tests using a more powerful computa-
tional platform, notably including a machine with an
appropriate GPU, capable of handling bigger batch
sizes.

7.2. Future work
Regarding future directions of work, the most cru-
cial task would be experimenting the proposals on
a machine capable of providing the best resources
possible to run the modifications proposed in this
work, and the consecutive comparison with the
original results of [29]. Adding to this, since the
proposal to modify the triplet loss function took in-
spiration in [15] and happened to deliver promising
results, it would be interesting to compare results
with that work. Three additional research direc-
tions are briefly discussed in the following.

Fusion strategy with zero-shot learning
The goal of ZSL is to learn from known attack

classes to build a model that will be able to also
classify samples belonging to previously unseen
attack classes, i.e., to classes that were not rep-
resented in the training set.

Having a face PAD solution capable of having a
good generalization capacity, to different acquisi-
tion conditions, and also respond well to unseen
attacks, could lead to a robust and trustworthy face
PAD approach.

A proposal for combining the two concepts into
one solution uses a fusion approach, as illustrated
in Figure 15. The proposed architecture applies
separately the domain generalization and the ZSL
solutions, each trying to solve the task at hand in-
dividually, and then combines the achieved results
to obtain a final decision.

The biggest challenge in an architecture using
two solutions focusing on such different problems
would be ”balancing” the scores outputted by both
solutions during testing, since there is no obvi-
ous way of telling that a unseen class type sample
is not fitted for the domain generalization solution
and/or a seen sample with adverse conditions is
not fitted for the ZSL one.

This topic deserves a lot more research and dis-
cussion, not only because domain generalization
and ZSL are fairly new concepts that have been
recently explored in the face PAD scenario, but
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also because to the author of this dissertation best
knowledge, the possibility of combining these two
solutions has not been discussed in PAD literature
yet.

Adding another source domain
In [29] the domain generalization was also eval-

uated considering only two source domains, each
one represented by a different database. The re-
sults of this experiment were worse when com-
pared to the baseline setting, using three domains,
suggesting that having more source domains avail-
able, it would possible to learn more generalized
cues. This opens the possibility of, with ideal train-
ing conditions and suitable hardware, adding an-
other domain to be used during the training stage,
and check if more differentiation and generalization
cues can effectively be captured.

Designing a rPPG solution
In 3.3 the main issue that prevented the ex-

traction of experimental results, was the incapac-
ity of the algorithm responsible of estimating reli-
able heart rates from the video samples available
in the used datasets. A huge contribution to this
failure, was the usage of methods that were de-
veloped with health monitoring as the target appli-
cation, and not PAD, therefore always expecting to
find real faces as input and not PAIs.

One possible way to overcome this issue can be
by developing a deep learning-based heart rate es-
timation solution, able to differentiate real and fake
samples during training. However, this idea comes
with challenges of its own, like for example, find-
ing databases that provide ground truth heart rate
measurements to perform training. Also, it is not
guaranteed that this solution will have no problems
in adapting to typical PAD databases.
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