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Abstract

Blockchain technology promises consensus on a decentralized, immutable digital ledger maintained by

a peer-to-peer network involving nodes that do not trust each other. Such technology has gained both

popularity and financial value. Likewise, Ethereum’s Smart Contracts followed this trend, by promis-

ing distributed computations without the need for a third party. More than one and a half million smart

contracts have been deployed to the Ethereum Blockchain where some have been known to have se-

curity vulnerabilities. Recent attacks on these vulnerabilities result in great financial losses and due to

the smart contract immutability these cannot be patched. Many static analysis tools have been cre-

ated for Smart Contracts and SmartBugs was created as an extensible framework that aggregates them

with the goal of detecting different vulnerability types. While using SmartBugs, developers tend to find

themselves with a huge overhead on parsing the outputs, unifying the results and acknowledging the

information produced by this tool. In this dissertation we describe SARIF, a standard format for the

output of static analysis tools. We then discuss how we converted the 11 tools run by SmartBugs to

this format. Moreover, we develop SASP, a protocol server, as a service to receive queries, run the

analysis and aggregate the results. Finally, we overview the GitHub pull based development platform as

a methodology to automate the analysis and show its results in a more intuitive manner. Our goal is to

increase the accessibility of static analysis tools to smart contract developers.

Keywords

Blockchain; Ethereum; Smart Contracts; Static Analysis; SmartBugs; Static Analysis Results Inter-

change Format (SARIF); Static Analysis Server Protocol (SASP); GitHub

iii





Resumo

A tecnologia Blockchain garante concordância num conjunto de dados desentralizados e imutáveis en-

tre entidades peer-to-peer sem requerer confiança entre os mesmos. Esta tecnologia tem ganhado

imensa popularidade e valor financeiro nos últimos anos. Da mesma forma, os smart contracts da rede

Ethereum têm seguido o mesmo rumo. Mais de um milhão e meio de smart contracts foram lançados

para a rede, nos quais foram encontrados algumas vulnerabilidades sérias. Ataques recentes a ex-

plorar estas vulnerabilidades resultaram em perdas financeiras extremas e, devido à imutabilidade dos

smart contracts, estas vulnerabilidades são quase impossı́veis de serem reparadas. Já foram criados

vários analisadores estáticos para smart contracts e o programa SmartBugs foi desenvolvido como

uma ferramenta extensı́vel que agrega estes analisares de forma a detetar o maior número de vulner-

abilidades antes do contrato ser lançado. Enquanto usam o SmartBugs, os programadores tendem

a encontrar-se com uma grande sobrecarga para analisar os relatórios, unificar os resultados e en-

tender as informações providenciadas por esta ferramenta. Nesta dissertação descrevemos o SARIF,

um formato padrão para a informação gerada por analisadores estáticos, e também discutimos como

convertemos as 11 ferramentas do SmartBugs para este formato. Além disso, programámos o proto-

colo SASP como um serviço que recebe pedidos de análise, executa a análise e agrega os resultados.

Também explicamos a plataforma de desenvolvimento do GitHub como uma possı́vel maneira de au-

tomatizar a análise e mostrar os resultados de forma mais intuitiva. O nosso objetivo é a maior adoção

de ferramentas de análise estática por parte dos programadores.
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Blockchain; Ethereum; Smart Contracts; Static Analysis; SmartBugs; SARIF; SASP; GitHub
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1.1 Motivation

An asynchronous peer-to-peer network of untrusting nodes, spread all across the world, sharing one

unique immutable digital ledger: what would have been considered science fiction prior to 2008, has

become a reality through Blockchain [8]. Blockchain technology has gained massive attention since

the introduction of Bitcoin’s white paper in 2008 [1]. Blockchain earned its name for being a growing

list of blocks where each block contains the hash of the previous one, such as they are linked to each

other. So in order to switch an older block, it would be necessary to change every single subsequent

block. Cryptocurrencies, which have grown in popularity around the world, use this data structure as a

public ledger to keep track of all validated transactions. Blockchain is a public append-only database

that retains a permanent and immutable record of digital transactions. It is secured by a peer-to-peer

network utilizing a consensus process rather than relying on trust.

Particularly, in the Bitcoin implementation, each block consists of a record of digital transactions

which, when verified and accepted by the network, will be a part of a global immutable distributed

ledger. The network is composed by a peer-to-peer decentralized system to be able to persist when a

particular node is down or attacked and to increase the system trustworthiness. In this network no node

trusts each other, however due to its cryptographic properties, they will always agree with each other by

maintaining a shared global ledger while overcoming the missing trust [9,10].

One of the positive impacts of blockchain is that it is a system that allows for safe distributed com-

putations even when third parties are not trusted. Since Bitcoin’s introduction, several other Blockchain

platforms, extending the technology’s applications, have emerged. In particular, Ethereum [11] can be

seen as an extension of the Bitcoin Blockchain to support a wider range of applications. In order to

establish trusted contracts without the need for a third party, Vitalik Buterin implemented the concept of

Smart Contracts [12] into the Blockchain technology. What started out to be a secure payment consen-

sus protocol, ended up evolving to the world’s biggest decentralized distributed computer [13], with each

node running its own instance of the Ethereum Virtual Machine (EVM) [14].

Due to the financial nature of the Smart Contracts running in the EVM, there are a lot of motivated

hackers trying to find ways to exploit the system. Since once a contract is deployed it is immutable, not

even its creator is able to patch any security vulnerability. In a study performed on nearly one million

Ethereum contracts using MAIAN1, 34,200 contracts were flagged as vulnerable [15]. In another study

performed on 19,366 existing Ethereum contracts using Oyente2, 8,833 were flagged as vulnerable,

including the TheDAO3 vulnerability which led to a 60 million US dollars loss in June 2016 [16].

In order to detect bugs and security flaws in their Smart Contracts’ code [17, 18], developers use
1https://github.com/ivicanikolicsg/MAIAN
2https://github.com/enzymefinance/oyente
3TheDAO smart contract: https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
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static analysis tools to analyse their code. These are ultimately necessary for software developers to

find simple errors, serious vulnerabilities, performance issues, libraries’ misuses4, and even to standout

design flaws5.

According to a set of criteria [2], 10 static analysis tools were selected to be a part of SmartBugs [21].

SmartBugs was created with the purpose of being an extensible execution framework that simplifies the

execution of analysis tools on smart contracts. It currently supports 10 Solidity static analysis tools and

two smart contracts datasets.

Many static analysis tools have been created in academia but only a few are actively used by de-

velopers [22]. Developers mostly use the tools that have their results more easily accessible to them

and are built to be integrated with the programming environment (i.e. Integrated Development Environ-

ments (IDEs)), unlike SmartBugs and any other Solidity static analysis tool. However, this integration

is not trivial as different environments consume different formats for the static analysis’ results, expect

different plugins, and so forth.

1.2 Objectives and Contribution

In this thesis, we intend to overview smart contracts and their secure implementation utilizing static

analysis tools to assess the code’s correctness. Our major goal is to bring static analyzers, that focus

on Solidity smart contracts, a step closer to being adopted by smart contract developers. With this, we

hope to achieve a more effective use of these tools leading to less vulnerable programs being deployed.

To accomplish these goals, we will first provide an overview of blockchain technology before focusing

on Ethereum smart contracts. We describe each of the top ten vulnerabilities reported in Solidity smart

contracts.

Later, we present SmartBugs, a unique, extendable, and simple-to-use execution framework for

smart contracts that facilitates the study and execution of static analysis tools. We implement our re-

searched improvements into SmartBugs, mostly due to being a complex framework that aggregates a

comprehensive different set of analysis tools.

For our improvements we start by breaking down a renowned standard for static analysis’ results,

the Static Analysis Results Interchange Format (SARIF). We present our overview on this standard

and provide a minimalist way to implement it into any static analyzer’s environment, for Solidity smart

4In 28-12-2020, an incorrect library usage, managed hackers to exploit $9.4 million US dollars from the COVER contract. By
misusing the keywords memory and storage, the developers allowed for a serious security vulnerability in the updatePool function
to be exploited [19].

5In 25-09-2020, the BZX developers noticed an increase in their iToken supply. This was due to a design flaw in their transfer
function which allowed any user to increase their balance artificially by simply transferring money to himself [20].
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contracts or any other type of code. By standardizing the output of an analysis tool, its creator is allowing

for it to be integrated with other tools, i.e. GitHub.

Furthermore we research a possible methodology for creating a service that provides static anal-

ysis results when queried with an analysis request. We implement the Static Analysis Server Proto-

col (SASP) service with the goal of delivering the entire set of results to the client in the same format.

To conclude, we present an example of a platform that would digest our service’s response and

display it in a more intuitive manner. In order to improve the detection and awareness of the dangerous

vulnerabilities that prey in Ethereum smart contracts, we implement all of our research into this platform

in an automated form.

In summary, our major contributions are:

• We briefly review the vulnerabilities found in smart contracts and a state-of-the-art tool, SmartBugs,

that can be used to automatically identify these vulnerabilities.

• We present an overview on SARIF, a standard for static analysis tools’ output. We implement

it into the SmartBugs’ environment6 and provide a more accessible way to implement it in other

tools.

• We develop SASP7 and build it as a service for reporting the SmartBugs’ results to the clients who

requested the analysis.

• We overview and program two GitHub adapters8 for requesting static analysis results from SASP

and directly from SmartBugs.

• Lastly, we discuss our implementations from different perspectives in order to provide an evalua-

tion.

1.3 Thesis Outline

The rest of the document is divided into four chapters:

Chapter 2 provides an overview of the basis of blockchain technology, the Ethereum network, smart

contracts, their vulnerabilities and SmartBugs. After this, Chapter 2 also describes the SARIF standard

format, followed by the SASP service structure and the GitHub framework’s multiple features which we

will be using for our implementation.

6SmartBugs SARIF converters on GitHub: https://github.com/smartbugs/smartbugs/tree/master/src/output_parser
7SASP repository on GitHub: https://github.com/dindonero/smartbugs-sasp
8SASP GitHub Adapter: https://github.com/dindonero/smartbugs-static-analysis/

NoSASP GitHub Adapter: https://github.com/dindonero/smartbugs-local-static-analysis

5
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Chapter 3 introduces our implementation for improving SmartBugs and the smart contract develop-

ers’ community.

Chapter 4 presents our evaluation for each stage of our implementation.

Finally, Chapter 5 addresses work conclusions and proposes future work.

6
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In this chapter we start by presenting an overview of the Blockchain technology, followed by explain-

ing what smart contracts are and why it is critical to ensure proper smart contract’s safety prior to its

release. Furthermore we introduce SmartBugs as a unifying framework for smart contracts’ analysis

tools. We also present an overview of SARIF and SASP and how we will leverage this concepts into

making SmartBugs a more accessible tool in order to improve Smart Contracts’ security. Lastly, we

present GitHub as the community chosen essential platform for managing their collaborative software

projects.

This chapter is divided in six sections: Blockchain, Ethereum, Vulnerabilities of Ethereum Smart

Contracts, SmartBugs, SARIF, SASP and GitHub

2.1 Blockchain

The name Blockchain comes from the fact that it is a growing list of blocks, each of them containing

the hash of the preceding one. This way, the links between the blocks are cryptographically connected,

making them essentially unbreakable. The only way to switch an older block would involve changing

every single following block. In the Bitcoin implementation, each block is made up of a list of transactions

that, once created and added to the blockchain, become immutable, meaning they can’t be modified or

reversed, guaranteeing the transactions’ integrity. A transaction consists of the payer and the payee

public keys, the bitcoin amount to be transferred and the digital signing of the transaction by the payer

so that a payee can check the signatures in order to ensure the ownership is correct.

There are two types of blockchains: Permissioned and Permissioneless. Permissioned blockchains

(or private blockchains) can be seen as an extra layer of security for a system, as they maintain an access

control layer that allows only certain identifiable members to conduct particular tasks. It can be regarded

as a centralized blockchain. On the other hand, permissionless blockchains (or public blockchains) can

be seen as peer-to-peer, open networks available for everyone to participate and interact with, as long as

they’re willing to meet the consensus agreement. The network consists of a peer-to-peer decentralized

architecture that allows it to persist even if one of its nodes is offline or attacked, increasing the system’s

trustworthiness. No node in this network trusts the others, yet due to the network’s cryptographic fea-

tures, they will always agree with each other by maintaining a shared global ledger, overcoming the lack

of trust [9,10].

Thanks to Satoshi Nakamoto, the pseudonym behind the Bitcoin paper, for proposing the first per-

missionless blockchain in 2008, the Bitcoin white paper [1]. Satoshi not only published the white paper

as well as also developed some of the earlier code versions for the bitcoin network before disappearing

in 2011. Up to this day Nakamoto’s real identity still remains a mystery.
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As it’s a permissioneless blockchain and any user is able to interact and participate in the network

by simply publishing a signed transaction, it raises one issue. The payee isn’t able to verify if the payer

did not double-spend the coin. Double-spending is a potential vulnerability in a digital cash system

where the same digital token can be spent multiple times. In order to prevent this from happening, in the

Bitcoin white paper, Satoshi suggested using the Proof-of-Work consensus mechanism as a way for the

payee to know that the payer had not signed any other transactions, without the need for a third-party

authority. The only way to certify the absence of a transaction is to be aware of all transactions so (1) all

transactions must be publicly disclosed and (2) it’s also required a system that enables participants to

agree on the order that transactions were received.

Proof-of-Work The Proof-of-Work (PoW) algorithm entails searching for a value that, when hashed

with SHA-256, begins with a number of zero bits. The average amount of work required is exponential

to the number of zero bits required, and may be validated and verified with a single hash.

In the Bitcoin white paper, the PoW is implemented by incrementing a nonce in the block until a

value is found that provides the block’s hash the requested zero bits. The longest chain, with the most

proof-of-work effort placed in it, represents the majority choice. So once the CPU effort to satisfy the

proof-of-work has been expended, the block cannot be changed without redoing the work. And because

later blocks are chained after it, changing a block would necessarily require redoing all of the blocks after

it. We can see a visual representation provided in the Bitcoin white paper in 2.1.

Its difficulty is calculated based on a moving average targeting the average of blocks per hour to

account for rising hardware speed and fluctuating interest in operating nodes over time. If the blocks are

being generated too quickly, it becomes more difficult.

This work is done by a type of node called a miner. Once a miner has computed the right answer,

the block is broadcast to the network for verification. The hash is checked by the other nodes in the

network, and if it is valid, they accept the miner’s block and the miner gets the reward.

There are also other protocols for consensus such as Proof-of-Stake. Juxtaposed to the PoW, Proof-

of-Stake (PoS) validators (miners) can validate block transactions based on the number of coins they

own. To verify a block of transactions, the validator stakes some of his currency, and the larger the

amount staked, the more validation power the validator has.

PoS cryptographic calculations are substantially easier to solve than PoW ones, and so do not re-

quire as much computer power. Proof-of-stake systems are more cost-effective and consequently more

environmentally friendly than Proof-of-Work systems in terms of energy consumption, as they do not

require the significant computer power that Proof-of-Work does. In terms of security, proof of stake can

help lower the likelihood of malicious attacks. Attacking in PoS is costly because if a validator behaves
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Figure 2.1: PoW Chain of Blocks (Adapted from: [1])

maliciously, their validation authority will be withdrawn and their staked amount will be revoked. Also

the amount staked is directly proportionate to the percentage of network control a member can achieve.

On the other hand in PoW, the more a miner invests in equipment, the more processing power they will

have, making individual mining against massive mining pools less profitable and more challenging. In

Bitcoin, pools mine a disproportionately large number of blocks compared to individual miners. A 2019

study showed that the 3 biggest mining pools control over 50% of the hash rate and that in each of them,

18 miners receive more than 50% of the pool rewards payout [23].

2.2 Ethereum

Since Bitcoin’s launch, other Blockchain platforms have developed, expanding the technology’s possi-

bilities. Specifically Ethereum [11] may be perceived as a more robust version of the Bitcoin Blockchain

which enables a broader range of applications. It’s a project that aims to create a generalized tech-

nology that can be used to build all transaction-based state machine concepts. It also aims to provide

end-developers with a tightly integrated end-to-end system for developing software using a previously

unexplored computer paradigm: a trustworthy object messaging service framework [24].

Vitalik Buterin introduced Ethereum in 2014 as the first blockchain platform to incorporate a Turing-

complete language. It has its own currency, called Ether (ETH), with smart contracts as the platform’s key

component. Just like Bitcoin, Ethereum is a permissioneless blockchain where any network participant

is allowed interaction with the network, such as transferring Ether or interacting with a smart contract.

2.2.1 Smart Contracts

The idea of Smart Contracts is not new. In fact, it’s been here for 25 years, with Nick Szabo defining the

concept in 1996. A smart contract, according to Szabo, is ”a set of promises, specified in digital form,
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including protocols within which the parties perform on these promises” [25].

With the emergence of blockchain technology, Szabo’s concept of smart contracts became a possi-

bility. And nowadays smart contracts are pieces of code that are executed on a Blockchain to formalize

agreements in order to obtain trust from the multiple distrusting parties.

When consensus on the outcome of the execution of a smart contract is achieved by the network

of nodes, the contract’s state gets updated and stored on the blockchain. Smart contract processing

sometimes demands intensive computing operations, and because these tasks are carried out by the

networks’ nodes, each computational operation has a cost, which in Ethereum is referred to as gas.

These execution fees are the costs incurred by the user in having code executed by the miners. Users

can engage with contracts and trade value or data by posting signed transactions to the network.

The reasons that make smart contracts such a powerful premise, the lack of need for confidence

between parties involved and their immutability, can also be viewed as a flaw that must be carefully

managed. Any flaw or error in a smart contract’s programming can be exploited. A smart contract with

vulnerabilities cannot be patched because the code is nearly impossible to correct. Code is law in the

blockchain world. Before the contract is deployed, rigorous code verification is required to ensure that it

is as secure.

Solidity [26] is the world’s first Turing complete programming language [27] to operate in a Blockchain

platform. With a structural design similar to the JavaScript language, Solidity compiles to EVM byte

code [14] so it can be executed by the multiple nodes running the EVM.

Accounts on Ethereum can be externally owned (EOAs) or contract-based. Like bitcoin wallet ad-

dresses, EOAs are controlled by private keys that can be used to make transactions and sign data. The

account is fully controlled by the owner of the private key, while on the contract-based account it’s con-

trolled by the smart contract code. They can receive funds and conduct transactions in the same way

that EOAs may, but there is usually no single private key used to conduct transactions. Instead, smart

contract code defines the logic that governs how transactions are carried out [28].

2.3 Vulnerabilities of Ethereum Smart Contracts

There are numerous types of vulnerabilities in Ethereum smart contracts, and they can manifest them-

selves in various ways. Throughout SmartBugs’ research, they chose the most comprehensive and

prevalent way of describing the vulnerabilities observed in smart contracts, based on the Decentralized

Application Security Project (DASP) Top 10 taxonomy [29]. All of SmartBugs’ tools reported vulnerabili-

ties were mapped into one of those categories.

We will overview each of the DASP 10 categories:
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1. Reentrancy - It is regarded as the most serious smart contract vulnerability discovered to date,

leading to one of the largest attacks on the Ethereum network, the DAO [30]. A reentrancy exploit

is performed by altering the program flow in a way that the smart contract creator did not intend.

By making reentrant calls that take use of a intermediary state, a malicious attacker can withdraw

several times and deplete the balance of a contract.

2. Access control - This vulnerability is ubiquitous in all programs, not just smart contracts. An

attacker can modify contracts if the function modifiers aren’t correctly used to prevent access. On

a smart contract, all important functions must be properly safeguarded. The largest attack on smart

contracts, the Poly Network attack [31], can be categorized as an access control vulnerability. In

August 10 of 2021, the attacker was able to steal over 600 million dollars. Even though the actual

attack occurred on the Poly network, it also affected other blockchains (i.e. Ethereum, Binance)

because the Poly network is a cross chain network [32].

3. Arithmetic Issues - This type of vulnerability, often known as integer overflow and underflow, is

not new and is ubiquitous to many programming languages. As a precaution, all arithmetic data

should be validated, and therefore trusted mathematical libraries, such as the SafeMath module,

should be used.

4. Unchecked Low Level Calls - Low level calls should be avoided wherever feasible since if they

fail, they will return a boolean value instead of a complete rollback of the present execution, while

the code will continue running. When return values are not handled properly, undesirable behavior

can occur.

5. Denial of Service (DoS) - This particular attack involves flooding the network with time-consuming

computations, causing the contract to become unusable for a short amount of time or indefinitely.

6. Bad Randomness - The blockchain provides no cryptographically safe library of randomization,

everything in a contract is publicly available, and the nodes will always outperform the blockchain.

Although there are a number of methods and variables which can create difficult values to predict at

first glance, they are usually not as clear as they appear, and might be more exposed than they

would seem to be influenced by miners.

7. Front Running - When multiple dependent transactions that trigger the same contract are com-

bined into a single block, front running issues may occur. Since transactions are only deemed

valid when they have been validated by a miner, it’s him who determines the sequence in which

transactions are executed. If the transactions were not performed in the correct order, a malicious

participant may launch an attack. One possible method would be by overpaying the miner so that

he processes the attacker’s transaction first.
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8. Time manipulation - The miner can change the block’s timestamp, therefore all intended uses of

the timestamp in the smart contract’s code should be careful reviewed.

9. Short Addresses - Because the EVM accepts poorly defined arguments, short address attacks

are conceivable. It can be used to make poorly programmed clients encode arguments improperly

before adding them in transactions by utilizing specially designed addresses.

10. Unknown Unknowns - Smart contracts, the platforms and its programming languages are still

in their infancy, and their implementation and use are very new. New types of vulnerabilities will

continue to be discovered, and developers must stay aware and up to date. All vulnerabilities that

don’t fit any of the other categories are part of the Unknown Unknowns.

2.4 SmartBugs

The academic community has been working on developing automated analysis tools to find and elimi-

nate vulnerabilities in smart contracts [2,16,33–37]. However, it is difficult to compare and replicate that

research since, while some of the tools are open source, the datasets used are not. Furthermore, most

static analysers for smart contracts must be installed, and some even demand you to install dependen-

cies on which they rely. Others aren’t compatible with all operating systems. Performing smart contract

analysis with many tools, running and installing each one separately, can be a tedious procedure that

wastes time. As a solution, a tool was developed in 2019 to make static analysers easier to use and

to give a simple interface via which the user could analyze various contracts with multiple tools without

having to install any of them.

SmartBugs is an extensible and simple-to-use execution framework for smart contracts developed in

Solidity that facilitates the research and execution of different automated analysis tools [2,21].

Its code1 is written in Python 3 and the tools are run using Docker images. These images can

be found on the Docker Hub2 or locally. The decision to adopt docker images was made to simplify the

inclusion of tools, to allow for reproducible execution, and to maintain the same execution environment for

all tools, allowing the user to run SmartBugs in any environment that has Python3 and Docker installed.

This way, any developer can add their new tool and effortlessly compare it against existing ones.

SmartBugs is made up of the following core components (We can see a visual representation in

Figure 2.2):

1. The Command-Line Interface (CLI),

1SmartBugs (including SBCURATED): https://github.com/smartbugs/smartbugs
2Docker Hub: https://hub.docker.com/

14

https://github.com/smartbugs/smartbugs
https://hub.docker.com/


2. The Web-based User Interface (WUI),

3. The tools’ plugins,

4. The Docker images that are hosted on Docker Hub,

5. The datasets of smart contracts,

6. The SmartBugs’ program. The component that connects all of the SmartBugs components in order

to run the analysis tools.

Figure 2.2: SmartBugs Architecture (Adapted from: [2])

2.4.1 Web-based User Interface

The WUI Dashboard is implemented on top of SmartBugs. This dashboard gives the user easier and

more intuitive access to the tools’ list, named datasets, and the vulnerabilities found by each tool, which

are all mapped to a DASP 10 category. However it’s not dynamically updated, which means that if new

tools or datasets are introduced to SmartBugs, they will not appear in the WUI automatically (unlike

CLI). The dashboard supports ten tools, the SBCURATED dataset, and gives a complete mapping of
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all vulnerabilities found by the ten tools. A preview of the SmartBugs’ WUI Dashboard is shown under

Figure 2.3.

Figure 2.3: SmartBugs’ WUI Dashboard

2.4.2 Tools

SmartBugs’ authors gathered 35 possible suitable tools from a survey [38] and through research. From

those 35 state-of-the-art analysis tools, only the following 10 were picked to be integrated into Smart-

Bugs’ environment:

1. HoneyBadger [39] is a tool that detects honeypots in smart contracts using symbolic execution

and a set of heuristics. Honeypots are smart contracts that appear to have an evident vulnerability

in their design, allowing an arbitrary user to steal Ether from the contract. All the Ether spent by

the user trying exploiting the contract is kept by the contract as it’s not really vulnerable.

2. Maian [40] analyses contracts for three main errors. Suicidal, Prodigal and Greedy contracts.

Suicidal contracts enable an attacker to destroy the entire contract and return the funds to its

owner. A prodigal contract possesses a flaw that enables any person to hijack the contract and

send the funds to themselves. Greedy contracts allow an attacker to lock Ether forever, like in

Ethereum Parity Wallet hack [41].
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3. Manticore [42] is a tool that implements constraint solving, a technique based on dynamic sym-

bolic execution to systematically explore a smart program’s state space.

4. Mythril [43] analyzes EVM byte-code and employs concolic analysis, a hybrid analytic technique

that runs symbolic execution along a specific execution route, to detect several types of security

vulnerabilities.

5. Osiris [44] combines symbolic execution and taint analysis to reliably identify integer errors in

Ethereum smart contracts.

6. Oyente [16] is a static analysis tool that has been forked by multiple other projects, such as Hon-

eyBadger and Osiris. It performs symbolic execution on EVM byte-code to detect vulnerabilities.

7. Securify [34] analyzes EVM byte-code using the Souffle datalog solver in order to derive mean-

ingful and accurate sematic information about the smart contract.

8. Slither [45] is a static analysis framework that translates Solidity into an intermediate representa-

tion called SlithIR and extracts and refines information using well-known program analysis tech-

niques like dataflow and taint tracking.

9. SmartCheck [33] is a static analysis tool that detects security flaws and poor coding practices. It

analyzes Solidity source code for lexical and syntactical flaws.

10. Solhint [46] is a linting solution tool that detects syntax-related security code vulnerabilities.

2.4.3 Datasets

As the smart contracts datasets are not publicly available, if a developer wants to test its new tool and

compare it to existing work, it would be necessary to contact the authors of alternative tools and hope

that they would give access to their datasets. To address this, SmartBugs supplies two smart contracts

datasets.

The SBCURATED, a dataset of 143 manually annotated Solidity smart contracts which can be used

to test the precision of analysis tools, in order to be able to execute and compare automated analysis

methods, thus laying the groundwork for fair comparisons. It was built by combining smart contracts from

three separate places: GitHub repositories, contract-analysis blog postings, and the Ethereum network.

The vast majority of contracts came from GitHub repositories and the Ethereum network.

This dataset comprises 143 vulnerable smart contracts with 191 manually labeled vulnerabilities,

categorized into the DASP 10 taxonomy, which we reviewed under Section 2.3. For each DASP 10
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vulnerability category, the Table 2.1 provides the number of contracts, vulnerabilities and lines of code

of that category.

Table 2.1: Categories of vulnerabilities available in the SBCURATED (Source: [2])

The SBWILD has a total of 47,518 contracts and contains all unique Solidity smart contracts in

the Ethereum Blockchain that have their source code available in Etherscan3. It was gathered by the

co-authors of [47] and it contains all the different contracts from Ethereum, because Etherscan allows

anyone to download any contract’s source code as long as it’s been made available and you know its

address.

2.4.4 Analysis

The biggest experimental execution on smart contract static analysis was performed in [21], both in

terms of tool quantity and execution time. Seven tools were used to do 333,109 analyses, which took a

total of 330 days and 15 hours to complete, nearly a full year of continuous analysis. All of the logs and

raw analysis findings are accessible in the SmartBugs4 repository on GitHub.

It was also performed an experimental analysis using the same tools on the SBCURATED dataset

with the purpose of calculating the seven tools’ ability to identify vulnerabilities in the 69 contracts. All of

the logs and raw analysis findings are accessible in the SmartBugs5 repository on GitHub.

The accuracy result produced by the tools in this analysis is shown in Table 2.2. It shows the amount

of vulnerabilities that have been detected based on the following criteria: A vulnerability is deemed as

3https://etherscan.io/
4SBWILD analysis results: https://github.com/smartbugs/smartbugs-wild
5SBWILD analysis results: https://github.com/smartbugs/smartbugs-results
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correctly detected when a tool identifies a vulnerability of a specific category at a specific line, and it

matches the same vulnerability that has been annotated in the dataset [48].

Category Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total
Access Control 0/19 0% 0/19 0% 4/19 21% 4/19 21% 0/19 0% 0/19 0% 0/19 0% 4/19 21% 2/19 11% 5/19 26%
Arithmetic 0/22 0% 0/22 0% 4/22 18% 15/22 68% 11/22 50% 12/22 55% 0/22 0% 0/22 0% 1/22 5% 19/22 86%
Denial Service 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/ 7 0%
Front Running 0/7 0% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 2/ 7 29%
Reentrancy 0/8 0% 0/8 0% 2/8 25% 5/8 62% 5/8 62% 5/8 62% 5/8 62% 7/8 88% 5/8 62% 7/ 8 88%
Time Manipulation 0/5 0% 0/5 0% 1/5 20% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 2/5 40% 1/5 20% 3/ 5 60%
Unchecked Low Calls 0/12 0% 0/12 0% 2/12 17% 5/12 42% 0/12 0% 0/12 0% 3/12 25% 4/12 33% 4/12 33% 9/12 75%
Other 2/3 67% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 3/3 100% 0/3 0% 3/ 3 100%
Total 2/115 2% 0/115 0% 13/115 11% 31/115 27% 16/115 14% 17/115 15% 10/115 9% 20/115 17% 13/115 11% 48/115 42%

Table 2.2: Accuracy of the 7 tools based on the vulnerabilities detected on the SBCURATED analysis’ result
(Source: [2])

Among the seven tools, Mythril has the best accuracy. While the average of all tools is 12 percent,

Mythril correctly identifies 27 percent of all vulnerabilities. The tools that detect the most different types

of categories are Mythril, Slither, and SmartCheck as they detect 5 different categories. The authors

also combined the tools together to calculate the best performance as presented in Table 2.3. As a

result, they recommend combining Mythril and Slither, as it detects 37 percent of all vulnerabilities and

provides a decent ratio of performance and execution cost. The second best pair, Mythrill and Oyente,

identifies 29 percent of all vulnerabilities.

Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck
Honeybadger 2/115 2% 15/115 13% 33/115 29% 18/115 16% 19/115 17% 12/115 10% 20/115 17% 15/115 13%
Maian 13/115 11% 31/115 27% 16/115 14% 17/115 15% 10/115 9% 20/115 17% 13/115 11%
Manticore 32/115 28% 26/115 23% 26/115 23% 19/115 17% 27/115 23% 20/115 17%
Mythril 33/115 29% 33/115 29% 31/115 27% 42/115 37% 33/115 29%
Osiris 22/115 19% 21/115 18% 31/115 27% 23/115 20%
Oyente 22/115 19% 32/115 28% 25/115 22%
Securify 25/115 22% 16/115 14%
Slither 25/115 22%
Smartcheck

Table 2.3: Combined accuracy of the 7 tools based on the vulnerabilities detected on the SBCURATED analysis’
result (Source: [2])

2.5 SARIF

2.5.1 Standard OASIS

Organization for the Advancement of Structured Information Standards (OASIS)6 is a nonprofit organiza-

tion that develops open standards for multiple areas such as Blockchain, Cloud computing, emergency

management, and so on. It was founded as SGML Open to promote their standard for defining gen-

eralized markup languages for documents, SGML. Later with the community adoption of XML as its
6https://www.oasis-open.org/
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standard, SGML Open changed their name to OASIS Open and started working on standards for a vari-

ety of other topics. OASIS is composed of members from various companies such as Microsoft, Oracle,

IBM and individuals and employees from other companies.

After developing several accepted stardards like ebXML7, for the global use of electronic business

information, OData8, for the creation and consumption of queryable and interoperable REST API, UDDI9

and others, they developed SARIF and SASP [49].

2.5.2 SARIF - A comprehensive analysis standard

Common static analysis tools usually generate outputs in their own distinct format. As a result, software

developers are faced with the task of parsing and aggregating various format outputs so that they can

comprehend and acknowledge its information. In order to unify the output format of distinct static anal-

ysers, a standard file format for exchanging results was proposed. SARIF originated at Microsoft, and

is now a standard being developed under OASIS. The technical committee has members from several

static analysis tool vendors and large-scale users [49].

SARIF is JavaScript Object Notation (JSON) based format and aggregates all possible information

about an analysis. From its results, to its metadata such as schema, version and URI, and even to the

execution path, SARIF’s standard concentrates all this information in a single file. It has been increasing

its popularity as recent developed tools are exporting its outputs under this format and older tools are

converting to its standard (i.e. CogniCrypt10, Clang Static Analyzer11 and Pylint12) [50,51].

In this document we provide an overview of SARIF 2.1.0 [52].

2.5.2.A Root Structure

The SARIF’s standard format [52] is composed of following three main root keys, as shown in Listing

2.1:

1. version - This parameter identifies the SARIF’s format version (currently v2.1.0).

2. $schema - Specifies the URI of the JSON Schema for the given version.

3. runs - The heart of the analysis, an array that contains all the information related to the analysis

where each object corresponds to a different static analysis tool.
7ebXML: https://www.ebxml.org/
8OData: https://www.odata.org/
9UDDI: https://uddi.xml.org/

10CogniCrypt: https://www.eclipse.org/cognicrypt/
11CSA: https://clang-analyzer.llvm.org/
12Pylint: https://www.pylint.org/
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Listing 2.1: SARIF Root Object

1 {

2 "version": "2.1.0",

3 "$schema": "http://json.schemastore.org/sarif -2.1.0 - rtm.4",

4 "runs": [ 2.2 ]

5 }

The parameter runs’ values, which are shown under Listing 2.2, are divided into two categories,

the analysis results, composed of the keys artifact, invocations, results, and logicalLocations, and the

analysis metadata, composed of the tool key [53].

Listing 2.2: SARIF runs subkeys

1 "runs": [

2 {

3 "artifacts": [ 2.3 ],

4 "invocations": { 2.4 },

5 "logicalLocations": [ 2.5 ],

6 "results": [ 2.6 ],

7 "tool": { 2.7 }

8 }

9 ]

2.5.2.B Analysis Results

The analysis results details the information about the analysis itself, what was analyzed, how it was

analyzed, when it was analyzed and the analysis’ results. These are detailed below:

Note: All snippets shown below are created based on Oyente [16], one of SmartBugs’ static analysis

tool, analyzing the contract SimpleDao [30]. Due to the lack of output information produced by the tools,

these examples correspond to a more complete output compared to ours. These examples serve as

a global example to incorporate the maximum of information into SARIF from a future added tool. The

actual SARIF output for the analysis of SimpleDAO produced by Oyente can be found in Listing 3.1.

• artifacts - A list containing all files examined by the tool (even if results were not detected). The
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URI string must not start with a backslash and must be relative to the repositories root. An example

for the artifact key is shown in Listing 2.3.

Listing 2.3: SARIF artifacts subkeys

1 "artifacts": [

2 {

3 "location": {

4 "uri": "dataset/reentrancy/simple_dao.sol"

5 },

6 "sourceLanguage": "Solidity",

7 "hashes": {

8 "sha -256": "b13ce2678a8807ba0765ab94a0ecd394f869bc81"

9 }

10 },

11 ]

• invocations - Describes the invocation information of the analysis which mainly includes the start

and end time - represented under the ISO 8601:2004 [54] - the environment variables used, the

tool execution and configuration notifications and the command used to run the analysis. SARIF

uses the toolConfigurationNotification when describing conditions relevant to the tool and toolExe-

cutionNotification when describing the runtime environment. An invocation representation example

is shown in Listing 2.4.

Listing 2.4: SARIF invocations subkeys

1 "invocations": {

2 "commandLine": "python oyente.py -s dataset/reentrancy/

simple_dao.sol",

3 "responseFiles": [

4 {

5 "uri": "dataset/reentrancy/simple_dao.sol",

6 "uriBaseId": "SRCROOT",

7 },
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8 ],

9 "startTime": "2020 -11 -16 T15:18:30Z",

10 "endTime": "2020 -11 -16 T15:20:15Z",

11 "fileName": "simple_dao.sol",

12 "workingDirectory": {

13 "uri": "file:/// home/smartbugs /"

14 },

15 "environmentVariables": {

16 "PATH": "..",

17 "HOME": "..",

18 },

19 "toolConfigurationNotifications": [

20 {

21 "level": "note",

22 "message": {

23 "text": "Smart Contract Compiled Successfully"

24 }

25 }

26 ],

27 "toolExecutionNotifications": [

28 {

29 "level": "note",

30 "message": {

31 "text": "Done [1/1]: dataset/reentrancy/

simple_dao.sol \n Analysis completed ."

32 }

33 },

34 ]

35 }

• logicalLocations - This key contains information yielded by the static analysis tool about logical

location (e.g. contract name and functions). An example is shown in Listing 2.5.
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Listing 2.5: SARIF logicalLocation subkeys

1 "logicalLocations": [

2 {

3 "kind": "contract",

4 "name": "SimpleDAO"

5 },{

6 "name": "withdraw",

7 "fullyQualifiedName": "SimpleDao.withdraw",

8 "kind": "function"

9 }

10 ]

• results - This array contains the results yielded by the static analysis tool. Each object contains a

defect reported by the analysis. The results key can be the most complex of the runs object and

as such we will define it next. A visual example for the results object is shown in Listing 2.6

– ruleId - The distinctive identifier for the rule evaluated to produce the result. This key must

be unique for each of the vulnerabilities reported.

– message - Describes the defect detected by the static analysis tool.

– level - Expresses the severity of the results. It’s composed of one of the following values:

1. warning - Meaning a problem was found.

2. error - Meaning a serious problem was found.

3. note - Meaning a minor problem was found or a possibility to improve the code.

4. none - Meaning no problem was found.

– locations - An array where each object describes an exact location for the defect found.

It can be expressed both as a physicalLocation (e.g. file name, line and column number)

and/or as a logicalLocation (as we have seen previously). We recommend always using the

physicalLocation as it’s the one that most consumers digest.

Listing 2.6: SARIF results subkeys

1 "results": [

2 {
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3 "ruleId": "Reentrancy_6"

4 "kind": "fail",

5 "message": {

6 "text": "Re -Entrancy Vulnerability ."

7 },

8 "level": "warning",

9 "locations":

10 [

11 {

12 "physicalLocation": {

13 "artifactLocation": {

14 "uri": "dataset/reentrancy/simple_dao.sol

",

15 },

16 "region": {

17 "startLine": 19,

18 "endLine": 19,

19 "startColumn": 18,

20 "endColumn": 23,

21 "snippet": {

22 "text": "bool res = msg.sender.call.

value(amount)();"

23 }

24 }

25 },

26 "logicalLocation": {

27 "fullyQualifiedName": "SimpleDAO.withdraw",

28 "index": 1

29 }

30 }

31 ]

32 }

33 ]
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2.5.2.C Analysis Metadata

The analysis metadata specifies all information regarding the tool that run the analysis and produced its

results. The tool key is composed of the name, version, description and an array containing the detailed

rules for the warnings found by the analysis. It may also contain an array for the detailed notifications

yielded in the results and an URI for the tool to help the developer responsible for addressing the result.

Each rule should also contain a name identifier for uniformity of experience across all tools that produce

SARIF. The friendly name should be a single Pascal formatted identifier13. An example for the object

tool is shown in Listing 2.7.

Listing 2.7: SARIF tool object

1 "tool": {

2 "name": "Oyente",

3 "version": "0.4.25",

4 "informationUri": "https:// oyente.tech/",

5 "fullDescription": {

6 "text": "Oyente runs on symbolic execution, determines

which inputs cause which program branches to execute,

to find potential security vulnerabilities. Oyente

works directly with EVM bytecode without access high

level representation and does not provide soundness

nor completeness ."

7 },

8 "rules": [

9 {

10 "id": "Reentrancy_6",

11 "name": "ReentrancyVulnerability",

12 "shortDescription": {

13 "text": "Re -Entrancy Vulnerability ."

14 }

15 "fullDescription": {

16 "text": "A possible Callstack Depth Attack was

found on the code thus producing a Re-Entrancy

Vulnerability"

13What is a Pascal formatted string?
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17 }

18 }

19 ]

20 }

For a more simple and step-by-step tutorial on how to replicate SARIF and apply it to a tool, please

refer to the docs in [55].

2.6 SASP

SASP [49] is a standardized communication protocol for communicating the static analysis tools’ results

to their consumers. Furthermore it is also designed for batch execution of analysis tools to actively

communicate the results between each other. Basically, SASP acts as a service where clients (i.e.

IDEs) can request results from static analysis tools to be integrated in the code. For the protocol to

respond to this query quickly, it needs a common output standard to aggregate all analysis results

efficiently. It achieves this by strongly leveraging SARIF. Currently, static analysis tools need an ad-hoc

point-to-point communication between them and the developers’ tools. A visual example for the currently

needed connections is shown in Figure 2.4.

Figure 2.4: Point-to-point connections between static analysis tools and developer tools (Adapted from: [3]).

Opposed to this example, we introduce SASP’s vision, where both static analysis tools and devel-

oper’s platforms would communicate through SASP in order to aggregate all analysis tools outputs and

27



produce a standardized result ready to be consumed by the developer’s tool that made the request. An

example for this vision is shown in Figure 2.5.

Figure 2.5: SASP Vision: Using SASP for all communications between static analysis tools and developer tools
(Adapted from: [3]).

This way, SASP can be integrated with:

• IDEs and Editors - To overlap static analysis results on the code.

• Code Review Systems - Like GitHub’s pull request system.

• Results Analytics - To create a report or dashboard of multiple static analysis tools.

• Bug Tracking - To see if a defect is detected in an analysis.

• Continuous Integration - To indicate a status of a build, for example, if there is a serious security

vulnerability it would report the build has ”failed”.

Generally, SASP promises a more explicitly fine-tuned integration compared to other existing server

protocols (i.e. Language Server Protocol14) [51], which in turn means more work in the server. However

SASP is still in the early stage of its development and is still missing a formal specification for the protocol

itself.

14LSP: https://microsoft.github.io/language-server-protocol/
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2.7 GitHub

GitHub15, GitLab16, Gitorius17, BitBucket18 are all web hosting applications for collaborative software

development projects with a few differences between each other. More and more frequently developers

program collectively in these online platforms. Either is because modern programs require large bodies

of code, or because teams are distributed around the globe or simply due to being more practical to

have all your code centralized in one place. We chose GitHub as the ecosystem to further integrate

SmartBugs given that it is the only that aggregates all following attributes:

1. It’s free of use where the free version has the maximum limits compared to each of the platforms

(i.e. max users for a project, max amount of storage used).

2. Provides an intuitive version control system.

3. Is the platform with the most amount of users (over 56 million developers) and the most amount of

projects (over 190 million repositories) making it the largest host of source code in the world.

4. Features a SARIF processing mechanism for vulnerabilities scanning. [56]

5. Is the only platform with GitHub Actions19 which will greatly facilitate integrating a SASP service

into GitHub’s workflow.

6. Features an Online Martketplace where users can add actions to their repositories with a single

click.

2.7.1 Workflow

First, we are going to start with an overview of GitHub’s workflow.

Branch GitHub is a branch based workflow platform. This means that a project has a main branch

that should be ready for deployment and that it also has secondary branches, created by the owner

or any other developer, with the goal of improving the code. When a developer has a different idea or

feature that he wants to add in a project, he starts by creating a new branch. This technique exists

to help developers managing a project’s workflow. When this branch is created, it’s created a new

environment where developers can try out their new ideas. As the changes they make won’t affect the

15GitHub: https://github.com/
16GitLab: https://about.gitlab.com/
17Aquired by GitLab in 2015. Former: https://gitorious.org/
18BitBucket: https://bitbucket.org/
19GitHub Actions: https://docs.github.com/en/actions
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main branch, developers are free to experiment and commit their code, always knowing that their code

won’t get merged before the project’s collaborators review and accept their changes.

Commit After creating the new branch, a developer can add, edit or delete a file. When he adds

these changes to his new branch, he is making a commit. Commits create a clear history of a developer’s

work so that his collaborators can easily understand what he has done. Each commit can be associated

with an descriptive message in order to explain why the changes were made. Moreover, each commit is

able to be rolled back in case an error or bug are later found.

Pull Request Pull Requests start a discussion about the commits made inside that branch. Ev-

eryone is able to see all the changes made in a fairly intuitive interface. A developer can start a pull

request at anytime during development. If a developer is stuck or has a question, he can also start a

pull request even without code changes. Ultimately these are started when a developer is ready for

someone to review their work and he can even mention specifically a user or a team for feedback.

Discussion and Review After opening a pull request, the team reviewing the changes might

have comments or questions. Perhaps the design is not up to the project’s standards, the changes

proposed may be failing some tests or everything is in order and good to go. Pull Requests are made to

encourage this discussion. In between discussions, a developer is still able to push some code, specially

after someone pointing out a bug or flaw. GitHub will show the new commits and feedback in an unified

and intuitive Pull Request view. This is also where we recommend for a developer to run the SmartBugs’

analysis.

Deploy GitHub allows deployment of the branch before merging to the main branch for final testing

in production. After a Pull Request’s changes passes the tests and is reviewed, a developer can deploy

the changes to test the final product. If the changes cause issues, the developer can still roll back by

deploying the main branch.

Merge Finally that all changes have been reviewed and verified, a developer can now merge its

code into the main branch. After merging, Pull Requests keep a history of the changes made so anyone

can search for a specific one, go back in time to that point of the repository and even revert all changes

if they decide to take the project on another direction.

A visual representation of the GitHub’s workflow is shown in Figure 2.6. The workflow’s step in purple

is where we recommend to integrate SmartBugs.
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Figure 2.6: GitHub’s new branch workflow. SmartBugs automated analysis is recommended to be integrated into
the review and discussion step (in purple) (Source: [4]).

2.7.2 Actions

Automation plays a very important part in improving collaborative software development. GitHub Actions

enables developers to create custom software development life-cycle workflows directly from the GitHub

repository. Since it’s fully integrated into GitHub, a developer can use this feature to perform any auto-

mated job at any stage of GitHub workflow. It can perform changes on the code and even collaborate

over pull request and issues, including Continuous Integration (CI).

The basic notion of Continuous Integration is that all work made by a team is continually compiled,

built and tested [57]. CI on GitHub is merely the most used implementation of the GitHub Actions for

automation processing and also the most documented one.

One study [58] has shown that teams working on CI-enabled repositories on GitHub are significantly

more effective at merging pull requests and are considerably more able to discover bugs than teams not

using CI. Which suggests that CI improves productivity without having a negative effect on code quality.

Another study [59] showed that CI saves on average one review comment per pull request, that the

changes induced requests by developers decrease while the number of changes to the pull request

code does not decrease. In our work one changed line of code can be the difference between a well

established and reliable protocol on the Ethereum network and millions of US dollars lost due to a bug

in the code.

GitHub Actions are event driven, meaning a developer can specify a series of commands to be run

after a specific event has occurred. This gives a developer the ultimate freedom to customize work and
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automate tasks all along the software development life-cycle. To be more specific, we will now present

an overview on how it works.

GitHub Actions uses the YAML syntax to define events, jobs and steps. These YAML files are called

Workflows and are stored in a project’s repository, inside the directory ”.github/workflows”. A project

can have any number of YAML workflows. A visual example of a GitHub’s YAML workflow is shown in

Section 3.2 specified by the following attributes:

Workflow Is an automated procedure that any developer can add to their repository. It can have

one or more jobs and is triggered by an event. The workflow can be used from building, to testing, to

packaging, to releasing and even to deploying a GitHub project.

name Is the workflow’s name which will appear on the GitHub’s Action tab. Is optional.

on Specifies the Event which is a determined activity that will trigger a workflow. It can be specified

to run on certain tags, branches or paths.20

jobs Groups together all will run on that workflow. A job is the set of steps to be executed. If a

workflow has multiple jobs, these will run in parallel by default.

runs-on Configures the job to be run that specific machine. The self-hosted means GitHub will find

a machine matching the job’s label.

steps Is an individual task which aggregates commands running inside a job. It can be either a

shell command or an action and it can share data with different steps inside the same job.

uses Is a standalone command. An action can be created or called from existing ones on the

GitHub community. In the example below, the actions/checkout@v2 is telling GitHub to check out the

repository and download it to the runner, allowing the runner to perform actions against the code.

run This keyword will tell GitHub to execute the command directly on the runner’s shell.

2.7.3 Marketplace

GitHub Marketplace21 is an online platform where you can share your apps and actions with the rest of

the GitHub community. This provides a convenient way to add SmartBugs as an automated action to

every Solidity developers’ repository.

In order to publish a GitHub Action on the Martketplace the following criteria must be met:

20Full list of events: https://docs.github.com/en/actions/learn-github-actions/events-that-trigger-workflows
21GitHub Marketplace: https://github.com/marketplace
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• The action must provide value to the GitHub community.

• It must not persuade users away from GitHub.

• It has to include valid contact information for the publisher.
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In this chapter we present our improvements on the SmartBugs framework. We start by presenting

our system’s architecture. We then describe our implementation for the SARIF converters and how to

replicate them for other tools. We overview our server solution where clients can request a SmartBugs

analysis with a SARIF output. Furthermore, we present our chosen consumer, GitHub, and the advan-

tages and disadvantages of its two adapters, for running an automated analysis on the user’s repository.

Finally, we briefly discuss the SmartBugs’ changes and added features.

3.1 Motivation

Even though SmartBugs incredibly eases the research and reproduction of new static analysis tools,

there is still a big community of developers left outside of SmartBugs’ scope, the smart contract devel-

opers. While using SmartBugs for reviewing their contracts, a developer tends to find himself with a

huge overhead on parsing the outputs, unifying the results and acknowledge the information produced

by its tools. Apart from missing an option to discard duplicate results and false positives, SmartBugs

also lacks an easy and intuitive interface to display its results.

Some developers also lack the necessary computer power to run the analysis. Or perhaps don’t

want to install the requirements to run SmartBugs as they’re still required to install Python, Docker and

all the mandatory modules. If a developer has all the conditions stated just now, it still needs to manually

run the analysis himself. What doesn’t feel like a big burden, could be turned into something automatic,

like a step in the continuous integration process, which means one less detail that the developer needs

to worry about.

We introduce SmartBugs as a Platform-as-Service (PaS) to automate and increase the usage of

static analysis tools from smart contract developers. SmartBugs now includes the possibility of display-

ing the results of all analyses executed in an unified single file, formatted in the same standard, for all of

its tools. Furthermore, it provides two plugins for one end consumer where the developer is only required

to submit the code and SmartBugs’ automation handles the rest. Moreover we have added Conkas, a

new promising tool, to its framework that is very low time consuming with great accuracy metrics.

Our developed system’s architecture can be seen in Figure 3.1. Basically, we have SmartBugs that

can now be integrated with other tools that consume SARIF. We then have the SASP service who

is responsible for executing the analysis, whether requested by GitHub or any other service consumer.

Finally, we have GitHub, our chosen end consumer, which can request an automatic SmartBugs analysis

either directly on a GitHub allocated server or through the SASP service. GitHub will then inflate the

repository code with the analysis results.
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Figure 3.1: Overview of the final implementation. This concept can be applied to any other static analysis tool.

We hope with this work to bring out this standardized methodologies to the attention of all static

analysis developers in order to increase their adoptions. We also describe how they can replicate our

work to help build safer and more secure coding practices.

3.2 SARIF Converters

The SARIF converters for each tool were written in Python based on the sarif om1 module developed by

Microsoft on GitHub. This module contains classes for the object model presented by the Static Analysis

Results Interchange Format (SARIF) Version 2.1.0 file format, an OASIS Committee Specification, which

we reviewed in Chapter 2.5.

When running SmartBugs’ analysis on a repository, it provides three options for generating the SARIF

output: Creating an independent file for each of the files analysed, aggregating the SARIF results by tool

and generating a unique file containing all results of the analysis. Most consumers request the last one

as all results of an analysis must be together in a single file.

1GitHub sarif om module: https://github.com/microsoft/sarif-python-om
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Each tool’s parser mechanism was developed with a plugin design pattern, where each converter

has its own Python file, to ease the addition of converters for other tools. These can be found in the

smartBugs/scr/output_parser/ folder2. Furthermore we developed a sarif converter from sarif om to

SARIF JSON format which had been requested by multiple users on GitHub, with no statement from

SARIF’s creator on how to achieve this conversion.

As we have seen in Chapter 2.5, SARIF’s standard can be pretty complex and confusing. In order

to make not only our converters’ code easier to understand, but also to make adding another converter

a cleaner task, we have created a useful class, the SarifHolder, and some parsing functions for SARIF.

They simplify the construction of SARIF outputs by reducing the number of fields that a developer has

to research while programming the tool. These functions were developed based on a balance from

our research, SmartBugs tools’ outputs and GitHub’s SARIF consumer parameters. They should not

be regarded as definitive nor exhaustive as they do not reflect all possible details on this standard.

However they manage to agglomerate all fields outputted by every tool added so far and thus are deemed

comprehensive enough for our work.

In Figure 3.2 we can see a diagram representation of our SARIF construction. The title of each

concept represents the objects name and in the case of the parse represents one of the simplified

functions. In red we have the return object type of each concept. Below we specify the attributes of each

object and their type, using bold to define the mandatory ones.

With this diagram we hope to facilitate the re-usage of our code so that more and more static analysis

developers adopt SARIF’s standard. Not only in a comprehensive Solidity environment but also for all

purpose programming.

2SmartBugs SARIF converters on GitHub: https://github.com/smartbugs/smartbugs/tree/master/src/output_parser
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Figure 3.2: SarifHolder Construction Design - A simplified SARIF version ready to be consumed

Due to the scarcity of output information generated by the tools regarding the environment in which

they were run, we opted to omit the invocations key. Even though it collects fairly important content for

the analysis, most consumers end up generating invocations’ fields themselves. For example, GitHub

only displays the time of the analysis sub-field, and when it’s missing it is automatically replaced with the

time when the SARIF file was received by the consumer. This small difference in timestamp windows

was regarded as irrelevant due to having to effect in any other part of the analysis.

For a comparison with the examples from 2.5.2 we provide the actual SARIF output using one of our
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converters for the analysis of the contract SimpleDao completed by the Oyente [16] tool in Listing 3.1.

Listing 3.1: SARIF output produced by Oyente analysing SimpleDAO

1 {

2 "runs": [

3 {

4 "tool": {

5 "driver": {

6 "name": "Oyente",

7 "fullDescription": {

8 "text": "Oyente runs on symbolic execution, determines which

inputs cause which program branches to execute, to find

potential security vulnerabilities. Oyente works directly with

EVM bytecode without access high level representation and

does not provide soundness nor completeness ."

9 },

10 "informationUri": "https:// oyente.tech/",

11 "rules": [

12 {

13 "id": "DenialService_2",

14 "name": "DenialServiceVulnerability",

15 "shortDescription": {

16 "text": "Callstack Depth Attack Vulnerability ."

17 }

18 },

19 {

20 "id": "Reentrancy_6",

21 "name": "ReentrancyVulnerability",

22 "shortDescription": {

23 "text": "Re -Entrancy Vulnerability ."

24 }

25 }

26 ],

27 "version": "0.4.25"

28 }

29 },

30 "artifacts": [

31 {

32 "location": {

33 "uri": "dataset/reentrancy/simple_dao.sol"

34 },

35 "sourceLanguage": "Solidity"

36 }
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37 ],

38 "logicalLocations": [

39 {

40 "kind": "contract",

41 "name": "SimpleDAO"

42 }

43 ],

44 "results": [

45 {

46 "message": {

47 "text": "Callstack Depth Attack Vulnerability ."

48 },

49 "level": "warning",

50 "locations": [

51 {

52 "physicalLocation": {

53 "artifactLocation": {

54 "uri": "dataset/reentrancy/simple_dao.sol"

55 },

56 "region": {

57 "startColumn": 18,

58 "startLine": 19

59 }

60 }

61 }

62 ],

63 "ruleId": "DenialService_2"

64 },

65 {

66 "message": {

67 "text": "Re -Entrancy Vulnerability ."

68 },

69 "level": "warning",

70 "locations": [

71 {

72 "physicalLocation": {

73 "artifactLocation": {

74 "uri": "dataset/reentrancy/simple_dao.sol"

75 },

76 "region": {

77 "startColumn": 18,

78 "startLine": 19

79 }

80 }

81 }
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82 ],

83 "ruleId": "Reentrancy_6"

84 }

85 ]

86 }

87 ],

88 "version": "2.1.0",

89 "$schema": "https://raw.githubusercontent.com/oasis -tcs/sarif -spec/master/

Schemata/sarif -schema -2.1.0. json"

90 }

3.2.1 SARIF’s Vulnerabilities Mapping Table

Since SARIF requires more detailed information than what most tools generate, we created a table for

mapping all vulnerabilities found. This table serves two purposes: Identify each vulnerability and inflate

the SARIF output with extra required information about what was reported; And facilitate the addition of

new SARIF keys in order to produce a more comprehensive report in the future.

At the moment, this table is used to inflate the ruleId property and the name key. For the first one it

is critical to be unique for each of the vulnerabilities reported regardless of the tool. We created each

ruleId by concatenating the vulnerability type with an incrementing counter, however this is merely a

suggestion, it can be anything as long as it is unique in the table. Finally, the name key is inflated with

the category type following the DASP-10 taxonomy, for each of the reported rules.

This table can be found in the smartBugs/src/output_parse/sarif_vulnerability_mapping.csv

file. The vulnerabilities reported by Oyente can be seen mapped in Table 3.1.

Tool RuleId Vulnerability Type
oyente Arithmetic 11 Integer Overflow. Arithmetic
oyente Arithmetic 12 Integer Underflow. Arithmetic
oyente AccessControl 16 Parity Multisig Bug 2. AccessControl
oyente DenialService 2 Callstack Depth Attack Vulnerability. DenialService
oyente Reentrancy 6 Re-Entrancy Vulnerability. Reentrancy
oyente TimeManipulation 3 Timestamp Dependency. TimeManipulation

Table 3.1: SARIF Vulnerability Mapping Table for Oyente

3.3 SASP

We build SASP, as we have seen in Chapter 2.6, to work as a server for communicating the static

analysis tools’ results to their end consumers. Basically, SASP’s objective is to connect static analysis
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tools and development platforms via itself in order to combine all analysis tool outputs and provide a

standardized results output that can be consumed by the developer tool that initiated the request.

On a practical level our objective for SASP is when a developer submits the code, the end consumer

automatically sends an analysis request to SASP who is then going to initiate an analysis for the submit-

ted code. This analysis’ result will be returned to the end consumer who will then notify the programmer

of any reported vulnerabilities found. A visual representation of SASP can be seen in Figure 3.3.

Figure 3.3: Example of a end consumer working with SASP to populate comments for an arbitrary code submitting

SASP was developed using Python3 for compatibility reasons with SmartBugs, with the Flask module.

Its code is a single Python file that requires SmartBugs repository installed in the computer and declared

in the $PY THONPATH environment variable. We chose the Flask module due to its simplicity and

automatic thread handling when receiving requests from multiple users.

Even though there is no formal specification for the SASP, we followed these considerations [49]:

• The protocol is HTTP based.

• It has a secure authentication mechanisms based on a token auth.

• Sessions and state are present as the user repository gets stored in the server based on the token

authentication.
3SASP repository on GitHub: https://github.com/dindonero/smartbugs-sasp
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• Results from static analysis tools may be vast, so the protocol supports streaming the results. This

is directly supported by Python and Flasks underlying mechanics.

• Fault tolerance is very important so dropped connections, timeouts, authentication or authorization

failures, badly formed requests and so forth, are addressed.

As good code practice states, we should make one unique version of SmartBugs for all of its usage.

In order to achieve this, we must use the same code for running SmartBugs locally and for executing it

on the SASP server. This quickly presented a problem. The way that SmartBugs works is by reading

the code files that is going to analyze directly from the disk, which when running in a web-server allows

for a Directory Traversal Attack. This exploit is a web security vulnerability (often referred to as file path

traversal) that allows an attacker to read arbitrary files on a server that is executing an application. This

files could contain application code and data, back-end system credentials, and critical operating system

files. In SmartBugs’ situation, an attacker was even able to write to arbitrary files on the server, allowing

them to change application data or behavior which could eventually lead them to gain complete control

of the server. Our solution was based on the mitigation provided by [60] in II.C.1. since we are working

with an HTTP server and where, in our specific case, path strings starting from the root directory are not

a concern.

3.4 GitHub Review Bot

As we intend to entice developers on a more frequent use of the static analysis tools, consequentially

resulting in less vulnerable programs (i.e. smart contracts) being deployed, we provide a complete au-

tomatic setup on top of one selected end consumer. And so, in contemplation of providing a mechanism

for a straightforward interpretation of the results produced by these tools, we created an automated

GitHub review bot4 using GitHub’s SARIF processing feature to intuitively display the analysis results as

inflated comments in the code.

The automated analysis plugin is written in YAML for GitHub Actions, as we have seen in Chapter

2.7.2. Our Action takes as input the tools that the user wants to run in the analysis and the generated

token github.sha, unique to each GitHub account. The user must bear in mind that the size of the

repository and the number of tools chosen will exponentially increase the cost in computation time, so

we recommend choosing at most 3 tools. Later on, and depending on the adoption of our system, we

might change the GitHub’s generated token to a paid token where only subscribing users get access to

this premium system (while the other will have only the free version which we will see in 3.4.1).

4SASP GitHub Adapter: https://github.com/dindonero/smartbugs-static-analysis/
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In order to run the SASP analysis, a user must add a .yml file to its repository in the .github/

worflows and specify when to trigger the analysis and the tools to be executed. A user can specify

the action to start based on a schedule event (based on time, i.e. run every week), a manual event

(not automatic) and/or a triggering event, e.g. pull request when a pull request is created or push every

time code is pushed into the repository. An example for this config file can be seen in Listing 3.2. The

full list of events and their descriptions can be found here: https://docs.github.com/en/actions/

learn-github-actions/events-that-trigger-workflows

This action will then execute, in the user’s repository where it was added, the code deployed in the

action present in dindonero/smartbugs-static-analysis@v1.0. This is executed in a GitHub hosted

machine.

Our action’s implementation is based on executing a versatile Python file that reads the entire repos-

itory and uploads it to our SASP server. This design was selected so that it could be executed indepen-

dently of the GitHub environment. Any IDE or consumer that wants to use our service is able to do so

by simply running the Python code in our repository or by directly making a request to our server.

The request must be HTTP POST to http://perseus.inesc-id.pt:8000/. Its body must be composed by

an unique identifiable string, the ”user-hash” key, and a list of strings describing the tools to be executed,

the ”tools” key. The files to be uploaded must be appended in the multipart/form-data part of the request.

Listing 3.2: Example of the file .github/workflows/smartbugs.yml that triggers the SmartBugs static analysis auto-

matically at every pull request

1 name: "Run SmartBugs static analysis on this repository"

2

3 # Specify when the workflow is run

4 on:

5 pull_request:

6

7 jobs:

8 deployment:

9 runs -on: ubuntu -latest

10 steps:

11 - name: Run SmartBugs Static Analysis

12 uses: dindonero/smartbugs -static -analysis@v1 .0

13 with:

14 # Specify the tools to be executed
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15 tool: 'conkas oyente mythril '

The result of a successful analysis reported by GitHub executed on the SimpleDAO contract by

Oyente can be seen in Figures 3.4 and 3.5

Figure 3.4: GitHub displaying the vulnerabilities reported by Oyente on the SimpleDAO contract

Figure 3.5: GitHub inflating the SimpleDAO contract with the Reentrancy Vulnerability reported by Oyente
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3.4.1 NoSASP approach

Alternatively to the SASP approach5 that we have seen above, we also developed a server-free version

of the automated analysis for GitHub. This approach is independent of our service and it runs SmartBugs

directly on a free-of-use GitHub hosted machine.

Even though this version of our work is more scalable, it presents other constraints. The GitHub

machine comes with Python installed but every time it runs an analysis it requires the download of:

All the Python modules required to run SmartBugs, the entire SmartBugs repository (which includes

SBCURATED), and every tool requested by the developer. Besides this, the machine is limited by the

following specs:

• 2-core CPU

• 7 GB of RAM memory

• 14 GB of SSD disk space

The amount of memory available is bounding for everything done in the machine. So the total sum

of the SmartBugs repository’s size, the downloaded tools’ size and the user repository’s size cannot

surpass 14 GBs of memory. Considering that all 11 tools represent about 20 GBs of memory this

limitation is capable of affecting a big number of users.

3.4.2 False positives

We have seen in the studies presented in Chapter 2.4.4 that static analysis tools vigorously try to erad-

icate false negatives. Conversely, their developers also strive to minimize the amount of false positives

reported by their tools. The false positive vulnerabilities problem leads to one of the main reasons why

programmers dismiss using static analysis tools in their work. Because besides having to sort through

piles of logging output, they still need to filter and distinguish the real code vulnerabilities from the noise.

GitHub’s SARIF interpretation framework supports a straightforward mechanism to tag every vulner-

ability found so that it can be ignored the next time it is reported again. This framework provides the

following three tagging options: False positive, Used in tests and Won’t fix. And they’re ignored by a

simple click of a button. The dismissal options box can be seen in Figure 3.6.

The GitHub’s framework false vulnerability report detects a vulnerability as duplicate if the combina-

tion of the repository, the file path, and the SARIF result data is the same. In a future pull requests where

the same vulnerability is reported, instead of warning the developer, GitHub will mark it as rediscovered.

If the developer had tagged it with one of the three options, GitHub will simply discard the vulnerability
5NoSASP GitHub Adapter: https://github.com/dindonero/smartbugs-local-static-analysis
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report. The information about the results is stored in the GitHub’s SARIF API endpoint. We hope to

provide an more embraceable methodology to ignore unwanted results so that a developer can focus on

its code real security problems.

Figure 3.6: GitHub option to report false positives

3.5 SmartBugs

3.5.1 Conkas

Conkas6 is a symbolic execution-based static analysis tool for the EVM. It can examine Solidity-based

Ethereum Smart Contracts as well as the compiled runtime byte-code. Due to being a modular tool,

anyone can easily add their own modules to analyze specific vulnerabilities. It uses Z3 as the SMT

Solver and Rattle as the Intermediate Representation (IR).

Conkas has 5 modules to detect different categories of vulnerabilities. These categories are based

on the DASP 10, which we reviewed under Chapter 2.3, and are the following:

1. Arithmetic

2. Reentrancy
6Conkas GitHub: https://github.com/nveloso/conkas
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3. Time Manipulation

4. Transaction Ordering Dependence

5. Unchecked Low-Level Calls

This tool was added to SmartBugs through a contribution from its author. Furthermore we designed

Conkas’ SARIF converter and added it to our SASP framework. Conkas can now be accessed like any

other SmartBugs’ tool through our service. He also benefited from SmartBugs’ framework to compare

Conkas performance against all the other tools. This tool shows great promise as it is one of the less

CPU consuming tools, with great accuracy metrics. Meaning it can generate accurate results without

taking up a lot of time. We can see the execution time for Conkas and the other 9 tools in Table 3.2. And

the accuracy statistics in Table 3.3.

# Tool Avg. Execution Time Total Execution Time
1 Conkas 0:00:32 1:14:37
2 Honeybadger 0:01:12 2:49:03
3 Maian 0:03:47 8:52:25
4 Manticore 0:12:53 1 day, 6:15:28
5 Mythril 0:00:58 2:16:21
6 Osiris 0:00:21 0:50:25
7 Oyente 0:00:05 0:12:35
8 Securify 0:02:06 4:56:13
9 Slither 0:00:04 0:09:56
10 Smartcheck 0:00:15 0:35:23

Table 3.2: Conkas Execution Time Statistics (Source: [7])

Category Conkas Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total
Access Control 0/24 0% 0/24 0% 0/24 0% 5/24 21% 4/24 17% 0/24 0% 0/24 0% 1/24 4% 6/24 25% 2/24 8% 8/24 33%
Arithmetic 19/23 83% 0/23 0% 0/23 0% 13/23 57% 16/23 70% 13/23 57% 18/23 78% 0/23 0% 0/23 0% 1/23 4% 22/23 96%
Denial Service 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 1/14 7% 1/14 7%
Front Running 2/7 29% 0/7 0% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 2/7 29% 2/7 29% 0/7 0% 0/7 0% 2/ 7 29%
Reentrancy 30/34 88% 19/34 56% 0/34 0% 15/34 44% 25/34 74% 21/34 62% 28/34 82% 14/34 41% 33/34 97% 30/34 88% 33/34 97%
Time Manipulation 7/7 100% 0/7 0% 0/7 0% 4/7 57% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 3/7 43% 2/7 29% 7/ 7 100%
Unchecked Low Calls 62/75 83% 0/75 0% 0/75 0% 9/75 12% 60/75 80% 0/75 0% 0/75 0% 50/75 67% 51/75 68% 61/75 81% 70/75 93%
Other 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/ 5 0%
Total 120/224 54% 19/224 8% 0/224 0% 46/224 21% 107/224 48% 36/224 16% 48/224 21% 67/224 30% 93/224 42% 97/224 43% 143/224 64%

Table 3.3: Conkas Accuracy Metrics (Source: [7])

3.5.2 Unit Tests

In order to ensure that any future upgrades to SmartBugs don’t unwillingly break functionality to our

adapters, we also produced nine basic unit tests that verify the SARIF functionality. When executed,

they run different tools against the SimpleDAO contract and compare the actual SARIF output to the

expected output.
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3.5.3 System Requirements

SmartBugs 2.0 requires Docker and Python3 installed with the modules PyYAML, solidity parser, docker,

GitPython, sarif-om, attrs and pandas.

In order to run SASP, Flask module with the version 1.1.2 or higher is also necessary. A user who

prefers to run our server or someone who intends to run the tests, needs to add the root folder of

SmartBugs’ repository to the $PY THONPATH environment variable.

3.5.4 Updated CLI

SmartBugs provides a command line interface that allows users to access the datasets and execute

various analysis tools on smart contracts.

SmartBugs updated command line interface can be invoked as:

smartBugs.py [-h, --help]

(--file FILES | --dataset DATASETS)

--tool TOOLS

--info TOOLS Information about the tool

--skip -existing Skip analyses that already have results

--processes PROCESSES Number of parallel execution

--list tools datasets List tools or datasets

--import -path IMPORT_PATH Imports project 's root directory

--output -version {v1,v2,all} Specifies output - v1:Json; v2:SARIF

--aggregate -sarif Aggregate SARIF outputs by tool

--unique -sarif -output Aggregates all SARIF analysis outputs in

a single file

3.5.5 Updated Methodology for adding tools

The process of adding tools to SmartBugs is designed to be straightforward and practical, allowing the

user to determine how the tools are executed based on their needs. All 11 SmartBugs tools use Docker

images downloaded from the Docker Hub.

The tools’ description is stored in each tool plugin. The plugin defines the Docker image’s name, the

tool’s name, the command line to execute the tool, and, ideally, the tool’s description. Once a docker

image for the tool is available, a user can add it to SmartBugs by creating a new YAML configuration

file inside the smartBugs/config/tools/ folder. The specification of that file should follow the Conkas

example in Listing 3.5.5.
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docker_image:

default: nveloso/conkas

cmd: -fav -s

info: Conkas is based on symbolic execution, determines which inputs

cause which program branches to execute, to find potential

security vulnerabilities. Conkas uses rattle to lift bytecode to a

high level representation.

SmartBugs automatically pulls the results from the tool’s printed output. Conversely, if a tool saves

the analysis result in the docker image, the location to that file should be specified in the configuration

file by adding an extra field, as the example illustrated in Listing 3.5.5.

output_in_files:

folder: /result/output.json

This configuration is fulfilling enough for any tool a user might want to add to the SmartBugs’ frame-

work. Nevertheless, if the objective also comprises of enabling the tool into the SmartBugs 2.0 adapter

environment, a developer is additionally required to create a SARIF converter for his tool. The SARIF

converter must be a new Python file in the smartBugs/src/output_parser/ folder, preferably named af-

ter the tool. Inside the file there should be a function called parseSarif which receives the original output

as an argument and returns a SARIF Run object. The function must reflect the conversion of its original

output to SARIF. We recommend following the methodology presented in 3.2 where the developer is

additionally able to look at the other converters as an example, such as the Maian converter in Listing

3.5.5.

Furthermore, the developer must add all possible reported vulnerabilities from his new tool into the

sarif vulnerability mapping.csv table and fill all necessary information, which we reviewed under Section

3.2.1. He is also presented with the choice of adding extra information not present in the columns

composing the table.

def parseSarif(self , maian_output_results , file_path_in_repo):

resultsList = []

rulesList = []

for vulnerability in maian_output_results["analysis"].keys():
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if maian_output_results["analysis"][ vulnerability ]:

rule = parseRule(tool="maian", vulnerability=vulnerability)

result = parseResult(tool="maian", vulnerability=vulnerability ,

level="error", uri=file_path_in_repo)

rulesList.append(rule)

resultsList.append(result)

artifact = parseArtifact(uri=file_path_in_repo)

tool = Tool(driver=ToolComponent(name="Maian", version="5.10", rules=

rulesList , information_uri="https :// github.com/ivicanikolicsg/MAIAN",

full_description=MultiformatMessageString(text="Maian is a tool for

automatic detection of buggy Ethereum smart contracts of three

different types prodigal , suicidal and greedy.")))

run = Run(tool=tool , artifacts =[ artifact], results=resultsList)

return run

53



54



4
Evaluation

Contents

4.1 SARIF converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 SASP Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 GitHub Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

55



56



In this chapter we discuss the evaluation’s results of our improvements to the tool presented in

Section 2.4. Our evaluation consists mainly on manual verifications.

Our work validation will consist in three steps. Checking the validity of our SARIF converter, verifying

the functionality of our SASP service and confirm the completeness of our GitHub adapter feature.

For each of the stages we will make use of the dataset SBCURATED incorporated in the SmartBugs

environment to the extent of verifying each step capabilities and correctness.

4.1 SARIF converters

This section is the most complex of our work and as such is divided in three subsections. The converter

execution, the SARIF standard validation and the vulnerabilities correctness verification.

4.1.1 Converter Execution

While some tools have the same static output, meaning that the output is always represented by the

same fields, others present a more dynamic one, where the output in some cases may not contain

certain fields and those fields may appear in different orders. On both output types, but specially when

converting a dynamic one, we noticed some cases where the vulnerabilities were reported defectively.

The vulnerabilities that fall into this case are discarded when converting to SARIF.

In this part of our work, the entire SBCURATED dataset was used as an accuracy metric for testing

corner cases on our converters. Since we don’t catch exceptions thrown by translation errors, we took

advantage of that in order to acknowledge faulty converters. Every tool converter against every smart

contract present in the dataset was executed and fixed until all of them positively pass this stage.

We feel pretty confident that as long as a converter doesn’t fail or crash, it is working correctly and

every eligible reported vulnerability for translation is being handled correctly. Nevertheless, we assure

their correctness in the next steps of the evaluation.

4.1.2 SARIF Standard Validation

In this step, we used the public free SARIF validation tool provided by Microsoft1 to ensure our standard

correctness. A correctly formatted document can be seen in Figure 4.1 while an older badly formatted

one can be seen in Figure 4.2.

1SARIF Validation Tool: https://sarifweb.azurewebsites.net/Validation
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Figure 4.1: Upload of a correctly formatted SARIF file on the Microsoft’s Validation tool (From: [5])

Figure 4.2: Upload of a badly formatted SARIF file on the Microsoft’s Validation tool (From: [5])
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This tool comes with a feature that checks as well for the GitHub ingestion rules. This option saved

us a lot of work in Section 4.3 as it is no longer required for us to upload all of SBCURATED dataset to

assert the output’s correctness. This verification serves the purpose of acknowledging that the entire

dataset’s results are correctly formatted for display on the SARIF processing mechanism from GitHub.

4.1.3 Vulnerabilities Verification

From the SBCURATED dataset we retrieved an arbitrary subset consisting of one random smart con-

tract per DASP-10 category. We chose one from each category so that we could manually verify our

converters against the most diversified outputs. The final subset is comprised by the following contracts:

• mycontract.sol - Access Control

• integer overflow 1.sol - Arithmetic

• guess the random number.sol - Bad Randomness

• dos simple.sol - Denial of Service

• eth tx order dependence minimal.sol - Front Running

• name registrar.sol - Other

• simple dao.sol - Reentrancy

• short address example.sol - Short Addresses

• roulette.sol - Time Manipulation

• lotto.sol - Unchecked Low Level Calls

These 10 smart contracts were analyzed by the 11 tools producing 110 result files. The results were

manually checked for the integrity of the translation from the original output to SARIF. As expected,

every correctly formatted vulnerability was successfully translated. While most of the vulnerabilities that

were not correctly formatted was due to lack of line information, we also noticed that there were some

that reported a vulnerability at line ”-1” and a few ones that reported something without any context or

information. We marked these cases as correctly discarded.

Even though SARIF is comprehensive enough to be the world’s standard for all static analyzers,

unfortunately it lacks some simplicity and intuitiveness when a user tries to read directly from the SARIF

file. So in order to ease the manual comparison of the original output with the SARIF and to reduce the

possibility of human mistakes, we took the liberty of using another free Microsoft provided tool for SARIF

files.
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The SARIF Web Viewer2 is a tool that allows any developer to see a robust interface detailing the

SARIF file uploaded by the user. We recommend this interface for testing and viewing SARIF files in a

simplified manner. An example of the comparison between the original output represented by the text

editor Atom3 and the SARIF Viewer can be seen in Figure 4.3 and 4.4. The output represented in the

Figure corresponds to the analysis of the eth tx order dependence minimal.sol performed by Securify.

Figure 4.3: Original output of the eth tx order dependence minimal.sol analysis by Securify

2SARIF Web Viewer: https://microsoft.github.io/sarif-web-component/
3Atom: https://atom.io/
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Figure 4.4: SARIF output of the eth tx order dependence minimal.sol analysis by Securify processed by Microsoft’s
SARIF Viewer tool (From: [6])

4.2 SASP Service

In this stage, we tested our server implementation by querying a smaller set of the vulnerable smart

contracts. It is expected from the SASP service an output SARIF file including all security standards for

the request and the response produced by the server. In the case where the query does not comply by

them, SASP should reject and ignore the request. Furthermore, we will stress test our server so that we

may acknowledge the amount of parallel executions our service can sustain.

4.2.1 Functionality

Firstly we tested our server’s primary functionality, to be able to receive a request from a user, run the

analysis and reply with a single comprehensive SARIF formatted file representing all of the analysis
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information. After reading the response file on the client side and compare it against a local report we

reached the conclusion that so far everything was working properly.

Moreover we went and performed the same test on the GitHub machine to affirm the correctness

of running on different machines. After ordering the analysis we printed the file to the console and

confirmed it was in fact the correct report with no information lost.

Secondly, we sent multiple badly formed requests with the following characteristics:

• A badly formed user-hash,

• No user-hash,

• Non existing tool selected,

• No tool selected,

• With a directory transversal exploit both in the user-hash and in the files names.

The SASP service behaved exactly as expected, ignoring the requests when it was required. In

the cases where it was deemed feasible altering the query to comply with the criteria, the service also

behaved correctly. More specifically, the case with the exploit for the directory transversal attack was

correctly mitigated by the algorithm provided by [60].

4.2.2 Stress Test

Finally, we decided to conduct a stress test to see how our server would behave when queried by multiple

requests from different users. All of the tests were performed under the worst-case scenario where the

server is the most overloaded. We created this scenario by guaranteeing that the analysis requests were

sent all at the same time. With this test we hope to deduce the approximate scalability of our developed

solution with the purpose of preventing clogged or crashed services.

For this part of our evaluation we developed a script that requests multiple analysis on different

threads at the same time. We performed two stress tests. One for low time consuming analysis where

we employed Oyente analysing the SimpleDAO contract. And another for a more CPU intense analysis

combining Mythril and Slither (due to their best combined performance) analyzing two contracts, the

SimpleDAO and the Reentrance. To account for errors in measuring time we ran the script three times

and calculated the median. We executed the tests from 1 to 45 simultaneous clients. The time measured

comprises all sent requests, the analysis execution and the results download for each client. The Oyente

Graph can be seen in Figure 4.5 and the high CPU consuming Graph in Figure 4.6.
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Figure 4.5: SASP stress testing with Oyente analysing SimpleDAO

Figure 4.6: SASP stress testing with Mythril and Slither analysing SimpleDAO and Reentrancy

For our surprise, the SASP service is more scalable than we had anticipated. As we can see in the

Oyente graph, there is a linear regression between the execution time and the number of users with a R2

of 0.99. This variable being this close to 1 means that the linear approximation of the results is a good

fit and therefore we can conclude that the time increases constantly as per number of clients requesting
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our service.

On the other hand, as we can see in the Mythril and Slither graph, when performing a more intense

analysis, the services starts to lose performance at 35 simultaneous requests.

At 45 and 40 simultaneous analyses, when analyzing with Oyente and with Mythril and Slither cor-

respondingly, Docker service starts to crash and consequently SASP stops all current analysis so that

it may recover from the crash. So, we conclude that the current bottleneck for our platform lies in the

Docker Python API service.

Since it is Docker itself that controls its threads’ priority and execution, and that it allows for an

arbitrary number of concurrent containers, this error should not happen and therefore we are unable to

take further conclusions about our system. As such there is an existing issue on GitHub that is being

assessed, contemplating this Docker bug [61].

4.3 GitHub Adapter

After completing the previous stages, we evaluated our GitHub adapter. In this stage we will need to

upload a subset of the SBCURATED to a GitHub repository and verify 3 distinct parts: the functionality,

the uniqueness and the intuitiveness.

4.3.1 Functionality

For the functionality part, we will establish that all smart contracts uploaded are being correctly queried

both to our SASP and NoSASP service and that the adapter is accurately processing the response, by

comparing the outcome with the output produced by SARIF’s converter.

As we tested the entire SBCURATED on the SARIF Validation Tool with the GitHub ingestion feature

that we have seen in Section 4.1.2, there was no need to manually verify the entire dataset. Therefore

we chose two contracts to manually ensure this stage of the evaluation. After uploading the small subset

to GitHub and analyzing it with the 11 available tools, we were able to verify that everything is working

correctly. A direct comparison from the GitHub vulnerability report with the file produced by Conkas’

SARIF converter can be seen in Figure 4.7 and 4.8.
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Figure 4.7: GitHub SARIF interface after consuming the output sent by the SASP service.
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Figure 4.8: SARIF Viewer displaying the SARIF file produced by SmartBugs locally.

4.3.2 Uniqueness

For the uniqueness feature, we had already verified that when consuming a duplicate vulnerability,

GitHub’s SARIF processing mechanism automatically marks it as rediscovered instead of detecting a

new and different one. Moreover, a developer is able to tag each vulnerability with multiple labels, as we

have seen in Section 3.4.2, so as to not be warned over a unwanted vulnerability report. Without the

uniqueness of the reported vulnerabilities our service could result in confusing feedback for the smart

contract developer.

4.3.3 Intuitiveness

At last, we will discuss if the comments and the system as a whole are intuitive enough for any program-

mer to be able to abstract from the analysis and only focus on coding the smart contract itself. This was

the trickiest part of our evaluation since not every developer will agree on this. It can be either from the

false positives problem, the execution time of the analysis or even due to the discordance between the

vulnerabilities reported by the tools.
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Nevertheless, we believe that in comparison to the previous implemented system, we managed to

increase the intuitiveness of SmartBugs from multiple perspectives.

First of all we have increased the easiness and lowered the human input necessary to run an anal-

ysis. Before a developer had to download SmartBugs, Python and Docker, install all required modules

and manually start the analysis every time there was a need to do so. Now there is only the need to add

a workflow when running the analysis for the first time and specify when GitHub is to repeat it.

Secondly we substantially reduced the number of outputs that a developer is required to read. For

example, if a programmer wanted to analyze 2 smart contracts by 3 tools, he would be compelled to

open and acknowledge 6 output files, on 3 distinct formats. With SmartBugs 2.0 the number of outputs

was significantly reduced from the number of tools times the number of smart contracts to one single

output file.

Finally, we feel that displaying the results in a coding interface is an intuitiveness improvement com-

pared to the previous system. Not only for the simplicity in acknowledging the vulnerability but also

because it becomes easier to discard and ignore unwanted ones. An example of the before and after of

the Slither output can be seen in Figure 4.9 and 4.10.

Figure 4.9: The original Slither output.
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Figure 4.10: GitHub SARIF interface after consuming the output produced by Slither.
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In this chapter, we discuss the dissertation’s significant contributions while evaluating whether our

goals were realized. We also talk about future developments on how to improve our work.

5.1 Achievements

As smart contracts popularity, use and financial value increases, more vulnerabilities with bigger reper-

cussions are discovered. There is still not only a lot of research lacking in this field but also some scarcity

of awareness towards the issues these vulnerabilities represent.

As the absence of executing static analysis tools is often related to the difficulty of running the anal-

ysis and the complexity of acknowledging its output, in this thesis we describe a method to expand not

just SmartBugs but any static analysis tool created by making it more available and accessible to a de-

veloper. We discuss standardized methodologies to ease the use of static analysis and furthermore we

describe a method to inflate the code with the analysis’ results so that a developer may abstract himself

of the analysis and treat a vulnerability just like an minor error message.

After our literature review we describe our implementations into a developer’s environment. We

started by organizing the SARIF standard in a convenient and accessible manner, paving the way for

adoption from other static analysis tools. Following this, we expose our vision and implementation for

the SASP protocol. We also describe both GitHub adapters developed. One relying on the SASP server

and another independent from this service in spite of the added limitations. Finally we thoroughly explain

the changes and new features for SmartBugs itself.

Using SmartBugs, we were able to verify the correctness of our system. Firstly we fixed our con-

verters from each tool’s original output to SARIF based on the validity of the output produced when

analyzing the entire SBCURATED dataset. Furthermore we manually checked a smaller subset of out-

puts to increase our converters’ trustworthiness. We also tested SASP both on the functionality and on

the amount of work it is able to sustain, leading to a maximum of 35 users concurrently analyzing with

our service. At last, we tested both GitHub adapters for their functionality, uniqueness and intuitiveness

where we found that everything was working as expected.

We achieved the goals we set for ourselves through our work. A visual representation of our work

and the expanded new possibilities for a Solidity developer was shown in Figure 3.1. For the future we

would like to see other static analysis tools playing SmartBugs’ role in this diagram.
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5.2 Future Work

Static analysis research has received significant contributions in recent years, specially for smart con-

tracts as mentioned throughout this article. Because Blockchain and smart contracts are evolving at

such a rapid speed, we should strive to keep our work up to date. The following are some possibilities

for future work:

• Distributed SASP - Depending on the SASP adoption, it can be deployed on a distributed system

in order to be able to withstand a bigger workload. At the current moment we believe the optimal

maximum number of users should be between 35 to 40, however with a distributed system this

number could be increased.

• Update SmartBugs and its tools - SmartBugs should be improved, and additional tools could be

introduced. The current 11 tools only work on some versions of Solidity which can render some of

them useless specially when analyzing more recent Solidity versions. Not just SmartBugs but also

the tools themselves should be kept updated by their developers or the community.

• Improve SBCURATED and SARIF fields - The SBCURATED dataset can be expanded, and it

should be updated from time to time to include additional contracts and possibly support new sorts

of vulnerabilities. As well as more SARIF keys should be added to improve readability from the

user when running an analysis.

• More adoption for SARIF - More and more static analysis tools keep on being created in their

own distinct format, which leads to a decreased usage on their clients part. Developers could

even employ our work to ease the implementation of SARIF into their tools’ environment. SARIF

standardizes not only Ethereum smart contracts’ analyzers but every static analyzer and it even

works on some dynamic ones, so there’s no bounding limit to where it can be implemented.
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