
Traceless Execution Support for Privacy Enhancing Technologies
(extended abstract of the MSc dissertation)

Daniela Gorjão Lopes
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Nuno Santos

Abstract—This work studies how existing privacy enhancing
technologies (PETs) can be contained to withstand attacks
where the adversary has full access to a device’s persistent state.
For this, we aim to create a steganographic file system that
provides the stored data with plausible deniability, a property
that allows users to deny the existence of hidden data in their
device. This way, users living under repressive regimes can use
PETs without fear of reprisals. We implemented a prototype of
Calypso, a system that provides support for the installation and
execution of PETs on a “shadow partition”, an anti-forensic
storage space that “parasites” the free blocks of the disk to
conceal sensitive data in a plausibly deniable fashion. This is
done by preserving the initial entropy characteristics of the
free blocks, creating an opportunity for the usage of forensic
deniable footprints to justify changes in the disk.

I. INTRODUCTION

Nowadays, Internet users face an increasing deterioration
of the privacy and freedom of speech. This situation is
worsened by the rise of censorship and repressive regimes.
To preserve the right for users to freely access and publish
content, several privacy enhancing technologies have been
developed, which are commonly referred to as PETs. These
applications target several use cases, such as circumventing
censorship or preserving user anonymity.

Despite the wide availability of PETs, existing software
still imposes several drawbacks on its users. Many tools tend
to: i) be hard to use by less technical users [1]; ii) require a
considering amount of computation and storage resources
in the local machine; and iii) require maintaining non-
trivial configuration meta-data and cryptographic artifacts,
such as keys. This means a user with little knowledge or
computational power might not be able to properly take
advantage of these tools, or choose not to use them if
faced with circumstances that pose a threat to their life.
To make matters worse, these tools may leave an extensive
footprint on the machine, making them inappropriate for
someone who may have the device periodically inspected,
such as when crossing border controls in countries controlled
by repressive regimes. Some of these countries do not
make censorship-related laws explicit, which makes people
insecure about which actions can lead to legal punishment.

Several existing approaches allow users to evade this kind
of forensic analysis, e.g., steganographic file systems [2],
[3]. However, these techniques cannot fully hide the anti-
forensic system itself and are not designed to emulate

the data entropy levels that would reflect the state of a
disk before the execution of a PET tool. Consequently,
they would make users vulnerable to disk entropy analysis
techniques. For instance, if all the unallocated disk space
is used up for storing the encrypted data and meta-data of
an anti-forensic file system, a disk forensic analysis would
immediately reveal an unusual presence of high-entropy
disk blocks. Alternatively, some solutions can preserve the
entropy levels [4], [3], but require additional hardware for
file system isolation and security.

This paper presents Calypso, a system that supports the
traceless execution of PETS through the abstraction of a
shadow drive that uses free disk blocks to support con-
cealing a steganographic file system. This way, users can
store sensitive data and execute programs deniably, allowing
private sessions with persistent state, while maintaining their
functionality and performance. To achieve this, it explores
techniques to map and encode blocks while hooking the
native I/O request processing to trick the native file system
into hiding data in its free blocks. This produces changes
in the disk. Making these changes non-observable entails
determining the best way to encode the data and in which
blocks is it safe to make the necessary changes, while
accounting that the storage capacity of the shadow partition
is limited. Additionally, only the rightful user should be able
to retrieve the encoded data correctly, so we need to resort
to the usage of cryptographic primitives.

II. RELATED WORK

Numerous anti-forensic solutions have been proposed to
mitigate the digital traces left by software execution. Some
systems focus on enhancing the privacy of program execu-
tion by isolating processes and concealing their data from the
rest of the system. Lacuna [5] creates ephemeral channels
to avoid data leakage in communications with peripheral
devices and runs private sessions inside a VM with an
adapted kernel to protect applications that require many
executables to communicate through Inter-Process Commu-
nication (IPC) like most recent web browsers. CleanOS [6]
targets privacy loss in mobile devices in case the device
gets lost or stolen. It features an Android OS that manages
sensitive data rigorously with the use of trusted cloud-based
services to evict unnecessary data from RAM and persistent
storage, data that was otherwise hoarded by the application.

1

RAM
disk

Union file system

Isolated execution environment

Native file
system

Read-onlyRead-write

System
resources
I/O

CPU

RAM

System
procs

Figure 1: Residue-free computing architecture.

PrivExe [7] creates an OS service that provides a key
to groups of processes that wish to execute privately. This
key is used to encrypt all writes to the file system, as
well as processes’ memory pages written to swap devices,
and is discarded at the end of the session. In addition, it
restricts IPC and employs containers to prevent leaks to
public processes by extending the Linux kernel.

Residue-free computing [8] aims to isolate all interactions
made by a program to memory only using containers and
a union file system that redirects write accesses to a RAM
disk, as shown in Figure 1, preventing them from making
persistent changes to the disk. This system has several short-
comings, such as not supporting persistence nor plausible
deniability, since there is no attempt to hide the existence of
this program and the other programs to be executed with its
support. The isolation performed with containers depends on
the characteristics of the application so that the right native
resources can be allowed, causing a lack of support to some.
Additionally, accessing the native resources causes changes
at the file system level.

None of the previous systems provides forensic denia-
bility, due to the lack of attempt to conceal the system
itself. Deniable file systems, on the other hand, are mostly
concerned with deniable data hiding on persistent storage
and preventing single-snapshot attacks. These attacks de-
scribe an adversary with access to a device at a single
point in time. The first proposed scheme [9] lacked an
implementation but inspired many authors of the following
systems. It required the name of a file and a password to
properly retrieve the system and an attacker that did not
know such combination could not know if such a file is
present in the system. StegFS [2] stores blocks of the hidden
file system within the unallocated space of the native file
system, using steganography. However, it does not preserve
the disk’s entropy by writing random patterns to the hidden
blocks, relying on weaker factors to increase deniability,
such as executing on a multi-user environment.

A more advanced class of systems focuses on multi-
snapshot attacks prevention. These attacks encompass an
adversary with access to a device at multiple points in time,
thus is able to observe modifications that can indicate the
existence of hidden data. The same authors from StegFS [10]
proposed using oblivious RAM (ORAM) techniques to con-
ceal data accesses but does not hide its presence. HIVE [11]
and Datalair [12] propose a write-only oblivious RAM, but
these techniques incur in significant performance penalties,
besides random disk write-patterns and slower performance

might indicate suspicious activity.
PM-DM [13] is a block device mapper that tries to

improve on the performance implications of using ORAM
techniques suffered by the previous attempts to hide the
access patterns. For this, instead of focusing on generating
random access patterns, it attempts to perform plausible
modifications between snapshots, preserving data locality
and performance. These plausible modifications consist of
executing a structure of processes, such as an algorithm,
that produces a trace of accesses in each snapshot, which
empowers the user to plausibly deny hidden accesses by
stating the observable changes were made to public volumes.
However, the performance of write operations is still low
enough to flag the existence of a hidden system.

Ever-changing disk [4] was proposed as a firmware design
for writing data separately into hidden and public volumes
of an SSD, the hidden data is written in combination with
pseudorandom data in log format, but the partition scheme
and firmware constitute weaknesses to the design.

Artifice [14] aims to prevent multi-snapshot attacks, by
disguising data accesses to disk with deniable operations
such as redundant writes. This system relies on combina-
torial cryptography to protect data from being correctly re-
trieved by an adversary with no knowledge of the password.
Additionally, it has good data resilience capabilities due to
the use of erasure codes to make overwrites recoverable,
along with checksums and replication of the main data struc-
ture. However, Artifice inhibits an adversary from being able
to distinguish the carrier blocks from random data but does
nothing about the greater amount of random data present in
the disk after the system is installed. It provides isolation
from the host OS by booting into an Artifice-aware OS
through a patched Linux live USB that loads a kernel module
containing a virtual block device driver. However, carrying
an external hardware component increases the danger of
exposing the system to an attacker, and booting from another
OS enlarges the disk footprint by forcing a reboot. Artifice
offers no protection in case of swapping and computer
hibernation which can cause the information to be written
down to the disk. Artifice is described in more detail in a
follow-up paper [3], where the authors point out that external
hardware dependencies need to be eliminated. They also
present Shamir Secret Sharing as the algorithm to be used
to distribute the carrier blocks so that no visible difference
exists between other unused blocks in unallocated space,
since the last are filled with pseudo-random blocks. This
makes it harder for an attacker to brute force an attempt to
reconstruct the Artifice volume, but it completely changes
the entropy of the disk, so the system’s existence in a user’s
system stops being deniable.

III. THREAT MODEL

The goal of the adversary is to detect that Calypso is
installed on the system, or that a PET was executed with
Calypso’s support. The adversary only has physical access to
the machine after Calypso is closed, but has a forensic set of
tools to proceed with a full analysis of the persistent state of

2

that machine. Additionally, the adversary knows the details
of the Calypso implementation. In these circumstances, the
adversary should not learn any information about Calypso’s
existence on the machine or about anything executed or
stored in Calypso’s shadow partition, from inspecting the
machine. We presume such investigations can occur when
crossing borders or when a user is under suspicion by a
repressive regime that applies censorship, such as a journalist
reporting humanitarian causes to a foreign country.

Calypso aims to provide plausible deniability, which
consists of the ability to deny knowledge or responsibility so
that users can plausibly deny having our system installed on
their devices. In the context of our project, this is achieved
when a forensic analyst is not capable of identifying per-
sistent changes in the disk caused by executing Calypso
in the system. We aim to offer plausible deniability by
providing the following two sub-properties: i) isolation, that
guarantees no information leaks from the Calypso processes
into the native file system; and ii) non-observability, which
states that an adversary should not be able to detect hidden
data on the native free blocks.

IV. DESIGN

Calypso aims to provide a block device abstraction of a
secondary file system composed of the free blocks of the
native file system, which we refer to as shadow partition.
This shadow partition encodes the persistent data employing
data hiding techniques so that no visible changes are made
to the persistent state of the machine. We consider native
free blocks to be the blocks that are currently not used (are
not linked to any file) by the native file system but can be
allocated at any time.

Calypso’s architecture is described in Figure 2, along with
its main components coloured in pink. Its functionality is
going to be implemented mainly by Calypso’s block device
driver, inserted in the system as a kernel module. We assume
we have a disk with a main partition, formatted with a
regular in-disk file system such as Ext4, from which we
can obtain the numbers of all free blocks as a bitmap. We
consider the native file system to contain the applications
and data installed in the user’s machine before Calypso.
The Calypso driver exposes a block device that exports
a shadow partition whose size is determined by the user
when installing Calypso. This partition can be formatted
and mounted on a given folder. The interaction with the
user is done through a command-line application (CLI) that
allows executing the bootstrap system that inserts or removes
Calypso’s module in the system.

The heart of the system is the Calypso driver. It is
composed of two main parts, as shown in Figure 3: i) a
block mapper and a block encoder, that together handle the
requests to the shadow partition, hiding Calypso’s data on
the unused blocks of the native file system; and ii) a native
requests hook and a read hook, which handle the intercepted
requests to the native partition, monitoring and handling
possible changes to the native partition that may compromise
Calypso’s hidden data. We refer to virtual blocks as the block

Userspace

Regular
processes Calypso CLI

Kernel

Shadow file system /media/calypso

Shadow block partition

Shadow block device /dev/calypso0

Calypso driver

Memory

Disk

Native partition /dev/sda2 Allocated blocks
Free blocks

Figure 2: Calypso architecture.

Block mapper

Block encoder

Request to Calypso

Native requests hook

Read hook

Request to the native partition

Allocated blocks
Free blocks
Request to Calypso blocks
Request to native partition blocks

Figure 3: Calypso driver internals.

numbers from the Calypso block device, since those blocks
are just an abstraction for the actual physical blocks, and
native blocks as the blocks belonging to the native block
device under Calypso.

A. Traceless Bootstrap

Bootstrap is the initial process required to execute Ca-
lypso without leaving detectable traces in the machine.
Concealing this process is a crucial aspect. To illustrate, if an
adversary finds the bootstrap script or manages to correctly
retrieve some of the Calypso meta-data, our system loses
its deniability. Several rootkit techniques aim at storing and
executing the bootstrap program without leaving traces on
the native file system. There is also the possibility of storing
the bootstrap program with steganographic techniques, such
as encoding it in a PDF file [15] or splitting it among several
blocks using Shamir Secret Sharing [16].

B. Block Allocation

Calypso needs to keep track of the native blocks that
may potentially be used to store information in the shadow
partition. The free blocks do not contain data in use by the
native file system, thus overwriting them does not data loss.
As the storage demand increases, Calypso should use those
blocks to compose the shadow partition, where each block
in use needs to be consistently mapped to a native block, or
the data in the shadow partition may become corrupted.

3

2 3 4 8 12

4 8 9 10 11

 # virtual blocks

 # native blocks

2

4

3 4 8 12

8 9 10 11

Request to Calypso

Request to the native partition

Virtual to native
block mappings

Native to virtual
block mappings

Figure 4: Calypso block mappings.

Block mappings: To keep track of the blocks that compose
the shadow partition, we have two data structures that map
the Calypso’s block number to the respective native block
number and vice-versa, in which we store the mappings of
all blocks allocated by Calypso. We use the first structure
when we are remapping Calypso’s requests to the native
block device, and we use the structure that maps native to
virtual blocks to have direct access times when we intercept
requests from the native file system, as shown in Figure 4.
Tracking Calypso allocated blocks: Whenever Calypso
receives a request, it first checks if the virtual block is
mapped to a native block using the virtual to native block
structure. If it is mapped, the block number is translated
and the request proceeds to the native device. On the other
hand, when the block is not mapped, we look for the next
unset block in the used blocks bitmap, set that bit, and
assign new mappings for the respective block. Setting the bit
prevents assigning the same native block to multiple virtual
blocks. The used blocks bitmap allows keeping track of
which native blocks are allocated or free. It is a contiguous
array containing 1 bit for each native block. If the bit equals
0, then that block is free, otherwise, it is allocated.

C. Monitoring Native Changes to Blocks

Firstly, Calypso needs to update the state of the used
blocks bitmap as the native system allocates new blocks,
which need to become ineligible for Calypso to allocate.
Furthermore, using the free blocks of the native file system
is unstable since they may be overwritten at any time the
native file system needs more blocks. Overwriting data in a
block mapped by Calypso can cause irreparable damage to
the file system installed on the shadow partition. To prevent
this, Calypso will monitor its mapped blocks and take the
appropriate action when a potential overwrite is detected.
Copying blocks to avoid overwrites while Calypso is
loaded: When Calypso intercepts a request to a block
mapped by itself, this means a mapped block is about to
be overwritten. To avoid losing data, Calypso should freeze
the current write request until the content of the block about
to be overwritten is copied into the next free block. Copying
the block requires applying a read hook, shown in Figure 3,
that allows Calypso to issue a write operation when the result
from reading the block about to be overwritten is available.
Dealing with block overwrites while Calypso is not

loaded: Calypso persists the used blocks bitmap at the end
of each session so that when Calypso is reloaded, it has the
necessary data to find out which Calypso mapped blocks
suffered changes by the native file system, while Calypso
was inactive and unable to prevent them. This is done by
comparing the bitmap retrieved from the file system and the
persisted bitmap. If a block’s bit is different in both bitmaps,
and that block is mapped by Calypso, then its contents may
have changed, and we should resort to existing data recovery
techniques based on redundant error-correcting codes.

D. Persisting Calypso Meta-Data

All Calypso data structures that support the shadow par-
tition live in memory. This means that once Calypso gets
unloaded, all its data structures, and consequently all the
contents of the shadow partition are going to be lost. To
prevent this, Calypso stores its meta-data in native free
blocks before being unloaded, so that when it is reloaded,
it can populate the memory data structures as they were in
the previous session.

E. Deniably Encoding Data Blocks using Entropy

The plausible deniability of Calypso depends on making
only deniable changes to the native blocks, which is achieved
by choosing only blocks with a value of entropy equal or
above an established entropy threshold to store the encrypted
data of Calypso.

The entropy of a block is the variability of the bytes
in it. For instance, a block with an equivalent count of
every possible byte has the highest entropy possible, while a
block only with zeroes is going to have the lowest possible
entropy. This measurement is calculated using the Shannon
entropy [17], [18] for each block, described in Equation 1.

H(X) = −
n∑

i=1

P (xi)logP (xi), 0 ≤ H(X) ≤ 8 (1)

The entropy differential is the measure we established to
quantify how much a block has been changed, thus how
observable it is that there is a hidden mechanism in the
system such as Calypso. It consists of the absolute value
of the difference between two entropy values, taken in two
distinct moments in time, as shown in Equation 2. These
values are normalized to be between 0 and 1.

4H(X) =
|H(x1)−H(x0)|
max(H(X))

, 0 ≤ 4H(X) ≤ 1 (2)

Using entropy as a deciding factor to change the contents
of free blocks allows Calypso to encode data in the free
blocks while maintaining their characteristics.
Optimal entropy threshold: The entropy threshold is a
value that allows the user to customize the selection of
which blocks Calypso uses to hide its data. The optimal
entropy threshold value depends on: i) the characteristics of
the native free blocks; ii) the amount of storage capacity

4

the user needs; and iii) the level of security the user needs
and the danger they are facing. If the user requires a big
amount of space for storing pictures and will not have
the computer inspected by a censoring authority, then the
entropy threshold can be the lowest to allow maximal native
free blocks utilization. On the other hand, if the user is
a journalist reporting government illicit activities under a
repressive regime, who only needs to use a whistleblower
submission system to share its reports, then the highest
entropy threshold is advisable.
Multi-Snapshot Attacks and Plausible Deniable Foot-
prints: Resistance to multi-snapshot attacks entails that
the adversary cannot observe changes between multiple
snapshots of the system, or that the observable changes
cannot be linked to a specific questionable activity such
as executing Calypso. However, establishing a single level
of changes that would be acceptable between two disk
snapshots is a disputable matter. A file system environment
is in constant change for several reasons, i.e, installing and
removing software, compilation of programs, temporary files
written to disk such as video streams.

We attempt to make all changes made by Calypso non-
observable by limiting the usable blocks to the native
free blocks with an entropy value above a customizable
threshold. For instance, we can limit the system to use
only previously encrypted blocks to replace with Calypso’s
encrypted data, thus maintaining the characteristics of the
free space. So, we cannot state that no changes were made to
those blocks, but we can claim these changes were originated
from the system’s regular utilization, such as temporary keys
that regularly get generated and erased. From this idea,
we can expand to higher disk workloads, to sustain more
deniable storage capacity. We named this concept plausible
deniable footprints.

V. IMPLEMENTATION

Calypso’s prototype was built as a kernel module, targeted
for Linux platforms running the kernel version 5.4.

A. Retrieving Usable Blocks for Storage
Assembling a set of blocks that we could use to store

the data is vital to ensure Calypso’s functionality and
persistence. Since we do not want to disrupt the native
system by overwriting needed blocks and we do not dispose
of a partition just for Calypso, we decided to use the
free blocks that are not currently in use by the native
file system. This can be technically challenging since the
Linux Virtual File System (VFS) does not have functions
to retrieve the free blocks, so we need to use code spe-
cific to the Ext4 file system. We start by obtaining the
VFS super block instance of the struct super_block
. Then, we get the number of Ext4 groups from the super
block using the function ext4_get_groups_count()
, and for each group, we get the respective instance of
a group descriptor, struct ext4_group_desc, using
the function ext4_get_group_desc(). Each group de-
scriptor contains the location of the block bitmap within

4

Native
request
queue

Read hook
hooked_bi_end_io()

1

7

Native requests hook
hooked_make_request_fn()

Block encoder

Request to Calypso Request to the native partition

Allocated blocks
Free blocks
Request to Calypso block
Overwritten block

Calypso

Block layer

File system in shadow partition Native file system

Native
block

device

Native block device driver
Request handling function
native_make_request_fn()

...

Memory pages

2

3

5

6

Copy block

Request to Calypso
Write request to the native partition that overwrites Calypso block
Read request issue by Calypso to read contents of block about to be overwritten
Write request issued by Calypso to copy read contents to the next free block

Block mapper
calypso_make_request_fn()

Figure 5: Calypso request redirection and interception to
handle overwrites. The green arrow shows how a request
to the shadow partition is handled by redirecting it to the
native request queue. Once a request is received by Calypso,
the virtual block associated with that request is mapped
to the corresponding native block by the block mapper,
using the Calypso mapping structures. Then, the request
data is encoded and the request is placed in the native
request queue. Finally, the request is fetched by the native
request handling function and gets redirected to the native
block in the block device. The remaining arrows show how
Calypso performs interception and handles overwrites. The
cyan arrow shows how a write request to a block mapped
by Calypso is handled to avoid overwrite. In 1), the request
to the native file system is intercepted. This request is put
on hold, and in 2), Calypso issues a read to the block to be
overwritten. That read copies the contents of the block to a
page in memory as shown in 3). In 4), Calypso intercepts the
termination function of the read request, activating a second
write request, represented in blue, to copy the contents in the
memory page, pinned by 5). Step 6) represents the second
write request being placed in the native requests queue,
where it is going to be fetched by the native block device
to be processed. Since we already issued the copy request
and its data is on a different memory page, we can resume
the initial write request identified by 7).

that group in the field bg_block_bitmap_hi. We read
each group block bitmap from disk by calling the func-
tion ext4_read_block_bitmap(). Subsequently, we
get the number of the first block of this group using the
ext4_group_first_block_no() function to know
the offset that we have to apply to the blocks represented in
the group bitmap. Then, we iterate the group bitmap read
from disk and set each bit with value 1 in Calypso’s bitmap,
taking into account the determined group block offset.

B. Redirecting and Intercepting Block Requests

Calypso needs to issue the requests received to the
native block device. For this, it redirects the requests,
as detailed in Figure 5 by the green arrow. Calypso
should act as the front end, receiving the requests and

5

adapting them to be processed by the underlying de-
vice. The processing of Calypso’s requests is initialized
with blk_queue_make_request() so that requests
are passed directly to Calypso’s driver instead of going
to a request queue. To redirect Calypso’s requests to the
native device, we need to open it without exclusive mode,
obtaining an instance of struct block_device. Then,
for every request, we need to change the the target de-
vice sector and the target device fields, and finally send
the request to the native device’s request queue using the
generic_make_request()function.

To monitor and prevent changes to blocks mapped
by Calypso, our module needs to add functionality
to the native request handling function by hooking it.
We do this by overriding the pointer to this function,
make_request_fn, a field belonging to the instance
of struct request_queue. This instance is obtained
from the native block device instance previously acquired.
When doing this, we need to be careful since any disruption
that prevents native requests from being correctly processed
may invalidate the entire system. So, we need to store the
pointer to the original make_request_fn function so that
we can call and restore it when Calypso is unloaded. The
substitute function should ensure that the original function
gets called at some point.

Calypso is using the free blocks of the native file system,
which can be overwritten at any time if the native file
system requires allocating more space. Calypso intercepts
all requests to the native block device, so it detects when
its data is about to be overwritten. This is the case when a
write request issued by the native file system targets a block
mapped by Calypso. So we need to freeze that request while
Calypso’s data is being copied as shown in Figure 5 by the
blue, pink and cyan arrows.

C. Cryptography and Data Hiding

To make Calypso secure and to prevent a forensics
inspector from being able to correctly retrieve Calypso’s
data or meta-data, it needs to rely on several cryptographic
primitives. These support concealing all data written to the
native partition and retrieving meta-data blocks correctly
when Calypso is loaded, without having the mappings to the
meta-data blocks in memory. To enable these cryptographic
primitives, the user needs to insert a password of its choosing
each time the Calypso’s kernel module is inserted. This
password is going to be used as: i) the initial value to
generate a key deterministically; and ii) a seed to feed to
a pseudo-random number generator.
Hiding data blocks: Calypso needs to hide its data, present
in the native partition, from potential adversaries using
encryption. This is done whenever a request is remapped to
the native device: i) in case of a write request, it replaces the
data to be written with its encrypted version; and ii) in case
of a read request, it replaces the read encrypted data with
its decrypted contents. This way, the native device will only
have access to the encrypted data. This requires generating

always the same key at run time using the HMAC-based
extract-and-expand key derivation function, contributing for
Calypso changes to remain non-observable.
Storing and retrieving meta-data: Calypso stores meta-
data on its own mapped blocks. When Calypso gets un-
loaded, those memory structures disappear. We need to
provide a way for Calypso to determine the first block of
meta-data every time it is reloaded, without the support of
in-memory structures. This way, it can reconstruct them,
allowing the mapping of blocks. Passing a seed to a pseudo-
random number generator allows obtaining always the same
sequence of pseudo-random numbers. We exploit this con-
cept to generate the numbers for the first block from which
we will attempt to store and retrieve meta-data.

VI. EVALUATION

To evaluate our system, we focus on the following goals:
i) test whether Calypso can sustain the execution of PET ap-
plications without file system errors (Section VI-A); ii) show
if Calypso reduces the traces left by PETs in the native file
system (Section VI-B); iii) assess the capacity of Calypso
to make only deniable changes to the native file system
(Section VI-C); and iv) test the performance degradation
caused by using Calypso, as well as the performance of file
system accesses to the shadow partition (Section VI-D).

A. Functionality

We monitored the execution of PET applications rep-
resentative of multiple disk workloads: i) Tor browser;
ii) Signal desktop; and iii) Megasync desktop. Then, we
assessed whether Calypso can provide the storage resources
to accommodate their installation and execution.

We used a native partition of 3.5 gigabytes total size,
from which 1.8 gigabytes are used and the remaining 1.6
gigabytes are free. This is equivalent to 937,500 total blocks,
from which 479,605 are allocated blocks and the remaining
457895 are free. We consider a block as being equivalent
to 4096 bytes, which is also the default block size in the
Ext4 file system. Then, Calypso is initialized with 300,000
blocks, approximately equivalent to 1.1 gigabytes.

Respectively, each of the following plots shown in Fig-
ures 6 and 7 reflect how the block utilization evolves
with multiple different actions being executed with the Tor
browser and Signal. Each number of blocks represented in
the y axis should be interpreted as 1k= 1 × 103 blocks.
Annotation labels highlight interesting steps of the PET
utilization. Each one contains the action performed in that
step and the cumulative number of allocated blocks.
Calypso can execute multiple PETs with different disk
overloads: In all cases, we observe an initial spike during
Calypso setup and tool installation, which can be explained
by three reasons: i) Calypso’s shadow partition was format-
ted with the ext4 file system; ii) the installation of each
tool and associated files on the shadow partition; and iii)
each tool, when first executed, stores initial meta-data for
usability purposes, such as user accounts or preferences.

6

0.
0

0.
1

0.
2

0.
3

1.
1

1.
2

1.
3

1.
4

2.
1

2.
2

2.
3

2.
4

2.
5

3.
1

3.
2

3.
3

4.
1

4.
2

5.
1

5.
2

6.
1

6.
2

7.
1

7.
2

7.
3

8.
1

8.
2

8.
3

9.
1

9.
2

9.
3

Utilization script steps

0

10

20

30

40

50

60

70

80

90

100

Nu
m

be
r o

f b
lo

ck
s (

k)

Formatted Calypso with ext4 (8510)

Tor browser was installed in Calypso (33613)

Executed Tor browser (88998)

Searched on search engine (94871)
Opened HiddenWiki (96068)

Created new email account (97204)

Received email with small attachment
and downloaded it (97227)

Opened video (99000)

Closed
browser
 (99097)

Stopped
Calypso's
execution
and wrote
Calypso's
meta-data
 (99718)

Figure 6: Block utilization evolution with time for Tor
browser executed with Calypso

0.
0

0.
1

0.
2

0.
3

1.
1

1.
2

1.
3

2.
1

2.
2

3.
1

3.
2

4.
1

4.
2

5.
1

6.
1

7.
1

7.
2

7.
3

Utilization script steps

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Nu
m

be
r o

f b
lo

ck
s (

k)

Formatted Calypso with ext4 (8510)

After downloading and installing Signal
into Calypso's shadow partition (130808)

Started Signal desktop (131450)
Linked with phone app (136066)

Opened received
link (139355)

Closed Signal (143637)

Stopped Calypso's
execution and
wrote Calypso's
meta-data (144258)

Figure 7: Block utilization evolution with time for Signal
desktop executed with Calypso

This is followed by a stabilization in smaller increases in
the number of used blocks during a regular utilization of
the tool, ending in a final increase when Calypso is closed
since it persists the meta-data.

In more detail, Figure 6 shows the evolution of the
block allocation in Calypso during the execution of the
Tor browser. There is a sharp rise in the number of used
blocks during the initial stages of setup and Tor execution,
up until searching on search engine. This can be justified
by the size and big amount of files occupied by the Tor
browser folder. When first executed, the browser needs to
get server descriptors with information on Tor relays, so
Calypso will expand the partition size due to the creation
of new files. Then, the evolution in the number of blocks
steads in small increases, resulting in two more accentuated
ones, namely after opening HiddenWiki, after creating a new
email account and after opening a link to a youtube video
that requires streaming the video into the machine.

As for Signal’s block evolution in Figure 7, the execution
also developed into an expected high rise when the Signal
files were moved into the shadow partition. Starting the
Signal app caused a smaller increase in the blocks since it
needs to update configurations. Linking with the phone app
increases the number of blocks since it needs to download
all the data associated with Signal from that device, such
as contacts, user configurations and previous conversations,
heading towards a smaller steady increase in most successive

Allocated Free Calypso file system Calypso meta-data Tor data

Figure 8: Comparison of a part of the native partition state,
before and after executing Megasync with Calypso, from
block 200 to block 90000, as a matrix of 300x300

steps. The final pikes occur when opening a received link
in the browser and when Signal is closed, probably due to
persisting cached memory information onto files.
Calypso allocates blocks using only the native free
blocks: Figure 8 pictures the initial segment of the native
partition state before executing Calypso on the left, and
those same blocks after the utilization of Megasync with
Calypso, on the right. Both segments of the native partition
are represented in the form of a matrix of 300x300 dots,
where each dot represents a block in a color elusive to its
purpose: i) orange blocks are the native allocated blocks
that cannot be used by Calypso; ii) purple blocks represent
free blocks of the native ext4 file system; iii) pink blocks
act as the Calypso file system’s meta-data blocks; iv) cyan
blocks are used to store the meta-data that allows Calypso
to be persistent; and v) yellow blocks are occupied with
data generated by Megasync. The first block is indexed by
line 0, column 0 of the matrix. The pink, yellow and cyan
blocks represent the blocks that were allocated by Calypso
to support executing Megasync and they overlap exclusively
the native free blocks in purple, ensuring that only the free
blocks of the native file system are used.

B. Isolation

We aim to assess whether persistent observable traces are
leaking from Calypso’s execution environment to the native
file system. For this, we consider the following metrics:
number of accesses to the native file system, the number of
different files accessed, the category of the files accessed,
and whether the accessed file is in-memory only or is
written to disk, even if temporarily. Ideally, if the isolation
is perfect, a forensic analyst should not be able to detect
any modifications to the native file system, including to the
content or meta-data (e.g., access timestamps) of the files
therein located.
Tracing accesses to the native file system: To trace all
the file system interactions, we used the Linux Auditing
System (auditd), and recorded three different logs: i) initial
state, without executing the Tor browser; ii) executing the
Tor browser in the native partition; and iii) executing the Tor
browser in Calypso’s shadow partition. Then, we generated

7

File category Initial state Tor native Tor Calypso
Access

count
Diff file

count
Access

count
Diff file

count
Access

count
Diff file

count

Temporary
memory only

2138 67 4268 742 11377 5298

Temporary in
disk

124 2 99 54 618 26

System config
and OS
resources

448 27 3015 161 2913 145

Binaries, libs
and apps

239 62 3276 1389 1516 370

User data 0 0 2553 510 109 63
Calypso 0 0 0 0 318 75
Other 200 1 240 37 421 27

Table I: Files accessed and respective classification during 10
minutes of auditing the system without Tor installed, while
executing Tor in the native file system, and while executing
Tor inside Calypso

summary reports on the accessed files, obtaining all the
accessed paths during a 10 minute time period with the
respective number of accesses to each path.

A summary of our results is depicted in Table I. Each
line refers to a different file category. The accesses count
refer to the number of file system-related system calls that
were audited during the associated period, to files of each
established category. The columns of the different file count
refers to the amount of different files that were accessed,
according to each file category.

To help the user navigate the displayed information, we
provide an example: The line containing the results for user
data files presents 0 accesses during the initial state, due to
no user application being executed during this period. These
would be the ideal results for isolation during the execution
of a user application such as the Tor browser. The second
period reports an increase from 0 to 2,553 accesses, meaning
that we can expect the Tor browser executed natively to
cause a similar increase. The following period, where we
executed the Tor browser from Calypso’s shadow partition
reveals an increase from 0 to 109 accesses, these targeting
63 different files, meaning that the Tor browser with Calypso
is expected to produce about 109 accesses. Besides this, the
results in this line allow us to estimate how many accesses
Calypso was able to isolate, by subtracting the results from
the second period with the results from the third, where we
can surmise that Calypso reduced the accesses performed
by the Tor browser to user data related files in about 2444.
At last, reporting 109 accesses and 63 different files, during
the period where Tor was executed with the Calypso support,
means that 109 file system-related system calls were issued
to 63 different files, without specifying how many times each
of these files were accessed.

Calypso notably reduces accesses to files in the native
disk partition: As presented in Table I, most of the file
system accesses performed by the Tor browser are diverted

Plaintext Images Compressed Encrypted
File types

0
1
2
3
4
5
6
7
8

Bl
oc

k
en

tro
py

Figure 9: Average block entropy and standard deviation in
the blocks of 1GB virtual disks simulating unused space, for
multiple file types

from the native file system to the Calypso partition. If
we sum all the accesses counts for the Tor browser with
Calypso, we can observe a higher number of accesses due
to the bootstrap and cleanup processes. However, most of
those accesses (11,377) happen in memory only, so they are
of no concern. The number of accesses to temporary files
that go to disk increased from 99 to 618, but the different
file count reduced from 161 to 145. Still, we can improve
on these results, but the other accesses to the native file
system were heavily reduced compared to executing the Tor
browser natively, such as the accesses to binaries, libs and
apps, with a reduction from 3,276 to 1,516 accesses and
from 1,389 different files to only 370. Overall, the accesses
to files in disk reduced significantly when the Tor browser
was executed from within Calypso, which shows Calypso
produced an encouraging improvement in the domain of
isolation.

C. Security

The security of Calypso relies on its ability to remain non-
observable during a physical inspection of the device. So, we
need to prove that the initial entropy of the partition blocks
is preserved after introducing changes by Calypso. For this,
we use the entropy differential. This metric translates to how
much the entropy of the blocks located on the disk has
changed between inserting and removing Calypso on the
system. The entropy differential is computed by taking two
entropy values for each block in two different moments in
time, before and after using Calypso.

The disk changes made by Calypso can be controlled with
a parameter named entropy threshold. This value decides
which of the free blocks are going to be used to encode
Calypso’s encrypted data: only the blocks with entropy
equal or above a given entropy threshold will be used to
store Calypso data. Intuitively, we expect that increasing the
entropy threshold value causes a reduction in the number of
blocks that will change, thus increasing the security levels.
We also expect to observe a trade-off between security and
storage capacity: if we set higher entropy threshold values,
fewer blocks will be considered safe for usage, which will
decrease the storage capacity of Calypso shadow partitions.
Most blocks that constitute highly used media files have

8

Threshold
Usable
blocks
count

Usable
blocks

(%)

Storage
capacity

(GB)

Average
differen-

tial

Minimum
differen-

tial

Maximum
differen-

tial
0 1048576 100.00% 4.00 0.11225 0.00000 1.00000
1 1048291 99.97% 4.00 0.11198 0.00000 0.87262
2 1048141 99.96% 4.00 0.11187 0.00000 0.74745
3 1047967 99.94% 4.00 0.11175 0.00000 0.62262
4 1047261 99.87% 3.99 0.11139 0.00000 0.49616
5 785484 74.91% 3.00 0.00306 0.00000 0.37172
6 784098 74.78% 2.99 0.00262 0.00000 0.24590
7 782983 74.67% 2.99 0.00244 0.00000 0.12039

Table II: Differential entropy statistics

an entropy close to the entropy of encrypted blocks:
In Figure 9, we can observe that plaintext files have an
average entropy of around 4.5, whereas images, compressed
and encrypted files have a high entropy average of almost 8.
However, the variability in both images and compressed files
is much higher, which means there are a significant number
of blocks that is not well characterized by the average
entropy. These are very positive results because these files
are very common in most personal computers and may even
have a certain turnover, which suggests that many usable
blocks may be available on computers with higher usage.

Choosing entropy threshold values: To analyse appropriate
entropy threshold levels, we established 8 different levels,
going from the lowest of 0 to the highest, with a value of 7.
Then, we measure the initial entropy of all the blocks in the
virtual disks and proceed to encrypt all blocks with entropy
equal or above each threshold so that we can measure the
resulting entropy of all the blocks, simulating Calypso’s
behaviour. Each line in Table II shows data obtained for each
entropy threshold level. The usable blocks count refers to
the number of blocks, out of a total of 1,048,576 equivalent
to 4 GB, that are usable by Calypso with the respective
entropy threshold. The usable blocks count is then shown
as a percentage out of the available blocks, shown with the
equivalent storage capacity in gigabytes (GB). The average
differential shows us the overall difference in entropy after
the blocks above a certain threshold have been replaced with
encrypted data. The minimum and maximum differential
show the best and worst-case scenarios, respectively.

For a threshold of 0, 100% of the blocks are usable,
whereas, for a threshold of 7, that percentage comes down
to 74.67%, which is still very reasonable, with about 2.99
usable GB out of a total of 4 GB of free space. Since the files
that compose our virtual disks already had a high entropy,
even for a threshold of 0 the differential does not surpass
0.11225, very far from the maximum of 1. This means that
in a partition with file turnover, we would be able to replace
most blocks without inducing significant changes in the
partition’s overall entropy. For the maximum threshold, the
average differential comes down to almost 0, meaning the
disk would maintain approximately the same entropy in all

Seq
output
block

Seq
output
rewrite

Seq
input

Random
seeks

Seq
create

Seq
delete

Random
create

Random
delete

Access types

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

eg
ab

yt
e/

se
co

nd
)

Native partition without Calypso
Native partition with Calypso

Figure 10: Comparison of the throughput of the native file
system without and with Calypso loaded

the blocks, with a maximum of about 0.12 differential, which
is still low, so no block had significant changes in entropy.
Moreover, there is a distinct turning point with threshold 5.
Here, we observe a larger reduction in the usable blocks
and the average differential since blocks with plaintext have
about 4.5 entropy, as we have seen in Figure 9. So thresholds
4 and 5 present the most balanced aspects, where a threshold
of 4 maximizes the storage capacity without overlooking
security, and a threshold of 5 brings a significant increase
in the security, but also reduces the storage capacity.

D. Performance

We want to attest that: i) Calypso does not significantly
affect the native file system access times; and ii) the perfor-
mance of the PET applications does not suffer notable over-
head. This can be achieved by comparing the latency and
throughput of file system operations in different conditions:
i) regular usage of the native file system without Calypso
being loaded, and compare the obtained performance mea-
surements with performing the same tasks in the native file
system with Calypso loaded, where we expect to observe
substantial overhead since we are intercepting IO requests
to the disk; ii) regular usage of the native file system without
Calypso being loaded, and compare the results to the results
obtained in equivalent file system operations in Calypso’s
mounted partition, where we anticipate a performance de-
crease as well, since we are not only intercepting, but also
redirecting IO requests to the disk; and iii) comparing the
results in Calypso’s mounted partition and a ramfs disk to
explain why the results were not the expected for the ii)
scenario. These results allow us to observe the degradation
of performance caused by Calypso.

We used bonnie++, a file system bench-marking tool,
limiting the virtual machine to have 1 gigabyte RAM for
the native file system and the Calypso shadow partition and
3 gigabytes for the ramfs. We specified 128 files for the file
creation tests. Each test was executed 11 times (excluding
the first execution results) and we obtained their average,
along with the standard deviation as the possible error.
The native throughput values are similar with and
without Calypso: The throughput for the first scenario

9

Seq
output
block

Seq
output
rewrite

Seq
input

Random
seeks

Seq
create

Seq
delete

Random
create

Random
delete

Access types

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

eg
ab

yt
e/

se
co

nd
)

Native partition without Calypso
Calypso shadow partition

Figure 11: Comparison of the throughput of the native
file system without Calypso loaded and the file system in
Calypso’s shadow partition

Seq
output
block

Seq
output
rewrite

Seq
input

Random
seeks

Seq
create

Seq
read

Seq
delete

Random
create

Random
read

Random
delete

Access types

10

0

10

20

30

40

50

60

La
te

nc
y

(m
illi

se
co

nd
s)

Calypso shadow partition
Ramfs with ext4

Figure 12: Comparison of the latency of the file system in
Calypso’s shadow partition and a ramfs without Calypso

represented in Figure 10 shows very similar values for both
the native partition without Calypso and with Calypso.
Calypso presents similar or better throughput values
than the native file system without Calypso: Figure 11
demonstrates that Calypso’s shadow partition shows a slight
improvement in the throughput when faced against the
native partition without Calypso being loaded, meaning more
megabytes can be processed per second.
Calypso reveals to be comparable to a ramfs: Figure 12
shows that Calypso has a higher latency overall, translating
into a comparable but slightly lower performance. In Fig-
ure 13 we can observe that the ramfs has a higher throughput
overall, representing slightly better performance.
Calypso does not cause significant overhead on the native
file system: Figure 10 demonstrates that Calypso does not
impact the native file system performance significantly, even
though a very small overhead can be observed, with a
maximum latency difference of at most 40 milliseconds, but
this has a high error value. This is due to the interception
of the requests to the native partition performed by Calypso,
which entails checking updates to the allocated blocks and
blocking requests that override Calypso’s blocks, while these
are moved to other free blocks. The file creation tests show
a higher overhead, but this may be misleading due to the
higher error values.

Seq
output
block

Seq
output
rewrite

Seq
input

Seq
create

Seq
delete

Random
create

Random
delete

Access types

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

eg
ab

yt
e/

se
co

nd
)

Calypso shadow partition
Ramfs with ext4

Figure 13: Comparison of the throughput of the file system
in Calypso’s shadow partition and a ramfs without Calypso

Calypso’s data allocation and how it is actually faster
than the native file system: Contrarily to what we believed
initially, Calypso presents better overall performance than
the native file system, as shown in Figure 11. This is due
to the allocation being performed in memory, much like in-
memory file systems such as ramfs, hence the comparison
between the file system in Calypso’s shadow partition and
a plain ramfs performed in Figure 12 and Figure 13. This
is not the case, however, for the latency of sequential reads
and random reads, probably because of the time to decrypt
the data in each block. Calypso’s shadow partition presents
slightly higher latency and lower throughput than ramfs,
the latter in particular for file creation results. For example,
Calypso’s shadow partition can create around 15 megabytes
per second of sequential files, whereas a ramfs creates
around 40 megabytes per second.

VII. CONCLUSIONS

This work describes Calypso, a deniable steganographic
storage system, which leverages using the free blocks of
the native system to compose a shadow partition, where
data and programs can be stored and executed deniably by
performing selective changes to the blocks based on their
original entropy, generating opportunity to execute plausible
deniable footprints to justify the changes to the disk. The
experimental evaluation performed on the prototype proved
that it can be used to support the execution of multiple PETs,
while significantly reducing the extent of their persistent
traces, and without disrupting the system or compromising
performance. However, there is still room for improvement
in the isolation of executed programs.

ACKNOWLEDGMENTS

This work benefited from the helpful discussions with
Diogo Barradas regarding its design and evaluation.

REFERENCES

[1] G. Gebhart and T. Kohno, “Internet Censorship in Thailand:
User Practices and Potential Threats,” in 2017 IEEE European
Symposium on Security and Privacy (EuroS P), 2017.

10

[2] H. Pang, K. . Tan, and X. Zhou, “StegFS: a steganographic
file system,” in Proceedings 19th International Conference on
Data Engineering, 2003.

[3] A. Barker, Y. Gupta, S. Au, E. Chou, E. L. Miller, and
D. D. E. Long, “Artifice: Data in Disguise,” in Proceeding of
the Conference on Mass Storage Systems and Technologies
(MSST ’20), 2020.

[4] A. Zuck, U. Shriki, D. E. Porter, and D. Tsafrir, “Preserving
Hidden Data with an Ever-Changing Disk,” in Proceedings
of the 16th Workshop on Hot Topics in Operating Systems,
2017.

[5] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel, “Eternal Sunshine of
the Spotless Machine: Protecting Privacy with Ephemeral
Channels,” in 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012.

[6] Y. Tang, P. Ames, S. Bhamidipati, N. Sarda, and R. Geam-
basu, “CleanOS: Increasing Mobile Data Control with Cloud-
based Eviction,” in 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012.

[7] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda,
“Privexec: Private execution as an operating system service,”
in 2013 IEEE Symposium on Security and Privacy, 2013.

[8] L. Arkema and M. Sherr, “Residue-free computing,” Proceed-
ings on Privacy Enhancing Technologies, 2021.

[9] A. Ross, N. Roger, and S. Adi, “The Steganographic File
System,” in Aucsmith D. (eds) Information Hiding, 1998.

[10] X. Zhou, H. Pang, and K.-L. Tan, “Hiding Data Accesses
in Steganographic File System,” in Proceedings of the 20th
International Conference on Data Engineering, 2004.

[11] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “To-
ward Robust Hidden Volumes Using Write-Only Oblivious
RAM,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014.

[12] A. Chakraborti, C. Chen, and R. Sion, “DataLair: Effi-
cient Block Storage with Plausible Deniability against Multi-
Snapshot Adversaries,” 2017.

[13] C. Chen, A. Chakraborti, and R. Sion, “Pd-dm: An efficient
locality-preserving block device mapper with plausible de-
niability,” Proceedings on Privacy Enhancing Technologies,
2019.

[14] A. Barker, S. Sample, Y. Gupta, A. McTaggart, E. L. Miller,
and D. D. E. Long, “Artifice: A Deniable Steganographic
File System,” in 9th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 19), 2019.

[15] X. Liu, Q. Zhang, C. Tang, J. Zhao, and J. Liu, “A Stegano-
graphic Algorithm for Hiding Data in PDF Files Based on
Equivalent Transformation,” in 2008 International Sympo-
siums on Information Processing, 2008.

[16] A. Shamir, “How to Share a Secret,” Commun. ACM, 1979.

[17] C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical Journal, 1948.

[18] P. Penrose, R. Macfarlane, and W. Buchanan, “Approaches
to the classification of high entropy file fragments,” Digital
Investigation, 2013.

11

