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Universidade de Lisboa, Portugal

Abstract—At a point where the world is diving precipitously
into climate collapse, the persistence of global inertia and political
voids becomes unacceptable. Understanding what can promote
global cooperation to reach climate agreements is essential, where
it is imperative to recognize the heterogeneity and inequality
that characterize countries and can influence their willingness to
contribute. For this purpose, we formulate climate agreements
with a game-theoretical metaphor denoted as the Collective-Risk
Dilemma. This dilemma recognizes the inherent risk associated
with climate disaster and requires a minimum number of
contributors to guarantee the effect of collective action. Here
we investigate the impact of incorporating heterogeneity in social
ties, risk diversity and wealth inequality in the dilemma, resorting
to the tools of evolutionary game theory and network science.

We show that heterogeneity can have different impacts de-
pending on how it is distributed in the network. Our results
indicate that risk diversity can significantly enhance cooperation
if the central individuals of the network have a high perception
of risk. Positively correlating risk, wealth, and centrality is
the best arrangement for targets in climate agreements to be
met. We further observe that richer individuals and groups
should contribute more to maximize cooperation. Accordingly,
if the requirements for the different groups are adapted to
their capacity, cooperation is improved. Our findings may have
implications for policy-making and suggest that the course of the
dilemma is strongly dependent on the climate leaders.

Index Terms—Climate Action, Social Inequality, Cooperation,
Evolutionary Game Theory, Complex Networks

I. INTRODUCTION

Climate change stands as a challenge without precedents
in history. There is an urgent need for climate action, and
this action requires local and national responses, anchored in
a logic of global cooperation [1]. However, in a world full
of complex ties, various factors make cooperation difficult
to emerge. The climate change problem represents a social
dilemma: All countries would benefit if all reduce emissions,
nevertheless, a country will individually profit by not reducing.
Moreover, the benefits of lowering emissions are not exclu-
sively felt by those who bear the costs of reducing them -
everyone shares the profits. As a result, individuals may be
tempted to free-ride on the effort of others. Accordingly, this
dilemma can be analyzed by resorting to the tools of Game
Theory, which represents a mathematical framework capable
of formalizing conflict of interests between individuals [2]. In
particular, climate agreements can be conveniently formulated
as one of the most famous game-theoretical metaphors known
as Public Goods Game (PGG) [3].

In a decade where we are surrounded by news constantly
alerting us of the immanent irreversibility of climate change,
it may appear incomprehensible why global inaction is so
prevalent. Consistently, even with the growth of social mobi-
lizations, educational campaigns, or local temperatures getting
warmer, the low perception of the risk disaster that remains
present was already conceived as one of the Achilles’ heels
of cooperation in climate settings [4], [5]. Furthermore, the
fact that we are contributing in the present to a future with
an underlying uncertainty, was proved to be one of the main
barriers [6]. On the other hand, it is known that the burden
of climate change is not equal to everyone [7]. Fairness
principles recurring to historical responsibility for emissions,
vulnerability to climate change, and economic capacity are
also essential to take into account [8]. Consequently, conflict
dynamics between rich and poor parties influence the willing-
ness of individuals to contribute to the agreements and need
to be unraveled [9], [10]. It is fundamental to identify the
heterogeneity and inequality that characterize countries, which
will be worsened with global warming, to push for climate
action.

In this work, we focus on capturing the key features of the
climate change problem, through the lens of a model capable
of analyzing the impact of asymmetries between countries
in cooperation dynamics. We investigate the impact of in-
corporating wealth inequality, risk diversity and heterogeneity
in social ties in the climate change dilemma. With this, we
intend to more realistically model the predominant differences
that persist in climate settings, and contribute to a better
comprehension of the conditions under which cooperation in
environmental agreements can flourish. For this purpose, we
resort to the tools of evolutionary game theory and complex
networks, using computer simulations.

In particular, to grasp how cooperation and collective suc-
cess are influenced by such sources of heterogeneity, we aim
to answer the main following questions, regarding the climate
change dilemma:

1) What is the impact of correlations between risk and
network connectivity?

2) What is the effect of correlations between wealth and
network centrality?

3) How can information about network heterogeneity, risk
diversity and wealth inequality be combined to leverage
cooperation in climate settings?

4) Regarding the distinct classes of wealth, how should the
cost of cooperating be distributed?
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Concerning the climate change dilemma, it is noteworthy
that the usual PGG focuses on providing a collective benefit.
However, the climate change problem is concerned with avoid-
ing collective damage, with an inherent uncertainty associated
with it. To depict this, the pioneering experiment [4] showed
that the essential keys of the global climate change issue can be
formalized in terms of a Collective-Risk Dilemma (CRD). This
dilemma constitutes a threshold PGG, where a minimum num-
ber of contributors are required to avoid a probabilistic loss,
and thus collective results vary non-linearly with the number of
cooperators. In this work, the process of behavioral adaptation
was modeled with a repeated game. Notwithstanding, one
can also model this by employing an evolutionary approach
in the CRD [5], [11]. With this representation, individuals
imitate those who seem more successful, seeking to improve
themselves. We formulate our model as a CRD in structured
populations, adopting an evolutionary description.

It is worth emphasizing that most of the game-theoretical
models assume that individuals are sufficiently equal in the
relevant aspects that this framework can grasp. However, this
assumption disregards that heterogeneity is ubiquitous around
the world. Unraveling symmetries is fundamental to under-
stand the emergence of cooperation [12], [13]. Previous studies
have considered heterogeneity in the CRD in social ties by
the means of heterogeneous networks [5] and in wealth [10].
Both components were studied separately. Here we introduce
variations to the CRD in networked populations, to allow
combining various dimensions of heterogeneity. Namely, in
terms of social ties, risk perception and wealth, as the effects
of combining such sources of heterogeneity remain astray.

II. MODEL AND METHODS

Let Z be the size of the population and N the size of the
group where the dilemma occurs. Individuals engage with an
initial endowment b and can contribute a fraction c of their en-
dowment. If an individual decides to contribute it is designated
as a Cooperator (C), otherwise, it is denoted as a Defector (D).
To reach success, a minimum number M of contributors is
required, where M ≤ N . Consequently, if a group of size N
does not contain M Cs, all members of that group lose their
remaining endowments with a probability r that represents the
risk of failure. By introducing a coordination threshold where
it is necessary to cooperate to reach success, we are capable of
mimicking climate negotiations and agreements, that demand
a minimum number of contributions to come into practice.

Concerning PGG on networked populations, nodes represent
individuals and links define interaction and imitation partners.
Individuals participate in games with n direct neighbors,
therefore, the number of games that each individual engages
in is n+ 1.

We perform simulations to study the evolution of coop-
eration throughout generations. We consider that individuals
start with a strategy s randomly placed on the network, with
50% Cs and 50% Ds (s is set to 0 if D, 1 if C). Strategies
are updated asynchronously, meaning that only one individual
changes its strategy at a time. In each generation, we select

a random node i (with strategy si), which in turn randomly
selects a random neighbor j, whose strategy sj imitates with
a given probability. This probability is calculated using the
imitation function typically employed for finite and structured
populations [14]:

p = [1 + e−β(fj−fi)]−1, (1)

where fj is the fitness of individual j, and fi is the fit-
ness of individual i. Consequently, imitation will happen
with a probability proportional to the fitness difference. The
parameter β represents the selection strength - when this
constant increases, imitation will depend more on the fitness
difference and it is expected that better-performing players will
be imitated more often. The fitness of the individuals is the
accumulated payoff of all the games in which they engage.
An example of a neighborhood defined by a social graph is
presented in Figure 1. In the figure, we show the different
PGG in which the focal individual (largest sphere) participates.
One can interpret these games as the different environmental
agreements/negotiations that occur in climate settings.

Fig. 1. The focal individual (represented by the largest sphere) participates in
distinct groups, each with its own group size. This individual has three direct
neighbors (n = 3), therefore, it is possible to recognize four groups: one
centered in the focal individual and the others in its neighbors. The individual
fitness is derived from the accumulated payoff in all four groups [13].

We resort to the following payoff function to consider
networked populations, based on the CRD payoff in [5].
Namely, the payoff of an individual y centered in the game of
the focal individual x can be written as:

P (x, y) = b{Θ(kx−M)+(1−r)[1−Θ(kx−M)]}−cbsy, (2)

where Θ(x) represents the Heaviside step-function distribu-
tion, with Θ(x) = 0 if x < 0 and Θ(x) = 1 otherwise. We
consider kx =

∑
i∈Ωx

si, where Ωx denotes the set constituted

by the nodes that are neighbors of x and x itself.

A. Including Risk Heterogeneity

In the previous works, the perception of risk was considered
to be equal for all players. However, this might be unrealistic,
as some countries have a higher perception of risk and
exposure to climate damage than others [15]. To provide a
more accurate description of climate agreements, we consider
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a dichotomy in the risk levels of the population: rH and
rL representing high and low risks, respectively. We thus
consider a population of Z individuals, where ZH represents
the number of individuals with high risk and ZL constitutes
the number of individuals with low risk (ZL = Z − ZH ). In
this scenario, the payoff of an individual y centered in the
game of the focal individual x can be written as:

PH/L(x, y) = b{Θ(kx−M)+(1−ry)[1−Θ(kx−M)]}−cbsy,
(3)

with ry ∈ {rH , rL}, for individuals with high and low risk,
respectively.

B. Including Wealth Inequality

Regarding wealth inequality, to portray the unequal dis-
tribution of wealth that persists worldwide, we follow the
work [10]. We consider a population of Z individuals, where
ZR represent the rich (provided with an endowment bR) and
ZP = Z − ZR constitute the poor (with an endowment
bP , where bP < bR). Rich Cs contribute with cR = cbR,
whereas poor Cs contribute with cP = cbP . To consider wealth
inequality in networked populations, we assume that the payoff
of an individual y that engages in a game centered in the
individual x with a group of kRx rich Cs, kPx poor Cs, and
N − kRx − kPx Ds can be defined as:

PR/P (x, y) = by{Θ(∆) + (1− r)[1−Θ(∆)]} − cbysy, (4)

with by ∈ {br, bp}, for rich and poor individuals, respectively.
We consider ∆ = cRk

R
x +cP k

P
x −Mcb̄, where b̄ represents the

average endowment (Zb̄ = ZRbR + ZP bP ). Note that in this
setting, we require a minimum amount of contributions instead
of a minimum number of cooperators, as assumed previously.

C. Networks

To simulate cooperation on networked populations, we
resort to the Barabási-Albert Model, one of the most famous
models to generate Scale-Free (SF) networks. SF networks
illustrate characteristics that are observed empirically. In par-
ticular, these networks portray that most individuals only have
a few connections, while a minority interacts with many. These
minorities are often designated as hubs, stemming from the
fact that they represent highly connected nodes. Or in other
words, that they have a high centrality [16]. We provide
contrasting results with a homogeneous regular network [17],
where all individuals are topological equivalent, in Fig. 2b.

D. Simulations

We perform simulations for communities with Z = 103

individuals and an average group size of N̄ = 7. The
success of a population is measured with the average group
achievement, denoted by ηG, which represents the average
fractions of groups that can successfully surpass the threshold.
We plot the evolution of ηG, averaging the results over
10 different realizations for each type of graph. Each data
point corresponds to an average over 500 runs, that is, 50
different realizations of the same class of graph. Each run

starts from random initial conditions with 50% Cs and 50%
Ds. Each equilibrium group achievement, which represents the
stationary state of one run, was obtained by averaging 2000
generations after a transient period of 105 generations.

III. RESULTS

A. Heterogeneous Networks
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Fig. 2. Group achievement as a function of the risk, considering different
networks and distinct thresholds. (a) Represents SF networks with two
different types of thresholds. In the blue curve: M = 3N/7, and in the black
curve: M = 3. With M = 3N/7 we assure that M , on average, is equal in
both scenarios. (b) Represents the difference between homogeneous regular
networks (with M = 3) and heterogeneous networks (with M = 3N/7).
The shaded area illustrates the uncertainty between different simulations that
is only present in SF networks. Other parameters: c = 0.1, b = 1, β = 6.0.

In this section, we introduce social heterogeneity through
the means of heterogeneous graphs. We depict the diversity
that is intrinsic to social ties by organizing the population in
a SF network, following the work in [5].

Given the complexity introduced with SF networks, where
some groups are much bigger than others, it may be reasonable
to assume that larger groups might require a larger reduction
of emissions. Considering that, we introduce a threshold that
is dependent on the number of individuals that take part in
the different groups - being an increasing function of N .
This is opposed to what is typically assumed, where all
groups share the same threshold. In Figure 2a, we illustrate
the differences between both thresholds as a function of r.
One can observe that considering M = 3N/7 has a slightly
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larger ηG, especially for larger risk values. However, the
results suggest that the difference between the two threshold
scenarios is not significant. In consonance with the conclu-
sions in [5], assuming a fixed M improves the chances of
larger groups achieving success. Nevertheless, smaller groups
face stringent requirements, and, consequently, the chances
for smaller groups are reduced. The opposite occurs when
assuming M = 3N/7, as with this threshold it is easier for
smaller groups to surpass the threshold. This might explain
why the differences between both settings are not significant.

In Figure 2b, we depict the results of considering pop-
ulations organized in homogeneous regular networks (with
M = 3) and in SF networks (with the introduced threshold
M = 3N/7). The curves show the average results of the
simulations, and the shaded area corresponds to the stan-
dard deviation over the different simulations, which reflects
the uncertainty that only emerges in SF networks. One can
observe that, even with the high uncertainty present in the
heterogeneous scenario, SF networks can open a window of
opportunity to cooperation. This is particularly true when the
risk is low (r < 0.4) or high (r > 0.8).
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Fig. 3. Time evolution of ηG through generations for 10 runs. The black
and grey curves represent individual runs and the red curve corresponds to
the average of these runs. The plot was generated considering successive
equally spaced points in time (5 to 5 generations). In each run we wait 104

generations. Other parameters: M = 3N/7, r = 0.5, c = 0.1, b = 1,
β = 6.0.

To better understand the uncertainty that occurs in the
heterogeneous case, in Figure 3 we plot the time evolution
of ηG through generations. We present ten runs and their
average (red curve). One can observe that the system never
converges to the average of the simulations. Instead, it is
clear the coordination that occurs, where the system always
converges to the side of full defection (ηG = 0) or to full
cooperation (ηG = 1), which is consistent with the conclusions
in [18].

We further hypothesize that this uncertainty is present only
in SF networks due to the crucial role of the hubs in the evolu-
tion of cooperation (that was studied in previous works [13]).
In our simulations, their initial strategy is randomly assigned.
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Fig. 4. Group achievement as a function of the risk, considering different
setups of the hub’s strategies: initializing all hubs as Cs (red curve), all hubs as
Ds (orange curve), and randomly assigning the strategy (black curve). Other
parameters: M = 3N/7, c = 0.1, b = 1, β = 6.0.

Consequently, it is natural that when most hubs start as Cs,
they can foster the evolution towards cooperative populations.
However, when these hubs happen to be Ds, the opposite
occurs. We verify our hypothesis, by changing the setup of
the hub’s strategies in the evolutionary process. In Figure 4,
we test two extreme limits to initialize the hub’s strategy:
one with all hubs as Cs, and the other with all hubs as Ds,
maintaining the population with 50% Cs and 50% Ds. One
can confirm that the initial strategy of the hubs can have an
extreme impact on the population dynamics. To understand
this outcome, it is important to stress that hubs are able to
accumulate a considerably higher fitness than other nodes, as
our model considers accumulated payoffs and they take part
in the majority of the games. Hence, hubs will be imitated
more effectively and seen as preferential role models, which
is in line with what was observed in [19].

To finish this section, it is relevant to emphasize that our
results are robust with respect to changes in the intensity of
selection β, as one can observe from the results of Figure 5.

B. Risk Diversity

In this section, we incorporate risk diversity in the CRD,
following the methods described in Section II-A. We test the
effects of correlating network connectivity with risk. For this,
we divide the population into two halves: one half with high
risk (rH ), and the other half with low risk (rL). We introduce a
measure of heterogeneity between high and low risk, denoted
by δ. Specifically, we assume that the population has a medium
risk r̄ (we set r̄ = 0.5), where the class with high risk has
r̄+ δ, and the class with low risk has r̄− δ. This implies that
the higher the δ, the more diverse is the population. Regarding
the correlations, we consider three distinct configurations:
• Positive: the half of the population with high risk cor-

responds to the nodes with the highest degree, whereas
the half with low risk corresponds to the nodes with the
lowest degree;
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Fig. 5. Group achievement as a function of the risk, considering distinct
values of the intensity of selection β. Other parameters: M = 3N/7, c = 0.1,
b = 1.

• Negative: the half of the population with high risk cor-
responds to the nodes with the lowest degree, whereas
the half with low risk corresponds to the nodes with the
highest degree;

• Random: individuals are randomly assigned to the high
or low risk half.

First, we consider the risk as an individual property. In Fig-
ure 6a, we present the experiments of varying the heterogene-
ity in the risk δ, considering the aforementioned correlations.
Our findings indicate that risk diversity can have different
impacts depending on the correlation we assume. In particular,
the positive correlation leads to an impressive enhancement of
cooperation, especially when δ = 0.4, where ηG reaches a
value of 1. Conversely, the negative correlation significantly
decreases the group success. On the other hand, randomly
attributing risk levels can marginally improve cooperation.

To grasp the boost of cooperation in the positive correlation,
notice that, in this scenario, hubs are associated with a high
risk. As it is well-established in the literature, an elevated
perception of risk is fundamental to turning players into Cs.
Namely, if individuals realize that they have a high risk of
disaster, the pressure to cooperate increases. Consequently,
hubs will easily cooperate. Given that hubs are connected to
the majority of the individuals, they can unleash a wave of
cooperation across the whole network, serving as a model for
other players to learn that cooperation leads to success. This
is particularly true the higher the risk in the hubs (the higher
the δ).

By contrast, when hubs face a low perception of risk, the
influential role that they have in the network reverts to the
scenario where defection prevails.

Regarding the random correlation, the effect turns out to be
positive, as it is only necessary to have a few runs in which
some hubs are associated with high risk for having a large
impact on the average result.

1) Risk at Different Scales: It is worth emphasizing that
diversity in risk can emerge in distinct ways, that naturally
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Fig. 6. Group achievement as a function of δ, considering different correla-
tions between risk and connectivity. (a) Heterogeneity in the individual risk,
where the risk is considered to be an individual propriety in the network.
(b) Heterogeneity in the risk at the level of the games, where the risk of all
individuals participating in a given game is the risk of the focal individual
of that game. The dashed grey line represents a reference scenario without
risk heterogeneity in SF networks. Other parameters: M = 3N/7, c = 0.1,
b = 1, β = 6.0.

depend on the interpretation of the network. In Fig. 6a, we
embraced diversity as a whole, as we considered the risk to
be an individual property. Nevertheless, it is also reasonable
to consider risk heterogeneity at other scales. Taking this into
consideration, we explore other possibilities by assuming the
risk at the level of the games. Considering that a node defines
the game centered in itself (see Figure 1), we can interpret
the risk of a game to be the risk of the node that defines
that game. This setting might reflect, for instance, agreements
that are associated with geographical location. Specifically, if
we assume that a specific area has a certain risk of failure,
all members that are establishing an agreement focused on
that area share that same risk. Conversely, the previous setting
could reflect agreements that are established by social and
political ties that transcend geography, as it is expected that
many real-life agreements are formed between countries that
do not necessarily share the same risk.
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We depict the results of introducing risk diversity in the
games in Fig. 6b, by assuming the risk as rx in the payoff
function (3), instead of ry . It is clear that the impact of
considering heterogeneity at the level of the games is not
so evident as at the individuals. It should be noted that in
Fig. 6b, the risk that hubs face depends on the risk of the
different games they engage in. In particular, when the focal
individual of the game has a high degree, the risk of the
game is r̄ + δ, whereas when it has a low degree, the risk is
r̄ − δ. For instance, let us suppose that a hub is connected to
h other hubs and to n − h leaves. In Fig. 6b, the effective
risk of the hubs is: (r̄+δ)(h+1)+(r̄−δ)(n−h)

n+1 . Conversely, in
Fig. 6a, the hubs engage in the games with an effective risk
of r̄ + δ. Given that, in setting 6b, h is always less than
n, as hubs are connected to the majority of the individuals
and SF networks have significantly more low-degree nodes,
it is possible to infer that the effective risk of the hubs
in the agreements will always be higher when the risk is
individual. This confers an advantage for hubs to cooperate
in the evolutionary process, which significantly enhances the
chances for global cooperation in that scenario.

Similarly, when we assume a negative correlation, the
difference between the two scenarios follows the reasoning
explained above: In Fig. 6b, the hubs engage in the games
with an effective risk that will be composed of high and low
risks, whereas in Fig. 6a, it will be constituted only by low
risks, and, consequently, will amplify the deteriorating effect
that a low risk has on the evolution of cooperation.

Notice that the impact of δ is also different in the two
schemes. In Fig. 6a, the effect of increasing the risk hetero-
geneity enhances the effect of the correlations, whereas, in
Fig. 6b, it does not seem as significant. Naturally, when one
considers the individual risk, increasing δ, directly increases
the effective risk that hubs confront in their games. Contrarily,
when the risk is at the level of the games, increasing δ does not
increase the effective risk that hubs face in their agreements. In
particular, although increasing risk diversity increases the risk
of games centered in highly connected nodes, it also decreases
the risk of games centered in low degree nodes. Therefore, the
impact of δ is not considerable.

Considering the plethora of options in this dilemma, it is
plausible that climate agreements may fall somewhere between
these two scenarios, as the agreements can be established
focused both on specific regions and other characteristics that
exceed geography. For simplicity, thereafter we consider the
risk as an individual property when introducing risk diversity.

2) The Impact of Major Hubs: Now, we investigate how
many hubs with high risk are necessary for cooperation to
thrive. For this, we assign a high risk (rH ) to ZH top connected
hubs. The remaining nodes are assigned with a risk x, to
maintain the average risk per individual in the network r̄
(we consider r̄ = 0.5). The value for x can be calculated
as follows:

x =
r̄Z − rHZH
Z − ZH

. (5)
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Fig. 7. Group achievement as a function of the number of high-risk hubs, for
several high-risk levels. The hubs are ordered by descent connectivity. Other
parameters: M = 3N/7, c = 0.1, b = 1, β = 6.0, r̄ = 0.5.

In Figure 7, we vary the number of high-risk hubs, or-
dered by descent connectivity, for several high-risk levels. We
observe that cooperation becomes viable by only assigning
a high risk to a few major hubs. This is especially notable
when rH = 0.9. Overall, the results of Figure 7 suggest that,
even when the average risk on the population is not significant
(r̄ = 0.5), it is only necessary to adjust the perception of risk
on some few individuals that have higher connectivity to turn
cooperation into the dominant strategy.

C. Wealth Inequality

In this section, we incorporate wealth inequality by consid-
ering that the population is constituted of 20% rich individuals
and 80% poor, as detailed in Section II-B. We focus on under-
standing the impacts of correlating wealth with connectivity.
For this, we examine three distinct correlations:
• Positive: the 20% rich will be constituted by the 20%

nodes with the highest degree, and the 80% poor will be
composed by the remaining nodes;

• Negative: the 20% rich will be formed by the 20%
nodes with the lowest degree, and the 80% poor will be
composed by the remaining nodes;

• Random: we randomly attribute the wealth levels in
the network, maintaining the 20%-80% distribution of
wealth.

We perform experiments to analyze the impact of consid-
ering the different correlations, varying the br. We define
bp = Z−Zrbr

Zp
, to maintain the same average endowment of

the population (b̄ = 1). The results are depicted in Figure 8.
Note that, along the x-axis, the wealth inequality increases,
with the rich becoming richer and the poor becoming poorer.

Subsequently, to combine risk diversity with wealth in-
equality and social heterogeneity, we adjust the risk of a
few major hubs in Figure 9, assuming distinct correlations
between wealth and connectivity (positive and negative). In
particular, we consider two scenario regarding the risk: one
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Fig. 8. Group achievement as a function of the endowment of the rich
br , considering different correlations between wealth and connectivity. The
dashed grey line represents a reference scenario without wealth inequality in
SF nets. Other parameters: M = 4N/7, r̄ = 0.5, c = 0.1, β = 6.0, b̄ = 1.
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Fig. 9. Group achievement as a function of br , combining risk, wealth and
connectivity. The red curves correspond to 7 hubs with rH = 0.7, and the
yellow curves represent 7 hubs with rL = 0.3. The solid curves correspond
to a positive correlation between wealth and connectivity, whereas the dashed
coloured curves represent a negative correlation. The grey dashed line is the
homogeneous case, without heterogeneity in risk or wealth in SF networks.
Other parameters: M = 4N/7, r̄ = 0.5, δ = 0.2, c = 0.1, β = 6.0, b̄ = 1.

with rH = 0.7 in 7 major hubs (red curves) and the other
with rL = 0.3 in 7 major hubs (yellow curves).

The results of both figures indicate that the positive cor-
relation between wealth and connectivity is the one that
confers the highest values of ηG, whereas the negative one
provides the lowest. A possible reason for this relates to the
properties of SF networks. Notice that, even if we ensure
that the average endowment per individual is constant in
comparison to the homogeneous case (b̄ = 1), as nodes
are distributed heterogeneously in the network, the wealth
available per game is modified. To better grasp the effect
that increasing wealth disparities has on the budget available
to the population, in Figure 10 we illustrate the impact of
increasing br (and, consequently, decreasing bp) in the average
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Fig. 10. Average endowment available per group in the network as a function
of br , considering distinct correlations between wealth and connectivity. Each
data point is the average over 10 different SF nets. Other parameters: b̄ = 1.

endowment available per group. We can observe that when br
increases, the amount available per group on average increases
in the positive correlation and decreases in the negative one.
Accordingly, by positioning rich individuals in the majority of
the games (positive correlation), br is considered in most of
the agreements. Consequently, we are increasing the capacity
available per group in the network. This increases the chances
of having the demanded amount of contributions to surpass
the threshold. By contrast, when the rich only take part in a
few games (negative correlation), the capacity available per
group in the population decreases and reduces the chances of
success.

Hence, our results indicate that SF networks and the way
that wealth is distributed among the different games - that
is a direct consequence of the network - provides greater
diversity in the investments available to the population. As
a result, heterogeneity can have opposite effects depending on
the position where rich and poor are in the network.

This conclusion is similar to the one obtained regarding the
impact of risk diversity. Nevertheless, it is noteworthy that
if one compares Figure 8 (with wealth inequality only), the
highest value of ηG is around 0.65, whereas, in Figure 6a
(with risk diversity only), there is a significant improvement,
with ηG reaching 1. This indicates that risk heterogeneity may
be more impactful than wealth inequality.

Regarding the effect of incorporating risk heterogeneity in
Figure 9, one can observe that having hubs with high risk
is essential to achieve environmental agreements. Correspond-
ingly, even when hubs are rich, success is not feasible if they
have a low perception of risk (yellow solid curve).

Besides, one can observe that when hubs have a high risk,
the impact of the correlations between wealth and connectivity
are more notable than when they have a low risk. As we have
seen before, when hubs face a low risk they influence the
network towards defective behavior. Therefore, there is not
much difference between hubs having a large available amount
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(as in the positive correlation) or a small amount (negative
correlation), as it is most likely that many individuals will
not cooperate in both correlations. Conversely, when hubs
have a high perception of risk and influence the population
to cooperate, surpassing the threshold strongly depends on the
amount available to contribute.

Overall, we can observe that cooperation is improved when
centrality is positively correlated with risk. This effect is
amplified whenever risk and centrality are positively correlated
with individuals’ wealth. Summarizing, we can infer that the
best arrangement between the multiple sources of heterogene-
ity is to positively align centrality, risk and wealth.

1) Discussion of the Correlations: Given these results, it is
natural to ask how wealth, risk and connectivity are correlated
in the real world. Are the hubs of climate agreements rich
and with a higher perception of risk or is the scenario the
opposite? To discuss how realistic the correlations are, we
focus on analyzing the perception of risk and wealth of the
countries leading the environmental negotiations - the hubs
of the network. According to [20], the EU, USA and China
are undoubtedly the climate change leaders, which we can
interpret as the major hubs. Moreover, we can also consider
as hubs the Group of Seven (G7) - that wield significant
international influence. Regarding the perception of risk, it is
hard to grasp how the correlation should be. However, climate
leaders usually have a low perception of risk [7], [15]. On
the other hand, in real environmental agreements, the hubs
actually tend to be rich. For instance, the G7 is considered to
be composed of the seven wealthiest advanced countries [21].
Having said that, it is likely that the most realistic combination
between centrality, wealth and risk is the one where hubs
are rich but have a low perception of risk. In Figure 9, it
is observable that in this setting (yellow solid curve) group
success is not feasible. The course of this demanding problem
seems to essentially depend on the hubs and their perception
of risk. It is crucial that the leaders recognize their profound
responsibility and act in accordance, otherwise, the tragedy of
the commons is inevitable.

2) Including Fairness Notions: It is known that one of the
causes for previous failures to reach climate agreements is due
to conflicting policies between rich and poor [8]. Understand-
ing how the cooperation cost should be distributed among the
two classes results in a fairness dilemma. Respectively, there
is not a consensus on how rich and poor should contribute to
climate negotiations: Should the rich and the poor invest the
same amount? Or should the rich contribute more?

2.1) At the Individual Level: In the former section, we con-
sidered that the contributions of individuals were proportional
to their wealth, being a relative value. Here, we investigate
what happens when the two classes contribute an absolute
amount, equal for both of them. In particular, in the former
setting, rich individuals have a contribution of cr = cbr and
poor individuals of cp = cbp. In the latter setting, both have
the same contribution, that is, cr = cp = 0.1.
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Fig. 11. Group achievement as a function of br , considering two distinct ways
of contributions: in the purple curve contribution is proportional to wealth,
which means that rich contribute more than poor; in the green curve, the
contribution is fixed for the two wealth classes, meaning that rich and poor
contribute the same absolute terms. Other parameters: M = 4N/7, r̄ = 0.5,
β = 6.0, b̄ = 1.

In Figure 11, we show the effects of considering the two
contribution scenarios previously explained. We can observe
that cooperation is more viable when the rich contribute
larger amounts than the poor (purple curve). Observe that,
the increase in the capacity available when hubs are rich
(that we observed in Figure 10) does not remain valid if they
do not contribute proportionally to their wealth. As a result,
when the contributions are equal, the chances of having the
necessary amount of contributions to surpass the threshold do
not increase, and there is no improvement in group success.

2.2) At the Group Level: Until this point, we demanded
the same amount of contributions irrespective of the wealth
composition of the groups. However, requiring the same
contributions from a group composed of N rich countries and
a group of N poor countries might not be a fair assumption.
Taking this into consideration, here we study the differences
in collective success when we consider: 1) a threshold that
is agnostic to inequality (as considered previously) and 2)
a threshold that defines success in a more fair measure and
discriminates the wealth of the individuals in groups. For
the latter setting, instead of calculating the threshold factor
M of a group regarding the number of individuals that take
part in that group, we consider the amount of contribution
that is available in the group. Specifically, to calculate the
threshold of a group i, which corresponds to Micb̄, we assume
Mi = 4× Ci

C̄
, where Ci is the contribution capacity available

in group i and C̄ the average contribution capacity per group
in the network. This is opposed to what was being assumed,
where Mi = 4× Ni

N̄
= 4× Ni

7 . The outcomes of considering
the distinct thresholds are depicted in Figure 12.

Our results indicate that the wealth-dependent threshold
promotes cooperation. Accordingly, in this scenario, the effort
rate of the groups is being considered, as we are requiring
that groups contribute an amount based on what they can
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Fig. 12. Group achievement as a function of br , considering different types of
thresholds: the orange curve corresponds to a threshold that increases with the
contribution capacity of the groups, whereas in the purple curve the threshold
increases with the group size and ignores the group contribution capacity.
Other parameters: r̄ = 0.5, c = 0.1, β = 6.0, b̄ = 1.

contribute. By contrast, in the threshold that ignores the
composition of the groups, this effort is disregarded. As a
result, when the poor get significantly poor in this setting (as
in br = 2.25), there will be many groups with mostly poor
individuals that face severe requirements, given that they have
a small available budget to contribute. In these groups, even if
poor individuals cooperate, it is extremely difficult to achieve
the threshold, which naturally affects the global success in the
network. This negative effect can be alleviated if we recognize
the capacity available in the groups. Specifically, when the
threshold considers the wealth composition of the groups, we
are lowering the threshold in poorer groups (as their available
capacity is inferior). Given that we are considering that 80%
of individuals are poor, the majority of the groups will be
poorer (which is verified in Figure 13). Therefore, there will
be considerably more groups that will find it easier to surpass
the requirements.

The results of Figure 12 essentially suggest that it is easier
to reach group success if the collective goals are adjusted to the
effort and capacity of each group. This is complementary to the
outcome of Figure 11, as it indicates that, in order to maximize
cooperation, those who have more wealth should contribute
more - which can be applied to individuals or groups.

IV. CONCLUSION

In this work, we propose to contribute to a deeper under-
standing of the factors under which cooperation in climate
settings can prosper. For this, we resorted to an evolutionary
approach, recurring to complex networks.

We tackled the challenge of unraveling symmetries in the
climate change dilemma, focusing on incorporating hetero-
geneity in social ties, risk diversity, and wealth inequality
- which impacts remain astray in the literature. In order to
answer our main research questions and to portray a more ac-
curate description of environmental agreements, we developed

a model that allows for different sources of heterogeneity, by
introducing variations in the CRD.

We start by conferring a more realistic representation of
environmental agreements by including social heterogeneity
in the dilemma through SF networks. Our results suggest
that organizing the population in a heterogeneous network
can open a window of opportunity for cooperation. However,
there is a lot of uncertainty associated with the results we
obtained. We inferred that this uncertainty is rooted in the
behavior of the hubs, with the chance of overall success of
the population being strongly influenced by the initial strategy
of these individuals.

Subsequently, we incorporated risk diversity. Our results
indicate that heterogeneity exhibits distinct effects depending
on how we correlate risk with connectivity. In particular, we
found that assuming a positive correlation between individual
risk and centrality can unleash a wave of cooperation in the
network. This is particularly true the higher the heterogene-
ity we consider, i.e, the more accentuated is the difference
between high and low risks in the population. We further
observed that assuring that some few highly central players
are assigned with a high perception of risk is enough to nudge
an entire population into cooperation.

Following that, we included wealth inequality in the
dilemma. Similar to the conclusions we obtained previously,
we found that heterogeneity in wealth has opposite effects
depending on the correlation between wealth and degree that
is considered. Our results indicate that assuming a positive
correlation increases the chances of achieving global cooper-
ation. Notwithstanding, through our simulations, we observed
that risk diversity appears to be more impactful than wealth
inequality. When merging these three dimensions of hetero-
geneity in the dilemma, we observed that the positive effect of
correlating risk with centrality is enhanced whenever risk and
centrality are positively correlated with individuals’ wealth. In
other words, assuming that hubs have more to contribute and
have a high perception of risk is the arrangement that provides
better results.

Lastly, we explored the impact of considering distinct
fairness notions, regarding wealth inequality. In particular, we
investigated how the cost of cooperating should be allocated
to improve the chances of achieving climate agreements. Our
findings show that richer individuals should contribute more to
improve cooperation. To analyze fairness at a group level, we
proposed a new threshold capable of embracing the complexity
introduced when considering wealth inequality in SF networks.
We concluded that cooperation is fostered if the collective
goals are adjusted to the effort and capacity of each group,
where richer groups should contribute more.

It is noteworthy that our results may have implications for
policy-making and suggest that the course of this demanding
problem is strongly dependent on the hubs - the climate
leaders.

In our model, we disentangled symmetries that are typically
assumed when modeling social dilemmas. Nonetheless, certain
assumptions we made remained unexplored. For instance, the
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Fig. 13. Frequency of the contribution capacity per group, considering br = 2.25, bp = 0.6875. For visual clarity, we present the contribution per group
in a rounded format for a illustrative SF network. The dashed black line represents the average contribution per group. Portraying wealth inequality in SF
networks results in a distribution of wealth where the majority of the groups are poorer, whereas a minority is richer. Specifically, we verified that 77.7% of
the groups had an available capacity smaller than the average capacity. Other parameters: c = 0.1, b̄ = 1.

Barabási-Albert Model has some limitations. Other more real-
ist complex networks could be considered, as the Dorogovtsev-
Goltsev-Mendes Minimal Model [22], which generates highly
clustered SF networks. Moreover, instead of only considering
interaction in pairs, hypergraphs [23] provide a mathematical
framework capable of representing interactions between larger
groupings. On the other hand, instead of assuming binary
risk and wealth levels, it could be of importance to analyze
intermediate levels. Regarding mechanisms that focus on co-
operative relationships, studying the impacts of monitoring
institutions [24], [25] or financial incentives [26] could provide
influential contributions.
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